printk: add and use LOGLEVEL_<level> defines for KERN_<LEVEL> equivalents
[deliverable/linux.git] / drivers / dma / sa11x0-dma.c
1 /*
2 * SA11x0 DMAengine support
3 *
4 * Copyright (C) 2012 Russell King
5 * Derived in part from arch/arm/mach-sa1100/dma.c,
6 * Copyright (C) 2000, 2001 by Nicolas Pitre
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #include <linux/sched.h>
13 #include <linux/device.h>
14 #include <linux/dmaengine.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/sa11x0-dma.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23
24 #include "virt-dma.h"
25
26 #define NR_PHY_CHAN 6
27 #define DMA_ALIGN 3
28 #define DMA_MAX_SIZE 0x1fff
29 #define DMA_CHUNK_SIZE 0x1000
30
31 #define DMA_DDAR 0x00
32 #define DMA_DCSR_S 0x04
33 #define DMA_DCSR_C 0x08
34 #define DMA_DCSR_R 0x0c
35 #define DMA_DBSA 0x10
36 #define DMA_DBTA 0x14
37 #define DMA_DBSB 0x18
38 #define DMA_DBTB 0x1c
39 #define DMA_SIZE 0x20
40
41 #define DCSR_RUN (1 << 0)
42 #define DCSR_IE (1 << 1)
43 #define DCSR_ERROR (1 << 2)
44 #define DCSR_DONEA (1 << 3)
45 #define DCSR_STRTA (1 << 4)
46 #define DCSR_DONEB (1 << 5)
47 #define DCSR_STRTB (1 << 6)
48 #define DCSR_BIU (1 << 7)
49
50 #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
51 #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
52 #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
53 #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
54 #define DDAR_Ser0UDCTr (0x0 << 4)
55 #define DDAR_Ser0UDCRc (0x1 << 4)
56 #define DDAR_Ser1SDLCTr (0x2 << 4)
57 #define DDAR_Ser1SDLCRc (0x3 << 4)
58 #define DDAR_Ser1UARTTr (0x4 << 4)
59 #define DDAR_Ser1UARTRc (0x5 << 4)
60 #define DDAR_Ser2ICPTr (0x6 << 4)
61 #define DDAR_Ser2ICPRc (0x7 << 4)
62 #define DDAR_Ser3UARTTr (0x8 << 4)
63 #define DDAR_Ser3UARTRc (0x9 << 4)
64 #define DDAR_Ser4MCP0Tr (0xa << 4)
65 #define DDAR_Ser4MCP0Rc (0xb << 4)
66 #define DDAR_Ser4MCP1Tr (0xc << 4)
67 #define DDAR_Ser4MCP1Rc (0xd << 4)
68 #define DDAR_Ser4SSPTr (0xe << 4)
69 #define DDAR_Ser4SSPRc (0xf << 4)
70
71 struct sa11x0_dma_sg {
72 u32 addr;
73 u32 len;
74 };
75
76 struct sa11x0_dma_desc {
77 struct virt_dma_desc vd;
78
79 u32 ddar;
80 size_t size;
81 unsigned period;
82 bool cyclic;
83
84 unsigned sglen;
85 struct sa11x0_dma_sg sg[0];
86 };
87
88 struct sa11x0_dma_phy;
89
90 struct sa11x0_dma_chan {
91 struct virt_dma_chan vc;
92
93 /* protected by c->vc.lock */
94 struct sa11x0_dma_phy *phy;
95 enum dma_status status;
96
97 /* protected by d->lock */
98 struct list_head node;
99
100 u32 ddar;
101 const char *name;
102 };
103
104 struct sa11x0_dma_phy {
105 void __iomem *base;
106 struct sa11x0_dma_dev *dev;
107 unsigned num;
108
109 struct sa11x0_dma_chan *vchan;
110
111 /* Protected by c->vc.lock */
112 unsigned sg_load;
113 struct sa11x0_dma_desc *txd_load;
114 unsigned sg_done;
115 struct sa11x0_dma_desc *txd_done;
116 u32 dbs[2];
117 u32 dbt[2];
118 u32 dcsr;
119 };
120
121 struct sa11x0_dma_dev {
122 struct dma_device slave;
123 void __iomem *base;
124 spinlock_t lock;
125 struct tasklet_struct task;
126 struct list_head chan_pending;
127 struct sa11x0_dma_phy phy[NR_PHY_CHAN];
128 };
129
130 static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
131 {
132 return container_of(chan, struct sa11x0_dma_chan, vc.chan);
133 }
134
135 static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
136 {
137 return container_of(dmadev, struct sa11x0_dma_dev, slave);
138 }
139
140 static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
141 {
142 struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
143
144 return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
145 }
146
147 static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
148 {
149 kfree(container_of(vd, struct sa11x0_dma_desc, vd));
150 }
151
