Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / dma / fsl-edma.c
1 /*
2 * drivers/dma/fsl-edma.c
3 *
4 * Copyright 2013-2014 Freescale Semiconductor, Inc.
5 *
6 * Driver for the Freescale eDMA engine with flexible channel multiplexing
7 * capability for DMA request sources. The eDMA block can be found on some
8 * Vybrid and Layerscape SoCs.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_dma.h>
29
30 #include "virt-dma.h"
31
32 #define EDMA_CR 0x00
33 #define EDMA_ES 0x04
34 #define EDMA_ERQ 0x0C
35 #define EDMA_EEI 0x14
36 #define EDMA_SERQ 0x1B
37 #define EDMA_CERQ 0x1A
38 #define EDMA_SEEI 0x19
39 #define EDMA_CEEI 0x18
40 #define EDMA_CINT 0x1F
41 #define EDMA_CERR 0x1E
42 #define EDMA_SSRT 0x1D
43 #define EDMA_CDNE 0x1C
44 #define EDMA_INTR 0x24
45 #define EDMA_ERR 0x2C
46
47 #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x))
48 #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x))
49 #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x))
50 #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x))
51 #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x))
52 #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x))
53 #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x))
54 #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x))
55 #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x))
56 #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x))
57 #define EDMA_TCD_CSR(x) (0x101C + 32 * (x))
58 #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x))
59 #define EDMA_TCD_BITER(x) (0x101E + 32 * (x))
60
61 #define EDMA_CR_EDBG BIT(1)
62 #define EDMA_CR_ERCA BIT(2)
63 #define EDMA_CR_ERGA BIT(3)
64 #define EDMA_CR_HOE BIT(4)
65 #define EDMA_CR_HALT BIT(5)
66 #define EDMA_CR_CLM BIT(6)
67 #define EDMA_CR_EMLM BIT(7)
68 #define EDMA_CR_ECX BIT(16)
69 #define EDMA_CR_CX BIT(17)
70
71 #define EDMA_SEEI_SEEI(x) ((x) & 0x1F)
72 #define EDMA_CEEI_CEEI(x) ((x) & 0x1F)
73 #define EDMA_CINT_CINT(x) ((x) & 0x1F)
74 #define EDMA_CERR_CERR(x) ((x) & 0x1F)
75
76 #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
77 #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
78 #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
79 #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
80 #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
81 #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
82 #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
83 #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
84 #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
85 #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
86 #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
87 #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
88 #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
89 #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
90
91 #define EDMA_TCD_SOFF_SOFF(x) (x)
92 #define EDMA_TCD_NBYTES_NBYTES(x) (x)
93 #define EDMA_TCD_SLAST_SLAST(x) (x)
94 #define EDMA_TCD_DADDR_DADDR(x) (x)
95 #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
96 #define EDMA_TCD_DOFF_DOFF(x) (x)
97 #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
98 #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
99
100 #define EDMA_TCD_CSR_START BIT(0)
101 #define EDMA_TCD_CSR_INT_MAJOR BIT(1)
102 #define EDMA_TCD_CSR_INT_HALF BIT(2)
103 #define EDMA_TCD_CSR_D_REQ BIT(3)
104 #define EDMA_TCD_CSR_E_SG BIT(4)
105 #define EDMA_TCD_CSR_E_LINK BIT(5)
106 #define EDMA_TCD_CSR_ACTIVE BIT(6)
107 #define EDMA_TCD_CSR_DONE BIT(7)
108
109 #define EDMAMUX_CHCFG_DIS 0x0
110 #define EDMAMUX_CHCFG_ENBL 0x80
111 #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
112
113 #define DMAMUX_NR 2
114
115 #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
116 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
117 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
118 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
119
120 struct fsl_edma_hw_tcd {
121 __le32 saddr;
122 __le16 soff;
123 __le16 attr;
124 __le32 nbytes;
125 __le32 slast;
126 __le32 daddr;
127 __le16 doff;
128 __le16 citer;
129 __le32 dlast_sga;
130 __le16 csr;
131 __le16 biter;
132 };
133
134 struct fsl_edma_sw_tcd {
135 dma_addr_t ptcd;
136 struct fsl_edma_hw_tcd *vtcd;
137 };
138
139 struct fsl_edma_slave_config {
140 enum dma_transfer_direction dir;
141 enum dma_slave_buswidth addr_width;
142 u32 dev_addr;
