Merge branch 'work.const-qstr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / dma / nbpfaxi.c
1 /*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/log2.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25
26 #include <dt-bindings/dma/nbpfaxi.h>
27
28 #include "dmaengine.h"
29
30 #define NBPF_REG_CHAN_OFFSET 0
31 #define NBPF_REG_CHAN_SIZE 0x40
32
33 /* Channel Current Transaction Byte register */
34 #define NBPF_CHAN_CUR_TR_BYTE 0x20
35
36 /* Channel Status register */
37 #define NBPF_CHAN_STAT 0x24
38 #define NBPF_CHAN_STAT_EN 1
39 #define NBPF_CHAN_STAT_TACT 4
40 #define NBPF_CHAN_STAT_ERR 0x10
41 #define NBPF_CHAN_STAT_END 0x20
42 #define NBPF_CHAN_STAT_TC 0x40
43 #define NBPF_CHAN_STAT_DER 0x400
44
45 /* Channel Control register */
46 #define NBPF_CHAN_CTRL 0x28
47 #define NBPF_CHAN_CTRL_SETEN 1
48 #define NBPF_CHAN_CTRL_CLREN 2
49 #define NBPF_CHAN_CTRL_STG 4
50 #define NBPF_CHAN_CTRL_SWRST 8
51 #define NBPF_CHAN_CTRL_CLRRQ 0x10
52 #define NBPF_CHAN_CTRL_CLREND 0x20
53 #define NBPF_CHAN_CTRL_CLRTC 0x40
54 #define NBPF_CHAN_CTRL_SETSUS 0x100
55 #define NBPF_CHAN_CTRL_CLRSUS 0x200
56
57 /* Channel Configuration register */
58 #define NBPF_CHAN_CFG 0x2c
59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
77
78 #define NBPF_CHAN_NXLA 0x38
79 #define NBPF_CHAN_CRLA 0x3c
80
81 /* Link Header field */
82 #define NBPF_HEADER_LV 1
83 #define NBPF_HEADER_LE 2
84 #define NBPF_HEADER_WBD 4
85 #define NBPF_HEADER_DIM 8
86
87 #define NBPF_CTRL 0x300
88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91 #define NBPF_DSTAT_ER 0x314
92 #define NBPF_DSTAT_END 0x318
93
94 #define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101 struct nbpf_config {
102 int num_channels;
103 int buffer_size;
104 };
105
106 /*
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
121 */
122
123 struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132 } __packed;
133
134 struct nbpf_device;
135 struct nbpf_channel;
136 struct nbpf_desc;
137
138 struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
143 };
144
145 /**
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
152 */
153 struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
160 };
161
162 /* Take a wild guess: allocate 4 segments per descriptor */
163 #define NBPF_SEGMENTS_PER_DESC 4
164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170 struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175 };
176
177 /**
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
197 */
198 struct nbpf_channel {
199 struct dma_chan dma_chan;
200 struct tasklet_struct tasklet;
201 void __iomem *base;
202 struct nbpf_device *nbpf;
203 char name[16];
204 int irq;
205 dma_addr_t slave_src_addr;
206 size_t slave_src_width;
207 size_t slave_src_burst;
208 dma_addr_t slave_dst_addr;
209 size_t slave_dst_width;
210 size_t slave_dst_burst;
211 unsigned int terminal;
212 u32 dmarq_cfg;
213 unsigned long flags;
214 spinlock_t lock;
215 struct list_head free_links;
216 struct list_head free;
217 struct list_head queued;
218 struct list_head active;
219 struct list_head done;
220 struct list_head desc_page;
221 struct nbpf_desc *running;
222 bool paused;
223 };
224
225 struct nbpf_device {
226 struct dma_device dma_dev;
227 void __iomem *base;
228 struct clk *clk;
229 const struct nbpf_config *config;
230 unsigned int eirq;
231 struct nbpf_channel chan[];
232 };
233
234 enum nbpf_model {
235 NBPF1B4,
236 NBPF1B8,
237 NBPF1B16,
238 NBPF4B4,
239 NBPF4B8,
240 NBPF4B16,
241 NBPF8B4,
242 NBPF8B8,
243 NBPF8B16,
244 };
245
246 static struct nbpf_config nbpf_cfg[] = {
247 [NBPF1B4] = {
248 .num_channels = 1,
249 .buffer_size = 4,
250 },
251 [NBPF1B8] = {
252 .num_channels = 1,
253 .buffer_size = 8,
254 },
255 [NBPF1B16] = {
256 .num_channels = 1,
257 .buffer_size = 16,
258 },
259 [NBPF4B4] = {
260 .num_channels = 4,
261 .buffer_size = 4,
262 },
263 [NBPF4B8] = {
264 .num_channels = 4,
265 .buffer_size = 8,
266 },
267 [NBPF4B16] = {
268 .num_channels = 4,
269 .buffer_size = 16,
270 },
271 [NBPF8B4] = {
272 .num_channels = 8,
273 .buffer_size = 4,
274 },
275 [NBPF8B8] = {
276 .num_channels = 8,
277 .buffer_size = 8,
278 },
279 [NBPF8B16] = {
280 .num_channels = 8,
281 .buffer_size = 16,
282 },
283 };
284
285 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
286
287 /*
288 * dmaengine drivers seem to have a lot in common and instead of sharing more
289 * code, they reimplement those common algorithms independently. In this driver
290 * we try to separate the hardware-specific part from the (largely) generic
291 * part. This improves code readability and makes it possible in the future to
292 * reuse the generic code in form of a helper library. That generic code should
293 * be suitable for various DMA controllers, using transfer descriptors in RAM
294 * and pushing one SG list at a time to the DMA controller.
