dmaengine: qcom_bam_dma: Add device tree binding
[deliverable/linux.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77
78 /*
79 * Buffer descriptor status values.
80 */
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
88
89 /*
90 * Data Node descriptor status values.
91 */
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
96
97 /*
98 * IPCV2 descriptor status values.
99 */
100 #define BD_IPCV2_END_OF_FRAME 0x40
101
102 #define IPCV2_MAX_NODES 50
103 /*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107 #define DATA_ERROR 0x10000000
108
109 /*
110 * Buffer descriptor commands.
111 */
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
121 /*
122 * Change endianness indicator in the BD command field
123 */
124 #define CHANGE_ENDIANNESS 0x80
125
126 /*
127 * Mode/Count of data node descriptors - IPCv2
128 */
129 struct sdma_mode_count {
130 u32 count : 16; /* size of the buffer pointed by this BD */
131 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
132 u32 command : 8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136 * Buffer descriptor
137 */
138 struct sdma_buffer_descriptor {
139 struct sdma_mode_count mode;
140 u32 buffer_addr; /* address of the buffer described */
141 u32 ext_buffer_addr; /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145 * struct sdma_channel_control - Channel control Block
146 *
147 * @current_bd_ptr current buffer descriptor processed
148 * @base_bd_ptr first element of buffer descriptor array
149 * @unused padding. The SDMA engine expects an array of 128 byte
150 * control blocks
151 */
152 struct sdma_channel_control {
153 u32 current_bd_ptr;
154 u32 base_bd_ptr;
155 u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159 * struct sdma_state_registers - SDMA context for a channel
160 *
161 * @pc: program counter
162 * @t: test bit: status of arithmetic & test instruction
163 * @rpc: return program counter
164 * @sf: source fault while loading data
165 * @spc: loop start program counter
166 * @df: destination fault while storing data
167 * @epc: loop end program counter
168 * @lm: loop mode
169 */
170 struct sdma_state_registers {
171 u32 pc :14;
172 u32 unused1: 1;
173 u32 t : 1;
174 u32 rpc :14;
175 u32 unused0: 1;
176 u32 sf : 1;
177 u32 spc :14;
178 u32 unused2: 1;
179 u32 df : 1;
180 u32 epc :14;
181 u32 lm : 2;
182 } __attribute__ ((packed));
183
184 /**
185 * struct sdma_context_data - sdma context specific to a channel
186 *
187 * @channel_state: channel state bits
188 * @gReg: general registers
189 * @mda: burst dma destination address register
190 * @msa: burst dma source address register
191 * @ms: burst dma status register
192 * @md: burst dma data register
193 * @pda: peripheral dma destination address register
194 * @psa: peripheral dma source address register
195 * @ps: peripheral dma status register
196 * @pd: peripheral dma data register
197 * @ca: CRC polynomial register
198 * @cs: CRC accumulator register
199 * @dda: dedicated core destination address register
200 * @dsa: dedicated core source address register
201 * @ds: dedicated core status register
202 * @dd: dedicated core data register
203 */
204 struct sdma_context_data {
205 struct sdma_state_registers channel_state;
206 u32 gReg[8];
207 u32 mda;
208 u32 msa;
209 u32 ms;
210 u32 md;
211 u32 pda;
212 u32 psa;
213 u32 ps;
214 u32 pd;
215 u32 ca;
216 u32 cs;
217 u32 dda;
218 u32 dsa;
219 u32 ds;
220 u32 dd;
221 u32 scratch0;
222 u32 scratch1;
223 u32 scratch2;
224 u32 scratch3;
225 u32 scratch4;
226 u32 scratch5;
227 u32 scratch6;
228 u32 scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236 * struct sdma_channel - housekeeping for a SDMA channel
237 *
238 * @sdma pointer to the SDMA engine for this channel
239 * @channel the channel number, matches dmaengine chan_id + 1
240 * @direction transfer type. Needed for setting SDMA script
241 * @peripheral_type Peripheral type. Needed for setting SDMA script
242 * @event_id0 aka dma request line
243 * @event_id1 for channels that use 2 events
244 * @word_size peripheral access size
245 * @buf_tail ID of the buffer that was processed
246 * @num_bd max NUM_BD. number of descriptors currently handling
247 */
248 struct sdma_channel {
249 struct sdma_engine *sdma;
250 unsigned int channel;
251 enum dma_transfer_direction direction;
252 enum sdma_peripheral_type peripheral_type;
253 unsigned int event_id0;
254 unsigned int event_id1;
255 enum dma_slave_buswidth word_size;
256 unsigned int buf_tail;
257 unsigned int num_bd;
258 struct sdma_buffer_descriptor *bd;
259 dma_addr_t bd_phys;
260 unsigned int pc_from_device, pc_to_device;
261 unsigned long flags;
262 dma_addr_t per_address;
263 unsigned long event_mask[2];
264 unsigned long watermark_level;
265 u32 shp_addr, per_addr;
266 struct dma_chan chan;
267 spinlock_t lock;
268 struct dma_async_tx_descriptor desc;
269 enum dma_status status;
270 unsigned int chn_count;
271 unsigned int chn_real_count;
272 struct tasklet_struct tasklet;
273 };
274
275 #define IMX_DMA_SG_LOOP BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285 * struct sdma_firmware_header - Layout of the firmware image
286 *
287 * @magic "SDMA"
288 * @version_major increased whenever layout of struct sdma_script_start_addrs
289 * changes.
