2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
17 #include <plat/ste_dma40.h>
19 #include "ste_dma40_ll.h"
21 #define D40_NAME "dma40"
23 #define D40_PHY_CHAN -1
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan) (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE (1 << 31)
44 #define D40_ALLOC_PHY (1 << 30)
45 #define D40_ALLOC_LOG_FREE 0
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
51 * enum 40_command - The different commands and/or statuses.
53 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
61 D40_DMA_SUSPEND_REQ
= 2,
66 * struct d40_lli_pool - Structure for keeping LLIs in memory
68 * @base: Pointer to memory area when the pre_alloc_lli's are not large
69 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70 * pre_alloc_lli is used.
71 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73 * one buffer to one buffer.
78 /* Space for dst and src, plus an extra for padding */
79 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
83 * struct d40_desc - A descriptor is one DMA job.
85 * @lli_phy: LLI settings for physical channel. Both src and dst=
86 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88 * @lli_log: Same as above but for logical channels.
89 * @lli_pool: The pool with two entries pre-allocated.
90 * @lli_len: Number of llis of current descriptor.
91 * @lli_current: Number of transfered llis.
92 * @lcla_alloc: Number of LCLA entries allocated.
93 * @txd: DMA engine struct. Used for among other things for communication
96 * @is_in_client_list: true if the client owns this descriptor.
97 * @is_hw_linked: true if this job will automatically be continued for
100 * This descriptor is used for both logical and physical transfers.
104 struct d40_phy_lli_bidir lli_phy
;
106 struct d40_log_lli_bidir lli_log
;
108 struct d40_lli_pool lli_pool
;
113 struct dma_async_tx_descriptor txd
;
114 struct list_head node
;
116 bool is_in_client_list
;
121 * struct d40_lcla_pool - LCLA pool settings and data.
123 * @base: The virtual address of LCLA. 18 bit aligned.
124 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125 * This pointer is only there for clean-up on error.
126 * @pages: The number of pages needed for all physical channels.
127 * Only used later for clean-up on error
128 * @lock: Lock to protect the content in this struct.
129 * @alloc_map: big map over which LCLA entry is own by which job.
131 struct d40_lcla_pool
{
133 void *base_unaligned
;
136 struct d40_desc
**alloc_map
;
140 * struct d40_phy_res - struct for handling eventlines mapped to physical
143 * @lock: A lock protection this entity.
144 * @num: The physical channel number of this entity.
145 * @allocated_src: Bit mapped to show which src event line's are mapped to
146 * this physical channel. Can also be free or physically allocated.
147 * @allocated_dst: Same as for src but is dst.
148 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
161 * struct d40_chan - Struct that describes a channel.
163 * @lock: A spinlock to protect this struct.
164 * @log_num: The logical number, if any of this channel.
165 * @completed: Starts with 1, after first interrupt it is set to dma engine's
167 * @pending_tx: The number of pending transfers. Used between interrupt handler
169 * @busy: Set to true when transfer is ongoing on this channel.
170 * @phy_chan: Pointer to physical channel which this instance runs on. If this
171 * point is NULL, then the channel is not allocated.
172 * @chan: DMA engine handle.
173 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
174 * transfer and call client callback.
175 * @client: Cliented owned descriptor list.
176 * @active: Active descriptor.
177 * @queue: Queued jobs.
178 * @dma_cfg: The client configuration of this dma channel.
179 * @configured: whether the dma_cfg configuration is valid
180 * @base: Pointer to the device instance struct.
181 * @src_def_cfg: Default cfg register setting for src.
182 * @dst_def_cfg: Default cfg register setting for dst.
183 * @log_def: Default logical channel settings.
184 * @lcla: Space for one dst src pair for logical channel transfers.
185 * @lcpa: Pointer to dst and src lcpa settings.
187 * This struct can either "be" a logical or a physical channel.
192 /* ID of the most recent completed transfer */
196 struct d40_phy_res
*phy_chan
;
197 struct dma_chan chan
;
198 struct tasklet_struct tasklet
;
199 struct list_head client
;
200 struct list_head active
;
201 struct list_head queue
;
202 struct stedma40_chan_cfg dma_cfg
;
204 struct d40_base
*base
;
205 /* Default register configurations */
208 struct d40_def_lcsp log_def
;
209 struct d40_log_lli_full
*lcpa
;
210 /* Runtime reconfiguration */
211 dma_addr_t runtime_addr
;
212 enum dma_data_direction runtime_direction
;
216 * struct d40_base - The big global struct, one for each probe'd instance.
218 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
219 * @execmd_lock: Lock for execute command usage since several channels share
220 * the same physical register.
221 * @dev: The device structure.
222 * @virtbase: The virtual base address of the DMA's register.
223 * @rev: silicon revision detected.
224 * @clk: Pointer to the DMA clock structure.
225 * @phy_start: Physical memory start of the DMA registers.
226 * @phy_size: Size of the DMA register map.
227 * @irq: The IRQ number.
228 * @num_phy_chans: The number of physical channels. Read from HW. This
229 * is the number of available channels for this driver, not counting "Secure
230 * mode" allocated physical channels.
231 * @num_log_chans: The number of logical channels. Calculated from
233 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
234 * @dma_slave: dma_device channels that can do only do slave transfers.
235 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
236 * @log_chans: Room for all possible logical channels in system.
237 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
238 * to log_chans entries.
239 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
240 * to phy_chans entries.
241 * @plat_data: Pointer to provided platform_data which is the driver
243 * @phy_res: Vector containing all physical channels.
244 * @lcla_pool: lcla pool settings and data.
245 * @lcpa_base: The virtual mapped address of LCPA.
246 * @phy_lcpa: The physical address of the LCPA.
247 * @lcpa_size: The size of the LCPA area.
248 * @desc_slab: cache for descriptors.
251 spinlock_t interrupt_lock
;
252 spinlock_t execmd_lock
;
254 void __iomem
*virtbase
;
257 phys_addr_t phy_start
;
258 resource_size_t phy_size
;
262 struct dma_device dma_both
;
263 struct dma_device dma_slave
;
264 struct dma_device dma_memcpy
;
265 struct d40_chan
*phy_chans
;
266 struct d40_chan
*log_chans
;
267 struct d40_chan
**lookup_log_chans
;
268 struct d40_chan
**lookup_phy_chans
;
269 struct stedma40_platform_data
*plat_data
;
270 /* Physical half channels */
271 struct d40_phy_res
*phy_res
;
272 struct d40_lcla_pool lcla_pool
;
275 resource_size_t lcpa_size
;
276 struct kmem_cache
*desc_slab
;
280 * struct d40_interrupt_lookup - lookup table for interrupt handler
282 * @src: Interrupt mask register.
283 * @clr: Interrupt clear register.
284 * @is_error: true if this is an error interrupt.
285 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
286 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
288 struct d40_interrupt_lookup
{
296 * struct d40_reg_val - simple lookup struct
298 * @reg: The register.
299 * @val: The value that belongs to the register in reg.