295 */
296
297 /* Hardware-specific part */
298
299 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
300 unsigned int offset)
301 {
302 u32 data = ioread32(chan->base + offset);
303 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
304 __func__, chan->base, offset, data);
305 return data;
306 }
307
308 static inline void nbpf_chan_write(struct nbpf_channel *chan,
309 unsigned int offset, u32 data)
310 {
311 iowrite32(data, chan->base + offset);
312 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
313 __func__, chan->base, offset, data);
314 }
315
316 static inline u32 nbpf_read(struct nbpf_device *nbpf,
317 unsigned int offset)
318 {
319 u32 data = ioread32(nbpf->base + offset);
320 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
321 __func__, nbpf->base, offset, data);
322 return data;
323 }
324
325 static inline void nbpf_write(struct nbpf_device *nbpf,
326 unsigned int offset, u32 data)
327 {
328 iowrite32(data, nbpf->base + offset);
329 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
330 __func__, nbpf->base, offset, data);
331 }
332
333 static void nbpf_chan_halt(struct nbpf_channel *chan)
334 {
335 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
336 }
337
338 static bool nbpf_status_get(struct nbpf_channel *chan)
339 {
340 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
341
342 return status & BIT(chan - chan->nbpf->chan);
343 }
344
345 static void nbpf_status_ack(struct nbpf_channel *chan)
346 {
347 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
348 }
349
350 static u32 nbpf_error_get(struct nbpf_device *nbpf)
351 {
352 return nbpf_read(nbpf, NBPF_DSTAT_ER);
353 }
354
355 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
356 {
357 return nbpf->chan + __ffs(error);
358 }
359
360 static void nbpf_error_clear(struct nbpf_channel *chan)
361 {
362 u32 status;
363 int i;
364
365 /* Stop the channel, make sure DMA has been aborted */
366 nbpf_chan_halt(chan);
367
368 for (i = 1000; i; i--) {
369 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
370 if (!(status & NBPF_CHAN_STAT_TACT))
371 break;
372 cpu_relax();
373 }
374
375 if (!i)
376 dev_err(chan->dma_chan.device->dev,
377 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
378
379 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
380 }
381
382 static int nbpf_start(struct nbpf_desc *desc)
383 {
384 struct nbpf_channel *chan = desc->chan;
385 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
386
387 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
388 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
389 chan->paused = false;
390
391 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
392 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
393 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
394
395 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
396 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
397
398 return 0;
399 }
400
401 static void nbpf_chan_prepare(struct nbpf_channel *chan)
402 {
403 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
404 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
405 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
406 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
407 chan->terminal;
408 }
409
410 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
411 {
412 /* Don't output DMAACK */
413 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
414 chan->terminal = 0;
415 chan->flags = 0;
416 }
417
418 static void nbpf_chan_configure(struct nbpf_channel *chan)
419 {
420 /*
421 * We assume, that only the link mode and DMA request line configuration
422 * have to be set in the configuration register manually. Dynamic
423 * per-transfer configuration will be loaded from transfer descriptors.
424 */
425 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
426 }
427
428 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
429 {
430 /* Maximum supported bursts depend on the buffer size */
431 return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
432 }
433
434 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
435 enum dma_slave_buswidth width, u32 burst)
436 {
437 size_t size;
438
439 if (!burst)
440 burst = 1;
441
442 switch (width) {
443 case DMA_SLAVE_BUSWIDTH_8_BYTES:
444 size = 8 * burst;
445 break;
446
447 case DMA_SLAVE_BUSWIDTH_4_BYTES:
448 size = 4 * burst;
449 break;
450
451 case DMA_SLAVE_BUSWIDTH_2_BYTES:
452 size = 2 * burst;
453 break;
454
455 default:
456 pr_warn("%s(): invalid bus width %u\n", __func__, width);
457 case DMA_SLAVE_BUSWIDTH_1_BYTE:
458 size = burst;
459 }
460
461 return nbpf_xfer_ds(nbpf, size);
462 }
463
464 /*
465 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
466 * i.e. it isn't known in advance how many bytes will be received. Therefore
467 * the slave driver has to provide a "large enough" buffer and either read the
468 * buffer, when it is full, or detect, that some data has arrived, then wait for
469 * a timeout, if no more data arrives - receive what's already there. We want to
470 * handle such slaves in a special way to allow an optimised mode for other
471 * users, for whom the amount of data is known in advance. So far there's no way
472 * to recognise such slaves. We use a data-width check to distinguish between
473 * the SD host and the PL011 UART.