290 * @version_minor firmware minor version (for binary compatible changes)
291 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
292 * @num_script_addrs Number of script addresses in this image
293 * @ram_code_start offset of SDMA ram image in this firmware image
294 * @ram_code_size size of SDMA ram image
295 * @script_addrs Stores the start address of the SDMA scripts
296 * (in SDMA memory space)
297 */
298 struct sdma_firmware_header {
299 u32 magic;
300 u32 version_major;
301 u32 version_minor;
302 u32 script_addrs_start;
303 u32 num_script_addrs;
304 u32 ram_code_start;
305 u32 ram_code_size;
306 };
307
308 struct sdma_driver_data {
309 int chnenbl0;
310 int num_events;
311 struct sdma_script_start_addrs *script_addrs;
312 };
313
314 struct sdma_engine {
315 struct device *dev;
316 struct device_dma_parameters dma_parms;
317 struct sdma_channel channel[MAX_DMA_CHANNELS];
318 struct sdma_channel_control *channel_control;
319 void __iomem *regs;
320 struct sdma_context_data *context;
321 dma_addr_t context_phys;
322 struct dma_device dma_device;
323 struct clk *clk_ipg;
324 struct clk *clk_ahb;
325 spinlock_t channel_0_lock;
326 u32 script_number;
327 struct sdma_script_start_addrs *script_addrs;
328 const struct sdma_driver_data *drvdata;
329 };
330
331 static struct sdma_driver_data sdma_imx31 = {
332 .chnenbl0 = SDMA_CHNENBL0_IMX31,
333 .num_events = 32,
334 };
335
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337 .ap_2_ap_addr = 729,
338 .uart_2_mcu_addr = 904,
339 .per_2_app_addr = 1255,
340 .mcu_2_app_addr = 834,
341 .uartsh_2_mcu_addr = 1120,
342 .per_2_shp_addr = 1329,
343 .mcu_2_shp_addr = 1048,
344 .ata_2_mcu_addr = 1560,
345 .mcu_2_ata_addr = 1479,
346 .app_2_per_addr = 1189,
347 .app_2_mcu_addr = 770,
348 .shp_2_per_addr = 1407,
349 .shp_2_mcu_addr = 979,
350 };
351
352 static struct sdma_driver_data sdma_imx25 = {
353 .chnenbl0 = SDMA_CHNENBL0_IMX35,
354 .num_events = 48,
355 .script_addrs = &sdma_script_imx25,
356 };
357
358 static struct sdma_driver_data sdma_imx35 = {
359 .chnenbl0 = SDMA_CHNENBL0_IMX35,
360 .num_events = 48,
361 };
362
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364 .ap_2_ap_addr = 642,
365 .uart_2_mcu_addr = 817,
366 .mcu_2_app_addr = 747,
367 .mcu_2_shp_addr = 961,
368 .ata_2_mcu_addr = 1473,
369 .mcu_2_ata_addr = 1392,
370 .app_2_per_addr = 1033,
371 .app_2_mcu_addr = 683,
372 .shp_2_per_addr = 1251,
373 .shp_2_mcu_addr = 892,
374 };
375
376 static struct sdma_driver_data sdma_imx51 = {
377 .chnenbl0 = SDMA_CHNENBL0_IMX35,
378 .num_events = 48,
379 .script_addrs = &sdma_script_imx51,
380 };
381
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383 .ap_2_ap_addr = 642,
384 .app_2_mcu_addr = 683,
385 .mcu_2_app_addr = 747,
386 .uart_2_mcu_addr = 817,
387 .shp_2_mcu_addr = 891,
388 .mcu_2_shp_addr = 960,
389 .uartsh_2_mcu_addr = 1032,
390 .spdif_2_mcu_addr = 1100,
391 .mcu_2_spdif_addr = 1134,
392 .firi_2_mcu_addr = 1193,
393 .mcu_2_firi_addr = 1290,
394 };
395
396 static struct sdma_driver_data sdma_imx53 = {
397 .chnenbl0 = SDMA_CHNENBL0_IMX35,
398 .num_events = 48,
399 .script_addrs = &sdma_script_imx53,
400 };
401
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403 .ap_2_ap_addr = 642,
404 .uart_2_mcu_addr = 817,
405 .mcu_2_app_addr = 747,
406 .per_2_per_addr = 6331,
407 .uartsh_2_mcu_addr = 1032,
408 .mcu_2_shp_addr = 960,
409 .app_2_mcu_addr = 683,
410 .shp_2_mcu_addr = 891,
411 .spdif_2_mcu_addr = 1100,
412 .mcu_2_spdif_addr = 1134,
413 };
414
415 static struct sdma_driver_data sdma_imx6q = {
416 .chnenbl0 = SDMA_CHNENBL0_IMX35,
417 .num_events = 48,
418 .script_addrs = &sdma_script_imx6q,
419 };
420
421 static struct platform_device_id sdma_devtypes[] = {
422 {
423 .name = "imx25-sdma",
424 .driver_data = (unsigned long)&sdma_imx25,
425 }, {
426 .name = "imx31-sdma",
427 .driver_data = (unsigned long)&sdma_imx31,
428 }, {
429 .name = "imx35-sdma",
430 .driver_data = (unsigned long)&sdma_imx35,
431 }, {
432 .name = "imx51-sdma",
433 .driver_data = (unsigned long)&sdma_imx51,
434 }, {
435 .name = "imx53-sdma",
436 .driver_data = (unsigned long)&sdma_imx53,
437 }, {
438 .name = "imx6q-sdma",
439 .driver_data = (unsigned long)&sdma_imx6q,
440 }, {
441 /* sentinel */
442 }
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445
446 static const struct of_device_id sdma_dt_ids[] = {
447 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452 { /* sentinel */ }
453 };
454 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
455
456 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
457 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
458 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
459 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
460
461 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
462 {
463 u32 chnenbl0 = sdma->drvdata->chnenbl0;
464 return chnenbl0 + event * 4;
465 }
466
467 static int sdma_config_ownership(struct sdma_channel *sdmac,
468 bool event_override, bool mcu_override, bool dsp_override)
469 {
470 struct sdma_engine *sdma = sdmac->sdma;
471 int channel = sdmac->channel;
472 unsigned long evt, mcu, dsp;
473
474 if (event_override && mcu_override && dsp_override)
475 return -EINVAL;
476
477 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
478 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
479 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
