Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / dma / pch_dma.c
1 /*
2 * Topcliff PCH DMA controller driver
3 * Copyright (c) 2010 Intel Corporation
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pch_dma.h>
27
28 #include "dmaengine.h"
29
30 #define DRV_NAME "pch-dma"
31
32 #define DMA_CTL0_DISABLE 0x0
33 #define DMA_CTL0_SG 0x1
34 #define DMA_CTL0_ONESHOT 0x2
35 #define DMA_CTL0_MODE_MASK_BITS 0x3
36 #define DMA_CTL0_DIR_SHIFT_BITS 2
37 #define DMA_CTL0_BITS_PER_CH 4
38
39 #define DMA_CTL2_START_SHIFT_BITS 8
40 #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
41
42 #define DMA_STATUS_IDLE 0x0
43 #define DMA_STATUS_DESC_READ 0x1
44 #define DMA_STATUS_WAIT 0x2
45 #define DMA_STATUS_ACCESS 0x3
46 #define DMA_STATUS_BITS_PER_CH 2
47 #define DMA_STATUS_MASK_BITS 0x3
48 #define DMA_STATUS_SHIFT_BITS 16
49 #define DMA_STATUS_IRQ(x) (0x1 << (x))
50 #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
51 #define DMA_STATUS2_ERR(x) (0x1 << (x))
52
53 #define DMA_DESC_WIDTH_SHIFT_BITS 12
54 #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
55 #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
56 #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
57 #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
58 #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
59 #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
60 #define DMA_DESC_END_WITHOUT_IRQ 0x0
61 #define DMA_DESC_END_WITH_IRQ 0x1
62 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
63 #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
64
65 #define MAX_CHAN_NR 12
66
67 #define DMA_MASK_CTL0_MODE 0x33333333
68 #define DMA_MASK_CTL2_MODE 0x00003333
69
70 static unsigned int init_nr_desc_per_channel = 64;
71 module_param(init_nr_desc_per_channel, uint, 0644);
72 MODULE_PARM_DESC(init_nr_desc_per_channel,
73 "initial descriptors per channel (default: 64)");
74
75 struct pch_dma_desc_regs {
76 u32 dev_addr;
77 u32 mem_addr;
78 u32 size;
79 u32 next;
80 };
81
82 struct pch_dma_regs {
83 u32 dma_ctl0;
84 u32 dma_ctl1;
85 u32 dma_ctl2;
86 u32 dma_ctl3;
87 u32 dma_sts0;
88 u32 dma_sts1;
89 u32 dma_sts2;
90 u32 reserved3;
91 struct pch_dma_desc_regs desc[MAX_CHAN_NR];
92 };
93
94 struct pch_dma_desc {
95 struct pch_dma_desc_regs regs;
96 struct dma_async_tx_descriptor txd;
97 struct list_head desc_node;
98 struct list_head tx_list;
99 };
100
101 struct pch_dma_chan {
102 struct dma_chan chan;
103 void __iomem *membase;
104 enum dma_transfer_direction dir;
105 struct tasklet_struct tasklet;
106 unsigned long err_status;
107
108 spinlock_t lock;
109
110 struct list_head active_list;
111 struct list_head queue;
112 struct list_head free_list;
113 unsigned int descs_allocated;
114 };
115
116 #define PDC_DEV_ADDR 0x00
117 #define PDC_MEM_ADDR 0x04
118 #define PDC_SIZE 0x08
119 #define PDC_NEXT 0x0C
120
121 #define channel_readl(pdc, name) \
122 readl((pdc)->membase + PDC_##name)
123 #define channel_writel(pdc, name, val) \
124 writel((val), (pdc)->membase + PDC_##name)
125
126 struct pch_dma {
127 struct dma_device dma;
128 void __iomem *membase;
129 struct pci_pool *pool;
130 struct pch_dma_regs regs;
131 struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
132 struct pch_dma_chan channels[MAX_CHAN_NR];
133 };
134
135 #define PCH_DMA_CTL0 0x00
136 #define PCH_DMA_CTL1 0x04
137 #define PCH_DMA_CTL2 0x08
138 #define PCH_DMA_CTL3 0x0C
139 #define PCH_DMA_STS0 0x10
140 #define PCH_DMA_STS1 0x14
141 #define PCH_DMA_STS2 0x18
142
143 #define dma_readl(pd, name) \
144 readl((pd)->membase + PCH_DMA_##name)
145 #define dma_writel(pd, name, val) \
146 writel((val), (pd)->membase + PCH_DMA_##name)
147
148 static inline
149 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
150 {
151 return container_of(txd, struct pch_dma_desc, txd);
152 }
153
154 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
155 {
156 return container_of(chan, struct pch_dma_chan, chan);
157 }
158
159 static inline struct pch_dma *to_pd(struct dma_device *ddev)
160 {
161 return container_of(ddev, struct pch_dma, dma);
162 }
163
164 static inline struct device *chan2dev(struct dma_chan *chan)