474 */
475
476 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
477 enum dma_transfer_direction direction,
478 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
479 {
480 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
481 struct nbpf_desc *desc = ldesc->desc;
482 struct nbpf_channel *chan = desc->chan;
483 struct device *dev = chan->dma_chan.device->dev;
484 size_t mem_xfer, slave_xfer;
485 bool can_burst;
486
487 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
488 (last ? NBPF_HEADER_LE : 0);
489
490 hwdesc->src_addr = src;
491 hwdesc->dst_addr = dst;
492 hwdesc->transaction_size = size;
493
494 /*
495 * set config: SAD, DAD, DDS, SDS, etc.
496 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
497 * but it is important to have transaction size a multiple of both
498 * receiver and transmitter transfer sizes. It is also possible to use
499 * different RAM and device transfer sizes, and it does work well with
500 * some devices, e.g. with V08R07S01E SD host controllers, which can use
501 * 128 byte transfers. But this doesn't work with other devices,
502 * especially when the transaction size is unknown. This is the case,
503 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
504 * the transaction size of 4K and if fewer bytes are received, it
505 * pauses DMA and reads out data received via DMA as well as those left
506 * in the Rx FIFO. For this to work with the RAM side using burst
507 * transfers we enable the SBE bit and terminate the transfer in our
508 * .device_pause handler.
509 */
510 mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
511
512 switch (direction) {
513 case DMA_DEV_TO_MEM:
514 can_burst = chan->slave_src_width >= 3;
515 slave_xfer = min(mem_xfer, can_burst ?
516 chan->slave_src_burst : chan->slave_src_width);
517 /*
518 * Is the slave narrower than 64 bits, i.e. isn't using the full
519 * bus width and cannot use bursts?
520 */
521 if (mem_xfer > chan->slave_src_burst && !can_burst)
522 mem_xfer = chan->slave_src_burst;
523 /* Device-to-RAM DMA is unreliable without REQD set */
524 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
525 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
526 NBPF_CHAN_CFG_SBE;
527 break;
528
529 case DMA_MEM_TO_DEV:
530 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
531 chan->slave_dst_burst : chan->slave_dst_width);
532 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
533 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
534 break;
535
536 case DMA_MEM_TO_MEM:
537 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
538 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
539 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
540 break;
541
542 default:
543 return -EINVAL;
544 }
545
546 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
547 NBPF_CHAN_CFG_DMS;
548
549 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
550 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
551 hwdesc->config, size, &src, &dst);
552
553 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
554 DMA_TO_DEVICE);
555
556 return 0;
557 }
558
559 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
560 {
561 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
562 }
563
564 static void nbpf_configure(struct nbpf_device *nbpf)
565 {
566 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
567 }
568
569 /* Generic part */
570
571 /* DMA ENGINE functions */
572 static void nbpf_issue_pending(struct dma_chan *dchan)
573 {
574 struct nbpf_channel *chan = nbpf_to_chan(dchan);
575 unsigned long flags;
576
577 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
578
579 spin_lock_irqsave(&chan->lock, flags);
580 if (list_empty(&chan->queued))
581 goto unlock;
582
583 list_splice_tail_init(&chan->queued, &chan->active);
584
585 if (!chan->running) {
586 struct nbpf_desc *desc = list_first_entry(&chan->active,
587 struct nbpf_desc, node);
588 if (!nbpf_start(desc))
589 chan->running = desc;
590 }
591
592 unlock:
593 spin_unlock_irqrestore(&chan->lock, flags);
594 }
595
596 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
597 dma_cookie_t cookie, struct dma_tx_state *state)
598 {
599 struct nbpf_channel *chan = nbpf_to_chan(dchan);
600 enum dma_status status = dma_cookie_status(dchan, cookie, state);
601
602 if (state) {
603 dma_cookie_t running;
604 unsigned long flags;
605
606 spin_lock_irqsave(&chan->lock, flags);
607 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
608
609 if (cookie == running) {
610 state->residue = nbpf_bytes_left(chan);
611 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