143 u32 burst;
144 u32 attr;
145 };
146
147 struct fsl_edma_chan {
148 struct virt_dma_chan vchan;
149 enum dma_status status;
150 struct fsl_edma_engine *edma;
151 struct fsl_edma_desc *edesc;
152 struct fsl_edma_slave_config fsc;
153 struct dma_pool *tcd_pool;
154 };
155
156 struct fsl_edma_desc {
157 struct virt_dma_desc vdesc;
158 struct fsl_edma_chan *echan;
159 bool iscyclic;
160 unsigned int n_tcds;
161 struct fsl_edma_sw_tcd tcd[];
162 };
163
164 struct fsl_edma_engine {
165 struct dma_device dma_dev;
166 void __iomem *membase;
167 void __iomem *muxbase[DMAMUX_NR];
168 struct clk *muxclk[DMAMUX_NR];
169 struct mutex fsl_edma_mutex;
170 u32 n_chans;
171 int txirq;
172 int errirq;
173 bool big_endian;
174 struct fsl_edma_chan chans[];
175 };
176
177 /*
178 * R/W functions for big- or little-endian registers:
179 * The eDMA controller's endian is independent of the CPU core's endian.
180 * For the big-endian IP module, the offset for 8-bit or 16-bit registers
181 * should also be swapped opposite to that in little-endian IP.
182 */
183
184 static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
185 {
186 if (edma->big_endian)
187 return ioread32be(addr);
188 else
189 return ioread32(addr);
190 }
191
192 static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
193 {
194 /* swap the reg offset for these in big-endian mode */
195 if (edma->big_endian)
196 iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
197 else
198 iowrite8(val, addr);
199 }
200
201 static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
202 {
203 /* swap the reg offset for these in big-endian mode */
204 if (edma->big_endian)
205 iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
206 else
207 iowrite16(val, addr);
208 }
209
210 static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
211 {
212 if (edma->big_endian)
213 iowrite32be(val, addr);
214 else
215 iowrite32(val, addr);
216 }
217
218 static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
219 {
220 return container_of(chan, struct fsl_edma_chan, vchan.chan);
221 }
222
223 static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
224 {
225 return container_of(vd, struct fsl_edma_desc, vdesc);
226 }
227
228 static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
229 {
230 void __iomem *addr = fsl_chan->edma->membase;
231 u32 ch = fsl_chan->vchan.chan.chan_id;
232
233 edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
234 edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
235 }
236
237 static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
238 {
239 void __iomem *addr = fsl_chan->edma->membase;
240 u32 ch = fsl_chan->vchan.chan.chan_id;
241
242 edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
243 edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
244 }
245
246 static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
247 unsigned int slot, bool enable)
248 {
249 u32 ch = fsl_chan->vchan.chan.chan_id;
250 void __iomem *muxaddr;
251 unsigned chans_per_mux, ch_off;
252
253 chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
254 ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
255 muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
256 slot = EDMAMUX_CHCFG_SOURCE(slot);
257
258 if (enable)
259 iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
260 else
261 iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
262 }
263
264 static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
265 {
266 switch (addr_width) {
267 case 1:
268 return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
269 case 2:
270 return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
271 case 4:
272 return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
273 case 8:
274 return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
275 default:
276 return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
277 }
278 }
279
280 static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
281 {
282 struct fsl_edma_desc *fsl_desc;
283 int i;
284
285 fsl_desc = to_fsl_edma_desc(vdesc);
286 for (i = 0; i < fsl_desc->n_tcds; i++)
287 dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
288 fsl_desc->tcd[i].ptcd);
289 kfree(fsl_desc);
290 }
291
292 static int fsl_edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
293 unsigned long arg)
294 {
295 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
