Merge remote-tracking branches 'asoc/topic/sigmadsp', 'asoc/topic/sirf', 'asoc/topic...
[deliverable/linux.git] / drivers / dma / pch_dma.c
1 /*
2 * Topcliff PCH DMA controller driver
3 * Copyright (c) 2010 Intel Corporation
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/pch_dma.h>
28
29 #include "dmaengine.h"
30
31 #define DRV_NAME "pch-dma"
32
33 #define DMA_CTL0_DISABLE 0x0
34 #define DMA_CTL0_SG 0x1
35 #define DMA_CTL0_ONESHOT 0x2
36 #define DMA_CTL0_MODE_MASK_BITS 0x3
37 #define DMA_CTL0_DIR_SHIFT_BITS 2
38 #define DMA_CTL0_BITS_PER_CH 4
39
40 #define DMA_CTL2_START_SHIFT_BITS 8
41 #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
42
43 #define DMA_STATUS_IDLE 0x0
44 #define DMA_STATUS_DESC_READ 0x1
45 #define DMA_STATUS_WAIT 0x2
46 #define DMA_STATUS_ACCESS 0x3
47 #define DMA_STATUS_BITS_PER_CH 2
48 #define DMA_STATUS_MASK_BITS 0x3
49 #define DMA_STATUS_SHIFT_BITS 16
50 #define DMA_STATUS_IRQ(x) (0x1 << (x))
51 #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
52 #define DMA_STATUS2_ERR(x) (0x1 << (x))
53
54 #define DMA_DESC_WIDTH_SHIFT_BITS 12
55 #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
56 #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
57 #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
58 #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
59 #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
60 #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
61 #define DMA_DESC_END_WITHOUT_IRQ 0x0
62 #define DMA_DESC_END_WITH_IRQ 0x1
63 #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
64 #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
65
66 #define MAX_CHAN_NR 12
67
68 #define DMA_MASK_CTL0_MODE 0x33333333
69 #define DMA_MASK_CTL2_MODE 0x00003333
70
71 static unsigned int init_nr_desc_per_channel = 64;
72 module_param(init_nr_desc_per_channel, uint, 0644);
73 MODULE_PARM_DESC(init_nr_desc_per_channel,
74 "initial descriptors per channel (default: 64)");
75
76 struct pch_dma_desc_regs {
77 u32 dev_addr;
78 u32 mem_addr;
79 u32 size;
80 u32 next;
81 };
82
83 struct pch_dma_regs {
84 u32 dma_ctl0;
85 u32 dma_ctl1;
86 u32 dma_ctl2;
87 u32 dma_ctl3;
88 u32 dma_sts0;
89 u32 dma_sts1;
90 u32 dma_sts2;
91 u32 reserved3;
92 struct pch_dma_desc_regs desc[MAX_CHAN_NR];
93 };
94
95 struct pch_dma_desc {
96 struct pch_dma_desc_regs regs;
97 struct dma_async_tx_descriptor txd;
98 struct list_head desc_node;
99 struct list_head tx_list;
100 };
101
102 struct pch_dma_chan {
103 struct dma_chan chan;
104 void __iomem *membase;
105 enum dma_transfer_direction dir;
106 struct tasklet_struct tasklet;
107 unsigned long err_status;
108
109 spinlock_t lock;
110
111 struct list_head active_list;
112 struct list_head queue;
113 struct list_head free_list;
114 unsigned int descs_allocated;
115 };
116
117 #define PDC_DEV_ADDR 0x00
118 #define PDC_MEM_ADDR 0x04
119 #define PDC_SIZE 0x08
120 #define PDC_NEXT 0x0C
121
122 #define channel_readl(pdc, name) \
123 readl((pdc)->membase + PDC_##name)
124 #define channel_writel(pdc, name, val) \
125 writel((val), (pdc)->membase + PDC_##name)
126
127 struct pch_dma {
128 struct dma_device dma;
129 void __iomem *membase;
130 struct pci_pool *pool;
131 struct pch_dma_regs regs;
132 struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
133 struct pch_dma_chan channels[MAX_CHAN_NR];
134 };
135
136 #define PCH_DMA_CTL0 0x00
137 #define PCH_DMA_CTL1 0x04
138 #define PCH_DMA_CTL2 0x08
139 #define PCH_DMA_CTL3 0x0C
140 #define PCH_DMA_STS0 0x10
141 #define PCH_DMA_STS1 0x14
142 #define PCH_DMA_STS2 0x18
143
144 #define dma_readl(pd, name) \
145 readl((pd)->membase + PCH_DMA_##name)
146 #define dma_writel(pd, name, val) \
147 writel((val), (pd)->membase + PCH_DMA_##name)
148
149 static inline
150 struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
151 {
152 return container_of(txd, struct pch_dma_desc, txd);
153 }
154
155 static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
156 {
157 return container_of(chan, struct pch_dma_chan, chan);
158 }
159
160 static inline struct pch_dma *to_pd(struct dma_device *ddev)
161 {