612 state->residue);
613 } else if (status == DMA_IN_PROGRESS) {
614 struct nbpf_desc *desc;
615 bool found = false;
616
617 list_for_each_entry(desc, &chan->active, node)
618 if (desc->async_tx.cookie == cookie) {
619 found = true;
620 break;
621 }
622
623 if (!found)
624 list_for_each_entry(desc, &chan->queued, node)
625 if (desc->async_tx.cookie == cookie) {
626 found = true;
627 break;
628
629 }
630
631 state->residue = found ? desc->length : 0;
632 }
633
634 spin_unlock_irqrestore(&chan->lock, flags);
635 }
636
637 if (chan->paused)
638 status = DMA_PAUSED;
639
640 return status;
641 }
642
643 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
644 {
645 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
646 struct nbpf_channel *chan = desc->chan;
647 unsigned long flags;
648 dma_cookie_t cookie;
649
650 spin_lock_irqsave(&chan->lock, flags);
651 cookie = dma_cookie_assign(tx);
652 list_add_tail(&desc->node, &chan->queued);
653 spin_unlock_irqrestore(&chan->lock, flags);
654
655 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
656
657 return cookie;
658 }
659
660 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
661 {
662 struct dma_chan *dchan = &chan->dma_chan;
663 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
664 struct nbpf_link_desc *ldesc;
665 struct nbpf_link_reg *hwdesc;
666 struct nbpf_desc *desc;
667 LIST_HEAD(head);
668 LIST_HEAD(lhead);
669 int i;
670 struct device *dev = dchan->device->dev;
671
672 if (!dpage)
673 return -ENOMEM;
674
675 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
676 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
677
678 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
679 i < ARRAY_SIZE(dpage->ldesc);
680 i++, ldesc++, hwdesc++) {
681 ldesc->hwdesc = hwdesc;
682 list_add_tail(&ldesc->node, &lhead);
683 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
684 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
685
686 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
687 hwdesc, &ldesc->hwdesc_dma_addr);
688 }
689
690 for (i = 0, desc = dpage->desc;
691 i < ARRAY_SIZE(dpage->desc);
692 i++, desc++) {
693 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
694 desc->async_tx.tx_submit = nbpf_tx_submit;
695 desc->chan = chan;
696 INIT_LIST_HEAD(&desc->sg);
697 list_add_tail(&desc->node, &head);
698 }
699
700 /*
701 * This function cannot be called from interrupt context, so, no need to
702 * save flags
703 */
704 spin_lock_irq(&chan->lock);
705 list_splice_tail(&lhead, &chan->free_links);
706 list_splice_tail(&head, &chan->free);
707 list_add(&dpage->node, &chan->desc_page);
708 spin_unlock_irq(&chan->lock);
709
710 return ARRAY_SIZE(dpage->desc);
711 }
712
713 static void nbpf_desc_put(struct nbpf_desc *desc)
714 {
715 struct nbpf_channel *chan = desc->chan;
716 struct nbpf_link_desc *ldesc, *tmp;
717 unsigned long flags;
718
719 spin_lock_irqsave(&chan->lock, flags);
720 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
721 list_move(&ldesc->node, &chan->free_links);
722
723 list_add(&desc->node, &chan->free);
724 spin_unlock_irqrestore(&chan->lock, flags);
725 }
726
727 static void nbpf_scan_acked(struct nbpf_channel *chan)
728 {
729 struct nbpf_desc *desc, *tmp;
730 unsigned long flags;
731 LIST_HEAD(head);
732
733 spin_lock_irqsave(&chan->lock, flags);
734 list_for_each_entry_safe(desc, tmp, &chan->done, node)
735 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
736 list_move(&desc->node, &head);
737 desc->user_wait = false;
738 }
739 spin_unlock_irqrestore(&chan->lock, flags);
740
741 list_for_each_entry_safe(desc, tmp, &head, node) {
742 list_del(&desc->node);
743 nbpf_desc_put(desc);
744 }
745 }
746
747 /*
748 * We have to allocate descriptors with the channel lock dropped. This means,
749 * before we re-acquire the lock buffers can be taken already, so we have to
750 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
751 * again.
752 */
753 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
754 {
755 struct nbpf_desc *desc = NULL;
756 struct nbpf_link_desc *ldesc, *prev = NULL;
757
758 nbpf_scan_acked(chan);
759
760 spin_lock_irq(&chan->lock);
761
762 do {
763 int i = 0, ret;
764
765 if (list_empty(&chan->free)) {
766 /* No more free descriptors */
767 spin_unlock_irq(&chan->lock);
768 ret = nbpf_desc_page_alloc(chan);
769 if (ret < 0)
770 return NULL;
771 spin_lock_irq(&chan->lock);
772 continue;
773 }
774 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
775 list_del(&desc->node);
776
777 do {
778 if (list_empty(&chan->free_links)) {