296 struct dma_slave_config *cfg = (void *)arg;
297 unsigned long flags;
298 LIST_HEAD(head);
299
300 switch (cmd) {
301 case DMA_TERMINATE_ALL:
302 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
303 fsl_edma_disable_request(fsl_chan);
304 fsl_chan->edesc = NULL;
305 vchan_get_all_descriptors(&fsl_chan->vchan, &head);
306 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
307 vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
308 return 0;
309
310 case DMA_SLAVE_CONFIG:
311 fsl_chan->fsc.dir = cfg->direction;
312 if (cfg->direction == DMA_DEV_TO_MEM) {
313 fsl_chan->fsc.dev_addr = cfg->src_addr;
314 fsl_chan->fsc.addr_width = cfg->src_addr_width;
315 fsl_chan->fsc.burst = cfg->src_maxburst;
316 fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
317 } else if (cfg->direction == DMA_MEM_TO_DEV) {
318 fsl_chan->fsc.dev_addr = cfg->dst_addr;
319 fsl_chan->fsc.addr_width = cfg->dst_addr_width;
320 fsl_chan->fsc.burst = cfg->dst_maxburst;
321 fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
322 } else {
323 return -EINVAL;
324 }
325 return 0;
326
327 case DMA_PAUSE:
328 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
329 if (fsl_chan->edesc) {
330 fsl_edma_disable_request(fsl_chan);
331 fsl_chan->status = DMA_PAUSED;
332 }
333 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
334 return 0;
335
336 case DMA_RESUME:
337 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
338 if (fsl_chan->edesc) {
339 fsl_edma_enable_request(fsl_chan);
340 fsl_chan->status = DMA_IN_PROGRESS;
341 }
342 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
343 return 0;
344
345 default:
346 return -ENXIO;
347 }
348 }
349
350 static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
351 struct virt_dma_desc *vdesc, bool in_progress)
352 {
353 struct fsl_edma_desc *edesc = fsl_chan->edesc;
354 void __iomem *addr = fsl_chan->edma->membase;
355 u32 ch = fsl_chan->vchan.chan.chan_id;
356 enum dma_transfer_direction dir = fsl_chan->fsc.dir;
357 dma_addr_t cur_addr, dma_addr;
358 size_t len, size;
359 int i;
360
361 /* calculate the total size in this desc */
362 for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
363 len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
364 * le16_to_cpu(edesc->tcd[i].vtcd->biter);
365
366 if (!in_progress)
367 return len;
368
369 if (dir == DMA_MEM_TO_DEV)
370 cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
371 else
372 cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));
373
374 /* figure out the finished and calculate the residue */
375 for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
376 size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
377 * le16_to_cpu(edesc->tcd[i].vtcd->biter);
378 if (dir == DMA_MEM_TO_DEV)
379 dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
380 else
381 dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
382
383 len -= size;
384 if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
385 len += dma_addr + size - cur_addr;
386 break;
387 }
388 }
389
390 return len;
391 }
392
393 static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
394 dma_cookie_t cookie, struct dma_tx_state *txstate)
395 {
396 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
397 struct virt_dma_desc *vdesc;
398 enum dma_status status;
399 unsigned long flags;
400
401 status = dma_cookie_status(chan, cookie, txstate);
402 if (status == DMA_COMPLETE)
403 return status;
404
405 if (!txstate)
406 return fsl_chan->status;
407
408 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
409 vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
410 if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
411 txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
412 else if (vdesc)
413 txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
414 else
415 txstate->residue = 0;
416
417 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
418
419 return fsl_chan->status;
420 }
421
422 static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
423 struct fsl_edma_hw_tcd *tcd)
424 {
425 struct fsl_edma_engine *edma = fsl_chan->edma;
426 void __iomem *addr = fsl_chan->edma->membase;
427 u32 ch = fsl_chan->vchan.chan.chan_id;
428
429 /*
430 * TCD parameters are stored in struct fsl_edma_hw_tcd in little
431 * endian format. However, we need to load the TCD registers in
432 * big- or little-endian obeying the eDMA engine model endian.