162 return container_of(ddev, struct pch_dma, dma);
163 }
164
165 static inline struct device *chan2dev(struct dma_chan *chan)
166 {
167 return &chan->dev->device;
168 }
169
170 static inline struct device *chan2parent(struct dma_chan *chan)
171 {
172 return chan->dev->device.parent;
173 }
174
175 static inline
176 struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
177 {
178 return list_first_entry(&pd_chan->active_list,
179 struct pch_dma_desc, desc_node);
180 }
181
182 static inline
183 struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
184 {
185 return list_first_entry(&pd_chan->queue,
186 struct pch_dma_desc, desc_node);
187 }
188
189 static void pdc_enable_irq(struct dma_chan *chan, int enable)
190 {
191 struct pch_dma *pd = to_pd(chan->device);
192 u32 val;
193 int pos;
194
195 if (chan->chan_id < 8)
196 pos = chan->chan_id;
197 else
198 pos = chan->chan_id + 8;
199
200 val = dma_readl(pd, CTL2);
201
202 if (enable)
203 val |= 0x1 << pos;
204 else
205 val &= ~(0x1 << pos);
206
207 dma_writel(pd, CTL2, val);
208
209 dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
210 chan->chan_id, val);
211 }
212
213 static void pdc_set_dir(struct dma_chan *chan)
214 {
215 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
216 struct pch_dma *pd = to_pd(chan->device);
217 u32 val;
218 u32 mask_mode;
219 u32 mask_ctl;
220
221 if (chan->chan_id < 8) {
222 val = dma_readl(pd, CTL0);
223
224 mask_mode = DMA_CTL0_MODE_MASK_BITS <<
225 (DMA_CTL0_BITS_PER_CH * chan->chan_id);
226 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
227 (DMA_CTL0_BITS_PER_CH * chan->chan_id));
228 val &= mask_mode;
229 if (pd_chan->dir == DMA_MEM_TO_DEV)
230 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
231 DMA_CTL0_DIR_SHIFT_BITS);
232 else
233 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
234 DMA_CTL0_DIR_SHIFT_BITS));
235
236 val |= mask_ctl;
237 dma_writel(pd, CTL0, val);
238 } else {
239 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
240 val = dma_readl(pd, CTL3);
241
242 mask_mode = DMA_CTL0_MODE_MASK_BITS <<
243 (DMA_CTL0_BITS_PER_CH * ch);
244 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
245 (DMA_CTL0_BITS_PER_CH * ch));
246 val &= mask_mode;
247 if (pd_chan->dir == DMA_MEM_TO_DEV)
248 val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
249 DMA_CTL0_DIR_SHIFT_BITS);
250 else
251 val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
252 DMA_CTL0_DIR_SHIFT_BITS));
253 val |= mask_ctl;
254 dma_writel(pd, CTL3, val);
255 }
256
257 dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
258 chan->chan_id, val);
259 }
260
261 static void pdc_set_mode(struct dma_chan *chan, u32 mode)
262 {
263 struct pch_dma *pd = to_pd(chan->device);
264 u32 val;
265 u32 mask_ctl;
266 u32 mask_dir;
267
268 if (chan->chan_id < 8) {
269 mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
270 (DMA_CTL0_BITS_PER_CH * chan->chan_id));
271 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
272 DMA_CTL0_DIR_SHIFT_BITS);
273 val = dma_readl(pd, CTL0);
274 val &= mask_dir;
275 val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
276 val |= mask_ctl;
277 dma_writel(pd, CTL0, val);
278 } else {
279 int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
280 mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
281 (DMA_CTL0_BITS_PER_CH * ch));
282 mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
283 DMA_CTL0_DIR_SHIFT_BITS);
284 val = dma_readl(pd, CTL3);
285 val &= mask_dir;
286 val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
287 val |= mask_ctl;
288 dma_writel(pd, CTL3, val);
289 }
290
291 dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
292 chan->chan_id, val);
293 }
294
295 static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
296 {
297 struct pch_dma *pd = to_pd(pd_chan->chan.device);
298 u32 val;
299
300 val = dma_readl(pd, STS0);
301 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
302 DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
303 }
304
305 static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
306 {
307 struct pch_dma *pd = to_pd(pd_chan->chan.device);