480
481 if (dsp_override)
482 __clear_bit(channel, &dsp);
483 else
484 __set_bit(channel, &dsp);
485
486 if (event_override)
487 __clear_bit(channel, &evt);
488 else
489 __set_bit(channel, &evt);
490
491 if (mcu_override)
492 __clear_bit(channel, &mcu);
493 else
494 __set_bit(channel, &mcu);
495
496 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
497 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
498 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
499
500 return 0;
501 }
502
503 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
504 {
505 writel(BIT(channel), sdma->regs + SDMA_H_START);
506 }
507
508 /*
509 * sdma_run_channel0 - run a channel and wait till it's done
510 */
511 static int sdma_run_channel0(struct sdma_engine *sdma)
512 {
513 int ret;
514 unsigned long timeout = 500;
515
516 sdma_enable_channel(sdma, 0);
517
518 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
519 if (timeout-- <= 0)
520 break;
521 udelay(1);
522 }
523
524 if (ret) {
525 /* Clear the interrupt status */
526 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
527 } else {
528 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
529 }
530
531 return ret ? 0 : -ETIMEDOUT;
532 }
533
534 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
535 u32 address)
536 {
537 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
538 void *buf_virt;
539 dma_addr_t buf_phys;
540 int ret;
541 unsigned long flags;
542
543 buf_virt = dma_alloc_coherent(NULL,
544 size,
545 &buf_phys, GFP_KERNEL);
546 if (!buf_virt) {
547 return -ENOMEM;
548 }
549
550 spin_lock_irqsave(&sdma->channel_0_lock, flags);
551
552 bd0->mode.command = C0_SETPM;
553 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
554 bd0->mode.count = size / 2;
555 bd0->buffer_addr = buf_phys;
556 bd0->ext_buffer_addr = address;
557
558 memcpy(buf_virt, buf, size);
559
560 ret = sdma_run_channel0(sdma);
561
562 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
563
564 dma_free_coherent(NULL, size, buf_virt, buf_phys);
565
566 return ret;
567 }
568
569 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
570 {
571 struct sdma_engine *sdma = sdmac->sdma;
572 int channel = sdmac->channel;
573 unsigned long val;
574 u32 chnenbl = chnenbl_ofs(sdma, event);
575
576 val = readl_relaxed(sdma->regs + chnenbl);
577 __set_bit(channel, &val);
578 writel_relaxed(val, sdma->regs + chnenbl);
579 }
580
581 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
582 {
583 struct sdma_engine *sdma = sdmac->sdma;
584 int channel = sdmac->channel;
585 u32 chnenbl = chnenbl_ofs(sdma, event);
586 unsigned long val;
587
588 val = readl_relaxed(sdma->regs + chnenbl);
589 __clear_bit(channel, &val);
590 writel_relaxed(val, sdma->regs + chnenbl);
591 }
592
593 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
594 {
595 struct sdma_buffer_descriptor *bd;
596
597 /*
598 * loop mode. Iterate over descriptors, re-setup them and
599 * call callback function.
600 */
601 while (1) {
602 bd = &sdmac->bd[sdmac->buf_tail];
603
604 if (bd->mode.status & BD_DONE)
605 break;
606
607 if (bd->mode.status & BD_RROR)
608 sdmac->status = DMA_ERROR;
609 else
610 sdmac->status = DMA_IN_PROGRESS;
611
612 bd->mode.status |= BD_DONE;
613 sdmac->buf_tail++;
614 sdmac->buf_tail %= sdmac->num_bd;
615
616 if (sdmac->desc.callback)
617 sdmac->desc.callback(sdmac->desc.callback_param);
618 }
619 }
620
621 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
622 {
623 struct sdma_buffer_descriptor *bd;
624 int i, error = 0;
625
626 sdmac->chn_real_count = 0;
627 /*
628 * non loop mode. Iterate over all descriptors, collect
629 * errors and call callback function
630 */
631 for (i = 0; i < sdmac->num_bd; i++) {
632 bd = &sdmac->bd[i];
633
634 if (bd->mode.status & (BD_DONE | BD_RROR))
635 error = -EIO;
636 sdmac->chn_real_count += bd->mode.count;
637 }
638
639 if (error)
640 sdmac->status = DMA_ERROR;
641 else
642 sdmac->status = DMA_COMPLETE;
643
644 dma_cookie_complete(&sdmac->desc);
645 if (sdmac->desc.callback)
646 sdmac->desc.callback(sdmac->desc.callback_param);
647 }
648
649 static void sdma_tasklet(unsigned long data)
650 {
651 struct sdma_channel *sdmac = (struct sdma_channel *) data;
652
653 if (sdmac->flags & IMX_DMA_SG_LOOP)
654 sdma_handle_channel_loop(sdmac);
655 else
656 mxc_sdma_handle_channel_normal(sdmac);
657 }
658
659 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
660 {
661 struct sdma_engine *sdma = dev_id;
662 unsigned long stat;
663
664 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
665 /* not interested in channel 0 interrupts */
666 stat &= ~1;
667 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
668
669 while (stat) {
670 int channel = fls(stat) - 1;
671 struct sdma_channel *sdmac = &sdma->channel[channel];
672
673 tasklet_schedule(&sdmac->tasklet);
674
675 __clear_bit(channel, &stat);
676 }
677
678 return IRQ_HANDLED;
679 }
680
681 /*
682 * sets the pc of SDMA script according to the peripheral type
683 */
684 static void sdma_get_pc(struct sdma_channel *sdmac,
685 enum sdma_peripheral_type peripheral_type)
686 {
687 struct sdma_engine *sdma = sdmac->sdma;
688 int per_2_emi = 0, emi_2_per = 0;
689 /*
690 * These are needed once we start to support transfers between
691 * two peripherals or memory-to-memory transfers
692 */
693 int per_2_per = 0, emi_2_emi = 0;
694
695 sdmac->pc_from_device = 0;
696 sdmac->pc_to_device = 0;