165 {
166 return &chan->dev->device;
167 }
168
169 static inline struct device *chan2parent(struct dma_chan *chan)
170 {
171 return chan->dev->device.parent;
172 }
173
174 static inline
175 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
176 {
177 return list_first_entry(&pd_chan->active_list,
178 struct pch_dma_desc, desc_node);
179 }
180
181 static inline
182 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
183 {
184 return list_first_entry(&pd_chan->queue,
185 struct pch_dma_desc, desc_node);
186 }
187
188 static void pdc_enable_irq(struct dma_chan *chan, int enable)
189 {
190 struct pch_dma *pd = to_pd(chan->device);
191 u32 val;
192 int pos;
193
194 if (chan->chan_id < 8)
195 pos = chan->chan_id;
196 else
197 pos = chan->chan_id + 8;
198
199 val = dma_readl(pd, CTL2);
200
201 if (enable)
202 val |= 0x1 << pos;
203 else
204 val &= ~(0x1 << pos);
205
206 dma_writel(pd, CTL2, val);
207
208 dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
209 chan->chan_id, val);
210 }
211
212 static void pdc_set_dir(struct dma_chan *chan)
213 {
214 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
215 struct pch_dma *pd = to_pd(chan->device);
216 u32 val;
217 u32 mask_mode;
218 u32 mask_ctl;
219
220 if (chan->chan_id < 8) {
221 val = dma_readl(pd, CTL0);
222
223 mask_mode = DMA_CTL0_MODE_MASK_BITS <<
224 (DMA_CTL0_BITS_PER_CH * chan->chan_id);
225 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
226 (DMA_CTL0_BITS_PER_CH * chan->chan_id));
227 val &= mask_mode;
228 if (pd_chan->dir == DMA_MEM_TO_DEV)
229 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
230 DMA_CTL0_DIR_SHIFT_BITS);
231 else
232 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
233 DMA_CTL0_DIR_SHIFT_BITS));
234
235 val |= mask_ctl;
236 dma_writel(pd, CTL0, val);
237 } else {
238 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
239 val = dma_readl(pd, CTL3);
240
241 mask_mode = DMA_CTL0_MODE_MASK_BITS <<
242 (DMA_CTL0_BITS_PER_CH * ch);
243 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
244 (DMA_CTL0_BITS_PER_CH * ch));
245 val &= mask_mode;
246 if (pd_chan->dir == DMA_MEM_TO_DEV)
247 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
248 DMA_CTL0_DIR_SHIFT_BITS);
249 else
250 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
251 DMA_CTL0_DIR_SHIFT_BITS));
252 val |= mask_ctl;
253 dma_writel(pd, CTL3, val);
254 }
255
256 dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
257 chan->chan_id, val);
258 }
259
260 static void pdc_set_mode(struct dma_chan *chan, u32 mode)
261 {
262 struct pch_dma *pd = to_pd(chan->device);
263 u32 val;
264 u32 mask_ctl;
265 u32 mask_dir;
266
267 if (chan->chan_id < 8) {
268 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
269 (DMA_CTL0_BITS_PER_CH * chan->chan_id));
270 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
271 DMA_CTL0_DIR_SHIFT_BITS);
272 val = dma_readl(pd, CTL0);
273 val &= mask_dir;
274 val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
275 val |= mask_ctl;
276 dma_writel(pd, CTL0, val);
277 } else {
278 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
279 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
280 (DMA_CTL0_BITS_PER_CH * ch));
281 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
282 DMA_CTL0_DIR_SHIFT_BITS);
283 val = dma_readl(pd, CTL3);
284 val &= mask_dir;
285 val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
286 val |= mask_ctl;
287 dma_writel(pd, CTL3, val);
288 }
289
290 dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
291 chan->chan_id, val);
292 }
293
294 static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
295 {
296 struct pch_dma *pd = to_pd(pd_chan->chan.device);
297 u32 val;
298
299 val = dma_readl(pd, STS0);
300 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
301 DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
302 }
303
304 static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
305 {
306 struct pch_dma *pd = to_pd(pd_chan->chan.device);
307 u32 val;
308
309 val = dma_readl(pd, STS2);
310 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
311 DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