308 u32 val;
309
310 val = dma_readl(pd, STS2);
311 return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
312 DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
313 }
314
315 static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
316 {
317 u32 sts;
318
319 if (pd_chan->chan.chan_id < 8)
320 sts = pdc_get_status0(pd_chan);
321 else
322 sts = pdc_get_status2(pd_chan);
323
324
325 if (sts == DMA_STATUS_IDLE)
326 return true;
327 else
328 return false;
329 }
330
331 static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
332 {
333 if (!pdc_is_idle(pd_chan)) {
334 dev_err(chan2dev(&pd_chan->chan),
335 "BUG: Attempt to start non-idle channel\n");
336 return;
337 }
338
339 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
340 pd_chan->chan.chan_id, desc->regs.dev_addr);
341 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
342 pd_chan->chan.chan_id, desc->regs.mem_addr);
343 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
344 pd_chan->chan.chan_id, desc->regs.size);
345 dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
346 pd_chan->chan.chan_id, desc->regs.next);
347
348 if (list_empty(&desc->tx_list)) {
349 channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
350 channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
351 channel_writel(pd_chan, SIZE, desc->regs.size);
352 channel_writel(pd_chan, NEXT, desc->regs.next);
353 pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
354 } else {
355 channel_writel(pd_chan, NEXT, desc->txd.phys);
356 pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
357 }
358 }
359
360 static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
361 struct pch_dma_desc *desc)
362 {
363 struct dma_async_tx_descriptor *txd = &desc->txd;
364 dma_async_tx_callback callback = txd->callback;
365 void *param = txd->callback_param;
366
367 list_splice_init(&desc->tx_list, &pd_chan->free_list);
368 list_move(&desc->desc_node, &pd_chan->free_list);
369
370 if (callback)
371 callback(param);
372 }
373
374 static void pdc_complete_all(struct pch_dma_chan *pd_chan)
375 {
376 struct pch_dma_desc *desc, *_d;
377 LIST_HEAD(list);
378
379 BUG_ON(!pdc_is_idle(pd_chan));
380
381 if (!list_empty(&pd_chan->queue))
382 pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
383
384 list_splice_init(&pd_chan->active_list, &list);
385 list_splice_init(&pd_chan->queue, &pd_chan->active_list);
386
387 list_for_each_entry_safe(desc, _d, &list, desc_node)
388 pdc_chain_complete(pd_chan, desc);
389 }
390
391 static void pdc_handle_error(struct pch_dma_chan *pd_chan)
392 {
393 struct pch_dma_desc *bad_desc;
394
395 bad_desc = pdc_first_active(pd_chan);
396 list_del(&bad_desc->desc_node);
397
398 list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
399
400 if (!list_empty(&pd_chan->active_list))
401 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
402
403 dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
404 dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
405 bad_desc->txd.cookie);
406
407 pdc_chain_complete(pd_chan, bad_desc);
408 }
409
410 static void pdc_advance_work(struct pch_dma_chan *pd_chan)
411 {
412 if (list_empty(&pd_chan->active_list) ||
413 list_is_singular(&pd_chan->active_list)) {
414 pdc_complete_all(pd_chan);
415 } else {
416 pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
417 pdc_dostart(pd_chan, pdc_first_active(pd_chan));
418 }
419 }
420
421 static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
422 {
423 struct pch_dma_desc *desc = to_pd_desc(txd);
424 struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
425 dma_cookie_t cookie;
426
427 spin_lock(&pd_chan->lock);
428 cookie = dma_cookie_assign(txd);
429
430 if (list_empty(&pd_chan->active_list)) {
431 list_add_tail(&desc->desc_node, &pd_chan->active_list);
432 pdc_dostart(pd_chan, desc);
433 } else {
434 list_add_tail(&desc->desc_node, &pd_chan->queue);
435 }
436
437 spin_unlock(&pd_chan->lock);
438 return 0;
439 }
440
441 static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
442 {
443 struct pch_dma_desc *desc = NULL;