152 static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
153 {
154 list_del(&txd->vd.node);
155 p->txd_load = txd;
156 p->sg_load = 0;
157
158 dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
159 p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
160 }
161
162 static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
163 struct sa11x0_dma_chan *c)
164 {
165 struct sa11x0_dma_desc *txd = p->txd_load;
166 struct sa11x0_dma_sg *sg;
167 void __iomem *base = p->base;
168 unsigned dbsx, dbtx;
169 u32 dcsr;
170
171 if (!txd)
172 return;
173
174 dcsr = readl_relaxed(base + DMA_DCSR_R);
175
176 /* Don't try to load the next transfer if both buffers are started */
177 if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
178 return;
179
180 if (p->sg_load == txd->sglen) {
181 if (!txd->cyclic) {
182 struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
183
184 /*
185 * We have reached the end of the current descriptor.
186 * Peek at the next descriptor, and if compatible with
187 * the current, start processing it.
188 */
189 if (txn && txn->ddar == txd->ddar) {
190 txd = txn;
191 sa11x0_dma_start_desc(p, txn);
192 } else {
193 p->txd_load = NULL;
194 return;
195 }
196 } else {
197 /* Cyclic: reset back to beginning */
198 p->sg_load = 0;
199 }
200 }
201
202 sg = &txd->sg[p->sg_load++];
203
204 /* Select buffer to load according to channel status */
205 if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
206 ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
207 dbsx = DMA_DBSA;
208 dbtx = DMA_DBTA;
209 dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
210 } else {
211 dbsx = DMA_DBSB;
212 dbtx = DMA_DBTB;
213 dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
214 }
215
216 writel_relaxed(sg->addr, base + dbsx);
217 writel_relaxed(sg->len, base + dbtx);
218 writel(dcsr, base + DMA_DCSR_S);
219
220 dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
221 p->num, dcsr,
222 'A' + (dbsx == DMA_DBSB), sg->addr,
223 'A' + (dbtx == DMA_DBTB), sg->len);
224 }
225
226 static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
227 struct sa11x0_dma_chan *c)
228 {
229 struct sa11x0_dma_desc *txd = p->txd_done;
230
231 if (++p->sg_done == txd->sglen) {
232 if (!txd->cyclic) {
233 vchan_cookie_complete(&txd->vd);
234
235 p->sg_done = 0;
236 p->txd_done = p->txd_load;
237
238 if (!p->txd_done)
239 tasklet_schedule(&p->dev->task);
240 } else {
241 if ((p->sg_done % txd->period) == 0)
242 vchan_cyclic_callback(&txd->vd);
243
244 /* Cyclic: reset back to beginning */
245 p->sg_done = 0;
246 }
247 }
248
249 sa11x0_dma_start_sg(p, c);
250 }
251
252 static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
253 {
254 struct sa11x0_dma_phy *p = dev_id;
255 struct sa11x0_dma_dev *d = p->dev;
256 struct sa11x0_dma_chan *c;
257 u32 dcsr;
258
259 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
260 if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
261 return IRQ_NONE;
262
263 /* Clear reported status bits */
264 writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
265 p->base + DMA_DCSR_C);
266
267 dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
268
269 if (dcsr & DCSR_ERROR) {
270 dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
271 p->num, dcsr,
272 readl_relaxed(p->base + DMA_DDAR),
273 readl_relaxed(p->base + DMA_DBSA),
274 readl_relaxed(p->base + DMA_DBTA),
275 readl_relaxed(p->base + DMA_DBSB),
276 readl_relaxed(p->base + DMA_DBTB));
277 }
278
279 c = p->vchan;
280 if (c) {
281 unsigned long flags;
282
283 spin_lock_irqsave(&c->vc.lock, flags);
284 /*
285 * Now that we're holding the lock, check that the vchan
286 * really is associated with this pchan before touching the
287 * hardware. This should always succeed, because we won't
288 * change p->vchan or c->phy while the channel is actively
289 * transferring.