312 }
313
314 static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
315 {
316 u32 sts;
317
318 if (pd_chan->chan.chan_id < 8)
319 sts = pdc_get_status0(pd_chan);
320 else
321 sts = pdc_get_status2(pd_chan);
322
323
324 if (sts == DMA_STATUS_IDLE)
325 return true;
326 else
327 return false;
328 }
329
330 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
331 {
332 if (!pdc_is_idle(pd_chan)) {
333 dev_err(chan2dev(&pd_chan->chan),
334 "BUG: Attempt to start non-idle channel\n");
335 return;
336 }
337
338 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
339 pd_chan->chan.chan_id, desc->regs.dev_addr);
340 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
341 pd_chan->chan.chan_id, desc->regs.mem_addr);
342 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
343 pd_chan->chan.chan_id, desc->regs.size);
344 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
345 pd_chan->chan.chan_id, desc->regs.next);
346
347 if (list_empty(&desc->tx_list)) {
348 channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
349 channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
350 channel_writel(pd_chan, SIZE, desc->regs.size);
351 channel_writel(pd_chan, NEXT, desc->regs.next);
352 pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
353 } else {
354 channel_writel(pd_chan, NEXT, desc->txd.phys);
355 pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
356 }
357 }
358
359 static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
360 struct pch_dma_desc *desc)
361 {
362 struct dma_async_tx_descriptor *txd = &desc->txd;
363 dma_async_tx_callback callback = txd->callback;
364 void *param = txd->callback_param;
365
366 list_splice_init(&desc->tx_list, &pd_chan->free_list);
367 list_move(&desc->desc_node, &pd_chan->free_list);
368
369 if (callback)
370 callback(param);
371 }
372
373 static void pdc_complete_all(struct pch_dma_chan *pd_chan)
374 {
375 struct pch_dma_desc *desc, *_d;
376 LIST_HEAD(list);
377
378 BUG_ON(!pdc_is_idle(pd_chan));
379
380 if (!list_empty(&pd_chan->queue))
381 pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
382
383 list_splice_init(&pd_chan->active_list, &list);
384 list_splice_init(&pd_chan->queue, &pd_chan->active_list);
385
386 list_for_each_entry_safe(desc, _d, &list, desc_node)
387 pdc_chain_complete(pd_chan, desc);
388 }
389
390 static void pdc_handle_error(struct pch_dma_chan *pd_chan)
391 {
392 struct pch_dma_desc *bad_desc;
393
394 bad_desc = pdc_first_active(pd_chan);
395 list_del(&bad_desc->desc_node);
396
397 list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
398
399 if (!list_empty(&pd_chan->active_list))
400 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
401
402 dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
403 dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
404 bad_desc->txd.cookie);
405
406 pdc_chain_complete(pd_chan, bad_desc);
407 }
408
409 static void pdc_advance_work(struct pch_dma_chan *pd_chan)
410 {
411 if (list_empty(&pd_chan->active_list) ||
412 list_is_singular(&pd_chan->active_list)) {
413 pdc_complete_all(pd_chan);
414 } else {
415 pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
416 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
417 }
418 }
419
420 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
421 {
422 struct pch_dma_desc *desc = to_pd_desc(txd);
423 struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
424 dma_cookie_t cookie;
425
426 spin_lock(&pd_chan->lock);
427 cookie = dma_cookie_assign(txd);
428
429 if (list_empty(&pd_chan->active_list)) {
430 list_add_tail(&desc->desc_node, &pd_chan->active_list);
431 pdc_dostart(pd_chan, desc);
432 } else {
433 list_add_tail(&desc->desc_node, &pd_chan->queue);
434 }
435
436 spin_unlock(&pd_chan->lock);
437 return 0;
438 }
439
440 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
441 {
442 struct pch_dma_desc *desc = NULL;
443 struct pch_dma *pd = to_pd(chan->device);
444 dma_addr_t addr;
445
446 desc = pci_pool_alloc(pd->pool, flags, &addr);
447 if (desc) {
448 memset(desc, 0, sizeof(struct pch_dma_desc));
449 INIT_LIST_HEAD(&desc->tx_list);