433 */
434 edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch));
435 edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch));
436 edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch));
437
438 edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch));
439 edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch));
440
441 edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch));
442 edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch));
443
444 edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch));
445 edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch));
446 edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch));
447
448 edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch));
449
450 edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch));
451 }
452
453 static inline
454 void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
455 u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
456 u16 biter, u16 doff, u32 dlast_sga, bool major_int,
457 bool disable_req, bool enable_sg)
458 {
459 u16 csr = 0;
460
461 /*
462 * eDMA hardware SGs require the TCDs to be stored in little
463 * endian format irrespective of the register endian model.
464 * So we put the value in little endian in memory, waiting
465 * for fsl_edma_set_tcd_regs doing the swap.
466 */
467 tcd->saddr = cpu_to_le32(src);
468 tcd->daddr = cpu_to_le32(dst);
469
470 tcd->attr = cpu_to_le16(attr);
471
472 tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));
473
474 tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
475 tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));
476
477 tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
478 tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));
479
480 tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));
481
482 tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
483 if (major_int)
484 csr |= EDMA_TCD_CSR_INT_MAJOR;
485
486 if (disable_req)
487 csr |= EDMA_TCD_CSR_D_REQ;
488
489 if (enable_sg)
490 csr |= EDMA_TCD_CSR_E_SG;
491
492 tcd->csr = cpu_to_le16(csr);
493 }
494
495 static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
496 int sg_len)
497 {
498 struct fsl_edma_desc *fsl_desc;
499 int i;
500
501 fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
502 GFP_NOWAIT);
503 if (!fsl_desc)
504 return NULL;
505
506 fsl_desc->echan = fsl_chan;
507 fsl_desc->n_tcds = sg_len;
508 for (i = 0; i < sg_len; i++) {
509 fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
510 GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
511 if (!fsl_desc->tcd[i].vtcd)
512 goto err;
513 }
514 return fsl_desc;
515
516 err:
517 while (--i >= 0)
518 dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
519 fsl_desc->tcd[i].ptcd);
520 kfree(fsl_desc);
521 return NULL;
522 }
523
524 static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
525 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
526 size_t period_len, enum dma_transfer_direction direction,
527 unsigned long flags)
528 {
529 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
530 struct fsl_edma_desc *fsl_desc;
531 dma_addr_t dma_buf_next;
532 int sg_len, i;
533 u32 src_addr, dst_addr, last_sg, nbytes;
534 u16 soff, doff, iter;
535
536 if (!is_slave_direction(fsl_chan->fsc.dir))
537 return NULL;
538
539 sg_len = buf_len / period_len;
540 fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
541 if (!fsl_desc)
542 return NULL;
543 fsl_desc->iscyclic = true;
544
545 dma_buf_next = dma_addr;
546 nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
547 iter = period_len / nbytes;
548
549 for (i = 0; i < sg_len; i++) {
550 if (dma_buf_next >= dma_addr + buf_len)
551 dma_buf_next = dma_addr;
552
553 /* get next sg's physical address */
554 last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
555
556 if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
557 src_addr = dma_buf_next;
558 dst_addr = fsl_chan->fsc.dev_addr;
559 soff = fsl_chan->fsc.addr_width;
560 doff = 0;
561 } else {
562 src_addr = fsl_chan->fsc.dev_addr;
563 dst_addr = dma_buf_next;
564 soff = 0;
565 doff = fsl_chan->fsc.addr_width;
566 }
567
568 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