290 */
291 if (c->phy == p) {
292 if (dcsr & DCSR_DONEA)
293 sa11x0_dma_complete(p, c);
294 if (dcsr & DCSR_DONEB)
295 sa11x0_dma_complete(p, c);
296 }
297 spin_unlock_irqrestore(&c->vc.lock, flags);
298 }
299
300 return IRQ_HANDLED;
301 }
302
303 static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
304 {
305 struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
306
307 /* If the issued list is empty, we have no further txds to process */
308 if (txd) {
309 struct sa11x0_dma_phy *p = c->phy;
310
311 sa11x0_dma_start_desc(p, txd);
312 p->txd_done = txd;
313 p->sg_done = 0;
314
315 /* The channel should not have any transfers started */
316 WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
317 (DCSR_STRTA | DCSR_STRTB));
318
319 /* Clear the run and start bits before changing DDAR */
320 writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
321 p->base + DMA_DCSR_C);
322 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
323
324 /* Try to start both buffers */
325 sa11x0_dma_start_sg(p, c);
326 sa11x0_dma_start_sg(p, c);
327 }
328 }
329
330 static void sa11x0_dma_tasklet(unsigned long arg)
331 {
332 struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
333 struct sa11x0_dma_phy *p;
334 struct sa11x0_dma_chan *c;
335 unsigned pch, pch_alloc = 0;
336
337 dev_dbg(d->slave.dev, "tasklet enter\n");
338
339 list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
340 spin_lock_irq(&c->vc.lock);
341 p = c->phy;
342 if (p && !p->txd_done) {
343 sa11x0_dma_start_txd(c);
344 if (!p->txd_done) {
345 /* No current txd associated with this channel */
346 dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
347
348 /* Mark this channel free */
349 c->phy = NULL;
350 p->vchan = NULL;
351 }
352 }
353 spin_unlock_irq(&c->vc.lock);
354 }
355
356 spin_lock_irq(&d->lock);
357 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
358 p = &d->phy[pch];
359
360 if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
361 c = list_first_entry(&d->chan_pending,
362 struct sa11x0_dma_chan, node);
363 list_del_init(&c->node);
364
365 pch_alloc |= 1 << pch;
366
367 /* Mark this channel allocated */
368 p->vchan = c;
369
370 dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
371 }
372 }
373 spin_unlock_irq(&d->lock);
374
375 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
376 if (pch_alloc & (1 << pch)) {
377 p = &d->phy[pch];
378 c = p->vchan;
379
380 spin_lock_irq(&c->vc.lock);
381 c->phy = p;
382
383 sa11x0_dma_start_txd(c);
384 spin_unlock_irq(&c->vc.lock);
385 }
386 }
387
388 dev_dbg(d->slave.dev, "tasklet exit\n");
389 }
390
391
392 static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
393 {
394 return 0;
395 }
396
397 static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
398 {
399 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
400 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
401 unsigned long flags;
402
403 spin_lock_irqsave(&d->lock, flags);
404 list_del_init(&c->node);
405 spin_unlock_irqrestore(&d->lock, flags);
406
407 vchan_free_chan_resources(&c->vc);
408 }
409
410 static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
411 {
412 unsigned reg;
413 u32 dcsr;
414
415 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
416
417 if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
418 (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
419 reg = DMA_DBSA;
420 else
421 reg = DMA_DBSB;
422
423 return readl_relaxed(p->base + reg);
424 }
425
426 static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
427 dma_cookie_t cookie, struct dma_tx_state *state)
428 {
429 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
430 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
431 struct sa11x0_dma_phy *p;
432 struct virt_dma_desc *vd;
433 unsigned long flags;
434 enum dma_status ret;
435
436 ret = dma_cookie_status(&c->vc.chan, cookie, state);
437 if (ret == DMA_COMPLETE)
438 return ret;
439
440 if (!state)
441 return c->status;
442
443 spin_lock_irqsave(&c->vc.lock, flags);
444 p = c->phy;
445
446 /*
447 * If the cookie is on our issue queue, then the residue is
448 * its total size.