450 dma_async_tx_descriptor_init(&desc->txd, chan);
451 desc->txd.tx_submit = pd_tx_submit;
452 desc->txd.flags = DMA_CTRL_ACK;
453 desc->txd.phys = addr;
454 }
455
456 return desc;
457 }
458
459 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
460 {
461 struct pch_dma_desc *desc, *_d;
462 struct pch_dma_desc *ret = NULL;
463 int i = 0;
464
465 spin_lock(&pd_chan->lock);
466 list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
467 i++;
468 if (async_tx_test_ack(&desc->txd)) {
469 list_del(&desc->desc_node);
470 ret = desc;
471 break;
472 }
473 dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
474 }
475 spin_unlock(&pd_chan->lock);
476 dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
477
478 if (!ret) {
479 ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
480 if (ret) {
481 spin_lock(&pd_chan->lock);
482 pd_chan->descs_allocated++;
483 spin_unlock(&pd_chan->lock);
484 } else {
485 dev_err(chan2dev(&pd_chan->chan),
486 "failed to alloc desc\n");
487 }
488 }
489
490 return ret;
491 }
492
493 static void pdc_desc_put(struct pch_dma_chan *pd_chan,
494 struct pch_dma_desc *desc)
495 {
496 if (desc) {
497 spin_lock(&pd_chan->lock);
498 list_splice_init(&desc->tx_list, &pd_chan->free_list);
499 list_add(&desc->desc_node, &pd_chan->free_list);
500 spin_unlock(&pd_chan->lock);
501 }
502 }
503
504 static int pd_alloc_chan_resources(struct dma_chan *chan)
505 {
506 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
507 struct pch_dma_desc *desc;
508 LIST_HEAD(tmp_list);
509 int i;
510
511 if (!pdc_is_idle(pd_chan)) {
512 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
513 return -EIO;
514 }
515
516 if (!list_empty(&pd_chan->free_list))
517 return pd_chan->descs_allocated;
518
519 for (i = 0; i < init_nr_desc_per_channel; i++) {
520 desc = pdc_alloc_desc(chan, GFP_KERNEL);
521
522 if (!desc) {
523 dev_warn(chan2dev(chan),
524 "Only allocated %d initial descriptors\n", i);
525 break;
526 }
527
528 list_add_tail(&desc->desc_node, &tmp_list);
529 }
530
531 spin_lock_irq(&pd_chan->lock);
532 list_splice(&tmp_list, &pd_chan->free_list);
533 pd_chan->descs_allocated = i;
534 dma_cookie_init(chan);
535 spin_unlock_irq(&pd_chan->lock);
536
537 pdc_enable_irq(chan, 1);
538
539 return pd_chan->descs_allocated;
540 }
541
542 static void pd_free_chan_resources(struct dma_chan *chan)
543 {
544 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
545 struct pch_dma *pd = to_pd(chan->device);
546 struct pch_dma_desc *desc, *_d;
547 LIST_HEAD(tmp_list);
548
549 BUG_ON(!pdc_is_idle(pd_chan));
550 BUG_ON(!list_empty(&pd_chan->active_list));
551 BUG_ON(!list_empty(&pd_chan->queue));
552
553 spin_lock_irq(&pd_chan->lock);
554 list_splice_init(&pd_chan->free_list, &tmp_list);
555 pd_chan->descs_allocated = 0;
556 spin_unlock_irq(&pd_chan->lock);
557
558 list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
559 pci_pool_free(pd->pool, desc, desc->txd.phys);
560
561 pdc_enable_irq(chan, 0);
562 }
563
564 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
565 struct dma_tx_state *txstate)
566 {
567 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
568 enum dma_status ret;
569
570 spin_lock_irq(&pd_chan->lock);
571 ret = dma_cookie_status(chan, cookie, txstate);
572 spin_unlock_irq(&pd_chan->lock);
573
574 return ret;
575 }
576
577 static void pd_issue_pending(struct dma_chan *chan)
578 {
579 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
580
581 if (pdc_is_idle(pd_chan)) {
582 spin_lock(&pd_chan->lock);
583 pdc_advance_work(pd_chan);
584 spin_unlock(&pd_chan->lock);
585 }
586 }
587
588 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
589 struct scatterlist *sgl, unsigned int sg_len,
590 enum dma_transfer_direction direction, unsigned long flags,
591 void *context)
592 {
593 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
594 struct pch_dma_slave *pd_slave = chan->private;
595 struct pch_dma_desc *first = NULL;
596 struct pch_dma_desc *prev = NULL;
597 struct pch_dma_desc *desc = NULL;
598 struct scatterlist *sg;
599 dma_addr_t reg;
600 int i;
601
602 if (unlikely(!sg_len)) {
603 dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