444 struct pch_dma *pd = to_pd(chan->device);
445 dma_addr_t addr;
446
447 desc = pci_pool_alloc(pd->pool, flags, &addr);
448 if (desc) {
449 memset(desc, 0, sizeof(struct pch_dma_desc));
450 INIT_LIST_HEAD(&desc->tx_list);
451 dma_async_tx_descriptor_init(&desc->txd, chan);
452 desc->txd.tx_submit = pd_tx_submit;
453 desc->txd.flags = DMA_CTRL_ACK;
454 desc->txd.phys = addr;
455 }
456
457 return desc;
458 }
459
460 static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
461 {
462 struct pch_dma_desc *desc, *_d;
463 struct pch_dma_desc *ret = NULL;
464 int i = 0;
465
466 spin_lock(&pd_chan->lock);
467 list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
468 i++;
469 if (async_tx_test_ack(&desc->txd)) {
470 list_del(&desc->desc_node);
471 ret = desc;
472 break;
473 }
474 dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
475 }
476 spin_unlock(&pd_chan->lock);
477 dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
478
479 if (!ret) {
480 ret = pdc_alloc_desc(&pd_chan->chan, GFP_ATOMIC);
481 if (ret) {
482 spin_lock(&pd_chan->lock);
483 pd_chan->descs_allocated++;
484 spin_unlock(&pd_chan->lock);
485 } else {
486 dev_err(chan2dev(&pd_chan->chan),
487 "failed to alloc desc\n");
488 }
489 }
490
491 return ret;
492 }
493
494 static void pdc_desc_put(struct pch_dma_chan *pd_chan,
495 struct pch_dma_desc *desc)
496 {
497 if (desc) {
498 spin_lock(&pd_chan->lock);
499 list_splice_init(&desc->tx_list, &pd_chan->free_list);
500 list_add(&desc->desc_node, &pd_chan->free_list);
501 spin_unlock(&pd_chan->lock);
502 }
503 }
504
505 static int pd_alloc_chan_resources(struct dma_chan *chan)
506 {
507 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
508 struct pch_dma_desc *desc;
509 LIST_HEAD(tmp_list);
510 int i;
511
512 if (!pdc_is_idle(pd_chan)) {
513 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
514 return -EIO;
515 }
516
517 if (!list_empty(&pd_chan->free_list))
518 return pd_chan->descs_allocated;
519
520 for (i = 0; i < init_nr_desc_per_channel; i++) {
521 desc = pdc_alloc_desc(chan, GFP_KERNEL);
522
523 if (!desc) {
524 dev_warn(chan2dev(chan),
525 "Only allocated %d initial descriptors\n", i);
526 break;
527 }
528
529 list_add_tail(&desc->desc_node, &tmp_list);
530 }
531
532 spin_lock_irq(&pd_chan->lock);
533 list_splice(&tmp_list, &pd_chan->free_list);
534 pd_chan->descs_allocated = i;
535 dma_cookie_init(chan);
536 spin_unlock_irq(&pd_chan->lock);
537
538 pdc_enable_irq(chan, 1);
539
540 return pd_chan->descs_allocated;
541 }
542
543 static void pd_free_chan_resources(struct dma_chan *chan)
544 {
545 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
546 struct pch_dma *pd = to_pd(chan->device);
547 struct pch_dma_desc *desc, *_d;
548 LIST_HEAD(tmp_list);
549
550 BUG_ON(!pdc_is_idle(pd_chan));
551 BUG_ON(!list_empty(&pd_chan->active_list));
552 BUG_ON(!list_empty(&pd_chan->queue));
553
554 spin_lock_irq(&pd_chan->lock);
555 list_splice_init(&pd_chan->free_list, &tmp_list);
556 pd_chan->descs_allocated = 0;
557 spin_unlock_irq(&pd_chan->lock);
558
559 list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
560 pci_pool_free(pd->pool, desc, desc->txd.phys);
561
562 pdc_enable_irq(chan, 0);
563 }
564
565 static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
566 struct dma_tx_state *txstate)
567 {
568 return dma_cookie_status(chan, cookie, txstate);
569 }
570
571 static void pd_issue_pending(struct dma_chan *chan)
572 {
573 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
574
575 if (pdc_is_idle(pd_chan)) {
576 spin_lock(&pd_chan->lock);
577 pdc_advance_work(pd_chan);
578 spin_unlock(&pd_chan->lock);
579 }
580 }
581
582 static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
583 struct scatterlist *sgl, unsigned int sg_len,
584 enum dma_transfer_direction direction, unsigned long flags,
585 void *context)
586 {
587 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
588 struct pch_dma_slave *pd_slave = chan->private;
589 struct pch_dma_desc *first = NULL;
590 struct pch_dma_desc *prev = NULL;
591 struct pch_dma_desc *desc = NULL;
592 struct scatterlist *sg;
593 dma_addr_t reg;