306 static int d40_pool_lli_alloc(struct d40_desc
*d40d
,
307 int lli_len
, bool is_log
)
313 align
= sizeof(struct d40_log_lli
);
315 align
= sizeof(struct d40_phy_lli
);
318 base
= d40d
->lli_pool
.pre_alloc_lli
;
319 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
320 d40d
->lli_pool
.base
= NULL
;
322 d40d
->lli_pool
.size
= ALIGN(lli_len
* 2 * align
, align
);
324 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
325 d40d
->lli_pool
.base
= base
;
327 if (d40d
->lli_pool
.base
== NULL
)
332 d40d
->lli_log
.src
= PTR_ALIGN((struct d40_log_lli
*) base
,
334 d40d
->lli_log
.dst
= PTR_ALIGN(d40d
->lli_log
.src
+ lli_len
,
337 d40d
->lli_phy
.src
= PTR_ALIGN((struct d40_phy_lli
*)base
,
339 d40d
->lli_phy
.dst
= PTR_ALIGN(d40d
->lli_phy
.src
+ lli_len
,
346 static void d40_pool_lli_free(struct d40_desc
*d40d
)
348 kfree(d40d
->lli_pool
.base
);
349 d40d
->lli_pool
.base
= NULL
;
350 d40d
->lli_pool
.size
= 0;
351 d40d
->lli_log
.src
= NULL
;
352 d40d
->lli_log
.dst
= NULL
;
353 d40d
->lli_phy
.src
= NULL
;
354 d40d
->lli_phy
.dst
= NULL
;
357 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
358 struct d40_desc
*d40d
)
365 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
367 p
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
;
370 * Allocate both src and dst at the same time, therefore the half
371 * start on 1 since 0 can't be used since zero is used as end marker.
373 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
374 if (!d40c
->base
->lcla_pool
.alloc_map
[p
+ i
]) {
375 d40c
->base
->lcla_pool
.alloc_map
[p
+ i
] = d40d
;
382 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
387 static int d40_lcla_free_all(struct d40_chan
*d40c
,
388 struct d40_desc
*d40d
)
394 if (d40c
->log_num
== D40_PHY_CHAN
)
397 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
399 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
400 if (d40c
->base
->lcla_pool
.alloc_map
[d40c
->phy_chan
->num
*
401 D40_LCLA_LINK_PER_EVENT_GRP
+ i
] == d40d
) {
402 d40c
->base
->lcla_pool
.alloc_map
[d40c
->phy_chan
->num
*
403 D40_LCLA_LINK_PER_EVENT_GRP
+ i
] = NULL
;
405 if (d40d
->lcla_alloc
== 0) {
412 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
418 static void d40_desc_remove(struct d40_desc
*d40d
)
420 list_del(&d40d
->node
);
423 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
425 struct d40_desc
*desc
= NULL
;
427 if (!list_empty(&d40c
->client
)) {
431 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
)
432 if (async_tx_test_ack(&d
->txd
)) {
433 d40_pool_lli_free(d
);
436 memset(desc
, 0, sizeof(*desc
));
442 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
445 INIT_LIST_HEAD(&desc
->node
);
450 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
453 d40_lcla_free_all(d40c
, d40d
);
454 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
457 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
459 list_add_tail(&desc
->node
, &d40c
->active
);
462 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
464 int curr_lcla
= -EINVAL
, next_lcla
;
466 if (d40c
->log_num
== D40_PHY_CHAN
) {
467 d40_phy_lli_write(d40c
->base
->virtbase
,
471 d40d
->lli_current
= d40d
->lli_len
;
474 if ((d40d
->lli_len
- d40d
->lli_current
) > 1)
475 curr_lcla
= d40_lcla_alloc_one(d40c
, d40d
);
477 d40_log_lli_lcpa_write(d40c
->lcpa
,
478 &d40d
->lli_log
.dst
[d40d
->lli_current
],
479 &d40d
->lli_log
.src
[d40d
->lli_current
],
483 for (; d40d
->lli_current
< d40d
->lli_len
; d40d
->lli_current
++) {
484 struct d40_log_lli
*lcla
;
486 if (d40d
->lli_current
+ 1 < d40d
->lli_len
)
487 next_lcla
= d40_lcla_alloc_one(d40c
, d40d
);
491 lcla
= d40c
->base
->lcla_pool
.base
+
492 d40c
->phy_chan
->num
* 1024 +
495 d40_log_lli_lcla_write(lcla
,
496 &d40d
->lli_log
.dst
[d40d
->lli_current
],
497 &d40d
->lli_log
.src
[d40d
->lli_current
],
500 (void) dma_map_single(d40c
->base
->dev
, lcla
,
501 2 * sizeof(struct d40_log_lli
),
504 curr_lcla
= next_lcla
;
506 if (curr_lcla
== -EINVAL
) {
515 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
519 if (list_empty(&d40c
->active
))
522 d
= list_first_entry(&d40c
->active
,
528 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
530 list_add_tail(&desc
->node
, &d40c
->queue
);
533 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
537 if (list_empty(&d40c
->queue
))
540 d
= list_first_entry(&d40c
->queue
,
546 static struct d40_desc
*d40_last_queued(struct d40_chan
*d40c
)
550 if (list_empty(&d40c
->queue
))
552 list_for_each_entry(d
, &d40c
->queue
, node
)
553 if (list_is_last(&d
->node
, &d40c
->queue
))
558 static int d40_psize_2_burst_size(bool is_log
, int psize
)
561 if (psize
== STEDMA40_PSIZE_LOG_1
)
564 if (psize
== STEDMA40_PSIZE_PHY_1
)
572 * The dma only supports transmitting packages up to
573 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
574 * dma elements required to send the entire sg list
576 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
579 u32 max_w
= max(data_width1
, data_width2
);
580 u32 min_w
= min(data_width1
, data_width2
);
581 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
<< min_w
, 1 << max_w
);
583 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
584 seg_max
-= (1 << max_w
);
586 if (!IS_ALIGNED(size
, 1 << max_w
))
592 dmalen
= size
/ seg_max
;
593 if (dmalen
* seg_max
< size
)
599 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
600 u32 data_width1
, u32 data_width2
)
602 struct scatterlist
*sg
;
607 for_each_sg(sgl
, sg
, sg_len
, i
) {
608 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
609 data_width1
, data_width2
);
617 /* Support functions for logical channels */
619 static int d40_channel_execute_command(struct d40_chan
*d40c
,
620 enum d40_command command
)
624 void __iomem
*active_reg
;
629 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
631 if (d40c
->phy_chan
->num
% 2 == 0)
632 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
634 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
636 if (command
== D40_DMA_SUSPEND_REQ
) {
637 status
= (readl(active_reg
) &
638 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
639 D40_CHAN_POS(d40c
->phy_chan
->num
);
641 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
645 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
646 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
649 if (command
== D40_DMA_SUSPEND_REQ
) {
651 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
652 status
= (readl(active_reg
) &
653 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
654 D40_CHAN_POS(d40c
->phy_chan
->num
);
658 * Reduce the number of bus accesses while
659 * waiting for the DMA to suspend.