604 return NULL;
605 }
606
607 if (direction == DMA_DEV_TO_MEM)
608 reg = pd_slave->rx_reg;
609 else if (direction == DMA_MEM_TO_DEV)
610 reg = pd_slave->tx_reg;
611 else
612 return NULL;
613
614 pd_chan->dir = direction;
615 pdc_set_dir(chan);
616
617 for_each_sg(sgl, sg, sg_len, i) {
618 desc = pdc_desc_get(pd_chan);
619
620 if (!desc)
621 goto err_desc_get;
622
623 desc->regs.dev_addr = reg;
624 desc->regs.mem_addr = sg_dma_address(sg);
625 desc->regs.size = sg_dma_len(sg);
626 desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
627
628 switch (pd_slave->width) {
629 case PCH_DMA_WIDTH_1_BYTE:
630 if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
631 goto err_desc_get;
632 desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
633 break;
634 case PCH_DMA_WIDTH_2_BYTES:
635 if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
636 goto err_desc_get;
637 desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
638 break;
639 case PCH_DMA_WIDTH_4_BYTES:
640 if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
641 goto err_desc_get;
642 desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
643 break;
644 default:
645 goto err_desc_get;
646 }
647
648 if (!first) {
649 first = desc;
650 } else {
651 prev->regs.next |= desc->txd.phys;
652 list_add_tail(&desc->desc_node, &first->tx_list);
653 }
654
655 prev = desc;
656 }
657
658 if (flags & DMA_PREP_INTERRUPT)
659 desc->regs.next = DMA_DESC_END_WITH_IRQ;
660 else
661 desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
662
663 first->txd.cookie = -EBUSY;
664 desc->txd.flags = flags;
665
666 return &first->txd;
667
668 err_desc_get:
669 dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
670 pdc_desc_put(pd_chan, first);
671 return NULL;
672 }
673
674 static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
675 unsigned long arg)
676 {
677 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
678 struct pch_dma_desc *desc, *_d;
679 LIST_HEAD(list);
680
681 if (cmd != DMA_TERMINATE_ALL)
682 return -ENXIO;
683
684 spin_lock_irq(&pd_chan->lock);
685
686 pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
687
688 list_splice_init(&pd_chan->active_list, &list);
689 list_splice_init(&pd_chan->queue, &list);
690
691 list_for_each_entry_safe(desc, _d, &list, desc_node)
692 pdc_chain_complete(pd_chan, desc);
693
694 spin_unlock_irq(&pd_chan->lock);
695
696 return 0;
697 }
698
699 static void pdc_tasklet(unsigned long data)
700 {
701 struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
702 unsigned long flags;
703
704 if (!pdc_is_idle(pd_chan)) {
705 dev_err(chan2dev(&pd_chan->chan),
706 "BUG: handle non-idle channel in tasklet\n");
707 return;
708 }
709
710 spin_lock_irqsave(&pd_chan->lock, flags);
711 if (test_and_clear_bit(0, &pd_chan->err_status))
712 pdc_handle_error(pd_chan);
713 else
714 pdc_advance_work(pd_chan);
715 spin_unlock_irqrestore(&pd_chan->lock, flags);
716 }
717
718 static irqreturn_t pd_irq(int irq, void *devid)
719 {
720 struct pch_dma *pd = (struct pch_dma *)devid;
721 struct pch_dma_chan *pd_chan;
722 u32 sts0;
723 u32 sts2;
724 int i;
725 int ret0 = IRQ_NONE;
726 int ret2 = IRQ_NONE;
727
728 sts0 = dma_readl(pd, STS0);
729 sts2 = dma_readl(pd, STS2);
730
731 dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
732
733 for (i = 0; i < pd->dma.chancnt; i++) {
734 pd_chan = &pd->channels[i];
735
736 if (i < 8) {
737 if (sts0 & DMA_STATUS_IRQ(i)) {
738 if (sts0 & DMA_STATUS0_ERR(i))
739 set_bit(0, &pd_chan->err_status);
740
741 tasklet_schedule(&pd_chan->tasklet);
742 ret0 = IRQ_HANDLED;
743 }
744 } else {
745 if (sts2 & DMA_STATUS_IRQ(i - 8)) {
746 if (sts2 & DMA_STATUS2_ERR(i))
747 set_bit(0, &pd_chan->err_status);
748
749 tasklet_schedule(&pd_chan->tasklet);
750 ret2 = IRQ_HANDLED;
751 }
752 }
753 }
754
755 /* clear interrupt bits in status register */
756 if (ret0)
757 dma_writel(pd, STS0, sts0);
758 if (ret2)
759 dma_writel(pd, STS2, sts2);
760
761 return ret0 | ret2;
762 }
763
764 #ifdef CONFIG_PM
765 static void pch_dma_save_regs(struct pch_dma *pd)
766 {
767 struct pch_dma_chan *pd_chan;
768 struct dma_chan *chan, *_c;
769 int i = 0;
770
