Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77
78 /*
79 * Buffer descriptor status values.
80 */
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
88
89 /*
90 * Data Node descriptor status values.
91 */
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
96
97 /*
98 * IPCV2 descriptor status values.
99 */
100 #define BD_IPCV2_END_OF_FRAME 0x40
101
102 #define IPCV2_MAX_NODES 50
103 /*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107 #define DATA_ERROR 0x10000000
108
109 /*
110 * Buffer descriptor commands.
111 */
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
121 /*
122 * Change endianness indicator in the BD command field
123 */
124 #define CHANGE_ENDIANNESS 0x80
125
126 /*
127 * Mode/Count of data node descriptors - IPCv2
128 */
129 struct sdma_mode_count {
130 u32 count : 16; /* size of the buffer pointed by this BD */
131 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
132 u32 command : 8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136 * Buffer descriptor
137 */
138 struct sdma_buffer_descriptor {
139 struct sdma_mode_count mode;
140 u32 buffer_addr; /* address of the buffer described */
141 u32 ext_buffer_addr; /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145 * struct sdma_channel_control - Channel control Block
146 *
147 * @current_bd_ptr current buffer descriptor processed
148 * @base_bd_ptr first element of buffer descriptor array
149 * @unused padding. The SDMA engine expects an array of 128 byte
150 * control blocks
151 */
152 struct sdma_channel_control {
153 u32 current_bd_ptr;
154 u32 base_bd_ptr;
155 u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159 * struct sdma_state_registers - SDMA context for a channel
160 *
161 * @pc: program counter
162 * @t: test bit: status of arithmetic & test instruction
163 * @rpc: return program counter
164 * @sf: source fault while loading data
165 * @spc: loop start program counter
166 * @df: destination fault while storing data
167 * @epc: loop end program counter
168 * @lm: loop mode
169 */
170 struct sdma_state_registers {
171 u32 pc :14;
172 u32 unused1: 1;
173 u32 t : 1;
174 u32 rpc :14;
175 u32 unused0: 1;
176 u32 sf : 1;
177 u32 spc :14;
178 u32 unused2: 1;
179 u32 df : 1;
180 u32 epc :14;
181 u32 lm : 2;
182 } __attribute__ ((packed));
183
184 /**
185 * struct sdma_context_data - sdma context specific to a channel
186 *
187 * @channel_state: channel state bits
188 * @gReg: general registers
189 * @mda: burst dma destination address register
190 * @msa: burst dma source address register
191 * @ms: burst dma status register
192 * @md: burst dma data register
193 * @pda: peripheral dma destination address register
194 * @psa: peripheral dma source address register
195 * @ps: peripheral dma status register
196 * @pd: peripheral dma data register
197 * @ca: CRC polynomial register
198 * @cs: CRC accumulator register
199 * @dda: dedicated core destination address register
200 * @dsa: dedicated core source address register
201 * @ds: dedicated core status register
202 * @dd: dedicated core data register
203 */
204 struct sdma_context_data {
205 struct sdma_state_registers channel_state;
206 u32 gReg[8];
207 u32 mda;
208 u32 msa;
209 u32 ms;
210 u32 md;
211 u32 pda;
212 u32 psa;
213 u32 ps;
214 u32 pd;
215 u32 ca;
216 u32 cs;
217 u32 dda;
218 u32 dsa;
219 u32 ds;
220 u32 dd;
221 u32 scratch0;
222 u32 scratch1;
223 u32 scratch2;
224 u32 scratch3;
225 u32 scratch4;
226 u32 scratch5;
227 u32 scratch6;
228 u32 scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236 * struct sdma_channel - housekeeping for a SDMA channel
237 *
238 * @sdma pointer to the SDMA engine for this channel
239 * @channel the channel number, matches dmaengine chan_id + 1
240 * @direction transfer type. Needed for setting SDMA script
241 * @peripheral_type Peripheral type. Needed for setting SDMA script
242 * @event_id0 aka dma request line
243 * @event_id1 for channels that use 2 events
244 * @word_size peripheral access size
245 * @buf_tail ID of the buffer that was processed
246 * @num_bd max NUM_BD. number of descriptors currently handling
247 */
248 struct sdma_channel {
249 struct sdma_engine *sdma;
250 unsigned int channel;
251 enum dma_transfer_direction direction;
252 enum sdma_peripheral_type peripheral_type;
253 unsigned int event_id0;
254 unsigned int event_id1;
255 enum dma_slave_buswidth word_size;
256 unsigned int buf_tail;
257 unsigned int num_bd;
258 struct sdma_buffer_descriptor *bd;
259 dma_addr_t bd_phys;
260 unsigned int pc_from_device, pc_to_device;
261 unsigned long flags;
262 dma_addr_t per_address;
263 unsigned long event_mask[2];
264 unsigned long watermark_level;
265 u32 shp_addr, per_addr;
266 struct dma_chan chan;
267 spinlock_t lock;
268 struct dma_async_tx_descriptor desc;
269 enum dma_status status;
270 unsigned int chn_count;
271 unsigned int chn_real_count;
272 struct tasklet_struct tasklet;
273 };
274
275 #define IMX_DMA_SG_LOOP BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285 * struct sdma_firmware_header - Layout of the firmware image
286 *
287 * @magic "SDMA"
288 * @version_major increased whenever layout of struct sdma_script_start_addrs
289 * changes.