779 /* No more free link descriptors */
780 spin_unlock_irq(&chan->lock);
781 ret = nbpf_desc_page_alloc(chan);
782 if (ret < 0) {
783 nbpf_desc_put(desc);
784 return NULL;
785 }
786 spin_lock_irq(&chan->lock);
787 continue;
788 }
789
790 ldesc = list_first_entry(&chan->free_links,
791 struct nbpf_link_desc, node);
792 ldesc->desc = desc;
793 if (prev)
794 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
795
796 prev = ldesc;
797 list_move_tail(&ldesc->node, &desc->sg);
798
799 i++;
800 } while (i < len);
801 } while (!desc);
802
803 prev->hwdesc->next = 0;
804
805 spin_unlock_irq(&chan->lock);
806
807 return desc;
808 }
809
810 static void nbpf_chan_idle(struct nbpf_channel *chan)
811 {
812 struct nbpf_desc *desc, *tmp;
813 unsigned long flags;
814 LIST_HEAD(head);
815
816 spin_lock_irqsave(&chan->lock, flags);
817
818 list_splice_init(&chan->done, &head);
819 list_splice_init(&chan->active, &head);
820 list_splice_init(&chan->queued, &head);
821
822 chan->running = NULL;
823
824 spin_unlock_irqrestore(&chan->lock, flags);
825
826 list_for_each_entry_safe(desc, tmp, &head, node) {
827 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
828 __func__, desc, desc->async_tx.cookie);
829 list_del(&desc->node);
830 nbpf_desc_put(desc);
831 }
832 }
833
834 static int nbpf_pause(struct dma_chan *dchan)
835 {
836 struct nbpf_channel *chan = nbpf_to_chan(dchan);
837
838 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
839
840 chan->paused = true;
841 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
842 /* See comment in nbpf_prep_one() */
843 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
844
845 return 0;
846 }
847
848 static int nbpf_terminate_all(struct dma_chan *dchan)
849 {
850 struct nbpf_channel *chan = nbpf_to_chan(dchan);
851
852 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
853 dev_dbg(dchan->device->dev, "Terminating\n");
854
855 nbpf_chan_halt(chan);
856 nbpf_chan_idle(chan);
857
858 return 0;
859 }
860
861 static int nbpf_config(struct dma_chan *dchan,
862 struct dma_slave_config *config)
863 {
864 struct nbpf_channel *chan = nbpf_to_chan(dchan);
865
866 dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
867
868 /*
869 * We could check config->slave_id to match chan->terminal here,
870 * but with DT they would be coming from the same source, so
871 * such a check would be superflous
872 */
873
874 chan->slave_dst_addr = config->dst_addr;
875 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
876 config->dst_addr_width, 1);
877 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
878 config->dst_addr_width,
879 config->dst_maxburst);
880 chan->slave_src_addr = config->src_addr;
881 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
882 config->src_addr_width, 1);
883 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
884 config->src_addr_width,
885 config->src_maxburst);
886
887 return 0;
888 }
889
890 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
891 struct scatterlist *src_sg, struct scatterlist *dst_sg,
892 size_t len, enum dma_transfer_direction direction,
893 unsigned long flags)
894 {
895 struct nbpf_link_desc *ldesc;
896 struct scatterlist *mem_sg;
897 struct nbpf_desc *desc;
898 bool inc_src, inc_dst;
899 size_t data_len = 0;
900 int i = 0;
901
902 switch (direction) {
903 case DMA_DEV_TO_MEM:
904 mem_sg = dst_sg;
905 inc_src = false;
906 inc_dst = true;
907 break;
908
909 case DMA_MEM_TO_DEV:
910 mem_sg = src_sg;
911 inc_src = true;
912 inc_dst = false;
913 break;
914
915 default:
916 case DMA_MEM_TO_MEM:
917 mem_sg = src_sg;
918 inc_src = true;
919 inc_dst = true;
920 }
921
922 desc = nbpf_desc_get(chan, len);
923 if (!desc)
924 return NULL;
925
926 desc->async_tx.flags = flags;
927 desc->async_tx.cookie = -EBUSY;
928 desc->user_wait = false;
929
930 /*
931 * This is a private descriptor list, and we own the descriptor. No need
932 * to lock.
933 */
934 list_for_each_entry(ldesc, &desc->sg, node) {
935 int ret = nbpf_prep_one(ldesc, direction,
936 sg_dma_address(src_sg),
937 sg_dma_address(dst_sg),
938 sg_dma_len(mem_sg),
939 i == len - 1);
940 if (ret < 0) {
941 nbpf_desc_put(desc);
942 return NULL;
943 }
944 data_len += sg_dma_len(mem_sg);
945 if (inc_src)
946 src_sg = sg_next(src_sg);
947 if (inc_dst)
948 dst_sg = sg_next(dst_sg);
949 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
950 i++;
951 }
952
953 desc->length = data_len;
954
955 /* The user has to return the descriptor to us ASAP via .tx_submit() */
956 return &desc->async_tx;
957 }
958
959 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