697
698 switch (peripheral_type) {
699 case IMX_DMATYPE_MEMORY:
700 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
701 break;
702 case IMX_DMATYPE_DSP:
703 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
704 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
705 break;
706 case IMX_DMATYPE_FIRI:
707 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
708 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
709 break;
710 case IMX_DMATYPE_UART:
711 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
712 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
713 break;
714 case IMX_DMATYPE_UART_SP:
715 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
716 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
717 break;
718 case IMX_DMATYPE_ATA:
719 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
720 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
721 break;
722 case IMX_DMATYPE_CSPI:
723 case IMX_DMATYPE_EXT:
724 case IMX_DMATYPE_SSI:
725 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
726 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
727 break;
728 case IMX_DMATYPE_SSI_DUAL:
729 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
730 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
731 break;
732 case IMX_DMATYPE_SSI_SP:
733 case IMX_DMATYPE_MMC:
734 case IMX_DMATYPE_SDHC:
735 case IMX_DMATYPE_CSPI_SP:
736 case IMX_DMATYPE_ESAI:
737 case IMX_DMATYPE_MSHC_SP:
738 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
739 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
740 break;
741 case IMX_DMATYPE_ASRC:
742 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
743 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
744 per_2_per = sdma->script_addrs->per_2_per_addr;
745 break;
746 case IMX_DMATYPE_MSHC:
747 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
748 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
749 break;
750 case IMX_DMATYPE_CCM:
751 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
752 break;
753 case IMX_DMATYPE_SPDIF:
754 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
755 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
756 break;
757 case IMX_DMATYPE_IPU_MEMORY:
758 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
759 break;
760 default:
761 break;
762 }
763
764 sdmac->pc_from_device = per_2_emi;
765 sdmac->pc_to_device = emi_2_per;
766 }
767
768 static int sdma_load_context(struct sdma_channel *sdmac)
769 {
770 struct sdma_engine *sdma = sdmac->sdma;
771 int channel = sdmac->channel;
772 int load_address;
773 struct sdma_context_data *context = sdma->context;
774 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
775 int ret;
776 unsigned long flags;
777
778 if (sdmac->direction == DMA_DEV_TO_MEM) {
779 load_address = sdmac->pc_from_device;
780 } else {
781 load_address = sdmac->pc_to_device;
782 }
783
784 if (load_address < 0)
785 return load_address;
786
787 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
788 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
789 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
790 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
791 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
792 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
793
794 spin_lock_irqsave(&sdma->channel_0_lock, flags);
795
796 memset(context, 0, sizeof(*context));
797 context->channel_state.pc = load_address;
798
799 /* Send by context the event mask,base address for peripheral
800 * and watermark level
801 */
802 context->gReg[0] = sdmac->event_mask[1];
803 context->gReg[1] = sdmac->event_mask[0];
804 context->gReg[2] = sdmac->per_addr;
805 context->gReg[6] = sdmac->shp_addr;
806 context->gReg[7] = sdmac->watermark_level;
807
808 bd0->mode.command = C0_SETDM;
809 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
810 bd0->mode.count = sizeof(*context) / 4;
811 bd0->buffer_addr = sdma->context_phys;
812 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
813 ret = sdma_run_channel0(sdma);
814
815 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
816
817 return ret;
818 }
819
820 static void sdma_disable_channel(struct sdma_channel *sdmac)
821 {
822 struct sdma_engine *sdma = sdmac->sdma;
823 int channel = sdmac->channel;
824
825 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
826 sdmac->status = DMA_ERROR;
827 }
828
829 static int sdma_config_channel(struct sdma_channel *sdmac)
830 {
831 int ret;
832
833 sdma_disable_channel(sdmac);
834
835 sdmac->event_mask[0] = 0;
836 sdmac->event_mask[1] = 0;
837 sdmac->shp_addr = 0;
838 sdmac->per_addr = 0;
839
840 if (sdmac->event_id0) {
841 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
842 return -EINVAL;
843 sdma_event_enable(sdmac, sdmac->event_id0);
844 }
845
846 switch (sdmac->peripheral_type) {
847 case IMX_DMATYPE_DSP:
848 sdma_config_ownership(sdmac, false, true, true);
849 break;
850 case IMX_DMATYPE_MEMORY:
851 sdma_config_ownership(sdmac, false, true, false);
852 break;
853 default:
854 sdma_config_ownership(sdmac, true, true, false);
855 break;
856 }
857
858 sdma_get_pc(sdmac, sdmac->peripheral_type);
859
860 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
861 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
862 /* Handle multiple event channels differently */
863 if (sdmac->event_id1) {
864 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