663 if (status
== D40_DMA_STOP
||
664 status
== D40_DMA_SUSPENDED
)
668 if (i
== D40_SUSPEND_MAX_IT
) {
669 dev_err(&d40c
->chan
.dev
->device
,
670 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
671 __func__
, d40c
->phy_chan
->num
, d40c
->log_num
,
679 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
683 static void d40_term_all(struct d40_chan
*d40c
)
685 struct d40_desc
*d40d
;
687 /* Release active descriptors */
688 while ((d40d
= d40_first_active_get(d40c
))) {
689 d40_desc_remove(d40d
);
690 d40_desc_free(d40c
, d40d
);
693 /* Release queued descriptors waiting for transfer */
694 while ((d40d
= d40_first_queued(d40c
))) {
695 d40_desc_remove(d40d
);
696 d40_desc_free(d40c
, d40d
);
700 d40c
->pending_tx
= 0;
704 static void d40_config_set_event(struct d40_chan
*d40c
, bool do_enable
)
709 /* Notice, that disable requires the physical channel to be stopped */
711 val
= D40_ACTIVATE_EVENTLINE
;
713 val
= D40_DEACTIVATE_EVENTLINE
;
715 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
717 /* Enable event line connected to device (or memcpy) */
718 if ((d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) ||
719 (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_PERIPH
)) {
720 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
722 writel((val
<< D40_EVENTLINE_POS(event
)) |
723 ~D40_EVENTLINE_MASK(event
),
724 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
725 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
728 if (d40c
->dma_cfg
.dir
!= STEDMA40_PERIPH_TO_MEM
) {
729 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
731 writel((val
<< D40_EVENTLINE_POS(event
)) |
732 ~D40_EVENTLINE_MASK(event
),
733 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
734 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
738 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
741 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
745 val
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
746 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
749 val
|= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
750 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
755 static u32
d40_get_prmo(struct d40_chan
*d40c
)
757 static const unsigned int phy_map
[] = {
758 [STEDMA40_PCHAN_BASIC_MODE
]
759 = D40_DREG_PRMO_PCHAN_BASIC
,
760 [STEDMA40_PCHAN_MODULO_MODE
]
761 = D40_DREG_PRMO_PCHAN_MODULO
,
762 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
763 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
765 static const unsigned int log_map
[] = {
766 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
767 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
768 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
769 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
770 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
771 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
774 if (d40c
->log_num
== D40_PHY_CHAN
)
775 return phy_map
[d40c
->dma_cfg
.mode_opt
];
777 return log_map
[d40c
->dma_cfg
.mode_opt
];
780 static void d40_config_write(struct d40_chan
*d40c
)
785 /* Odd addresses are even addresses + 4 */
786 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
787 /* Setup channel mode to logical or physical */
788 var
= ((u32
)(d40c
->log_num
!= D40_PHY_CHAN
) + 1) <<
789 D40_CHAN_POS(d40c
->phy_chan
->num
);
790 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
792 /* Setup operational mode option register */
793 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
795 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
797 if (d40c
->log_num
!= D40_PHY_CHAN
) {
798 /* Set default config for CFG reg */
799 writel(d40c
->src_def_cfg
,
800 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
801 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
803 writel(d40c
->dst_def_cfg
,
804 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
805 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
808 /* Set LIDX for lcla */
809 writel((d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
) &
810 D40_SREG_ELEM_LOG_LIDX_MASK
,
811 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
812 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
815 writel((d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
) &
816 D40_SREG_ELEM_LOG_LIDX_MASK
,
817 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
818 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
824 static u32
d40_residue(struct d40_chan
*d40c
)
828 if (d40c
->log_num
!= D40_PHY_CHAN
)
829 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
830 >> D40_MEM_LCSP2_ECNT_POS
;
832 num_elt
= (readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
833 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
834 D40_CHAN_REG_SDELT
) &
835 D40_SREG_ELEM_PHY_ECNT_MASK
) >>
836 D40_SREG_ELEM_PHY_ECNT_POS
;
837 return num_elt
* (1 << d40c
->dma_cfg
.dst_info
.data_width
);
840 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
844 if (d40c
->log_num
!= D40_PHY_CHAN
)
845 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
847 is_link
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
848 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
849 D40_CHAN_REG_SDLNK
) &
850 D40_SREG_LNK_PHYS_LNK_MASK
;
854 static int d40_pause(struct dma_chan
*chan
)
856 struct d40_chan
*d40c
=
857 container_of(chan
, struct d40_chan
, chan
);
864 spin_lock_irqsave(&d40c
->lock
, flags
);
866 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
868 if (d40c
->log_num
!= D40_PHY_CHAN
) {
869 d40_config_set_event(d40c
, false);
870 /* Resume the other logical channels if any */
871 if (d40_chan_has_events(d40c
))
872 res
= d40_channel_execute_command(d40c
,
877 spin_unlock_irqrestore(&d40c
->lock
, flags
);
881 static int d40_resume(struct dma_chan
*chan
)
883 struct d40_chan
*d40c
=
884 container_of(chan
, struct d40_chan
, chan
);
891 spin_lock_irqsave(&d40c
->lock
, flags
);
893 if (d40c
->base
->rev
== 0)
894 if (d40c
->log_num
!= D40_PHY_CHAN
) {
895 res
= d40_channel_execute_command(d40c
,
896 D40_DMA_SUSPEND_REQ
);
900 /* If bytes left to transfer or linked tx resume job */
901 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
)) {
903 if (d40c
->log_num
!= D40_PHY_CHAN
)
904 d40_config_set_event(d40c
, true);
906 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
910 spin_unlock_irqrestore(&d40c
->lock
, flags
);
914 static void d40_tx_submit_log(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
919 static void d40_tx_submit_phy(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
921 struct d40_desc
*d40d_prev
= NULL
;
925 if (!list_empty(&d40c
->queue
))
926 d40d_prev
= d40_last_queued(d40c
);
927 else if (!list_empty(&d40c
->active
))
928 d40d_prev
= d40_first_active_get(d40c
);
933 /* Here we try to join this job with previous jobs */
934 val
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
935 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
938 /* Figure out which link we're currently transmitting */
939 for (i
= 0; i
< d40d_prev
->lli_len
; i
++)
940 if (val
== d40d_prev
->lli_phy
.src
[i
].reg_lnk
)
943 val
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
944 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
945 D40_CHAN_REG_SSELT
) >> D40_SREG_ELEM_LOG_ECNT_POS
;
947 if (i
== (d40d_prev
->lli_len
- 1) && val
> 0) {
948 /* Change the current one */
949 writel(virt_to_phys(d40d
->lli_phy
.src
),
950 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
951 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
953 writel(virt_to_phys(d40d
->lli_phy
.dst
),
954 d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
955 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
958 d40d
->is_hw_linked