449 */
450 vd = vchan_find_desc(&c->vc, cookie);
451 if (vd) {
452 state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
453 } else if (!p) {
454 state->residue = 0;
455 } else {
456 struct sa11x0_dma_desc *txd;
457 size_t bytes = 0;
458
459 if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
460 txd = p->txd_done;
461 else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
462 txd = p->txd_load;
463 else
464 txd = NULL;
465
466 ret = c->status;
467 if (txd) {
468 dma_addr_t addr = sa11x0_dma_pos(p);
469 unsigned i;
470
471 dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
472
473 for (i = 0; i < txd->sglen; i++) {
474 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
475 i, txd->sg[i].addr, txd->sg[i].len);
476 if (addr >= txd->sg[i].addr &&
477 addr < txd->sg[i].addr + txd->sg[i].len) {
478 unsigned len;
479
480 len = txd->sg[i].len -
481 (addr - txd->sg[i].addr);
482 dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
483 i, len);
484 bytes += len;
485 i++;
486 break;
487 }
488 }
489 for (; i < txd->sglen; i++) {
490 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
491 i, txd->sg[i].addr, txd->sg[i].len);
492 bytes += txd->sg[i].len;
493 }
494 }
495 state->residue = bytes;
496 }
497 spin_unlock_irqrestore(&c->vc.lock, flags);
498
499 dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
500
501 return ret;
502 }
503
504 /*
505 * Move pending txds to the issued list, and re-init pending list.
506 * If not already pending, add this channel to the list of pending
507 * channels and trigger the tasklet to run.
508 */
509 static void sa11x0_dma_issue_pending(struct dma_chan *chan)
510 {
511 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
512 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
513 unsigned long flags;
514
515 spin_lock_irqsave(&c->vc.lock, flags);
516 if (vchan_issue_pending(&c->vc)) {
517 if (!c->phy) {
518 spin_lock(&d->lock);
519 if (list_empty(&c->node)) {
520 list_add_tail(&c->node, &d->chan_pending);
521 tasklet_schedule(&d->task);
522 dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
523 }
524 spin_unlock(&d->lock);
525 }
526 } else
527 dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
528 spin_unlock_irqrestore(&c->vc.lock, flags);
529 }
530
531 static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
532 struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
533 enum dma_transfer_direction dir, unsigned long flags, void *context)
534 {
535 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
536 struct sa11x0_dma_desc *txd;
537 struct scatterlist *sgent;
538 unsigned i, j = sglen;
539 size_t size = 0;
540
541 /* SA11x0 channels can only operate in their native direction */
542 if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
543 dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
544 &c->vc, c->ddar, dir);
545 return NULL;
546 }
547
548 /* Do not allow zero-sized txds */
549 if (sglen == 0)
550 return NULL;
551
552 for_each_sg(sg, sgent, sglen, i) {
553 dma_addr_t addr = sg_dma_address(sgent);
554 unsigned int len = sg_dma_len(sgent);
555
556 if (len > DMA_MAX_SIZE)
557 j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
558 if (addr & DMA_ALIGN) {
559 dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
560 &c->vc, addr);
561 return NULL;
562 }
563 }
564
565 txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
566 if (!txd) {
567 dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
568 return NULL;
569 }
570
571 j = 0;
572 for_each_sg(sg, sgent, sglen, i) {
573 dma_addr_t addr = sg_dma_address(sgent);
574 unsigned len = sg_dma_len(sgent);
575
576 size += len;
577
578 do {
579 unsigned tlen = len;
580
581 /*
582 * Check whether the transfer will fit. If not, try
583 * to split the transfer up such that we end up with
584 * equal chunks - but make sure that we preserve the
585 * alignment. This avoids small segments.