865 if (sdmac->event_id1 > 31)
866 __set_bit(31, &sdmac->watermark_level);
867 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
868 if (sdmac->event_id0 > 31)
869 __set_bit(30, &sdmac->watermark_level);
870 } else {
871 __set_bit(sdmac->event_id0, sdmac->event_mask);
872 }
873 /* Watermark Level */
874 sdmac->watermark_level |= sdmac->watermark_level;
875 /* Address */
876 sdmac->shp_addr = sdmac->per_address;
877 } else {
878 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
879 }
880
881 ret = sdma_load_context(sdmac);
882
883 return ret;
884 }
885
886 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
887 unsigned int priority)
888 {
889 struct sdma_engine *sdma = sdmac->sdma;
890 int channel = sdmac->channel;
891
892 if (priority < MXC_SDMA_MIN_PRIORITY
893 || priority > MXC_SDMA_MAX_PRIORITY) {
894 return -EINVAL;
895 }
896
897 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
898
899 return 0;
900 }
901
902 static int sdma_request_channel(struct sdma_channel *sdmac)
903 {
904 struct sdma_engine *sdma = sdmac->sdma;
905 int channel = sdmac->channel;
906 int ret = -EBUSY;
907
908 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
909 if (!sdmac->bd) {
910 ret = -ENOMEM;
911 goto out;
912 }
913
914 memset(sdmac->bd, 0, PAGE_SIZE);
915
916 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
917 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
918
919 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
920 return 0;
921 out:
922
923 return ret;
924 }
925
926 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
927 {
928 return container_of(chan, struct sdma_channel, chan);
929 }
930
931 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
932 {
933 unsigned long flags;
934 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
935 dma_cookie_t cookie;
936
937 spin_lock_irqsave(&sdmac->lock, flags);
938
939 cookie = dma_cookie_assign(tx);
940
941 spin_unlock_irqrestore(&sdmac->lock, flags);
942
943 return cookie;
944 }
945
946 static int sdma_alloc_chan_resources(struct dma_chan *chan)
947 {
948 struct sdma_channel *sdmac = to_sdma_chan(chan);
949 struct imx_dma_data *data = chan->private;
950 int prio, ret;
951
952 if (!data)
953 return -EINVAL;
954
955 switch (data->priority) {
956 case DMA_PRIO_HIGH:
957 prio = 3;
958 break;
959 case DMA_PRIO_MEDIUM:
960 prio = 2;
961 break;
962 case DMA_PRIO_LOW:
963 default:
964 prio = 1;
965 break;
966 }
967
968 sdmac->peripheral_type = data->peripheral_type;
969 sdmac->event_id0 = data->dma_request;
970
971 clk_enable(sdmac->sdma->clk_ipg);
972 clk_enable(sdmac->sdma->clk_ahb);
973
974 ret = sdma_request_channel(sdmac);
975 if (ret)
976 return ret;
977
978 ret = sdma_set_channel_priority(sdmac, prio);
979 if (ret)
980 return ret;
981
982 dma_async_tx_descriptor_init(&sdmac->desc, chan);
983 sdmac->desc.tx_submit = sdma_tx_submit;
984 /* txd.flags will be overwritten in prep funcs */
985 sdmac->desc.flags = DMA_CTRL_ACK;
986
987 return 0;
988 }
989
990 static void sdma_free_chan_resources(struct dma_chan *chan)
991 {
992 struct sdma_channel *sdmac = to_sdma_chan(chan);
993 struct sdma_engine *sdma = sdmac->sdma;
994
995 sdma_disable_channel(sdmac);
996
997 if (sdmac->event_id0)
998 sdma_event_disable(sdmac, sdmac->event_id0);
999 if (sdmac->event_id1)
1000 sdma_event_disable(sdmac, sdmac->event_id1);
1001
1002 sdmac->event_id0 = 0;
1003 sdmac->event_id1 = 0;
1004
1005 sdma_set_channel_priority(sdmac, 0);
1006
1007 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1008
1009 clk_disable(sdma->clk_ipg);
1010 clk_disable(sdma->clk_ahb);
1011 }
1012
1013 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1014 struct dma_chan *chan, struct scatterlist *sgl,
1015 unsigned int sg_len, enum dma_transfer_direction direction,
1016 unsigned long flags, void *context)
1017 {
1018 struct sdma_channel *sdmac = to_sdma_chan(chan);
1019 struct sdma_engine *sdma = sdmac->sdma;
1020 int ret, i, count;
1021 int channel = sdmac->channel;
1022 struct scatterlist *sg;
1023
1024 if (sdmac->status == DMA_IN_PROGRESS)
1025 return NULL;
1026 sdmac->status = DMA_IN_PROGRESS;
1027
1028 sdmac->flags = 0;
1029
1030 sdmac->buf_tail = 0;
1031
1032 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1033 sg_len, channel);
1034
1035 sdmac->direction = direction;
1036 ret = sdma_load_context(sdmac);
1037 if (ret)
1038 goto err_out;
1039
1040 if (sg_len > NUM_BD) {
1041 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1042 channel, sg_len, NUM_BD);
1043 ret = -EINVAL;
1044 goto err_out;
1045 }
1046
1047 sdmac->chn_count = 0;
1048 for_each_sg(sgl, sg, sg_len, i) {
1049 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1050 int param;
1051
1052 bd->buffer_addr = sg->dma_address;
1053
1054 count = sg_dma_len(sg);
1055
1056 if (count > 0xffff) {
1057 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1058 channel, count, 0xffff);
1059 ret = -EINVAL;
1060 goto err_out;
1061 }
1062
1063 bd->mode.count = count;
1064 sdmac->chn_count += count;
1065
1066 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1067 ret = -EINVAL;
1068 goto err_out;
1069 }
1070
1071 switch (sdmac->word_size) {
1072 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1073 bd->mode.command = 0;
1074 if (count & 3 || sg->dma_address & 3)
1075 return NULL;
1076 break;
1077 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1078 bd->mode.command = 2;