960 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
961 size_t len, unsigned long flags)
962 {
963 struct nbpf_channel *chan = nbpf_to_chan(dchan);
964 struct scatterlist dst_sg;
965 struct scatterlist src_sg;
966
967 sg_init_table(&dst_sg, 1);
968 sg_init_table(&src_sg, 1);
969
970 sg_dma_address(&dst_sg) = dst;
971 sg_dma_address(&src_sg) = src;
972
973 sg_dma_len(&dst_sg) = len;
974 sg_dma_len(&src_sg) = len;
975
976 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
977 __func__, len, &src, &dst);
978
979 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
980 DMA_MEM_TO_MEM, flags);
981 }
982
983 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
984 struct dma_chan *dchan,
985 struct scatterlist *dst_sg, unsigned int dst_nents,
986 struct scatterlist *src_sg, unsigned int src_nents,
987 unsigned long flags)
988 {
989 struct nbpf_channel *chan = nbpf_to_chan(dchan);
990
991 if (dst_nents != src_nents)
992 return NULL;
993
994 return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
995 DMA_MEM_TO_MEM, flags);
996 }
997
998 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
999 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1000 enum dma_transfer_direction direction, unsigned long flags, void *context)
1001 {
1002 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1003 struct scatterlist slave_sg;
1004
1005 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1006
1007 sg_init_table(&slave_sg, 1);
1008
1009 switch (direction) {
1010 case DMA_MEM_TO_DEV:
1011 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1012 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1013 direction, flags);
1014
1015 case DMA_DEV_TO_MEM:
1016 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1017 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1018 direction, flags);
1019
1020 default:
1021 return NULL;
1022 }
1023 }
1024
1025 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1026 {
1027 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1028 int ret;
1029
1030 INIT_LIST_HEAD(&chan->free);
1031 INIT_LIST_HEAD(&chan->free_links);
1032 INIT_LIST_HEAD(&chan->queued);
1033 INIT_LIST_HEAD(&chan->active);
1034 INIT_LIST_HEAD(&chan->done);
1035
1036 ret = nbpf_desc_page_alloc(chan);
1037 if (ret < 0)
1038 return ret;
1039
1040 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1041 chan->terminal);
1042
1043 nbpf_chan_configure(chan);
1044
1045 return ret;
1046 }
1047
1048 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1049 {
1050 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1051 struct nbpf_desc_page *dpage, *tmp;
1052
1053 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1054
1055 nbpf_chan_halt(chan);
1056 nbpf_chan_idle(chan);
1057 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1058 nbpf_chan_prepare_default(chan);
1059
1060 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1061 struct nbpf_link_desc *ldesc;
1062 int i;
1063 list_del(&dpage->node);
1064 for (i = 0, ldesc = dpage->ldesc;
1065 i < ARRAY_SIZE(dpage->ldesc);
1066 i++, ldesc++)
1067 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1068 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1069 free_page((unsigned long)dpage);
1070 }
1071 }
1072
1073 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1074 struct of_dma *ofdma)
1075 {
1076 struct nbpf_device *nbpf = ofdma->of_dma_data;
1077 struct dma_chan *dchan;
1078 struct nbpf_channel *chan;
1079
1080 if (dma_spec->args_count != 2)
1081 return NULL;
1082
1083 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1084 if (!dchan)
1085 return NULL;
1086
1087 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1088 dma_spec->np->name);
1089
1090 chan = nbpf_to_chan(dchan);
1091
1092 chan->terminal = dma_spec->args[0];
1093 chan->flags = dma_spec->args[1];
1094
1095 nbpf_chan_prepare(chan);
1096 nbpf_chan_configure(chan);
1097
1098 return dchan;
1099 }
1100
1101 static void nbpf_chan_tasklet(unsigned long data)
1102 {
1103 struct nbpf_channel *chan = (struct nbpf_channel *)data;
1104 struct nbpf_desc *desc, *tmp;
1105 dma_async_tx_callback callback;
1106 void *param;
1107
1108 while (!list_empty(&chan->done)) {
1109 bool found = false, must_put, recycling = false;
1110
1111 spin_lock_irq(&chan->lock);
1112
1113 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1114 if (!desc->user_wait) {
1115 /* Newly completed descriptor, have to process */
1116 found = true;
1117 break;
1118 } else if (async_tx_test_ack(&desc->async_tx)) {
1119 /*
1120 * This descriptor was waiting for a user ACK,
1121 * it can be recycled now.