586 */
587 if (tlen > DMA_MAX_SIZE) {
588 unsigned mult = DIV_ROUND_UP(tlen,
589 DMA_MAX_SIZE & ~DMA_ALIGN);
590
591 tlen = (tlen / mult) & ~DMA_ALIGN;
592 }
593
594 txd->sg[j].addr = addr;
595 txd->sg[j].len = tlen;
596
597 addr += tlen;
598 len -= tlen;
599 j++;
600 } while (len);
601 }
602
603 txd->ddar = c->ddar;
604 txd->size = size;
605 txd->sglen = j;
606
607 dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
608 &c->vc, &txd->vd, txd->size, txd->sglen);
609
610 return vchan_tx_prep(&c->vc, &txd->vd, flags);
611 }
612
613 static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic(
614 struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
615 enum dma_transfer_direction dir, unsigned long flags)
616 {
617 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
618 struct sa11x0_dma_desc *txd;
619 unsigned i, j, k, sglen, sgperiod;
620
621 /* SA11x0 channels can only operate in their native direction */
622 if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
623 dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
624 &c->vc, c->ddar, dir);
625 return NULL;
626 }
627
628 sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN);
629 sglen = size * sgperiod / period;
630
631 /* Do not allow zero-sized txds */
632 if (sglen == 0)
633 return NULL;
634
635 txd = kzalloc(sizeof(*txd) + sglen * sizeof(txd->sg[0]), GFP_ATOMIC);
636 if (!txd) {
637 dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
638 return NULL;
639 }
640
641 for (i = k = 0; i < size / period; i++) {
642 size_t tlen, len = period;
643
644 for (j = 0; j < sgperiod; j++, k++) {
645 tlen = len;
646
647 if (tlen > DMA_MAX_SIZE) {
648 unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN);
649 tlen = (tlen / mult) & ~DMA_ALIGN;
650 }
651
652 txd->sg[k].addr = addr;
653 txd->sg[k].len = tlen;
654 addr += tlen;
655 len -= tlen;
656 }
657
658 WARN_ON(len != 0);
659 }
660
661 WARN_ON(k != sglen);
662
663 txd->ddar = c->ddar;
664 txd->size = size;
665 txd->sglen = sglen;
666 txd->cyclic = 1;
667 txd->period = sgperiod;
668
669 return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
670 }
671
672 static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
673 {
674 u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
675 dma_addr_t addr;
676 enum dma_slave_buswidth width;
677 u32 maxburst;
678
679 if (ddar & DDAR_RW) {
680 addr = cfg->src_addr;
681 width = cfg->src_addr_width;
682 maxburst = cfg->src_maxburst;
683 } else {
684 addr = cfg->dst_addr;
685 width = cfg->dst_addr_width;
686 maxburst = cfg->dst_maxburst;
687 }
688
689 if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
690 width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
691 (maxburst != 4 && maxburst != 8))
692 return -EINVAL;
693
694 if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
695 ddar |= DDAR_DW;
696 if (maxburst == 8)
697 ddar |= DDAR_BS;
698
699 dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
700 &c->vc, addr, width, maxburst);
701
702 c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
703
704 return 0;
705 }
706
707 static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
708 unsigned long arg)
709 {
710 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
711 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
712 struct sa11x0_dma_phy *p;
713 LIST_HEAD(head);
714 unsigned long flags;
715 int ret;
716
717 switch (cmd) {
718 case DMA_SLAVE_CONFIG:
719 return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