594 int i;
595
596 if (unlikely(!sg_len)) {
597 dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
598 return NULL;
599 }
600
601 if (direction == DMA_DEV_TO_MEM)
602 reg = pd_slave->rx_reg;
603 else if (direction == DMA_MEM_TO_DEV)
604 reg = pd_slave->tx_reg;
605 else
606 return NULL;
607
608 pd_chan->dir = direction;
609 pdc_set_dir(chan);
610
611 for_each_sg(sgl, sg, sg_len, i) {
612 desc = pdc_desc_get(pd_chan);
613
614 if (!desc)
615 goto err_desc_get;
616
617 desc->regs.dev_addr = reg;
618 desc->regs.mem_addr = sg_dma_address(sg);
619 desc->regs.size = sg_dma_len(sg);
620 desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
621
622 switch (pd_slave->width) {
623 case PCH_DMA_WIDTH_1_BYTE:
624 if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
625 goto err_desc_get;
626 desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
627 break;
628 case PCH_DMA_WIDTH_2_BYTES:
629 if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
630 goto err_desc_get;
631 desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
632 break;
633 case PCH_DMA_WIDTH_4_BYTES:
634 if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
635 goto err_desc_get;
636 desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
637 break;
638 default:
639 goto err_desc_get;
640 }
641
642 if (!first) {
643 first = desc;
644 } else {
645 prev->regs.next |= desc->txd.phys;
646 list_add_tail(&desc->desc_node, &first->tx_list);
647 }
648
649 prev = desc;
650 }
651
652 if (flags & DMA_PREP_INTERRUPT)
653 desc->regs.next = DMA_DESC_END_WITH_IRQ;
654 else
655 desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
656
657 first->txd.cookie = -EBUSY;
658 desc->txd.flags = flags;
659
660 return &first->txd;
661
662 err_desc_get:
663 dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
664 pdc_desc_put(pd_chan, first);
665 return NULL;
666 }
667
668 static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
669 unsigned long arg)
670 {
671 struct pch_dma_chan *pd_chan = to_pd_chan(chan);
672 struct pch_dma_desc *desc, *_d;
673 LIST_HEAD(list);
674
675 if (cmd != DMA_TERMINATE_ALL)
676 return -ENXIO;
677
678 spin_lock_irq(&pd_chan->lock);
679
680 pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
681
682 list_splice_init(&pd_chan->active_list, &list);
683 list_splice_init(&pd_chan->queue, &list);
684
685 list_for_each_entry_safe(desc, _d, &list, desc_node)
686 pdc_chain_complete(pd_chan, desc);
687
688 spin_unlock_irq(&pd_chan->lock);
689
690 return 0;
691 }
692
693 static void pdc_tasklet(unsigned long data)
694 {
695 struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
696 unsigned long flags;
697
698 if (!pdc_is_idle(pd_chan)) {
699 dev_err(chan2dev(&pd_chan->chan),
700 "BUG: handle non-idle channel in tasklet\n");
701 return;
702 }
703
704 spin_lock_irqsave(&pd_chan->lock, flags);
705 if (test_and_clear_bit(0, &pd_chan->err_status))
706 pdc_handle_error(pd_chan);
707 else
708 pdc_advance_work(pd_chan);
709 spin_unlock_irqrestore(&pd_chan->lock, flags);
710 }
711
712 static irqreturn_t pd_irq(int irq, void *devid)
713 {
714 struct pch_dma *pd = (struct pch_dma *)devid;
715 struct pch_dma_chan *pd_chan;
716 u32 sts0;
717 u32 sts2;
718 int i;
719 int ret0 = IRQ_NONE;
720 int ret2 = IRQ_NONE;
721
722 sts0 = dma_readl(pd, STS0);
723 sts2 = dma_readl(pd, STS2);
724
725 dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
726
727 for (i = 0; i < pd->dma.chancnt; i++) {
728 pd_chan = &pd->channels[i];
729
730 if (i < 8) {
731 if (sts0 & DMA_STATUS_IRQ(i)) {
732 if (sts0 & DMA_STATUS0_ERR(i))
733 set_bit(0, &pd_chan->err_status);
734
735 tasklet_schedule(&pd_chan->tasklet);
736 ret0 = IRQ_HANDLED;
737 }
738 } else {
739 if (sts2 & DMA_STATUS_IRQ(i - 8)) {
740 if (sts2 & DMA_STATUS2_ERR(i))
741 set_bit(0, &pd_chan->err_status);
742
743 tasklet_schedule(&pd_chan->tasklet);
744 ret2 = IRQ_HANDLED;
745 }
746 }
747 }
748
749 /* clear interrupt bits in status register */
750 if (ret0)
751 dma_writel(pd, STS0, sts0);
752 if (ret2)
753 dma_writel(pd, STS2, sts2);
754
755 return ret0 | ret2;
756 }
757
758 #ifdef CONFIG_PM