290 * @version_minor firmware minor version (for binary compatible changes)
291 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
292 * @num_script_addrs Number of script addresses in this image
293 * @ram_code_start offset of SDMA ram image in this firmware image
294 * @ram_code_size size of SDMA ram image
295 * @script_addrs Stores the start address of the SDMA scripts
296 * (in SDMA memory space)
297 */
298 struct sdma_firmware_header {
299 u32 magic;
300 u32 version_major;
301 u32 version_minor;
302 u32 script_addrs_start;
303 u32 num_script_addrs;
304 u32 ram_code_start;
305 u32 ram_code_size;
306 };
307
308 struct sdma_driver_data {
309 int chnenbl0;
310 int num_events;
311 struct sdma_script_start_addrs *script_addrs;
312 };
313
314 struct sdma_engine {
315 struct device *dev;
316 struct device_dma_parameters dma_parms;
317 struct sdma_channel channel[MAX_DMA_CHANNELS];
318 struct sdma_channel_control *channel_control;
319 void __iomem *regs;
320 struct sdma_context_data *context;
321 dma_addr_t context_phys;
322 struct dma_device dma_device;
323 struct clk *clk_ipg;
324 struct clk *clk_ahb;
325 spinlock_t channel_0_lock;
326 u32 script_number;
327 struct sdma_script_start_addrs *script_addrs;
328 const struct sdma_driver_data *drvdata;
329 };
330
331 static struct sdma_driver_data sdma_imx31 = {
332 .chnenbl0 = SDMA_CHNENBL0_IMX31,
333 .num_events = 32,
334 };
335
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337 .ap_2_ap_addr = 729,
338 .uart_2_mcu_addr = 904,
339 .per_2_app_addr = 1255,
340 .mcu_2_app_addr = 834,
341 .uartsh_2_mcu_addr = 1120,
342 .per_2_shp_addr = 1329,
343 .mcu_2_shp_addr = 1048,
344 .ata_2_mcu_addr = 1560,
345 .mcu_2_ata_addr = 1479,
346 .app_2_per_addr = 1189,
347 .app_2_mcu_addr = 770,
348 .shp_2_per_addr = 1407,
349 .shp_2_mcu_addr = 979,
350 };
351
352 static struct sdma_driver_data sdma_imx25 = {
353 .chnenbl0 = SDMA_CHNENBL0_IMX35,
354 .num_events = 48,
355 .script_addrs = &sdma_script_imx25,
356 };
357
358 static struct sdma_driver_data sdma_imx35 = {
359 .chnenbl0 = SDMA_CHNENBL0_IMX35,
360 .num_events = 48,
361 };
362
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364 .ap_2_ap_addr = 642,
365 .uart_2_mcu_addr = 817,
366 .mcu_2_app_addr = 747,
367 .mcu_2_shp_addr = 961,
368 .ata_2_mcu_addr = 1473,
369 .mcu_2_ata_addr = 1392,
370 .app_2_per_addr = 1033,
371 .app_2_mcu_addr = 683,
372 .shp_2_per_addr = 1251,
373 .shp_2_mcu_addr = 892,
374 };
375
376 static struct sdma_driver_data sdma_imx51 = {
377 .chnenbl0 = SDMA_CHNENBL0_IMX35,
378 .num_events = 48,
379 .script_addrs = &sdma_script_imx51,
380 };
381
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383 .ap_2_ap_addr = 642,
384 .app_2_mcu_addr = 683,
385 .mcu_2_app_addr = 747,
386 .uart_2_mcu_addr = 817,
387 .shp_2_mcu_addr = 891,
388 .mcu_2_shp_addr = 960,
389 .uartsh_2_mcu_addr = 1032,
390 .spdif_2_mcu_addr = 1100,
391 .mcu_2_spdif_addr = 1134,
392 .firi_2_mcu_addr = 1193,
393 .mcu_2_firi_addr = 1290,
394 };
395
396 static struct sdma_driver_data sdma_imx53 = {
397 .chnenbl0 = SDMA_CHNENBL0_IMX35,
398 .num_events = 48,
399 .script_addrs = &sdma_script_imx53,
400 };
401
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403 .ap_2_ap_addr = 642,
404 .uart_2_mcu_addr = 817,
405 .mcu_2_app_addr = 747,
406 .per_2_per_addr = 6331,
407 .uartsh_2_mcu_addr = 1032,
408 .mcu_2_shp_addr = 960,
409 .app_2_mcu_addr = 683,
410 .shp_2_mcu_addr = 891,
411 .spdif_2_mcu_addr = 1100,
412 .mcu_2_spdif_addr = 1134,
413 };
414
415 static struct sdma_driver_data sdma_imx6q = {
416 .chnenbl0 = SDMA_CHNENBL0_IMX35,
417 .num_events = 48,
418 .script_addrs = &sdma_script_imx6q,
419 };
420
421 static struct platform_device_id sdma_devtypes[] = {
422 {
423 .name = "imx25-sdma",
424 .driver_data = (unsigned long)&sdma_imx25,
425 }, {
426 .name = "imx31-sdma",
427 .driver_data = (unsigned long)&sdma_imx31,
428 }, {
429 .name = "imx35-sdma",
430 .driver_data = (unsigned long)&sdma_imx35,
431 }, {
432 .name = "imx51-sdma",
433 .driver_data = (unsigned long)&sdma_imx51,
434 }, {
435 .name = "imx53-sdma",
436 .driver_data = (unsigned long)&sdma_imx53,
437 }, {
438 .name = "imx6q-sdma",
439 .driver_data = (unsigned long)&sdma_imx6q,
440 }, {
441 /* sentinel */
442 }
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445
446 static const struct of_device_id sdma_dt_ids[] = {
447 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
453 { /* sentinel */ }
454 };
455 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
456
457 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
458 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
459 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
460 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
461
462 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
463 {
464 u32 chnenbl0 = sdma->drvdata->chnenbl0;
465 return chnenbl0 + event * 4;
466 }
467
468 static int sdma_config_ownership(struct sdma_channel *sdmac,
469 bool event_override, bool mcu_override, bool dsp_override)
470 {
471 struct sdma_engine *sdma = sdmac->sdma;
472 int channel = sdmac->channel;
473 unsigned long evt, mcu, dsp;
474
475 if (event_override && mcu_override && dsp_override)
476 return -EINVAL;
477
478 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
479 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
480 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