= true;
960 } else if (i
< d40d_prev
->lli_len
) {
961 (void) dma_unmap_single(d40c
->base
->dev
,
962 virt_to_phys(d40d_prev
->lli_phy
.src
),
963 d40d_prev
->lli_pool
.size
,
966 /* Keep the settings */
967 val
= d40d_prev
->lli_phy
.src
[d40d_prev
->lli_len
- 1].reg_lnk
&
968 ~D40_SREG_LNK_PHYS_LNK_MASK
;
969 d40d_prev
->lli_phy
.src
[d40d_prev
->lli_len
- 1].reg_lnk
=
970 val
| virt_to_phys(d40d
->lli_phy
.src
);
972 val
= d40d_prev
->lli_phy
.dst
[d40d_prev
->lli_len
- 1].reg_lnk
&
973 ~D40_SREG_LNK_PHYS_LNK_MASK
;
974 d40d_prev
->lli_phy
.dst
[d40d_prev
->lli_len
- 1].reg_lnk
=
975 val
| virt_to_phys(d40d
->lli_phy
.dst
);
977 (void) dma_map_single(d40c
->base
->dev
,
978 d40d_prev
->lli_phy
.src
,
979 d40d_prev
->lli_pool
.size
,
981 d40d
->is_hw_linked
= true;
985 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
987 struct d40_chan
*d40c
= container_of(tx
->chan
,
990 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
993 (void) d40_pause(&d40c
->chan
);
995 spin_lock_irqsave(&d40c
->lock
, flags
);
999 if (d40c
->chan
.cookie
< 0)
1000 d40c
->chan
.cookie
= 1;
1002 d40d
->txd
.cookie
= d40c
->chan
.cookie
;
1004 if (d40c
->log_num
== D40_PHY_CHAN
)
1005 d40_tx_submit_phy(d40c
, d40d
);
1007 d40_tx_submit_log(d40c
, d40d
);
1009 d40_desc_queue(d40c
, d40d
);
1011 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1013 (void) d40_resume(&d40c
->chan
);
1018 static int d40_start(struct d40_chan
*d40c
)
1020 if (d40c
->base
->rev
== 0) {
1023 if (d40c
->log_num
!= D40_PHY_CHAN
) {
1024 err
= d40_channel_execute_command(d40c
,
1025 D40_DMA_SUSPEND_REQ
);
1031 if (d40c
->log_num
!= D40_PHY_CHAN
)
1032 d40_config_set_event(d40c
, true);
1034 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1037 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1039 struct d40_desc
*d40d
;
1042 /* Start queued jobs, if any */
1043 d40d
= d40_first_queued(d40c
);
1048 /* Remove from queue */
1049 d40_desc_remove(d40d
);
1051 /* Add to active queue */
1052 d40_desc_submit(d40c
, d40d
);
1055 * If this job is already linked in hw,
1059 if (!d40d
->is_hw_linked
) {
1060 /* Initiate DMA job */
1061 d40_desc_load(d40c
, d40d
);
1064 err
= d40_start(d40c
);
1074 /* called from interrupt context */
1075 static void dma_tc_handle(struct d40_chan
*d40c
)
1077 struct d40_desc
*d40d
;
1079 /* Get first active entry from list */
1080 d40d
= d40_first_active_get(d40c
);
1085 d40_lcla_free_all(d40c
, d40d
);
1087 if (d40d
->lli_current
< d40d
->lli_len
) {
1088 d40_desc_load(d40c
, d40d
);
1090 (void) d40_start(d40c
);
1094 if (d40_queue_start(d40c
) == NULL
)
1098 tasklet_schedule(&d40c
->tasklet
);
1102 static void dma_tasklet(unsigned long data
)
1104 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1105 struct d40_desc
*d40d
;
1106 unsigned long flags
;
1107 dma_async_tx_callback callback
;
1108 void *callback_param
;
1110 spin_lock_irqsave(&d40c
->lock
, flags
);
1112 /* Get first active entry from list */
1113 d40d
= d40_first_active_get(d40c
);
1118 d40c
->completed
= d40d
->txd
.cookie
;
1121 * If terminating a channel pending_tx is set to zero.
1122 * This prevents any finished active jobs to return to the client.
1124 if (d40c
->pending_tx
== 0) {
1125 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1129 /* Callback to client */
1130 callback
= d40d
->txd
.callback
;
1131 callback_param
= d40d
->txd
.callback_param
;
1133 if (async_tx_test_ack(&d40d
->txd
)) {
1134 d40_pool_lli_free(d40d
);
1135 d40_desc_remove(d40d
);
1136 d40_desc_free(d40c
, d40d
);
1138 if (!d40d
->is_in_client_list
) {
1139 d40_desc_remove(d40d
);
1140 d40_lcla_free_all(d40c
, d40d
);
1141 list_add_tail(&d40d
->node
, &d40c
->client
);
1142 d40d
->is_in_client_list
= true;
1148 if (d40c
->pending_tx
)
1149 tasklet_schedule(&d40c
->tasklet
);
1151 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1153 if (callback
&& (d40d
->txd
.flags
& DMA_PREP_INTERRUPT
))
1154 callback(callback_param
);
1159 /* Rescue manouver if receiving double interrupts */
1160 if (d40c
->pending_tx
> 0)
1162 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1165 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1167 static const struct d40_interrupt_lookup il
[] = {
1168 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
1169 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
1170 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
1171 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
1172 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
1173 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
1174 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
1175 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
1176 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
1177 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
1181 u32 regs
[ARRAY_SIZE(il
)];
1185 struct d40_chan
*d40c
;
1186 unsigned long flags
;
1187 struct d40_base
*base
= data
;
1189 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1191 /* Read interrupt status of both logical and physical channels */
1192 for (i
= 0; i
< ARRAY_SIZE(il
); i
++)
1193 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1197 chan
= find_next_bit((unsigned long *)regs
,
1198 BITS_PER_LONG
* ARRAY_SIZE(il
), chan
+ 1);
1200 /* No more set bits found? */
1201 if (chan
== BITS_PER_LONG
* ARRAY_SIZE(il
))
1204 row
= chan
/ BITS_PER_LONG
;
1205 idx
= chan
& (BITS_PER_LONG
- 1);
1208 writel(1 << idx
, base
->virtbase
+ il
[row
].clr
);
1210 if (il
[row
].offset
== D40_PHY_CHAN
)
1211 d40c
= base
->lookup_phy_chans
[idx
];
1213 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1214 spin_lock(&d40c
->lock
);
1216 if (!il
[row
].is_error
)
1217 dma_tc_handle(d40c
);
1220 "[%s] IRQ chan: %ld offset %d idx %d\n",
1221 __func__
, chan
, il
[row
].offset
, idx
);
1223 spin_unlock(&d40c
->lock
);
1226 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1231 static int d40_validate_conf(struct d40_chan
*d40c
,
1232 struct stedma40_chan_cfg
*conf
)
1235 u32 dst_event_group
= D40_TYPE_TO_GROUP(conf
->dst_dev_type
);
1236 u32 src_event_group
= D40_TYPE_TO_GROUP(conf
->src_dev_type
);
1237 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1240 dev_err(&d40c
->chan
.dev
->device
, "[%s] Invalid direction.\n",
1245 if (conf
->dst_dev_type
!= STEDMA40_DEV_DST_MEMORY
&&
1246 d40c
->base
->plat_data
->dev_tx
[conf
->dst_dev_type
] == 0 &&
1247 d40c
->runtime_addr
== 0) {
1249 dev_err(&d40c
->chan
.dev
->device
,
1250 "[%s] Invalid TX channel address (%d)\n",
1251 __func__
, conf
->dst_dev_type
);
1255 if (conf
->src_dev_type
!= STEDMA40_DEV_SRC_MEMORY
&&
1256 d40c
->base
->plat_data
->dev_rx
[conf
->src_dev_type
] == 0 &&
1257 d40c
->runtime_addr
== 0) {
1258 dev_err(&d40c
->chan
.dev
->device
,
1259 "[%s] Invalid RX channel address (%d)\n",
1260 __func__
, conf
->src_dev_type
);
1264 if (conf
->dir
== STEDMA40_MEM_TO_PERIPH
&&
1265 dst_event_group
== STEDMA40_DEV_DST_MEMORY
) {
1266 dev_err(&d40c
->chan
.dev
->device
, "[%s] Invalid dst\n",
1271 if (conf
->dir
== STEDMA40_PERIPH_TO_MEM
&&
1272 src_event_group
== STEDMA40_DEV_SRC_MEMORY
) {
1273 dev_err(&d40c
->chan
.dev
->device
, "[%s] Invalid src\n",
1278 if (src_event_group
== STEDMA40_DEV_SRC_MEMORY
&&
1279 dst_event_group
== STEDMA40_DEV_DST_MEMORY
&& is_log
) {
1280 dev_err(&d40c
->chan
.dev
->device
,
1281 "[%s] No event line\n", __func__
);
1285 if (conf
->dir
== STEDMA40_PERIPH_TO_PERIPH
&&
1286 (src_event_group
!= dst_event_group
)) {
1287 dev_err(&d40c
->chan
.dev
->device
,
1288 "[%s] Invalid event group\n", __func__
);
1292 if (conf
->dir
== STEDMA40_PERIPH_TO_PERIPH
) {
1294 * DMAC HW supports it. Will be added to this driver,
1295 * in case any dma client requires it.