1079 if (count & 1 || sg->dma_address & 1)
1080 return NULL;
1081 break;
1082 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1083 bd->mode.command = 1;
1084 break;
1085 default:
1086 return NULL;
1087 }
1088
1089 param = BD_DONE | BD_EXTD | BD_CONT;
1090
1091 if (i + 1 == sg_len) {
1092 param |= BD_INTR;
1093 param |= BD_LAST;
1094 param &= ~BD_CONT;
1095 }
1096
1097 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1098 i, count, (u64)sg->dma_address,
1099 param & BD_WRAP ? "wrap" : "",
1100 param & BD_INTR ? " intr" : "");
1101
1102 bd->mode.status = param;
1103 }
1104
1105 sdmac->num_bd = sg_len;
1106 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1107
1108 return &sdmac->desc;
1109 err_out:
1110 sdmac->status = DMA_ERROR;
1111 return NULL;
1112 }
1113
1114 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1115 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1116 size_t period_len, enum dma_transfer_direction direction,
1117 unsigned long flags, void *context)
1118 {
1119 struct sdma_channel *sdmac = to_sdma_chan(chan);
1120 struct sdma_engine *sdma = sdmac->sdma;
1121 int num_periods = buf_len / period_len;
1122 int channel = sdmac->channel;
1123 int ret, i = 0, buf = 0;
1124
1125 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1126
1127 if (sdmac->status == DMA_IN_PROGRESS)
1128 return NULL;
1129
1130 sdmac->status = DMA_IN_PROGRESS;
1131
1132 sdmac->buf_tail = 0;
1133
1134 sdmac->flags |= IMX_DMA_SG_LOOP;
1135 sdmac->direction = direction;
1136 ret = sdma_load_context(sdmac);
1137 if (ret)
1138 goto err_out;
1139
1140 if (num_periods > NUM_BD) {
1141 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1142 channel, num_periods, NUM_BD);
1143 goto err_out;
1144 }
1145
1146 if (period_len > 0xffff) {
1147 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1148 channel, period_len, 0xffff);
1149 goto err_out;
1150 }
1151
1152 while (buf < buf_len) {
1153 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1154 int param;
1155
1156 bd->buffer_addr = dma_addr;
1157
1158 bd->mode.count = period_len;
1159
1160 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1161 goto err_out;
1162 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1163 bd->mode.command = 0;
1164 else
1165 bd->mode.command = sdmac->word_size;
1166
1167 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1168 if (i + 1 == num_periods)
1169 param |= BD_WRAP;
1170
1171 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1172 i, period_len, (u64)dma_addr,
1173 param & BD_WRAP ? "wrap" : "",
1174 param & BD_INTR ? " intr" : "");
1175
1176 bd->mode.status = param;
1177
1178 dma_addr += period_len;
1179 buf += period_len;
1180
1181 i++;
1182 }
1183
1184 sdmac->num_bd = num_periods;
1185 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1186
1187 return &sdmac->desc;
1188 err_out:
1189 sdmac->status = DMA_ERROR;
1190 return NULL;
1191 }
1192
1193 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1194 unsigned long arg)
1195 {
1196 struct sdma_channel *sdmac = to_sdma_chan(chan);
1197 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1198
1199 switch (cmd) {
1200 case DMA_TERMINATE_ALL:
1201 sdma_disable_channel(sdmac);
1202 return 0;
1203 case DMA_SLAVE_CONFIG:
1204 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1205 sdmac->per_address = dmaengine_cfg->src_addr;
1206 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1207 dmaengine_cfg->src_addr_width;
1208 sdmac->word_size = dmaengine_cfg->src_addr_width;
1209 } else {
1210 sdmac->per_address = dmaengine_cfg->dst_addr;
1211 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1212 dmaengine_cfg->dst_addr_width;
1213 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1214 }
1215 sdmac->direction = dmaengine_cfg->direction;
1216 return sdma_config_channel(sdmac);
1217 default:
1218 return -ENOSYS;
1219 }
1220
1221 return -EINVAL;
1222 }
1223
1224 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1225 dma_cookie_t cookie,
1226 struct dma_tx_state *txstate)
1227 {
1228 struct sdma_channel *sdmac = to_sdma_chan(chan);
1229
1230 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1231 sdmac->chn_count - sdmac->chn_real_count);
1232
1233 return sdmac->status;
1234 }
1235
1236 static void sdma_issue_pending(struct dma_chan *chan)
1237 {
1238 struct sdma_channel *sdmac = to_sdma_chan(chan);
1239 struct sdma_engine *sdma = sdmac->sdma;
1240
1241 if (sdmac->status == DMA_IN_PROGRESS)
1242 sdma_enable_channel(sdma, sdmac->channel);
1243 }
1244
1245 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1246 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1247
1248 static void sdma_add_scripts(struct sdma_engine *sdma,
1249 const struct sdma_script_start_addrs *addr)
1250 {
1251 s32 *addr_arr = (u32 *)addr;
1252 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1253 int i;
1254
1255 /* use the default firmware in ROM if missing external firmware */
1256 if (!sdma->script_number)
1257 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1258
1259 for (i = 0; i < sdma->script_number; i++)
1260 if (addr_arr[i] > 0)
1261 saddr_arr[i] = addr_arr[i];
1262 }
1263
1264 static void sdma_load_firmware(const struct firmware *fw, void *context)
1265 {
1266 struct sdma_engine *sdma = context;
1267 const struct sdma_firmware_header *header;
1268 const struct sdma_script_start_addrs *addr;
1269 unsigned short *ram_code;