481
482 if (dsp_override)
483 __clear_bit(channel, &dsp);
484 else
485 __set_bit(channel, &dsp);
486
487 if (event_override)
488 __clear_bit(channel, &evt);
489 else
490 __set_bit(channel, &evt);
491
492 if (mcu_override)
493 __clear_bit(channel, &mcu);
494 else
495 __set_bit(channel, &mcu);
496
497 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
498 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
499 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
500
501 return 0;
502 }
503
504 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
505 {
506 writel(BIT(channel), sdma->regs + SDMA_H_START);
507 }
508
509 /*
510 * sdma_run_channel0 - run a channel and wait till it's done
511 */
512 static int sdma_run_channel0(struct sdma_engine *sdma)
513 {
514 int ret;
515 unsigned long timeout = 500;
516
517 sdma_enable_channel(sdma, 0);
518
519 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
520 if (timeout-- <= 0)
521 break;
522 udelay(1);
523 }
524
525 if (ret) {
526 /* Clear the interrupt status */
527 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
528 } else {
529 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
530 }
531
532 return ret ? 0 : -ETIMEDOUT;
533 }
534
535 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
536 u32 address)
537 {
538 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
539 void *buf_virt;
540 dma_addr_t buf_phys;
541 int ret;
542 unsigned long flags;
543
544 buf_virt = dma_alloc_coherent(NULL,
545 size,
546 &buf_phys, GFP_KERNEL);
547 if (!buf_virt) {
548 return -ENOMEM;
549 }
550
551 spin_lock_irqsave(&sdma->channel_0_lock, flags);
552
553 bd0->mode.command = C0_SETPM;
554 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
555 bd0->mode.count = size / 2;
556 bd0->buffer_addr = buf_phys;
557 bd0->ext_buffer_addr = address;
558
559 memcpy(buf_virt, buf, size);
560
561 ret = sdma_run_channel0(sdma);
562
563 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
564
565 dma_free_coherent(NULL, size, buf_virt, buf_phys);
566
567 return ret;
568 }
569
570 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
571 {
572 struct sdma_engine *sdma = sdmac->sdma;
573 int channel = sdmac->channel;
574 unsigned long val;
575 u32 chnenbl = chnenbl_ofs(sdma, event);
576
577 val = readl_relaxed(sdma->regs + chnenbl);
578 __set_bit(channel, &val);
579 writel_relaxed(val, sdma->regs + chnenbl);
580 }
581
582 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
583 {
584 struct sdma_engine *sdma = sdmac->sdma;
585 int channel = sdmac->channel;
586 u32 chnenbl = chnenbl_ofs(sdma, event);
587 unsigned long val;
588
589 val = readl_relaxed(sdma->regs + chnenbl);
590 __clear_bit(channel, &val);
591 writel_relaxed(val, sdma->regs + chnenbl);
592 }
593
594 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
595 {
596 struct sdma_buffer_descriptor *bd;
597
598 /*
599 * loop mode. Iterate over descriptors, re-setup them and
600 * call callback function.
601 */
602 while (1) {
603 bd = &sdmac->bd[sdmac->buf_tail];
604
605 if (bd->mode.status & BD_DONE)
606 break;
607
608 if (bd->mode.status & BD_RROR)
609 sdmac->status = DMA_ERROR;
610
611 bd->mode.status |= BD_DONE;
612 sdmac->buf_tail++;
613 sdmac->buf_tail %= sdmac->num_bd;
614
615 if (sdmac->desc.callback)
616 sdmac->desc.callback(sdmac->desc.callback_param);
617 }
618 }
619
620 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
621 {
622 struct sdma_buffer_descriptor *bd;
623 int i, error = 0;
624
625 sdmac->chn_real_count = 0;
626 /*
627 * non loop mode. Iterate over all descriptors, collect
628 * errors and call callback function
629 */
630 for (i = 0; i < sdmac->num_bd; i++) {
631 bd = &sdmac->bd[i];
632
633 if (bd->mode.status & (BD_DONE | BD_RROR))
634 error = -EIO;
635 sdmac->chn_real_count += bd->mode.count;
636 }
637
638 if (error)
639 sdmac->status = DMA_ERROR;
640 else
641 sdmac->status = DMA_COMPLETE;
642
643 dma_cookie_complete(&sdmac->desc);
644 if (sdmac->desc.callback)
645 sdmac->desc.callback(sdmac->desc.callback_param);
646 }
647
648 static void sdma_tasklet(unsigned long data)
649 {
650 struct sdma_channel *sdmac = (struct sdma_channel *) data;
651
652 if (sdmac->flags & IMX_DMA_SG_LOOP)
653 sdma_handle_channel_loop(sdmac);
654 else
655 mxc_sdma_handle_channel_normal(sdmac);
656 }
657
658 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
659 {
660 struct sdma_engine *sdma = dev_id;
661 unsigned long stat;
662
663 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
664 /* not interested in channel 0 interrupts */
665 stat &= ~1;
666 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
667
668 while (stat) {
669 int channel = fls(stat) - 1;
670 struct sdma_channel *sdmac = &sdma->channel[channel];
671
672 tasklet_schedule(&sdmac->tasklet);
673
674 __clear_bit(channel, &stat);
675 }
676
677 return IRQ_HANDLED;
678 }
679
680 /*
681 * sets the pc of SDMA script according to the peripheral type
682 */
683 static void sdma_get_pc(struct sdma_channel *sdmac,
684 enum sdma_peripheral_type peripheral_type)
685 {
686 struct sdma_engine *sdma = sdmac->sdma;
687 int per_2_emi = 0, emi_2_per = 0;
688 /*
689 * These are needed once we start to support transfers between
690 * two peripherals or memory-to-memory transfers
691 */
692 int per_2_per = 0, emi_2_emi = 0;
693
694 sdmac->pc_from_device = 0;
695 sdmac->pc_to_device = 0;
696
697 switch (peripheral_type) {