771 pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
772 pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
773 pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
774 pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
775
776 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
777 pd_chan = to_pd_chan(chan);
778
779 pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
780 pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
781 pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
782 pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
783
784 i++;
785 }
786 }
787
788 static void pch_dma_restore_regs(struct pch_dma *pd)
789 {
790 struct pch_dma_chan *pd_chan;
791 struct dma_chan *chan, *_c;
792 int i = 0;
793
794 dma_writel(pd, CTL0, pd->regs.dma_ctl0);
795 dma_writel(pd, CTL1, pd->regs.dma_ctl1);
796 dma_writel(pd, CTL2, pd->regs.dma_ctl2);
797 dma_writel(pd, CTL3, pd->regs.dma_ctl3);
798
799 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
800 pd_chan = to_pd_chan(chan);
801
802 channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
803 channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
804 channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
805 channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
806
807 i++;
808 }
809 }
810
811 static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
812 {
813 struct pch_dma *pd = pci_get_drvdata(pdev);
814
815 if (pd)
816 pch_dma_save_regs(pd);
817
818 pci_save_state(pdev);
819 pci_disable_device(pdev);
820 pci_set_power_state(pdev, pci_choose_state(pdev, state));
821
822 return 0;
823 }
824
825 static int pch_dma_resume(struct pci_dev *pdev)
826 {
827 struct pch_dma *pd = pci_get_drvdata(pdev);
828 int err;
829
830 pci_set_power_state(pdev, PCI_D0);
831 pci_restore_state(pdev);
832
833 err = pci_enable_device(pdev);
834 if (err) {
835 dev_dbg(&pdev->dev, "failed to enable device\n");
836 return err;
837 }
838
839 if (pd)
840 pch_dma_restore_regs(pd);
841
842 return 0;
843 }
844 #endif
845
846 static int __devinit pch_dma_probe(struct pci_dev *pdev,
847 const struct pci_device_id *id)
848 {
849 struct pch_dma *pd;
850 struct pch_dma_regs *regs;
851 unsigned int nr_channels;
852 int err;
853 int i;
854
855 nr_channels = id->driver_data;
856 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
857 if (!pd)
858 return -ENOMEM;
859
860 pci_set_drvdata(pdev, pd);
861
862 err = pci_enable_device(pdev);
863 if (err) {
864 dev_err(&pdev->dev, "Cannot enable PCI device\n");
865 goto err_free_mem;
866 }
867
868 if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
869 dev_err(&pdev->dev, "Cannot find proper base address\n");
870 goto err_disable_pdev;
871 }
872
873 err = pci_request_regions(pdev, DRV_NAME);
874 if (err) {
875 dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
876 goto err_disable_pdev;
877 }
878
879 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
880 if (err) {
881 dev_err(&pdev->dev, "Cannot set proper DMA config\n");
882 goto err_free_res;
883 }
884
885 regs = pd->membase = pci_iomap(pdev, 1, 0);
886 if (!pd->membase) {
887 dev_err(&pdev->dev, "Cannot map MMIO registers\n");
888 err = -ENOMEM;
889 goto err_free_res;
890 }
891
892 pci_set_master(pdev);
893
894 err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
895 if (err) {
896 dev_err(&pdev->dev, "Failed to request IRQ\n");
897 goto err_iounmap;
898 }
899
900 pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
901 sizeof(struct pch_dma_desc), 4, 0);
902 if (!pd->pool) {
903 dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
904 err = -ENOMEM;
905 goto err_free_irq;
906 }
907
908 pd->dma.dev = &pdev->dev;
909
910 INIT_LIST_HEAD(&pd->dma.channels);
911
912 for (i = 0; i < nr_channels; i++) {
913 struct pch_dma_chan *pd_chan = &pd->channels[i];
914
915 pd_chan->chan.device = &pd->dma;
916 dma_cookie_init(&pd_chan->chan);
917
918 pd_chan->membase = &regs->desc[i];
919
920 spin_lock_init(&pd_chan->lock);
921
922 INIT_LIST_HEAD(&pd_chan->active_list);
923 INIT_LIST_HEAD(&pd_chan->queue);
924 INIT_LIST_HEAD(&pd_chan->free_list);
925
926 tasklet_init(&pd_chan->tasklet, pdc_tasklet,