1297 dev_err(&d40c
->chan
.dev
->device
,
1298 "[%s] periph to periph not supported\n",
1303 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1304 (1 << conf
->src_info
.data_width
) !=
1305 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1306 (1 << conf
->dst_info
.data_width
)) {
1308 * The DMAC hardware only supports
1309 * src (burst x width) == dst (burst x width)
1312 dev_err(&d40c
->chan
.dev
->device
,
1313 "[%s] src (burst x width) != dst (burst x width)\n",
1321 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
, bool is_src
,
1322 int log_event_line
, bool is_log
)
1324 unsigned long flags
;
1325 spin_lock_irqsave(&phy
->lock
, flags
);
1327 /* Physical interrupts are masked per physical full channel */
1328 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1329 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1330 phy
->allocated_dst
= D40_ALLOC_PHY
;
1331 phy
->allocated_src
= D40_ALLOC_PHY
;
1337 /* Logical channel */
1339 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1342 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1343 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1345 if (!(phy
->allocated_src
& (1 << log_event_line
))) {
1346 phy
->allocated_src
|= 1 << log_event_line
;
1351 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1354 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1355 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1357 if (!(phy
->allocated_dst
& (1 << log_event_line
))) {
1358 phy
->allocated_dst
|= 1 << log_event_line
;
1365 spin_unlock_irqrestore(&phy
->lock
, flags
);
1368 spin_unlock_irqrestore(&phy
->lock
, flags
);
1372 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1375 unsigned long flags
;
1376 bool is_free
= false;
1378 spin_lock_irqsave(&phy
->lock
, flags
);
1379 if (!log_event_line
) {
1380 phy
->allocated_dst
= D40_ALLOC_FREE
;
1381 phy
->allocated_src
= D40_ALLOC_FREE
;
1386 /* Logical channel */
1388 phy
->allocated_src
&= ~(1 << log_event_line
);
1389 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1390 phy
->allocated_src
= D40_ALLOC_FREE
;
1392 phy
->allocated_dst
&= ~(1 << log_event_line
);
1393 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1394 phy
->allocated_dst
= D40_ALLOC_FREE
;
1397 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1401 spin_unlock_irqrestore(&phy
->lock
, flags
);
1406 static int d40_allocate_channel(struct d40_chan
*d40c
)
1411 struct d40_phy_res
*phys
;
1416 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1418 phys
= d40c
->base
->phy_res
;
1420 if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1421 dev_type
= d40c
->dma_cfg
.src_dev_type
;
1422 log_num
= 2 * dev_type
;
1424 } else if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1425 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1426 /* dst event lines are used for logical memcpy */
1427 dev_type
= d40c
->dma_cfg
.dst_dev_type
;
1428 log_num
= 2 * dev_type
+ 1;
1433 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1434 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1437 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1438 /* Find physical half channel */
1439 for (i
= 0; i
< d40c
->base
->num_phy_chans
; i
++) {
1441 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1446 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1447 int phy_num
= j
+ event_group
* 2;
1448 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1449 if (d40_alloc_mask_set(&phys
[i
],
1458 d40c
->phy_chan
= &phys
[i
];
1459 d40c
->log_num
= D40_PHY_CHAN
;
1465 /* Find logical channel */
1466 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1467 int phy_num
= j
+ event_group
* 2;
1469 * Spread logical channels across all available physical rather
1470 * than pack every logical channel at the first available phy
1474 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1475 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1476 event_line
, is_log
))
1480 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1481 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1482 event_line
, is_log
))
1490 d40c
->phy_chan
= &phys
[i
];
1491 d40c
->log_num
= log_num
;
1495 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1497 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1503 static int d40_config_memcpy(struct d40_chan
*d40c
)
1505 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1507 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1508 d40c
->dma_cfg
= *d40c
->base
->plat_data
->memcpy_conf_log
;
1509 d40c
->dma_cfg
.src_dev_type
= STEDMA40_DEV_SRC_MEMORY
;
1510 d40c
->dma_cfg
.dst_dev_type
= d40c
->base
->plat_data
->
1511 memcpy
[d40c
->chan
.chan_id
];
1513 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1514 dma_has_cap(DMA_SLAVE
, cap
)) {
1515 d40c
->dma_cfg
= *d40c
->base
->plat_data
->memcpy_conf_phy
;
1517 dev_err(&d40c
->chan
.dev
->device
, "[%s] No memcpy\n",
1526 static int d40_free_dma(struct d40_chan
*d40c
)
1531 struct d40_phy_res
*phy
= d40c
->phy_chan
;
1534 struct d40_desc
*_d
;
1537 /* Terminate all queued and active transfers */
1540 /* Release client owned descriptors */
1541 if (!list_empty(&d40c
->client
))
1542 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
1543 d40_pool_lli_free(d
);
1545 d40_desc_free(d40c
, d
);
1549 dev_err(&d40c
->chan
.dev
->device
, "[%s] phy == null\n",
1554 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1555 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1556 dev_err(&d40c
->chan
.dev
->device
, "[%s] channel already free\n",
1561 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1562 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1563 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
1565 } else if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1566 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
1569 dev_err(&d40c
->chan
.dev
->device
,
1570 "[%s] Unknown direction\n", __func__
);
1574 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1576 dev_err(&d40c
->chan
.dev
->device
, "[%s] suspend failed\n",
1581 if (d40c
->log_num
!= D40_PHY_CHAN
) {
1582 /* Release logical channel, deactivate the event line */
1584 d40_config_set_event(d40c
, false);
1585 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
1588 * Check if there are more logical allocation
1589 * on this phy channel.