720
721 case DMA_TERMINATE_ALL:
722 dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
723 /* Clear the tx descriptor lists */
724 spin_lock_irqsave(&c->vc.lock, flags);
725 vchan_get_all_descriptors(&c->vc, &head);
726
727 p = c->phy;
728 if (p) {
729 dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
730 /* vchan is assigned to a pchan - stop the channel */
731 writel(DCSR_RUN | DCSR_IE |
732 DCSR_STRTA | DCSR_DONEA |
733 DCSR_STRTB | DCSR_DONEB,
734 p->base + DMA_DCSR_C);
735
736 if (p->txd_load) {
737 if (p->txd_load != p->txd_done)
738 list_add_tail(&p->txd_load->vd.node, &head);
739 p->txd_load = NULL;
740 }
741 if (p->txd_done) {
742 list_add_tail(&p->txd_done->vd.node, &head);
743 p->txd_done = NULL;
744 }
745 c->phy = NULL;
746 spin_lock(&d->lock);
747 p->vchan = NULL;
748 spin_unlock(&d->lock);
749 tasklet_schedule(&d->task);
750 }
751 spin_unlock_irqrestore(&c->vc.lock, flags);
752 vchan_dma_desc_free_list(&c->vc, &head);
753 ret = 0;
754 break;
755
756 case DMA_PAUSE:
757 dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
758 spin_lock_irqsave(&c->vc.lock, flags);
759 if (c->status == DMA_IN_PROGRESS) {
760 c->status = DMA_PAUSED;
761
762 p = c->phy;
763 if (p) {
764 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
765 } else {
766 spin_lock(&d->lock);
767 list_del_init(&c->node);
768 spin_unlock(&d->lock);
769 }
770 }
771 spin_unlock_irqrestore(&c->vc.lock, flags);
772 ret = 0;
773 break;
774
775 case DMA_RESUME:
776 dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
777 spin_lock_irqsave(&c->vc.lock, flags);
778 if (c->status == DMA_PAUSED) {
779 c->status = DMA_IN_PROGRESS;
780
781 p = c->phy;
782 if (p) {
783 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
784 } else if (!list_empty(&c->vc.desc_issued)) {
785 spin_lock(&d->lock);
786 list_add_tail(&c->node, &d->chan_pending);
787 spin_unlock(&d->lock);
788 }
789 }
790 spin_unlock_irqrestore(&c->vc.lock, flags);
791 ret = 0;
792 break;
793
794 default:
795 ret = -ENXIO;
796 break;
797 }
798
799 return ret;
800 }
801
802 struct sa11x0_dma_channel_desc {
803 u32 ddar;
804 const char *name;
805 };
806
807 #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
808 static const struct sa11x0_dma_channel_desc chan_desc[] = {
809 CD(Ser0UDCTr, 0),
810 CD(Ser0UDCRc, DDAR_RW),
811 CD(Ser1SDLCTr, 0),
812 CD(Ser1SDLCRc, DDAR_RW),
813 CD(Ser1UARTTr, 0),
814 CD(Ser1UARTRc, DDAR_RW),
815 CD(Ser2ICPTr, 0),
816 CD(Ser2ICPRc, DDAR_RW),
817 CD(Ser3UARTTr, 0),
818 CD(Ser3UARTRc, DDAR_RW),
819 CD(Ser4MCP0Tr, 0),
820 CD(Ser4MCP0Rc, DDAR_RW),
821 CD(Ser4MCP1Tr, 0),
822 CD(Ser4MCP1Rc, DDAR_RW),
823 CD(Ser4SSPTr, 0),
824 CD(Ser4SSPRc, DDAR_RW),
825 };
826
827 static int sa11x0_dma_init_dmadev(struct dma_device *dmadev,
828 struct device *dev)
829 {
830 unsigned i;
831
832 dmadev->chancnt = ARRAY_SIZE(chan_desc);
833 INIT_LIST_HEAD(&dmadev->channels);
834 dmadev->dev = dev;
835 dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
836 dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
837 dmadev->device_control = sa11x0_dma_control;
838 dmadev->device_tx_status = sa11x0_dma_tx_status;
839 dmadev->device_issue_pending = sa11x0_dma_issue_pending;
840
841 for (i = 0; i < dmadev->chancnt; i++) {
842 struct sa11x0_dma_chan *c;
843
844 c = kzalloc(sizeof(*c), GFP_KERNEL);
845 if (!c) {
846 dev_err(dev, "no memory for channel %u\n", i);
847 return -ENOMEM;
848 }
849
850 c->status = DMA_IN_PROGRESS;
851 c->ddar = chan_desc[i].ddar;