698 case IMX_DMATYPE_MEMORY:
699 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
700 break;
701 case IMX_DMATYPE_DSP:
702 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
703 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
704 break;
705 case IMX_DMATYPE_FIRI:
706 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
707 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
708 break;
709 case IMX_DMATYPE_UART:
710 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
711 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
712 break;
713 case IMX_DMATYPE_UART_SP:
714 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
715 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
716 break;
717 case IMX_DMATYPE_ATA:
718 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
719 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
720 break;
721 case IMX_DMATYPE_CSPI:
722 case IMX_DMATYPE_EXT:
723 case IMX_DMATYPE_SSI:
724 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
725 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
726 break;
727 case IMX_DMATYPE_SSI_DUAL:
728 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
729 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
730 break;
731 case IMX_DMATYPE_SSI_SP:
732 case IMX_DMATYPE_MMC:
733 case IMX_DMATYPE_SDHC:
734 case IMX_DMATYPE_CSPI_SP:
735 case IMX_DMATYPE_ESAI:
736 case IMX_DMATYPE_MSHC_SP:
737 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
738 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
739 break;
740 case IMX_DMATYPE_ASRC:
741 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
742 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
743 per_2_per = sdma->script_addrs->per_2_per_addr;
744 break;
745 case IMX_DMATYPE_MSHC:
746 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
747 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
748 break;
749 case IMX_DMATYPE_CCM:
750 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
751 break;
752 case IMX_DMATYPE_SPDIF:
753 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
754 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
755 break;
756 case IMX_DMATYPE_IPU_MEMORY:
757 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
758 break;
759 default:
760 break;
761 }
762
763 sdmac->pc_from_device = per_2_emi;
764 sdmac->pc_to_device = emi_2_per;
765 }
766
767 static int sdma_load_context(struct sdma_channel *sdmac)
768 {
769 struct sdma_engine *sdma = sdmac->sdma;
770 int channel = sdmac->channel;
771 int load_address;
772 struct sdma_context_data *context = sdma->context;
773 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
774 int ret;
775 unsigned long flags;
776
777 if (sdmac->direction == DMA_DEV_TO_MEM) {
778 load_address = sdmac->pc_from_device;
779 } else {
780 load_address = sdmac->pc_to_device;
781 }
782
783 if (load_address < 0)
784 return load_address;
785
786 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
787 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
788 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
789 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
790 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
791 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
792
793 spin_lock_irqsave(&sdma->channel_0_lock, flags);
794
795 memset(context, 0, sizeof(*context));
796 context->channel_state.pc = load_address;
797
798 /* Send by context the event mask,base address for peripheral
799 * and watermark level
800 */
801 context->gReg[0] = sdmac->event_mask[1];
802 context->gReg[1] = sdmac->event_mask[0];
803 context->gReg[2] = sdmac->per_addr;
804 context->gReg[6] = sdmac->shp_addr;
805 context->gReg[7] = sdmac->watermark_level;
806
807 bd0->mode.command = C0_SETDM;
808 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
809 bd0->mode.count = sizeof(*context) / 4;
810 bd0->buffer_addr = sdma->context_phys;
811 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
812 ret = sdma_run_channel0(sdma);
813
814 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
815
816 return ret;
817 }
818
819 static void sdma_disable_channel(struct sdma_channel *sdmac)
820 {
821 struct sdma_engine *sdma = sdmac->sdma;
822 int channel = sdmac->channel;
823
824 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
825 sdmac->status = DMA_ERROR;
826 }
827
828 static int sdma_config_channel(struct sdma_channel *sdmac)
829 {
830 int ret;
831
832 sdma_disable_channel(sdmac);
833
834 sdmac->event_mask[0] = 0;
835 sdmac->event_mask[1] = 0;
836 sdmac->shp_addr = 0;
837 sdmac->per_addr = 0;
838
839 if (sdmac->event_id0) {
840 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
841 return -EINVAL;
842 sdma_event_enable(sdmac, sdmac->event_id0);
843 }
844
845 switch (sdmac->peripheral_type) {
846 case IMX_DMATYPE_DSP:
847 sdma_config_ownership(sdmac, false, true, true);
848 break;
849 case IMX_DMATYPE_MEMORY:
850 sdma_config_ownership(sdmac, false, true, false);
851 break;
852 default:
853 sdma_config_ownership(sdmac, true, true, false);
854 break;
855 }
856
857 sdma_get_pc(sdmac, sdmac->peripheral_type);
858
859 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
860 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
861 /* Handle multiple event channels differently */
862 if (sdmac->event_id1) {
863 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
864 if (sdmac->event_id1 > 31)