569 fsl_chan->fsc.attr, soff, nbytes, 0, iter,
570 iter, doff, last_sg, true, false, true);
571 dma_buf_next += period_len;
572 }
573
574 return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
575 }
576
577 static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
578 struct dma_chan *chan, struct scatterlist *sgl,
579 unsigned int sg_len, enum dma_transfer_direction direction,
580 unsigned long flags, void *context)
581 {
582 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
583 struct fsl_edma_desc *fsl_desc;
584 struct scatterlist *sg;
585 u32 src_addr, dst_addr, last_sg, nbytes;
586 u16 soff, doff, iter;
587 int i;
588
589 if (!is_slave_direction(fsl_chan->fsc.dir))
590 return NULL;
591
592 fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
593 if (!fsl_desc)
594 return NULL;
595 fsl_desc->iscyclic = false;
596
597 nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
598 for_each_sg(sgl, sg, sg_len, i) {
599 /* get next sg's physical address */
600 last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
601
602 if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
603 src_addr = sg_dma_address(sg);
604 dst_addr = fsl_chan->fsc.dev_addr;
605 soff = fsl_chan->fsc.addr_width;
606 doff = 0;
607 } else {
608 src_addr = fsl_chan->fsc.dev_addr;
609 dst_addr = sg_dma_address(sg);
610 soff = 0;
611 doff = fsl_chan->fsc.addr_width;
612 }
613
614 iter = sg_dma_len(sg) / nbytes;
615 if (i < sg_len - 1) {
616 last_sg = fsl_desc->tcd[(i + 1)].ptcd;
617 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
618 dst_addr, fsl_chan->fsc.attr, soff,
619 nbytes, 0, iter, iter, doff, last_sg,
620 false, false, true);
621 } else {
622 last_sg = 0;
623 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
624 dst_addr, fsl_chan->fsc.attr, soff,
625 nbytes, 0, iter, iter, doff, last_sg,
626 true, true, false);
627 }
628 }
629
630 return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
631 }
632
633 static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
634 {
635 struct virt_dma_desc *vdesc;
636
637 vdesc = vchan_next_desc(&fsl_chan->vchan);
638 if (!vdesc)
639 return;
640 fsl_chan->edesc = to_fsl_edma_desc(vdesc);
641 fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
642 fsl_edma_enable_request(fsl_chan);
643 fsl_chan->status = DMA_IN_PROGRESS;
644 }
645
646 static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
647 {
648 struct fsl_edma_engine *fsl_edma = dev_id;
649 unsigned int intr, ch;
650 void __iomem *base_addr;
651 struct fsl_edma_chan *fsl_chan;
652
653 base_addr = fsl_edma->membase;
654
655 intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
656 if (!intr)
657 return IRQ_NONE;
658
659 for (ch = 0; ch < fsl_edma->n_chans; ch++) {
660 if (intr & (0x1 << ch)) {
661 edma_writeb(fsl_edma, EDMA_CINT_CINT(ch),
662 base_addr + EDMA_CINT);
663
664 fsl_chan = &fsl_edma->chans[ch];
665
666 spin_lock(&fsl_chan->vchan.lock);
667 if (!fsl_chan->edesc->iscyclic) {
668 list_del(&fsl_chan->edesc->vdesc.node);
669 vchan_cookie_complete(&fsl_chan->edesc->vdesc);
670 fsl_chan->edesc = NULL;
671 fsl_chan->status = DMA_COMPLETE;
672 } else {
673 vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
674 }
675
676 if (!fsl_chan->edesc)
677 fsl_edma_xfer_desc(fsl_chan);
678
679 spin_unlock(&fsl_chan->vchan.lock);
680 }
681 }
682 return IRQ_HANDLED;
683 }
684
685 static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
686 {
687 struct fsl_edma_engine *fsl_edma = dev_id;
688 unsigned int err, ch;
689
690 err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR);
691 if (!err)
692 return IRQ_NONE;
693
694 for (ch = 0; ch < fsl_edma->n_chans; ch++) {
695 if (err & (0x1 << ch)) {
696 fsl_edma_disable_request(&fsl_edma->chans[ch]);
697 edma_writeb(fsl_edma, EDMA_CERR_CERR(ch),
698 fsl_edma->membase + EDMA_CERR);
699 fsl_edma->chans[ch].status = DMA_ERROR;
700 }
701 }
702 return IRQ_HANDLED;
703 }
704
705 static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
706 {
707 if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED)
708 return IRQ_HANDLED;
709
710 return fsl_edma_err_handler(irq, dev_id);
711 }
712
713 static void fsl_edma_issue_pending(struct dma_chan *chan)