852 c->name = chan_desc[i].name;
853 INIT_LIST_HEAD(&c->node);
854
855 c->vc.desc_free = sa11x0_dma_free_desc;
856 vchan_init(&c->vc, dmadev);
857 }
858
859 return dma_async_device_register(dmadev);
860 }
861
862 static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
863 void *data)
864 {
865 int irq = platform_get_irq(pdev, nr);
866
867 if (irq <= 0)
868 return -ENXIO;
869
870 return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
871 }
872
873 static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
874 void *data)
875 {
876 int irq = platform_get_irq(pdev, nr);
877 if (irq > 0)
878 free_irq(irq, data);
879 }
880
881 static void sa11x0_dma_free_channels(struct dma_device *dmadev)
882 {
883 struct sa11x0_dma_chan *c, *cn;
884
885 list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
886 list_del(&c->vc.chan.device_node);
887 tasklet_kill(&c->vc.task);
888 kfree(c);
889 }
890 }
891
892 static int sa11x0_dma_probe(struct platform_device *pdev)
893 {
894 struct sa11x0_dma_dev *d;
895 struct resource *res;
896 unsigned i;
897 int ret;
898
899 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
900 if (!res)
901 return -ENXIO;
902
903 d = kzalloc(sizeof(*d), GFP_KERNEL);
904 if (!d) {
905 ret = -ENOMEM;
906 goto err_alloc;
907 }
908
909 spin_lock_init(&d->lock);
910 INIT_LIST_HEAD(&d->chan_pending);
911
912 d->base = ioremap(res->start, resource_size(res));
913 if (!d->base) {
914 ret = -ENOMEM;
915 goto err_ioremap;
916 }
917
918 tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
919
920 for (i = 0; i < NR_PHY_CHAN; i++) {
921 struct sa11x0_dma_phy *p = &d->phy[i];
922
923 p->dev = d;
924 p->num = i;
925 p->base = d->base + i * DMA_SIZE;
926 writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
927 DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
928 p->base + DMA_DCSR_C);
929 writel_relaxed(0, p->base + DMA_DDAR);
930
931 ret = sa11x0_dma_request_irq(pdev, i, p);
932 if (ret) {
933 while (i) {
934 i--;
935 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
936 }
937 goto err_irq;
938 }
939 }
940
941 dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
942 dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
943 d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
944 d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic;
945 ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
946 if (ret) {
947 dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
948 ret);
949 goto err_slave_reg;
950 }
951
952 platform_set_drvdata(pdev, d);
953 return 0;
954
955 err_slave_reg:
956 sa11x0_dma_free_channels(&d->slave);
957 for (i = 0; i < NR_PHY_CHAN; i++)
958 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
959 err_irq:
960 tasklet_kill(&d->task);
961 iounmap(d->base);
962 err_ioremap:
963 kfree(d);
964 err_alloc:
965 return ret;
966 }
967
968 static int sa11x0_dma_remove(struct platform_device *pdev)
969 {
970 struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
971 unsigned pch;
972
973 dma_async_device_unregister(&d->slave);
974
975 sa11x0_dma_free_channels(&d->slave);
976 for (pch = 0; pch < NR_PHY_CHAN; pch++)
977 sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
978 tasklet_kill(&d->task);
979 iounmap(d->base);
980 kfree(d);
981
982 return 0;
983 }
984
985 static int sa11x0_dma_suspend(struct device *dev)
986 {
987 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
988 unsigned pch;
989
990 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