1591 if (!d40_alloc_mask_free(phy
, is_src
, event
)) {
1592 /* Resume the other logical channels if any */
1593 if (d40_chan_has_events(d40c
)) {
1594 res
= d40_channel_execute_command(d40c
,
1597 dev_err(&d40c
->chan
.dev
->device
,
1598 "[%s] Executing RUN command\n",
1606 (void) d40_alloc_mask_free(phy
, is_src
, 0);
1609 /* Release physical channel */
1610 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
1612 dev_err(&d40c
->chan
.dev
->device
,
1613 "[%s] Failed to stop channel\n", __func__
);
1616 d40c
->phy_chan
= NULL
;
1617 d40c
->configured
= false;
1618 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
1623 static bool d40_is_paused(struct d40_chan
*d40c
)
1625 bool is_paused
= false;
1626 unsigned long flags
;
1627 void __iomem
*active_reg
;
1631 spin_lock_irqsave(&d40c
->lock
, flags
);
1633 if (d40c
->log_num
== D40_PHY_CHAN
) {
1634 if (d40c
->phy_chan
->num
% 2 == 0)
1635 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1637 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1639 status
= (readl(active_reg
) &
1640 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1641 D40_CHAN_POS(d40c
->phy_chan
->num
);
1642 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1648 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1649 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1650 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
1651 status
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
1652 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
1653 D40_CHAN_REG_SDLNK
);
1654 } else if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1655 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
1656 status
= readl(d40c
->base
->virtbase
+ D40_DREG_PCBASE
+
1657 d40c
->phy_chan
->num
* D40_DREG_PCDELTA
+
1658 D40_CHAN_REG_SSLNK
);
1660 dev_err(&d40c
->chan
.dev
->device
,
1661 "[%s] Unknown direction\n", __func__
);
1665 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
1666 D40_EVENTLINE_POS(event
);
1668 if (status
!= D40_DMA_RUN
)
1671 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1677 static u32
stedma40_residue(struct dma_chan
*chan
)
1679 struct d40_chan
*d40c
=
1680 container_of(chan
, struct d40_chan
, chan
);
1682 unsigned long flags
;
1684 spin_lock_irqsave(&d40c
->lock
, flags
);
1685 bytes_left
= d40_residue(d40c
);
1686 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1691 struct dma_async_tx_descriptor
*stedma40_memcpy_sg(struct dma_chan
*chan
,
1692 struct scatterlist
*sgl_dst
,
1693 struct scatterlist
*sgl_src
,
1694 unsigned int sgl_len
,
1695 unsigned long dma_flags
)
1698 struct d40_desc
*d40d
;
1699 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
,
1701 unsigned long flags
;
1703 if (d40c
->phy_chan
== NULL
) {
1704 dev_err(&d40c
->chan
.dev
->device
,
1705 "[%s] Unallocated channel.\n", __func__
);
1706 return ERR_PTR(-EINVAL
);
1709 spin_lock_irqsave(&d40c
->lock
, flags
);
1710 d40d
= d40_desc_get(d40c
);
1715 d40d
->lli_len
= d40_sg_2_dmalen(sgl_dst
, sgl_len
,
1716 d40c
->dma_cfg
.src_info
.data_width
,
1717 d40c
->dma_cfg
.dst_info
.data_width
);
1718 if (d40d
->lli_len
< 0) {
1719 dev_err(&d40c
->chan
.dev
->device
,
1720 "[%s] Unaligned size\n", __func__
);
1724 d40d
->lli_current
= 0;
1725 d40d
->txd
.flags
= dma_flags
;
1727 if (d40c
->log_num
!= D40_PHY_CHAN
) {
1729 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, true) < 0) {
1730 dev_err(&d40c
->chan
.dev
->device
,
1731 "[%s] Out of memory\n", __func__
);
1735 (void) d40_log_sg_to_lli(sgl_src
,
1738 d40c
->log_def
.lcsp1
,
1739 d40c
->dma_cfg
.src_info
.data_width
,
1740 d40c
->dma_cfg
.dst_info
.data_width
);
1742 (void) d40_log_sg_to_lli(sgl_dst
,
1745 d40c
->log_def
.lcsp3
,
1746 d40c
->dma_cfg
.dst_info
.data_width
,
1747 d40c
->dma_cfg
.src_info
.data_width
);
1749 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, false) < 0) {
1750 dev_err(&d40c
->chan
.dev
->device
,
1751 "[%s] Out of memory\n", __func__
);
1755 res
= d40_phy_sg_to_lli(sgl_src
,
1759 virt_to_phys(d40d
->lli_phy
.src
),
1761 d40c
->dma_cfg
.src_info
.data_width
,
1762 d40c
->dma_cfg
.dst_info
.data_width
,
1763 d40c
->dma_cfg
.src_info
.psize
);
1768 res
= d40_phy_sg_to_lli(sgl_dst
,
1772 virt_to_phys(d40d
->lli_phy
.dst
),
1774 d40c
->dma_cfg
.dst_info
.data_width
,
1775 d40c
->dma_cfg
.src_info
.data_width
,
1776 d40c
->dma_cfg
.dst_info
.psize
);
1781 (void) dma_map_single(d40c
->base
->dev
, d40d
->lli_phy
.src
,
1782 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
1785 dma_async_tx_descriptor_init(&d40d
->txd
, chan
);
1787 d40d
->txd
.tx_submit
= d40_tx_submit
;
1789 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1794 d40_desc_free(d40c
, d40d
);
1795 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1798 EXPORT_SYMBOL(stedma40_memcpy_sg
);
1800 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
1802 struct stedma40_chan_cfg
*info
= data
;
1803 struct d40_chan
*d40c
=
1804 container_of(chan
, struct d40_chan
, chan
);
1808 err
= d40_validate_conf(d40c
, info
);
1810 d40c
->dma_cfg
= *info
;
1812 err
= d40_config_memcpy(d40c
);
1815 d40c
->configured
= true;
1819 EXPORT_SYMBOL(stedma40_filter
);
1821 /* DMA ENGINE functions */
1822 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
1825 unsigned long flags
;
1826 struct d40_chan
*d40c
=
1827 container_of(chan
, struct d40_chan
, chan
);
1829 spin_lock_irqsave(&d40c
->lock
, flags
);
1831 d40c
->completed
= chan
->cookie
= 1;
1833 /* If no dma configuration is set use default configuration (memcpy) */
1834 if (!d40c
->configured
) {
1835 err
= d40_config_memcpy(d40c
);
1837 dev_err(&d40c
->chan
.dev
->device
,
1838 "[%s] Failed to configure memcpy channel\n",
1843 is_free_phy
= (d40c
->phy_chan
== NULL
);
1845 err
= d40_allocate_channel(d40c
);
1847 dev_err(&d40c
->chan
.dev
->device
,
1848 "[%s] Failed to allocate channel\n", __func__
);
1852 /* Fill in basic CFG register values */
1853 d40_phy_cfg(&d40c
->dma_cfg
, &d40c
->src_def_cfg
,
1854 &d40c
->dst_def_cfg
, d40c
->log_num
!= D40_PHY_CHAN
);
1856 if (d40c
->log_num
!= D40_PHY_CHAN
) {
1857 d40_log_cfg(&d40c
->dma_cfg
,
1858 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
1860 if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
)
1861 d40c
->lcpa
= d40c
->base
->lcpa_base
+
1862 d40c
->dma_cfg
.src_dev_type
* D40_LCPA_CHAN_SIZE
;
1864 d40c
->lcpa
= d40c
->base
->lcpa_base
+
1865 d40c
->dma_cfg
.dst_dev_type
*
1866 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
1870 * Only write channel configuration to the DMA if the physical
1871 * resource is free. In case of multiple logical channels
1872 * on the same physical resource, only the first write is necessary.