714 {
715 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
716 unsigned long flags;
717
718 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
719
720 if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
721 fsl_edma_xfer_desc(fsl_chan);
722
723 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
724 }
725
726 static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
727 struct of_dma *ofdma)
728 {
729 struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data;
730 struct dma_chan *chan, *_chan;
731 unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR;
732
733 if (dma_spec->args_count != 2)
734 return NULL;
735
736 mutex_lock(&fsl_edma->fsl_edma_mutex);
737 list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) {
738 if (chan->client_count)
739 continue;
740 if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) {
741 chan = dma_get_slave_channel(chan);
742 if (chan) {
743 chan->device->privatecnt++;
744 fsl_edma_chan_mux(to_fsl_edma_chan(chan),
745 dma_spec->args[1], true);
746 mutex_unlock(&fsl_edma->fsl_edma_mutex);
747 return chan;
748 }
749 }
750 }
751 mutex_unlock(&fsl_edma->fsl_edma_mutex);
752 return NULL;
753 }
754
755 static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
756 {
757 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
758
759 fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
760 sizeof(struct fsl_edma_hw_tcd),
761 32, 0);
762 return 0;
763 }
764
765 static void fsl_edma_free_chan_resources(struct dma_chan *chan)
766 {
767 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
768 unsigned long flags;
769 LIST_HEAD(head);
770
771 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
772 fsl_edma_disable_request(fsl_chan);
773 fsl_edma_chan_mux(fsl_chan, 0, false);
774 fsl_chan->edesc = NULL;
775 vchan_get_all_descriptors(&fsl_chan->vchan, &head);
776 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
777
778 vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
779 dma_pool_destroy(fsl_chan->tcd_pool);
780 fsl_chan->tcd_pool = NULL;
781 }
782
783 static int fsl_dma_device_slave_caps(struct dma_chan *dchan,
784 struct dma_slave_caps *caps)
785 {
786 caps->src_addr_widths = FSL_EDMA_BUSWIDTHS;
787 caps->dstn_addr_widths = FSL_EDMA_BUSWIDTHS;
788 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
789 caps->cmd_pause = true;
790 caps->cmd_terminate = true;
791
792 return 0;
793 }
794
795 static int
796 fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
797 {
798 int ret;
799
800 fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx");
801 if (fsl_edma->txirq < 0) {
802 dev_err(&pdev->dev, "Can't get edma-tx irq.\n");
803 return fsl_edma->txirq;
804 }
805
806 fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err");
807 if (fsl_edma->errirq < 0) {
808 dev_err(&pdev->dev, "Can't get edma-err irq.\n");
809 return fsl_edma->errirq;
810 }
811
812 if (fsl_edma->txirq == fsl_edma->errirq) {
813 ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
814 fsl_edma_irq_handler, 0, "eDMA", fsl_edma);
815 if (ret) {
816 dev_err(&pdev->dev, "Can't register eDMA IRQ.\n");
817 return ret;
818 }
819 } else {
820 ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
821 fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma);
822 if (ret) {
823 dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n");
824 return ret;
825 }
826
827 ret = devm_request_irq(&pdev->dev, fsl_edma->errirq,
828 fsl_edma_err_handler, 0, "eDMA err", fsl_edma);
829 if (ret) {
830 dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n");
831 return ret;
832 }
833 }
834
835 return 0;
836 }
837
838 static int fsl_edma_probe(struct platform_device *pdev)
839 {
840 struct device_node *np = pdev->dev.of_node;
841 struct fsl_edma_engine *fsl_edma;
842 struct fsl_edma_chan *fsl_chan;
843 struct resource *res;
844 int len, chans;
845 int ret, i;
846
847 ret = of_property_read_u32(np, "dma-channels", &chans);
848 if (ret) {
849 dev_err(&pdev->dev, "Can't get dma-channels.\n");
850 return ret;
851 }
852
853 len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans;
854 fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
855 if (!fsl_edma)