759 static void pch_dma_save_regs(struct pch_dma *pd)
760 {
761 struct pch_dma_chan *pd_chan;
762 struct dma_chan *chan, *_c;
763 int i = 0;
764
765 pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
766 pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
767 pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
768 pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
769
770 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
771 pd_chan = to_pd_chan(chan);
772
773 pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
774 pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
775 pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
776 pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
777
778 i++;
779 }
780 }
781
782 static void pch_dma_restore_regs(struct pch_dma *pd)
783 {
784 struct pch_dma_chan *pd_chan;
785 struct dma_chan *chan, *_c;
786 int i = 0;
787
788 dma_writel(pd, CTL0, pd->regs.dma_ctl0);
789 dma_writel(pd, CTL1, pd->regs.dma_ctl1);
790 dma_writel(pd, CTL2, pd->regs.dma_ctl2);
791 dma_writel(pd, CTL3, pd->regs.dma_ctl3);
792
793 list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
794 pd_chan = to_pd_chan(chan);
795
796 channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
797 channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
798 channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
799 channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
800
801 i++;
802 }
803 }
804
805 static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
806 {
807 struct pch_dma *pd = pci_get_drvdata(pdev);
808
809 if (pd)
810 pch_dma_save_regs(pd);
811
812 pci_save_state(pdev);
813 pci_disable_device(pdev);
814 pci_set_power_state(pdev, pci_choose_state(pdev, state));
815
816 return 0;
817 }
818
819 static int pch_dma_resume(struct pci_dev *pdev)
820 {
821 struct pch_dma *pd = pci_get_drvdata(pdev);
822 int err;
823
824 pci_set_power_state(pdev, PCI_D0);
825 pci_restore_state(pdev);
826
827 err = pci_enable_device(pdev);
828 if (err) {
829 dev_dbg(&pdev->dev, "failed to enable device\n");
830 return err;
831 }
832
833 if (pd)
834 pch_dma_restore_regs(pd);
835
836 return 0;
837 }
838 #endif
839
840 static int pch_dma_probe(struct pci_dev *pdev,
841 const struct pci_device_id *id)
842 {
843 struct pch_dma *pd;
844 struct pch_dma_regs *regs;
845 unsigned int nr_channels;
846 int err;
847 int i;
848
849 nr_channels = id->driver_data;
850 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
851 if (!pd)
852 return -ENOMEM;
853
854 pci_set_drvdata(pdev, pd);
855
856 err = pci_enable_device(pdev);
857 if (err) {
858 dev_err(&pdev->dev, "Cannot enable PCI device\n");
859 goto err_free_mem;
860 }
861
862 if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
863 dev_err(&pdev->dev, "Cannot find proper base address\n");
864 err = -ENODEV;
865 goto err_disable_pdev;
866 }
867
868 err = pci_request_regions(pdev, DRV_NAME);
869 if (err) {
870 dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
871 goto err_disable_pdev;
872 }
873
874 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
875 if (err) {
876 dev_err(&pdev->dev, "Cannot set proper DMA config\n");
877 goto err_free_res;
878 }
879
880 regs = pd->membase = pci_iomap(pdev, 1, 0);
881 if (!pd->membase) {
882 dev_err(&pdev->dev, "Cannot map MMIO registers\n");
883 err = -ENOMEM;
884 goto err_free_res;
885 }
886
887 pci_set_master(pdev);
888
889 err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
890 if (err) {
891 dev_err(&pdev->dev, "Failed to request IRQ\n");
892 goto err_iounmap;
893 }
894
895 pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
896 sizeof(struct pch_dma_desc), 4, 0);
897 if (!pd->pool) {
898 dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
899 err = -ENOMEM;
900 goto err_free_irq;
901 }
902
903 pd->dma.dev = &pdev->dev;
904
905 INIT_LIST_HEAD(&pd->dma.channels);
906
907 for (i = 0; i < nr_channels; i++) {
908 struct pch_dma_chan *pd_chan = &pd->channels[i];
909
910 pd_chan->chan.device = &pd->dma;
911 dma_cookie_init(&pd_chan->chan);
912
913 pd_chan->membase = &regs->desc[i];
914