865 __set_bit(31, &sdmac->watermark_level);
866 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
867 if (sdmac->event_id0 > 31)
868 __set_bit(30, &sdmac->watermark_level);
869 } else {
870 __set_bit(sdmac->event_id0, sdmac->event_mask);
871 }
872 /* Watermark Level */
873 sdmac->watermark_level |= sdmac->watermark_level;
874 /* Address */
875 sdmac->shp_addr = sdmac->per_address;
876 } else {
877 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
878 }
879
880 ret = sdma_load_context(sdmac);
881
882 return ret;
883 }
884
885 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
886 unsigned int priority)
887 {
888 struct sdma_engine *sdma = sdmac->sdma;
889 int channel = sdmac->channel;
890
891 if (priority < MXC_SDMA_MIN_PRIORITY
892 || priority > MXC_SDMA_MAX_PRIORITY) {
893 return -EINVAL;
894 }
895
896 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
897
898 return 0;
899 }
900
901 static int sdma_request_channel(struct sdma_channel *sdmac)
902 {
903 struct sdma_engine *sdma = sdmac->sdma;
904 int channel = sdmac->channel;
905 int ret = -EBUSY;
906
907 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
908 if (!sdmac->bd) {
909 ret = -ENOMEM;
910 goto out;
911 }
912
913 memset(sdmac->bd, 0, PAGE_SIZE);
914
915 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
916 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
917
918 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
919 return 0;
920 out:
921
922 return ret;
923 }
924
925 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
926 {
927 return container_of(chan, struct sdma_channel, chan);
928 }
929
930 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
931 {
932 unsigned long flags;
933 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
934 dma_cookie_t cookie;
935
936 spin_lock_irqsave(&sdmac->lock, flags);
937
938 cookie = dma_cookie_assign(tx);
939
940 spin_unlock_irqrestore(&sdmac->lock, flags);
941
942 return cookie;
943 }
944
945 static int sdma_alloc_chan_resources(struct dma_chan *chan)
946 {
947 struct sdma_channel *sdmac = to_sdma_chan(chan);
948 struct imx_dma_data *data = chan->private;
949 int prio, ret;
950
951 if (!data)
952 return -EINVAL;
953
954 switch (data->priority) {
955 case DMA_PRIO_HIGH:
956 prio = 3;
957 break;
958 case DMA_PRIO_MEDIUM:
959 prio = 2;
960 break;
961 case DMA_PRIO_LOW:
962 default:
963 prio = 1;
964 break;
965 }
966
967 sdmac->peripheral_type = data->peripheral_type;
968 sdmac->event_id0 = data->dma_request;
969
970 clk_enable(sdmac->sdma->clk_ipg);
971 clk_enable(sdmac->sdma->clk_ahb);
972
973 ret = sdma_request_channel(sdmac);
974 if (ret)
975 return ret;
976
977 ret = sdma_set_channel_priority(sdmac, prio);
978 if (ret)
979 return ret;
980
981 dma_async_tx_descriptor_init(&sdmac->desc, chan);
982 sdmac->desc.tx_submit = sdma_tx_submit;
983 /* txd.flags will be overwritten in prep funcs */
984 sdmac->desc.flags = DMA_CTRL_ACK;
985
986 return 0;
987 }
988
989 static void sdma_free_chan_resources(struct dma_chan *chan)
990 {
991 struct sdma_channel *sdmac = to_sdma_chan(chan);
992 struct sdma_engine *sdma = sdmac->sdma;
993
994 sdma_disable_channel(sdmac);
995
996 if (sdmac->event_id0)
997 sdma_event_disable(sdmac, sdmac->event_id0);
998 if (sdmac->event_id1)
999 sdma_event_disable(sdmac, sdmac->event_id1);
1000
1001 sdmac->event_id0 = 0;
1002 sdmac->event_id1 = 0;
1003
1004 sdma_set_channel_priority(sdmac, 0);
1005
1006 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1007
1008 clk_disable(sdma->clk_ipg);
1009 clk_disable(sdma->clk_ahb);
1010 }
1011
1012 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1013 struct dma_chan *chan, struct scatterlist *sgl,
1014 unsigned int sg_len, enum dma_transfer_direction direction,
1015 unsigned long flags, void *context)
1016 {
1017 struct sdma_channel *sdmac = to_sdma_chan(chan);
1018 struct sdma_engine *sdma = sdmac->sdma;
1019 int ret, i, count;
1020 int channel = sdmac->channel;
1021 struct scatterlist *sg;
1022
1023 if (sdmac->status == DMA_IN_PROGRESS)
1024 return NULL;
1025 sdmac->status = DMA_IN_PROGRESS;
1026
1027 sdmac->flags = 0;
1028
1029 sdmac->buf_tail = 0;
1030
1031 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1032 sg_len, channel);
1033
1034 sdmac->direction = direction;
1035 ret = sdma_load_context(sdmac);
1036 if (ret)
1037 goto err_out;
1038
1039 if (sg_len > NUM_BD) {
1040 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1041 channel, sg_len, NUM_BD);
1042 ret = -EINVAL;
1043 goto err_out;
1044 }
1045
1046 sdmac->chn_count = 0;
1047 for_each_sg(sgl, sg, sg_len, i) {
1048 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1049 int param;
1050
1051 bd->buffer_addr = sg->dma_address;
1052
1053 count = sg_dma_len(sg);
1054
1055 if (count > 0xffff) {
1056 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1057 channel, count, 0xffff);
1058 ret = -EINVAL;
1059 goto err_out;
1060 }
1061
1062 bd->mode.count = count;
1063 sdmac->chn_count += count;
1064
1065 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1066 ret = -EINVAL;
1067 goto err_out;
1068 }
1069
1070 switch (sdmac->word_size) {
1071 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1072 bd->mode.command = 0;
1073 if (count & 3 || sg->dma_address & 3)
1074 return NULL;
1075 break;
1076 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1077 bd->mode.command = 2;