856 return -ENOMEM;
857
858 fsl_edma->n_chans = chans;
859 mutex_init(&fsl_edma->fsl_edma_mutex);
860
861 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
862 fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res);
863 if (IS_ERR(fsl_edma->membase))
864 return PTR_ERR(fsl_edma->membase);
865
866 for (i = 0; i < DMAMUX_NR; i++) {
867 char clkname[32];
868
869 res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i);
870 fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res);
871 if (IS_ERR(fsl_edma->muxbase[i]))
872 return PTR_ERR(fsl_edma->muxbase[i]);
873
874 sprintf(clkname, "dmamux%d", i);
875 fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname);
876 if (IS_ERR(fsl_edma->muxclk[i])) {
877 dev_err(&pdev->dev, "Missing DMAMUX block clock.\n");
878 return PTR_ERR(fsl_edma->muxclk[i]);
879 }
880
881 ret = clk_prepare_enable(fsl_edma->muxclk[i]);
882 if (ret) {
883 dev_err(&pdev->dev, "DMAMUX clk block failed.\n");
884 return ret;
885 }
886
887 }
888
889 ret = fsl_edma_irq_init(pdev, fsl_edma);
890 if (ret)
891 return ret;
892
893 fsl_edma->big_endian = of_property_read_bool(np, "big-endian");
894
895 INIT_LIST_HEAD(&fsl_edma->dma_dev.channels);
896 for (i = 0; i < fsl_edma->n_chans; i++) {
897 struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i];
898
899 fsl_chan->edma = fsl_edma;
900
901 fsl_chan->vchan.desc_free = fsl_edma_free_desc;
902 vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);
903
904 edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
905 fsl_edma_chan_mux(fsl_chan, 0, false);
906 }
907
908 dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask);
909 dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask);
910 dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask);
911
912 fsl_edma->dma_dev.dev = &pdev->dev;
913 fsl_edma->dma_dev.device_alloc_chan_resources
914 = fsl_edma_alloc_chan_resources;
915 fsl_edma->dma_dev.device_free_chan_resources
916 = fsl_edma_free_chan_resources;
917 fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
918 fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
919 fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic;
920 fsl_edma->dma_dev.device_control = fsl_edma_control;
921 fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;
922 fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps;
923
924 platform_set_drvdata(pdev, fsl_edma);
925
926 ret = dma_async_device_register(&fsl_edma->dma_dev);
927 if (ret) {
928 dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n");
929 return ret;
930 }
931
932 ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma);
933 if (ret) {
934 dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n");
935 dma_async_device_unregister(&fsl_edma->dma_dev);
936 return ret;
937 }
938
939 /* enable round robin arbitration */
940 edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR);
941
942 return 0;
943 }
944
945 static int fsl_edma_remove(struct platform_device *pdev)
946 {
947 struct device_node *np = pdev->dev.of_node;
948 struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev);
949 int i;
950
951 of_dma_controller_free(np);
952 dma_async_device_unregister(&fsl_edma->dma_dev);
953
954 for (i = 0; i < DMAMUX_NR; i++)
955 clk_disable_unprepare(fsl_edma->muxclk[i]);
956
957 return 0;
958 }
959
960 static const struct of_device_id fsl_edma_dt_ids[] = {
961 { .compatible = "fsl,vf610-edma", },
962 { /* sentinel */ }
963 };
964 MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids);
965
966 static struct platform_driver fsl_edma_driver = {
967 .driver = {
968 .name = "fsl-edma",
969 .of_match_table = fsl_edma_dt_ids,
970 },
971 .probe = fsl_edma_probe,
972 .remove = fsl_edma_remove,
973 };
974
975 static int __init fsl_edma_init(void)
976 {
977 return platform_driver_register(&fsl_edma_driver);
978 }
979 subsys_initcall(fsl_edma_init);
980
981 static void __exit fsl_edma_exit(void)
982 {
983 platform_driver_unregister(&fsl_edma_driver);
984 }
985 module_exit(fsl_edma_exit);
986
987 MODULE_ALIAS("platform:fsl-edma");
988 MODULE_DESCRIPTION("Freescale eDMA engine driver");
989 MODULE_LICENSE("GPL v2");
This page took 0.05064 seconds and 5 git commands to generate.