991 struct sa11x0_dma_phy *p = &d->phy[pch];
992 u32 dcsr, saved_dcsr;
993
994 dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
995 if (dcsr & DCSR_RUN) {
996 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
997 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
998 }
999
1000 saved_dcsr &= DCSR_RUN | DCSR_IE;
1001 if (dcsr & DCSR_BIU) {
1002 p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
1003 p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
1004 p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
1005 p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
1006 saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
1007 (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
1008 } else {
1009 p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
1010 p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
1011 p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
1012 p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
1013 saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
1014 }
1015 p->dcsr = saved_dcsr;
1016
1017 writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int sa11x0_dma_resume(struct device *dev)
1024 {
1025 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
1026 unsigned pch;
1027
1028 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
1029 struct sa11x0_dma_phy *p = &d->phy[pch];
1030 struct sa11x0_dma_desc *txd = NULL;
1031 u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1032
1033 WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
1034
1035 if (p->txd_done)
1036 txd = p->txd_done;
1037 else if (p->txd_load)
1038 txd = p->txd_load;
1039
1040 if (!txd)
1041 continue;
1042
1043 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
1044
1045 writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
1046 writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
1047 writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
1048 writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
1049 writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static const struct dev_pm_ops sa11x0_dma_pm_ops = {
1056 .suspend_noirq = sa11x0_dma_suspend,
1057 .resume_noirq = sa11x0_dma_resume,
1058 .freeze_noirq = sa11x0_dma_suspend,
1059 .thaw_noirq = sa11x0_dma_resume,
1060 .poweroff_noirq = sa11x0_dma_suspend,
1061 .restore_noirq = sa11x0_dma_resume,
1062 };
1063
1064 static struct platform_driver sa11x0_dma_driver = {
1065 .driver = {
1066 .name = "sa11x0-dma",
1067 .owner = THIS_MODULE,
1068 .pm = &sa11x0_dma_pm_ops,
1069 },
1070 .probe = sa11x0_dma_probe,
1071 .remove = sa11x0_dma_remove,
1072 };
1073
1074 bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
1075 {
1076 if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
1077 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
1078 const char *p = param;
1079
1080 return !strcmp(c->name, p);
1081 }
1082 return false;
1083 }
1084 EXPORT_SYMBOL(sa11x0_dma_filter_fn);
1085
1086 static int __init sa11x0_dma_init(void)
1087 {
1088 return platform_driver_register(&sa11x0_dma_driver);
1089 }
1090 subsys_initcall(sa11x0_dma_init);
1091
1092 static void __exit sa11x0_dma_exit(void)
1093 {
1094 platform_driver_unregister(&sa11x0_dma_driver);
1095 }
1096 module_exit(sa11x0_dma_exit);
1097
1098 MODULE_AUTHOR("Russell King");
1099 MODULE_DESCRIPTION("SA-11x0 DMA driver");
1100 MODULE_LICENSE("GPL v2");
1101 MODULE_ALIAS("platform:sa11x0-dma");
This page took 0.052835 seconds and 5 git commands to generate.