1875 d40_config_write(d40c
);
1877 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1881 static void d40_free_chan_resources(struct dma_chan
*chan
)
1883 struct d40_chan
*d40c
=
1884 container_of(chan
, struct d40_chan
, chan
);
1886 unsigned long flags
;
1888 if (d40c
->phy_chan
== NULL
) {
1889 dev_err(&d40c
->chan
.dev
->device
,
1890 "[%s] Cannot free unallocated channel\n", __func__
);
1895 spin_lock_irqsave(&d40c
->lock
, flags
);
1897 err
= d40_free_dma(d40c
);
1900 dev_err(&d40c
->chan
.dev
->device
,
1901 "[%s] Failed to free channel\n", __func__
);
1902 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1905 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
1909 unsigned long dma_flags
)
1911 struct d40_desc
*d40d
;
1912 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
,
1914 unsigned long flags
;
1916 if (d40c
->phy_chan
== NULL
) {
1917 dev_err(&d40c
->chan
.dev
->device
,
1918 "[%s] Channel is not allocated.\n", __func__
);
1919 return ERR_PTR(-EINVAL
);
1922 spin_lock_irqsave(&d40c
->lock
, flags
);
1923 d40d
= d40_desc_get(d40c
);
1926 dev_err(&d40c
->chan
.dev
->device
,
1927 "[%s] Descriptor is NULL\n", __func__
);
1931 d40d
->txd
.flags
= dma_flags
;
1932 d40d
->lli_len
= d40_size_2_dmalen(size
,
1933 d40c
->dma_cfg
.src_info
.data_width
,
1934 d40c
->dma_cfg
.dst_info
.data_width
);
1935 if (d40d
->lli_len
< 0) {
1936 dev_err(&d40c
->chan
.dev
->device
,
1937 "[%s] Unaligned size\n", __func__
);
1942 dma_async_tx_descriptor_init(&d40d
->txd
, chan
);
1944 d40d
->txd
.tx_submit
= d40_tx_submit
;
1946 if (d40c
->log_num
!= D40_PHY_CHAN
) {
1948 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, true) < 0) {
1949 dev_err(&d40c
->chan
.dev
->device
,
1950 "[%s] Out of memory\n", __func__
);
1953 d40d
->lli_current
= 0;
1955 if (d40_log_buf_to_lli(d40d
->lli_log
.src
,
1958 d40c
->log_def
.lcsp1
,
1959 d40c
->dma_cfg
.src_info
.data_width
,
1960 d40c
->dma_cfg
.dst_info
.data_width
,
1964 if (d40_log_buf_to_lli(d40d
->lli_log
.dst
,
1967 d40c
->log_def
.lcsp3
,
1968 d40c
->dma_cfg
.dst_info
.data_width
,
1969 d40c
->dma_cfg
.src_info
.data_width
,
1975 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, false) < 0) {
1976 dev_err(&d40c
->chan
.dev
->device
,
1977 "[%s] Out of memory\n", __func__
);
1981 if (d40_phy_buf_to_lli(d40d
->lli_phy
.src
,
1984 d40c
->dma_cfg
.src_info
.psize
,
1988 d40c
->dma_cfg
.src_info
.data_width
,
1989 d40c
->dma_cfg
.dst_info
.data_width
,
1993 if (d40_phy_buf_to_lli(d40d
->lli_phy
.dst
,
1996 d40c
->dma_cfg
.dst_info
.psize
,
2000 d40c
->dma_cfg
.dst_info
.data_width
,
2001 d40c
->dma_cfg
.src_info
.data_width
,
2005 (void) dma_map_single(d40c
->base
->dev
, d40d
->lli_phy
.src
,
2006 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
2009 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2014 d40_desc_free(d40c
, d40d
);
2015 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2019 static struct dma_async_tx_descriptor
*
2020 d40_prep_sg(struct dma_chan
*chan
,
2021 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
2022 struct scatterlist
*src_sg
, unsigned int src_nents
,
2023 unsigned long dma_flags
)
2025 if (dst_nents
!= src_nents
)
2028 return stedma40_memcpy_sg(chan
, dst_sg
, src_sg
, dst_nents
, dma_flags
);
2031 static int d40_prep_slave_sg_log(struct d40_desc
*d40d
,
2032 struct d40_chan
*d40c
,
2033 struct scatterlist
*sgl
,
2034 unsigned int sg_len
,
2035 enum dma_data_direction direction
,
2036 unsigned long dma_flags
)
2038 dma_addr_t dev_addr
= 0;
2041 d40d
->lli_len
= d40_sg_2_dmalen(sgl
, sg_len
,
2042 d40c
->dma_cfg
.src_info
.data_width
,
2043 d40c
->dma_cfg
.dst_info
.data_width
);
2044 if (d40d
->lli_len
< 0) {
2045 dev_err(&d40c
->chan
.dev
->device
,
2046 "[%s] Unaligned size\n", __func__
);
2050 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, true) < 0) {
2051 dev_err(&d40c
->chan
.dev
->device
,
2052 "[%s] Out of memory\n", __func__
);
2056 d40d
->lli_current
= 0;
2058 if (direction
== DMA_FROM_DEVICE
)
2059 if (d40c
->runtime_addr
)
2060 dev_addr
= d40c
->runtime_addr
;
2062 dev_addr
= d40c
->base
->plat_data
->dev_rx
[d40c
->dma_cfg
.src_dev_type
];
2063 else if (direction
== DMA_TO_DEVICE
)
2064 if (d40c
->runtime_addr
)
2065 dev_addr
= d40c
->runtime_addr
;
2067 dev_addr
= d40c
->base
->plat_data
->dev_tx
[d40c
->dma_cfg
.dst_dev_type
];
2072 total_size
= d40_log_sg_to_dev(sgl
, sg_len
,
2075 d40c
->dma_cfg
.src_info
.data_width
,
2076 d40c
->dma_cfg
.dst_info
.data_width
,
2086 static int d40_prep_slave_sg_phy(struct d40_desc
*d40d
,
2087 struct d40_chan
*d40c
,
2088 struct scatterlist
*sgl
,
2089 unsigned int sgl_len
,
2090 enum dma_data_direction direction
,
2091 unsigned long dma_flags
)
2093 dma_addr_t src_dev_addr
;
2094 dma_addr_t dst_dev_addr
;
2097 d40d
->lli_len
= d40_sg_2_dmalen(sgl
, sgl_len
,
2098 d40c
->dma_cfg
.src_info
.data_width
,
2099 d40c
->dma_cfg
.dst_info
.data_width
);
2100 if (d40d
->lli_len
< 0) {
2101 dev_err(&d40c