1270
1271 if (!fw) {
1272 dev_err(sdma->dev, "firmware not found\n");
1273 return;
1274 }
1275
1276 if (fw->size < sizeof(*header))
1277 goto err_firmware;
1278
1279 header = (struct sdma_firmware_header *)fw->data;
1280
1281 if (header->magic != SDMA_FIRMWARE_MAGIC)
1282 goto err_firmware;
1283 if (header->ram_code_start + header->ram_code_size > fw->size)
1284 goto err_firmware;
1285 switch (header->version_major) {
1286 case 1:
1287 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1288 break;
1289 case 2:
1290 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1291 break;
1292 default:
1293 dev_err(sdma->dev, "unknown firmware version\n");
1294 goto err_firmware;
1295 }
1296
1297 addr = (void *)header + header->script_addrs_start;
1298 ram_code = (void *)header + header->ram_code_start;
1299
1300 clk_enable(sdma->clk_ipg);
1301 clk_enable(sdma->clk_ahb);
1302 /* download the RAM image for SDMA */
1303 sdma_load_script(sdma, ram_code,
1304 header->ram_code_size,
1305 addr->ram_code_start_addr);
1306 clk_disable(sdma->clk_ipg);
1307 clk_disable(sdma->clk_ahb);
1308
1309 sdma_add_scripts(sdma, addr);
1310
1311 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1312 header->version_major,
1313 header->version_minor);
1314
1315 err_firmware:
1316 release_firmware(fw);
1317 }
1318
1319 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1320 const char *fw_name)
1321 {
1322 int ret;
1323
1324 ret = request_firmware_nowait(THIS_MODULE,
1325 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1326 GFP_KERNEL, sdma, sdma_load_firmware);
1327
1328 return ret;
1329 }
1330
1331 static int __init sdma_init(struct sdma_engine *sdma)
1332 {
1333 int i, ret;
1334 dma_addr_t ccb_phys;
1335
1336 clk_enable(sdma->clk_ipg);
1337 clk_enable(sdma->clk_ahb);
1338
1339 /* Be sure SDMA has not started yet */
1340 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1341
1342 sdma->channel_control = dma_alloc_coherent(NULL,
1343 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1344 sizeof(struct sdma_context_data),
1345 &ccb_phys, GFP_KERNEL);
1346
1347 if (!sdma->channel_control) {
1348 ret = -ENOMEM;
1349 goto err_dma_alloc;
1350 }
1351
1352 sdma->context = (void *)sdma->channel_control +
1353 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1354 sdma->context_phys = ccb_phys +
1355 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1356
1357 /* Zero-out the CCB structures array just allocated */
1358 memset(sdma->channel_control, 0,
1359 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1360
1361 /* disable all channels */
1362 for (i = 0; i < sdma->drvdata->num_events; i++)
1363 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1364
1365 /* All channels have priority 0 */
1366 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1367 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1368
1369 ret = sdma_request_channel(&sdma->channel[0]);
1370 if (ret)
1371 goto err_dma_alloc;
1372
1373 sdma_config_ownership(&sdma->channel[0], false, true, false);
1374
1375 /* Set Command Channel (Channel Zero) */
1376 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1377
1378 /* Set bits of CONFIG register but with static context switching */
1379 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1380 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1381
1382 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1383
1384 /* Set bits of CONFIG register with given context switching mode */
1385 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1386
1387 /* Initializes channel's priorities */
1388 sdma_set_channel_priority(&sdma->channel[0], 7);
1389
1390 clk_disable(sdma->clk_ipg);
1391 clk_disable(sdma->clk_ahb);
1392
1393 return 0;
1394
1395 err_dma_alloc:
1396 clk_disable(sdma->clk_ipg);
1397 clk_disable(sdma->clk_ahb);
1398 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1399 return ret;
1400 }
1401
1402 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1403 {
1404 struct imx_dma_data *data = fn_param;
1405
1406 if (!imx_dma_is_general_purpose(chan))
1407 return false;
1408
1409 chan->private = data;
1410
1411 return true;
1412 }
1413
1414 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1415 struct of_dma *ofdma)
1416 {
1417 struct sdma_engine *sdma = ofdma->of_dma_data;
1418 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1419 struct imx_dma_data data;
1420
1421 if (dma_spec->args_count != 3)
1422 return NULL;
1423
1424 data.dma_request = dma_spec->args[0];
1425 data.peripheral_type = dma_spec->args[1];
1426 data.priority = dma_spec->args[2];
1427
1428 return dma_request_channel(mask, sdma_filter_fn, &data);
1429 }
1430
1431 static int __init sdma_probe(struct platform_device *pdev)
1432 {
1433 const struct of_device_id *of_id =
1434 of_match_device(sdma_dt_ids, &pdev->dev);
1435 struct device_node *np = pdev->dev.of_node;
1436 const char *fw_name;
1437 int ret;
1438 int irq;
1439 struct resource *iores;
1440 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1441 int i;
1442 struct sdma_engine *sdma;
1443 s32 *saddr_arr;
1444 const struct sdma_driver_data *drvdata = NULL;
1445
1446 if (of_id)
1447 drvdata = of_id->data;
1448 else if (pdev->id_entry)
1449 drvdata = (void *)pdev->id_entry->driver_data;
1450
1451 if (!drvdata) {
1452 dev_err(&pdev->dev, "unable to find driver data\n");
1453 return -EINVAL;
1454 }
1455