1078 if (count & 1 || sg->dma_address & 1)
1079 return NULL;
1080 break;
1081 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1082 bd->mode.command = 1;
1083 break;
1084 default:
1085 return NULL;
1086 }
1087
1088 param = BD_DONE | BD_EXTD | BD_CONT;
1089
1090 if (i + 1 == sg_len) {
1091 param |= BD_INTR;
1092 param |= BD_LAST;
1093 param &= ~BD_CONT;
1094 }
1095
1096 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1097 i, count, (u64)sg->dma_address,
1098 param & BD_WRAP ? "wrap" : "",
1099 param & BD_INTR ? " intr" : "");
1100
1101 bd->mode.status = param;
1102 }
1103
1104 sdmac->num_bd = sg_len;
1105 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1106
1107 return &sdmac->desc;
1108 err_out:
1109 sdmac->status = DMA_ERROR;
1110 return NULL;
1111 }
1112
1113 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1114 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1115 size_t period_len, enum dma_transfer_direction direction,
1116 unsigned long flags, void *context)
1117 {
1118 struct sdma_channel *sdmac = to_sdma_chan(chan);
1119 struct sdma_engine *sdma = sdmac->sdma;
1120 int num_periods = buf_len / period_len;
1121 int channel = sdmac->channel;
1122 int ret, i = 0, buf = 0;
1123
1124 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1125
1126 if (sdmac->status == DMA_IN_PROGRESS)
1127 return NULL;
1128
1129 sdmac->status = DMA_IN_PROGRESS;
1130
1131 sdmac->buf_tail = 0;
1132
1133 sdmac->flags |= IMX_DMA_SG_LOOP;
1134 sdmac->direction = direction;
1135 ret = sdma_load_context(sdmac);
1136 if (ret)
1137 goto err_out;
1138
1139 if (num_periods > NUM_BD) {
1140 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1141 channel, num_periods, NUM_BD);
1142 goto err_out;
1143 }
1144
1145 if (period_len > 0xffff) {
1146 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1147 channel, period_len, 0xffff);
1148 goto err_out;
1149 }
1150
1151 while (buf < buf_len) {
1152 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1153 int param;
1154
1155 bd->buffer_addr = dma_addr;
1156
1157 bd->mode.count = period_len;
1158
1159 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1160 goto err_out;
1161 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1162 bd->mode.command = 0;
1163 else
1164 bd->mode.command = sdmac->word_size;
1165
1166 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1167 if (i + 1 == num_periods)
1168 param |= BD_WRAP;
1169
1170 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1171 i, period_len, (u64)dma_addr,
1172 param & BD_WRAP ? "wrap" : "",
1173 param & BD_INTR ? " intr" : "");
1174
1175 bd->mode.status = param;
1176
1177 dma_addr += period_len;
1178 buf += period_len;
1179
1180 i++;
1181 }
1182
1183 sdmac->num_bd = num_periods;
1184 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1185
1186 return &sdmac->desc;
1187 err_out:
1188 sdmac->status = DMA_ERROR;
1189 return NULL;
1190 }
1191
1192 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1193 unsigned long arg)
1194 {
1195 struct sdma_channel *sdmac = to_sdma_chan(chan);
1196 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1197
1198 switch (cmd) {
1199 case DMA_TERMINATE_ALL:
1200 sdma_disable_channel(sdmac);
1201 return 0;
1202 case DMA_SLAVE_CONFIG:
1203 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1204 sdmac->per_address = dmaengine_cfg->src_addr;
1205 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1206 dmaengine_cfg->src_addr_width;
1207 sdmac->word_size = dmaengine_cfg->src_addr_width;
1208 } else {
1209 sdmac->per_address = dmaengine_cfg->dst_addr;
1210 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1211 dmaengine_cfg->dst_addr_width;
1212 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1213 }
1214 sdmac->direction = dmaengine_cfg->direction;
1215 return sdma_config_channel(sdmac);
1216 default:
1217 return -ENOSYS;
1218 }
1219
1220 return -EINVAL;
1221 }
1222
1223 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1224 dma_cookie_t cookie,
1225 struct dma_tx_state *txstate)
1226 {
1227 struct sdma_channel *sdmac = to_sdma_chan(chan);
1228
1229 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1230 sdmac->chn_count - sdmac->chn_real_count);
1231
1232 return sdmac->status;
1233 }
1234
1235 static void sdma_issue_pending(struct dma_chan *chan)
1236 {
1237 struct sdma_channel *sdmac = to_sdma_chan(chan);
1238 struct sdma_engine *sdma = sdmac->sdma;
1239
1240 if (sdmac->status == DMA_IN_PROGRESS)
1241 sdma_enable_channel(sdma, sdmac->channel);
1242 }
1243
1244 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1245 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1246
1247 static void sdma_add_scripts(struct sdma_engine *sdma,
1248 const struct sdma_script_start_addrs *addr)
1249 {
1250 s32 *addr_arr = (u32 *)addr;
1251 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1252 int i;
1253
1254 /* use the default firmware in ROM if missing external firmware */
1255 if (!sdma->script_number)
1256 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1257
1258 for (i = 0; i < sdma->script_number; i++)
1259 if (addr_arr[i] > 0)
1260 saddr_arr[i] = addr_arr[i];
1261 }
1262
1263 static void sdma_load_firmware(const struct firmware *fw, void *context)
1264 {
1265 struct sdma_engine *sdma = context;
1266 const struct sdma_firmware_header *header;
1267 const struct sdma_script_start_addrs *addr;
1268 unsigned short *ram_code;
1269
1270 if (!fw) {