927 (unsigned long)pd_chan);
928 list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
929 }
930
931 dma_cap_zero(pd->dma.cap_mask);
932 dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
933 dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
934
935 pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
936 pd->dma.device_free_chan_resources = pd_free_chan_resources;
937 pd->dma.device_tx_status = pd_tx_status;
938 pd->dma.device_issue_pending = pd_issue_pending;
939 pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
940 pd->dma.device_control = pd_device_control;
941
942 err = dma_async_device_register(&pd->dma);
943 if (err) {
944 dev_err(&pdev->dev, "Failed to register DMA device\n");
945 goto err_free_pool;
946 }
947
948 return 0;
949
950 err_free_pool:
951 pci_pool_destroy(pd->pool);
952 err_free_irq:
953 free_irq(pdev->irq, pd);
954 err_iounmap:
955 pci_iounmap(pdev, pd->membase);
956 err_free_res:
957 pci_release_regions(pdev);
958 err_disable_pdev:
959 pci_disable_device(pdev);
960 err_free_mem:
961 return err;
962 }
963
964 static void __devexit pch_dma_remove(struct pci_dev *pdev)
965 {
966 struct pch_dma *pd = pci_get_drvdata(pdev);
967 struct pch_dma_chan *pd_chan;
968 struct dma_chan *chan, *_c;
969
970 if (pd) {
971 dma_async_device_unregister(&pd->dma);
972
973 list_for_each_entry_safe(chan, _c, &pd->dma.channels,
974 device_node) {
975 pd_chan = to_pd_chan(chan);
976
977 tasklet_disable(&pd_chan->tasklet);
978 tasklet_kill(&pd_chan->tasklet);
979 }
980
981 pci_pool_destroy(pd->pool);
982 free_irq(pdev->irq, pd);
983 pci_iounmap(pdev, pd->membase);
984 pci_release_regions(pdev);
985 pci_disable_device(pdev);
986 kfree(pd);
987 }
988 }
989
990 /* PCI Device ID of DMA device */
991 #define PCI_VENDOR_ID_ROHM 0x10DB
992 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
993 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
994 #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
995 #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
996 #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
997 #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
998 #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
999 #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
1000 #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
1001 #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
1002 #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
1003 #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
1004
1005 DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
1006 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
1007 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
1008 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
1009 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
1010 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
1011 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
1012 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
1013 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
1014 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
1015 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
1016 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
1017 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
1018 { 0, },
1019 };
1020
1021 static struct pci_driver pch_dma_driver = {
1022 .name = DRV_NAME,
1023 .id_table = pch_dma_id_table,
1024 .probe = pch_dma_probe,
1025 .remove = __devexit_p(pch_dma_remove),
1026 #ifdef CONFIG_PM
1027 .suspend = pch_dma_suspend,
1028 .resume = pch_dma_resume,
1029 #endif
1030 };
1031
1032 static int __init pch_dma_init(void)
1033 {
1034 return pci_register_driver(&pch_dma_driver);
1035 }
1036
1037 static void __exit pch_dma_exit(void)
1038 {
1039 pci_unregister_driver(&pch_dma_driver);
1040 }
1041
1042 module_init(pch_dma_init);
1043 module_exit(pch_dma_exit);
1044
1045 MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
1046 "DMA controller driver");
1047 MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
1048 MODULE_LICENSE("GPL v2");
This page took 0.053842 seconds and 5 git commands to generate.