1122 */
1123 list_del(&desc->node);
1124 spin_unlock_irq(&chan->lock);
1125 nbpf_desc_put(desc);
1126 recycling = true;
1127 break;
1128 }
1129 }
1130
1131 if (recycling)
1132 continue;
1133
1134 if (!found) {
1135 /* This can happen if TERMINATE_ALL has been called */
1136 spin_unlock_irq(&chan->lock);
1137 break;
1138 }
1139
1140 dma_cookie_complete(&desc->async_tx);
1141
1142 /*
1143 * With released lock we cannot dereference desc, maybe it's
1144 * still on the "done" list
1145 */
1146 if (async_tx_test_ack(&desc->async_tx)) {
1147 list_del(&desc->node);
1148 must_put = true;
1149 } else {
1150 desc->user_wait = true;
1151 must_put = false;
1152 }
1153
1154 callback = desc->async_tx.callback;
1155 param = desc->async_tx.callback_param;
1156
1157 /* ack and callback completed descriptor */
1158 spin_unlock_irq(&chan->lock);
1159
1160 if (callback)
1161 callback(param);
1162
1163 if (must_put)
1164 nbpf_desc_put(desc);
1165 }
1166 }
1167
1168 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1169 {
1170 struct nbpf_channel *chan = dev;
1171 bool done = nbpf_status_get(chan);
1172 struct nbpf_desc *desc;
1173 irqreturn_t ret;
1174 bool bh = false;
1175
1176 if (!done)
1177 return IRQ_NONE;
1178
1179 nbpf_status_ack(chan);
1180
1181 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1182
1183 spin_lock(&chan->lock);
1184 desc = chan->running;
1185 if (WARN_ON(!desc)) {
1186 ret = IRQ_NONE;
1187 goto unlock;
1188 } else {
1189 ret = IRQ_HANDLED;
1190 bh = true;
1191 }
1192
1193 list_move_tail(&desc->node, &chan->done);
1194 chan->running = NULL;
1195
1196 if (!list_empty(&chan->active)) {
1197 desc = list_first_entry(&chan->active,
1198 struct nbpf_desc, node);
1199 if (!nbpf_start(desc))
1200 chan->running = desc;
1201 }
1202
1203 unlock:
1204 spin_unlock(&chan->lock);
1205
1206 if (bh)
1207 tasklet_schedule(&chan->tasklet);
1208
1209 return ret;
1210 }
1211
1212 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1213 {
1214 struct nbpf_device *nbpf = dev;
1215 u32 error = nbpf_error_get(nbpf);
1216
1217 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1218
1219 if (!error)
1220 return IRQ_NONE;
1221
1222 do {
1223 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1224 /* On error: abort all queued transfers, no callback */
1225 nbpf_error_clear(chan);
1226 nbpf_chan_idle(chan);
1227 error = nbpf_error_get(nbpf);
1228 } while (error);
1229
1230 return IRQ_HANDLED;
1231 }
1232
1233 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1234 {
1235 struct dma_device *dma_dev = &nbpf->dma_dev;
1236 struct nbpf_channel *chan = nbpf->chan + n;
1237 int ret;
1238
1239 chan->nbpf = nbpf;
1240 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1241 INIT_LIST_HEAD(&chan->desc_page);
1242 spin_lock_init(&chan->lock);
1243 chan->dma_chan.device = dma_dev;
1244 dma_cookie_init(&chan->dma_chan);
1245 nbpf_chan_prepare_default(chan);
1246
1247 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1248
1249 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1250
1251 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1252 ret = devm_request_irq(dma_dev->dev, chan->irq,
1253 nbpf_chan_irq, IRQF_SHARED,
1254 chan->name, chan);
1255 if (ret < 0)
1256 return ret;
1257
1258 /* Add the channel to DMA device channel list */
1259 list_add_tail(&chan->dma_chan.device_node,
1260 &dma_dev->channels);
1261
1262 return 0;
1263 }
1264
1265 static const struct of_device_id nbpf_match[] = {
1266 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1267 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1268 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1269 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1270 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1271 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1272 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1273 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1274 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1275 {}
1276 };
1277 MODULE_DEVICE_TABLE(of, nbpf_match);
1278
1279 static int nbpf_probe(struct platform_device *pdev)
1280 {
1281 struct device *dev = &pdev->dev;
1282 const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1283 struct device_node *np = dev->of_node;
1284 struct nbpf_device *nbpf;
1285 struct dma_device *dma_dev;
1286 struct resource *iomem, *irq_res;
1287 const struct nbpf_config *cfg;
1288 int num_channels;
1289 int ret, irq, eirq, i;
1290 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1291 unsigned int irqs = 0;
1292
1293 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1294
1295 /* DT only */
1296 if (!np || !of_id || !of_id->data)
1297 return -ENODEV;
1298
1299 cfg = of_id->data;
1300 num_channels = cfg->num_channels;
1301
1302 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1303 sizeof(nbpf->chan[0]), GFP_KERNEL);
1304 if (!nbpf)
1305 return -ENOMEM;
1306
1307 dma_dev = &nbpf->dma_dev;
1308 dma_dev->dev = dev;
1309
1310 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311 nbpf->base = devm_ioremap_resource(dev, iomem);
1312 if (IS_ERR(nbpf->base))
1313 return PTR_ERR(nbpf->base);
1314
1315 nbpf->clk = devm_clk_get(dev, NULL);
1316 if (IS_ERR(nbpf->clk))
1317 return PTR_ERR(nbpf->clk);
1318
1319 nbpf->config = cfg;
1320
1321 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1322 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1323 if (!irq_res)
1324 break;
1325
1326 for (irq = irq_res->start; irq <= irq_res->end;
1327 irq++, irqs++)
1328 irqbuf[irqs] = irq;
1329 }
1330
1331 /*
1332 * 3 IRQ resource schemes are supported:
1333 * 1. 1 shared IRQ for error and all channels
1334 * 2. 2 IRQs: one for error and one shared for all channels
1335 * 3. 1 IRQ for error and an own IRQ for each channel
1336 */
1337 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1338 return -ENXIO;
1339
1340 if (irqs == 1) {
1341 eirq = irqbuf[0];
1342
1343 for (i = 0; i <= num_channels; i++)
1344 nbpf->chan[i].irq = irqbuf[0];
1345 } else {
1346 eirq = platform_get_irq_byname(pdev, "error");
1347 if (eirq < 0)
1348 return eirq;
1349
1350 if (irqs == num_channels + 1) {
1351 struct nbpf_channel *chan;
1352
1353 for (i = 0, chan = nbpf->chan; i <= num_channels;
1354 i++, chan++) {
1355 /* Skip the error IRQ */
1356 if (irqbuf[i] == eirq)
1357 i++;
1358 chan->irq = irqbuf[i];
1359 }
1360
1361 if (chan != nbpf->chan + num_channels)
1362 return -EINVAL;
1363 } else {
1364 /* 2 IRQs and more than one channel */
1365 if (irqbuf[0] == eirq)
1366 irq = irqbuf[1];
1367 else
1368 irq = irqbuf[0];
1369
1370 for (i = 0; i <= num_channels; i++)
1371 nbpf->chan[i].irq = irq;
1372 }
1373 }
1374
1375 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1376 IRQF_SHARED, "dma error", nbpf);
1377 if (ret < 0)
1378 return ret;
1379 nbpf->eirq = eirq;
1380
1381 INIT_LIST_HEAD(&dma_dev->channels);
1382
1383 /* Create DMA Channel */
1384 for (i = 0; i < num_channels; i++) {
1385 ret = nbpf_chan_probe(nbpf, i);
1386 if (ret < 0)
1387 return ret;
1388 }
1389
1390 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1391 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1392 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1393 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1394
1395 /* Common and MEMCPY operations */
1396 dma_dev->device_alloc_chan_resources
1397 = nbpf_alloc_chan_resources;
1398 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1399 dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1400 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1401 dma_dev->device_tx_status = nbpf_tx_status;
1402 dma_dev->device_issue_pending = nbpf_issue_pending;
1403
1404 /*
1405 * If we drop support for unaligned MEMCPY buffer addresses and / or
1406 * lengths by setting
1407 * dma_dev->copy_align = 4;
1408 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1409 * DMA_MEM_TO_MEM
1410 */
1411
1412 /* Compulsory for DMA_SLAVE fields */
1413 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1414 dma_dev->device_config = nbpf_config;
1415 dma_dev->device_pause = nbpf_pause;
1416 dma_dev->device_terminate_all = nbpf_terminate_all;
1417
1418 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1419 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1420 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1421
1422 platform_set_drvdata(pdev, nbpf);
1423
1424 ret = clk_prepare_enable(nbpf->clk);
1425 if (ret < 0)
1426 return ret;
1427
1428 nbpf_configure(nbpf);
1429
1430 ret = dma_async_device_register(dma_dev);
1431 if (ret < 0)
1432 goto e_clk_off;
1433
1434 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1435 if (ret < 0)
1436 goto e_dma_dev_unreg;
1437
1438 return 0;
1439
1440 e_dma_dev_unreg:
1441 dma_async_device_unregister(dma_dev);
1442 e_clk_off:
1443 clk_disable_unprepare(nbpf->clk);
1444
1445 return ret;
1446 }
1447
1448 static int nbpf_remove(struct platform_device *pdev)
1449 {
1450 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1451 int i;
1452
1453 devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1454
1455 for (i = 0; i < nbpf->config->num_channels; i++) {
1456 struct nbpf_channel *chan = nbpf->chan + i;
1457
1458 devm_free_irq(&pdev->dev, chan->irq, chan);
1459
1460 tasklet_kill(&chan->tasklet);
1461 }
1462
1463 of_dma_controller_free(pdev->dev.of_node);
1464 dma_async_device_unregister(&nbpf->dma_dev);
1465 clk_disable_unprepare(nbpf->clk);
1466
1467 return 0;
1468 }
1469
1470 static const struct platform_device_id nbpf_ids[] = {
1471 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1472 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1473 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1474 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1475 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1476 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1477 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1478 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1479 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1480 {},
1481 };
1482 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1483
1484 #ifdef CONFIG_PM
1485 static int nbpf_runtime_suspend(struct device *dev)
1486 {
1487 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1488 clk_disable_unprepare(nbpf->clk);
1489 return 0;
1490 }
1491
1492 static int nbpf_runtime_resume(struct device *dev)
1493 {
1494 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1495 return clk_prepare_enable(nbpf->clk);
1496 }
1497 #endif
1498
1499 static const struct dev_pm_ops nbpf_pm_ops = {
1500 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1501 };
1502
1503 static struct platform_driver nbpf_driver = {
1504 .driver = {
1505 .name = "dma-nbpf",
1506 .of_match_table = nbpf_match,
1507 .pm = &nbpf_pm_ops,
1508 },
1509 .id_table = nbpf_ids,
1510 .probe = nbpf_probe,
1511 .remove = nbpf_remove,
1512 };
1513
1514 module_platform_driver(nbpf_driver);
1515
1516 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1517 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1518 MODULE_LICENSE("GPL v2");
This page took 0.062058 seconds and 6 git commands to generate.