1271 dev_err(sdma->dev, "firmware not found\n");
1272 return;
1273 }
1274
1275 if (fw->size < sizeof(*header))
1276 goto err_firmware;
1277
1278 header = (struct sdma_firmware_header *)fw->data;
1279
1280 if (header->magic != SDMA_FIRMWARE_MAGIC)
1281 goto err_firmware;
1282 if (header->ram_code_start + header->ram_code_size > fw->size)
1283 goto err_firmware;
1284 switch (header->version_major) {
1285 case 1:
1286 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1287 break;
1288 case 2:
1289 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1290 break;
1291 default:
1292 dev_err(sdma->dev, "unknown firmware version\n");
1293 goto err_firmware;
1294 }
1295
1296 addr = (void *)header + header->script_addrs_start;
1297 ram_code = (void *)header + header->ram_code_start;
1298
1299 clk_enable(sdma->clk_ipg);
1300 clk_enable(sdma->clk_ahb);
1301 /* download the RAM image for SDMA */
1302 sdma_load_script(sdma, ram_code,
1303 header->ram_code_size,
1304 addr->ram_code_start_addr);
1305 clk_disable(sdma->clk_ipg);
1306 clk_disable(sdma->clk_ahb);
1307
1308 sdma_add_scripts(sdma, addr);
1309
1310 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1311 header->version_major,
1312 header->version_minor);
1313
1314 err_firmware:
1315 release_firmware(fw);
1316 }
1317
1318 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1319 const char *fw_name)
1320 {
1321 int ret;
1322
1323 ret = request_firmware_nowait(THIS_MODULE,
1324 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1325 GFP_KERNEL, sdma, sdma_load_firmware);
1326
1327 return ret;
1328 }
1329
1330 static int __init sdma_init(struct sdma_engine *sdma)
1331 {
1332 int i, ret;
1333 dma_addr_t ccb_phys;
1334
1335 clk_enable(sdma->clk_ipg);
1336 clk_enable(sdma->clk_ahb);
1337
1338 /* Be sure SDMA has not started yet */
1339 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1340
1341 sdma->channel_control = dma_alloc_coherent(NULL,
1342 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1343 sizeof(struct sdma_context_data),
1344 &ccb_phys, GFP_KERNEL);
1345
1346 if (!sdma->channel_control) {
1347 ret = -ENOMEM;
1348 goto err_dma_alloc;
1349 }
1350
1351 sdma->context = (void *)sdma->channel_control +
1352 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1353 sdma->context_phys = ccb_phys +
1354 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1355
1356 /* Zero-out the CCB structures array just allocated */
1357 memset(sdma->channel_control, 0,
1358 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1359
1360 /* disable all channels */
1361 for (i = 0; i < sdma->drvdata->num_events; i++)
1362 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1363
1364 /* All channels have priority 0 */
1365 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1366 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1367
1368 ret = sdma_request_channel(&sdma->channel[0]);
1369 if (ret)
1370 goto err_dma_alloc;
1371
1372 sdma_config_ownership(&sdma->channel[0], false, true, false);
1373
1374 /* Set Command Channel (Channel Zero) */
1375 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1376
1377 /* Set bits of CONFIG register but with static context switching */
1378 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1379 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1380
1381 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1382
1383 /* Set bits of CONFIG register with given context switching mode */
1384 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1385
1386 /* Initializes channel's priorities */
1387 sdma_set_channel_priority(&sdma->channel[0], 7);
1388
1389 clk_disable(sdma->clk_ipg);
1390 clk_disable(sdma->clk_ahb);
1391
1392 return 0;
1393
1394 err_dma_alloc:
1395 clk_disable(sdma->clk_ipg);
1396 clk_disable(sdma->clk_ahb);
1397 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1398 return ret;
1399 }
1400
1401 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1402 {
1403 struct imx_dma_data *data = fn_param;
1404
1405 if (!imx_dma_is_general_purpose(chan))
1406 return false;
1407
1408 chan->private = data;
1409
1410 return true;
1411 }
1412
1413 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1414 struct of_dma *ofdma)
1415 {
1416 struct sdma_engine *sdma = ofdma->of_dma_data;
1417 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1418 struct imx_dma_data data;
1419
1420 if (dma_spec->args_count != 3)
1421 return NULL;
1422
1423 data.dma_request = dma_spec->args[0];
1424 data.peripheral_type = dma_spec->args[1];
1425 data.priority = dma_spec->args[2];
1426
1427 return dma_request_channel(mask, sdma_filter_fn, &data);
1428 }
1429
1430 static int __init sdma_probe(struct platform_device *pdev)
1431 {
1432 const struct of_device_id *of_id =
1433 of_match_device(sdma_dt_ids, &pdev->dev);
1434 struct device_node *np = pdev->dev.of_node;
1435 const char *fw_name;
1436 int ret;
1437 int irq;
1438 struct resource *iores;
1439 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1440 int i;
1441 struct sdma_engine *sdma;
1442 s32 *saddr_arr;
1443 const struct sdma_driver_data *drvdata = NULL;
1444
1445 if (of_id)
1446 drvdata = of_id->data;
1447 else if (pdev->id_entry)
1448 drvdata = (void *)pdev->id_entry->driver_data;
1449
1450 if (!drvdata) {
1451 dev_err(&pdev->dev, "unable to find driver data\n");
1452 return -EINVAL;
1453 }
1454