1456 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1457 if (ret)
1458 return ret;
1459
1460 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1461 if (!sdma)
1462 return -ENOMEM;
1463
1464 spin_lock_init(&sdma->channel_0_lock);
1465
1466 sdma->dev = &pdev->dev;
1467 sdma->drvdata = drvdata;
1468
1469 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 irq = platform_get_irq(pdev, 0);
1471 if (!iores || irq < 0) {
1472 ret = -EINVAL;
1473 goto err_irq;
1474 }
1475
1476 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1477 ret = -EBUSY;
1478 goto err_request_region;
1479 }
1480
1481 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1482 if (IS_ERR(sdma->clk_ipg)) {
1483 ret = PTR_ERR(sdma->clk_ipg);
1484 goto err_clk;
1485 }
1486
1487 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1488 if (IS_ERR(sdma->clk_ahb)) {
1489 ret = PTR_ERR(sdma->clk_ahb);
1490 goto err_clk;
1491 }
1492
1493 clk_prepare(sdma->clk_ipg);
1494 clk_prepare(sdma->clk_ahb);
1495
1496 sdma->regs = ioremap(iores->start, resource_size(iores));
1497 if (!sdma->regs) {
1498 ret = -ENOMEM;
1499 goto err_ioremap;
1500 }
1501
1502 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1503 if (ret)
1504 goto err_request_irq;
1505
1506 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1507 if (!sdma->script_addrs) {
1508 ret = -ENOMEM;
1509 goto err_alloc;
1510 }
1511
1512 /* initially no scripts available */
1513 saddr_arr = (s32 *)sdma->script_addrs;
1514 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1515 saddr_arr[i] = -EINVAL;
1516
1517 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1518 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1519
1520 INIT_LIST_HEAD(&sdma->dma_device.channels);
1521 /* Initialize channel parameters */
1522 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1523 struct sdma_channel *sdmac = &sdma->channel[i];
1524
1525 sdmac->sdma = sdma;
1526 spin_lock_init(&sdmac->lock);
1527
1528 sdmac->chan.device = &sdma->dma_device;
1529 dma_cookie_init(&sdmac->chan);
1530 sdmac->channel = i;
1531
1532 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1533 (unsigned long) sdmac);
1534 /*
1535 * Add the channel to the DMAC list. Do not add channel 0 though
1536 * because we need it internally in the SDMA driver. This also means
1537 * that channel 0 in dmaengine counting matches sdma channel 1.
1538 */
1539 if (i)
1540 list_add_tail(&sdmac->chan.device_node,
1541 &sdma->dma_device.channels);
1542 }
1543
1544 ret = sdma_init(sdma);
1545 if (ret)
1546 goto err_init;
1547
1548 if (sdma->drvdata->script_addrs)
1549 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1550 if (pdata && pdata->script_addrs)
1551 sdma_add_scripts(sdma, pdata->script_addrs);
1552
1553 if (pdata) {
1554 ret = sdma_get_firmware(sdma, pdata->fw_name);
1555 if (ret)
1556 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1557 } else {
1558 /*
1559 * Because that device tree does not encode ROM script address,
1560 * the RAM script in firmware is mandatory for device tree
1561 * probe, otherwise it fails.
1562 */
1563 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1564 &fw_name);
1565 if (ret)
1566 dev_warn(&pdev->dev, "failed to get firmware name\n");
1567 else {
1568 ret = sdma_get_firmware(sdma, fw_name);
1569 if (ret)
1570 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1571 }
1572 }
1573
1574 sdma->dma_device.dev = &pdev->dev;
1575
1576 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1577 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1578 sdma->dma_device.device_tx_status = sdma_tx_status;
1579 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1580 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1581 sdma->dma_device.device_control = sdma_control;
1582 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1583 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1584 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1585
1586 ret = dma_async_device_register(&sdma->dma_device);
1587 if (ret) {
1588 dev_err(&pdev->dev, "unable to register\n");
1589 goto err_init;
1590 }
1591
1592 if (np) {
1593 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1594 if (ret) {
1595 dev_err(&pdev->dev, "failed to register controller\n");
1596 goto err_register;
1597 }
1598 }
1599
1600 dev_info(sdma->dev, "initialized\n");
1601
1602 return 0;
1603
1604 err_register:
1605 dma_async_device_unregister(&sdma->dma_device);
1606 err_init:
1607 kfree(sdma->script_addrs);
1608 err_alloc:
1609 free_irq(irq, sdma);
1610 err_request_irq:
1611 iounmap(sdma->regs);
1612 err_ioremap:
1613 err_clk:
1614 release_mem_region(iores->start, resource_size(iores));
1615 err_request_region:
1616 err_irq:
1617 kfree(sdma);
1618 return ret;
1619 }
1620
1621 static int sdma_remove(struct platform_device *pdev)
1622 {
1623 return -EBUSY;
1624 }
1625
1626 static struct platform_driver sdma_driver = {
1627 .driver = {
1628 .name = "imx-sdma",
1629 .of_match_table = sdma_dt_ids,
1630 },
1631 .id_table = sdma_devtypes,
1632 .remove = sdma_remove,
1633 };
1634
1635 static int __init sdma_module_init(void)
1636 {
1637 return platform_driver_probe(&sdma_driver, sdma_probe);
1638 }
1639 module_init(sdma_module_init);
1640
1641 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1642 MODULE_DESCRIPTION("i.MX SDMA driver");
1643 MODULE_LICENSE("GPL");
This page took 0.065965 seconds and 5 git commands to generate.