915 spin_lock_init(&pd_chan->lock);
916
917 INIT_LIST_HEAD(&pd_chan->active_list);
918 INIT_LIST_HEAD(&pd_chan->queue);
919 INIT_LIST_HEAD(&pd_chan->free_list);
920
921 tasklet_init(&pd_chan->tasklet, pdc_tasklet,
922 (unsigned long)pd_chan);
923 list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
924 }
925
926 dma_cap_zero(pd->dma.cap_mask);
927 dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
928 dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
929
930 pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
931 pd->dma.device_free_chan_resources = pd_free_chan_resources;
932 pd->dma.device_tx_status = pd_tx_status;
933 pd->dma.device_issue_pending = pd_issue_pending;
934 pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
935 pd->dma.device_control = pd_device_control;
936
937 err = dma_async_device_register(&pd->dma);
938 if (err) {
939 dev_err(&pdev->dev, "Failed to register DMA device\n");
940 goto err_free_pool;
941 }
942
943 return 0;
944
945 err_free_pool:
946 pci_pool_destroy(pd->pool);
947 err_free_irq:
948 free_irq(pdev->irq, pd);
949 err_iounmap:
950 pci_iounmap(pdev, pd->membase);
951 err_free_res:
952 pci_release_regions(pdev);
953 err_disable_pdev:
954 pci_disable_device(pdev);
955 err_free_mem:
956 return err;
957 }
958
959 static void pch_dma_remove(struct pci_dev *pdev)
960 {
961 struct pch_dma *pd = pci_get_drvdata(pdev);
962 struct pch_dma_chan *pd_chan;
963 struct dma_chan *chan, *_c;
964
965 if (pd) {
966 dma_async_device_unregister(&pd->dma);
967
968 free_irq(pdev->irq, pd);
969
970 list_for_each_entry_safe(chan, _c, &pd->dma.channels,
971 device_node) {
972 pd_chan = to_pd_chan(chan);
973
974 tasklet_kill(&pd_chan->tasklet);
975 }
976
977 pci_pool_destroy(pd->pool);
978 pci_iounmap(pdev, pd->membase);
979 pci_release_regions(pdev);
980 pci_disable_device(pdev);
981 kfree(pd);
982 }
983 }
984
985 /* PCI Device ID of DMA device */
986 #define PCI_VENDOR_ID_ROHM 0x10DB
987 #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
988 #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
989 #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
990 #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
991 #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
992 #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
993 #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
994 #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
995 #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
996 #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
997 #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
998 #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
999
1000 const struct pci_device_id pch_dma_id_table[] = {
1001 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
1002 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
1003 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
1004 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
1005 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
1006 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
1007 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
1008 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
1009 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
1010 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
1011 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
1012 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
1013 { 0, },
1014 };
1015
1016 static struct pci_driver pch_dma_driver = {
1017 .name = DRV_NAME,
1018 .id_table = pch_dma_id_table,
1019 .probe = pch_dma_probe,
1020 .remove = pch_dma_remove,
1021 #ifdef CONFIG_PM
1022 .suspend = pch_dma_suspend,
1023 .resume = pch_dma_resume,
1024 #endif
1025 };
1026
1027 module_pci_driver(pch_dma_driver);
1028
1029 MODULE_DESCRIPTION("Intel EG20T PCH / LAPIS Semicon ML7213/ML7223/ML7831 IOH "
1030 "DMA controller driver");
1031 MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
1032 MODULE_LICENSE("GPL v2");
1033 MODULE_DEVICE_TABLE(pci, pch_dma_id_table);
This page took 0.051092 seconds and 6 git commands to generate.