1455 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1456 if (ret)
1457 return ret;
1458
1459 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1460 if (!sdma)
1461 return -ENOMEM;
1462
1463 spin_lock_init(&sdma->channel_0_lock);
1464
1465 sdma->dev = &pdev->dev;
1466 sdma->drvdata = drvdata;
1467
1468 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1469 irq = platform_get_irq(pdev, 0);
1470 if (!iores || irq < 0) {
1471 ret = -EINVAL;
1472 goto err_irq;
1473 }
1474
1475 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1476 ret = -EBUSY;
1477 goto err_request_region;
1478 }
1479
1480 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1481 if (IS_ERR(sdma->clk_ipg)) {
1482 ret = PTR_ERR(sdma->clk_ipg);
1483 goto err_clk;
1484 }
1485
1486 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1487 if (IS_ERR(sdma->clk_ahb)) {
1488 ret = PTR_ERR(sdma->clk_ahb);
1489 goto err_clk;
1490 }
1491
1492 clk_prepare(sdma->clk_ipg);
1493 clk_prepare(sdma->clk_ahb);
1494
1495 sdma->regs = ioremap(iores->start, resource_size(iores));
1496 if (!sdma->regs) {
1497 ret = -ENOMEM;
1498 goto err_ioremap;
1499 }
1500
1501 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1502 if (ret)
1503 goto err_request_irq;
1504
1505 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1506 if (!sdma->script_addrs) {
1507 ret = -ENOMEM;
1508 goto err_alloc;
1509 }
1510
1511 /* initially no scripts available */
1512 saddr_arr = (s32 *)sdma->script_addrs;
1513 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1514 saddr_arr[i] = -EINVAL;
1515
1516 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1517 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1518
1519 INIT_LIST_HEAD(&sdma->dma_device.channels);
1520 /* Initialize channel parameters */
1521 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1522 struct sdma_channel *sdmac = &sdma->channel[i];
1523
1524 sdmac->sdma = sdma;
1525 spin_lock_init(&sdmac->lock);
1526
1527 sdmac->chan.device = &sdma->dma_device;
1528 dma_cookie_init(&sdmac->chan);
1529 sdmac->channel = i;
1530
1531 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1532 (unsigned long) sdmac);
1533 /*
1534 * Add the channel to the DMAC list. Do not add channel 0 though
1535 * because we need it internally in the SDMA driver. This also means
1536 * that channel 0 in dmaengine counting matches sdma channel 1.
1537 */
1538 if (i)
1539 list_add_tail(&sdmac->chan.device_node,
1540 &sdma->dma_device.channels);
1541 }
1542
1543 ret = sdma_init(sdma);
1544 if (ret)
1545 goto err_init;
1546
1547 if (sdma->drvdata->script_addrs)
1548 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1549 if (pdata && pdata->script_addrs)
1550 sdma_add_scripts(sdma, pdata->script_addrs);
1551
1552 if (pdata) {
1553 ret = sdma_get_firmware(sdma, pdata->fw_name);
1554 if (ret)
1555 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1556 } else {
1557 /*
1558 * Because that device tree does not encode ROM script address,
1559 * the RAM script in firmware is mandatory for device tree
1560 * probe, otherwise it fails.
1561 */
1562 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1563 &fw_name);
1564 if (ret)
1565 dev_warn(&pdev->dev, "failed to get firmware name\n");
1566 else {
1567 ret = sdma_get_firmware(sdma, fw_name);
1568 if (ret)
1569 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1570 }
1571 }
1572
1573 sdma->dma_device.dev = &pdev->dev;
1574
1575 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1576 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1577 sdma->dma_device.device_tx_status = sdma_tx_status;
1578 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1579 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1580 sdma->dma_device.device_control = sdma_control;
1581 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1582 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1583 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1584
1585 ret = dma_async_device_register(&sdma->dma_device);
1586 if (ret) {
1587 dev_err(&pdev->dev, "unable to register\n");
1588 goto err_init;
1589 }
1590
1591 if (np) {
1592 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1593 if (ret) {
1594 dev_err(&pdev->dev, "failed to register controller\n");
1595 goto err_register;
1596 }
1597 }
1598
1599 dev_info(sdma->dev, "initialized\n");
1600
1601 return 0;
1602
1603 err_register:
1604 dma_async_device_unregister(&sdma->dma_device);
1605 err_init:
1606 kfree(sdma->script_addrs);
1607 err_alloc:
1608 free_irq(irq, sdma);
1609 err_request_irq:
1610 iounmap(sdma->regs);
1611 err_ioremap:
1612 err_clk:
1613 release_mem_region(iores->start, resource_size(iores));
1614 err_request_region:
1615 err_irq:
1616 kfree(sdma);
1617 return ret;
1618 }
1619
1620 static int sdma_remove(struct platform_device *pdev)
1621 {
1622 return -EBUSY;
1623 }
1624
1625 static struct platform_driver sdma_driver = {
1626 .driver = {
1627 .name = "imx-sdma",
1628 .of_match_table = sdma_dt_ids,
1629 },
1630 .id_table = sdma_devtypes,
1631 .remove = sdma_remove,
1632 };
1633
1634 static int __init sdma_module_init(void)
1635 {
1636 return platform_driver_probe(&sdma_driver, sdma_probe);
1637 }
1638 module_init(sdma_module_init);
1639
1640 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1641 MODULE_DESCRIPTION("i.MX SDMA driver");
1642 MODULE_LICENSE("GPL");
This page took 0.086748 seconds and 5 git commands to generate.