->chan
.dev
->device
,
2102 "[%s] Unaligned size\n", __func__
);
2106 if (d40_pool_lli_alloc(d40d
, d40d
->lli_len
, false) < 0) {
2107 dev_err(&d40c
->chan
.dev
->device
,
2108 "[%s] Out of memory\n", __func__
);
2112 d40d
->lli_current
= 0;
2114 if (direction
== DMA_FROM_DEVICE
) {
2116 if (d40c
->runtime_addr
)
2117 src_dev_addr
= d40c
->runtime_addr
;
2119 src_dev_addr
= d40c
->base
->plat_data
->dev_rx
[d40c
->dma_cfg
.src_dev_type
];
2120 } else if (direction
== DMA_TO_DEVICE
) {
2121 if (d40c
->runtime_addr
)
2122 dst_dev_addr
= d40c
->runtime_addr
;
2124 dst_dev_addr
= d40c
->base
->plat_data
->dev_tx
[d40c
->dma_cfg
.dst_dev_type
];
2129 res
= d40_phy_sg_to_lli(sgl
,
2133 virt_to_phys(d40d
->lli_phy
.src
),
2135 d40c
->dma_cfg
.src_info
.data_width
,
2136 d40c
->dma_cfg
.dst_info
.data_width
,
2137 d40c
->dma_cfg
.src_info
.psize
);
2141 res
= d40_phy_sg_to_lli(sgl
,
2145 virt_to_phys(d40d
->lli_phy
.dst
),
2147 d40c
->dma_cfg
.dst_info
.data_width
,
2148 d40c
->dma_cfg
.src_info
.data_width
,
2149 d40c
->dma_cfg
.dst_info
.psize
);
2153 (void) dma_map_single(d40c
->base
->dev
, d40d
->lli_phy
.src
,
2154 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
2158 static struct dma_async_tx_descriptor
*d40_prep_slave_sg(struct dma_chan
*chan
,
2159 struct scatterlist
*sgl
,
2160 unsigned int sg_len
,
2161 enum dma_data_direction direction
,
2162 unsigned long dma_flags
)
2164 struct d40_desc
*d40d
;
2165 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
,
2167 unsigned long flags
;
2170 if (d40c
->phy_chan
== NULL
) {
2171 dev_err(&d40c
->chan
.dev
->device
,
2172 "[%s] Cannot prepare unallocated channel\n", __func__
);
2173 return ERR_PTR(-EINVAL
);
2176 spin_lock_irqsave(&d40c
->lock
, flags
);
2177 d40d
= d40_desc_get(d40c
);
2182 if (d40c
->log_num
!= D40_PHY_CHAN
)
2183 err
= d40_prep_slave_sg_log(d40d
, d40c
, sgl
, sg_len
,
2184 direction
, dma_flags
);
2186 err
= d40_prep_slave_sg_phy(d40d
, d40c
, sgl
, sg_len
,
2187 direction
, dma_flags
);
2189 dev_err(&d40c
->chan
.dev
->device
,
2190 "[%s] Failed to prepare %s slave sg job: %d\n",
2192 d40c
->log_num
!= D40_PHY_CHAN
? "log" : "phy", err
);
2196 d40d
->txd
.flags
= dma_flags
;
2198 dma_async_tx_descriptor_init(&d40d
->txd
, chan
);
2200 d40d
->txd
.tx_submit
= d40_tx_submit
;
2202 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2207 d40_desc_free(d40c
, d40d
);
2208 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2212 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2213 dma_cookie_t cookie
,
2214 struct dma_tx_state
*txstate
)
2216 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2217 dma_cookie_t last_used
;
2218 dma_cookie_t last_complete
;
2221 if (d40c
->phy_chan
== NULL
) {
2222 dev_err(&d40c
->chan
.dev
->device
,
2223 "[%s] Cannot read status of unallocated channel\n",
2228 last_complete
= d40c
->completed
;
2229 last_used
= chan
->cookie
;
2231 if (d40_is_paused(d40c
))
2234 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
2236 dma_set_tx_state(txstate
, last_complete
, last_used
,
2237 stedma40_residue(chan
));
2242 static void d40_issue_pending(struct dma_chan
*chan
)
2244 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2245 unsigned long flags
;
2247 if (d40c
->phy_chan
== NULL
) {
2248 dev_err(&d40c
->chan
.dev
->device
,
2249 "[%s] Channel is not allocated!\n", __func__
);
2253 spin_lock_irqsave(&d40c
->lock
, flags
);
2255 /* Busy means that pending jobs are already being processed */
2257 (void) d40_queue_start(d40c
);
2259 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2262 /* Runtime reconfiguration extension */
2263 static void d40_set_runtime_config(struct dma_chan
*chan
,
2264 struct dma_slave_config
*config
)
2266 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2267 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2268 enum dma_slave_buswidth config_addr_width
;
2269 dma_addr_t config_addr
;
2270 u32 config_maxburst
;
2271 enum stedma40_periph_data_width addr_width
;
2274 if (config
->direction
== DMA_FROM_DEVICE
) {
2275 dma_addr_t dev_addr_rx
=
2276 d40c
->base
->plat_data
->dev_rx
[cfg
->src_dev_type
];
2278 config_addr
= config
->src_addr
;
2280 dev_dbg(d40c
->base
->dev
,
2281 "channel has a pre-wired RX address %08x "
2282 "overriding with %08x\n",
2283 dev_addr_rx
, config_addr
);
2284 if (cfg
->dir
!= STEDMA40_PERIPH_TO_MEM
)
2285 dev_dbg(d40c
->base
->dev
,
2286 "channel was not configured for peripheral "
2287 "to memory transfer (%d) overriding\n",
2289 cfg
->dir
= STEDMA40_PERIPH_TO_MEM
;
2291 config_addr_width
= config
->src_addr_width
;
2292 config_maxburst
= config
->src_maxburst
;
2294 } else if (config
->direction
== DMA_TO_DEVICE
) {
2295 dma_addr_t dev_addr_tx
=
2296 d40c
->base
->plat_data
->dev_tx
[cfg
->dst_dev_type
];
2298 config_addr
= config
->dst_addr
;
2300 dev_dbg(d40c
->base
->dev
,
2301 "channel has a pre-wired TX address %08x "
2302 "overriding with %08x\n",
2303 dev_addr_tx
, config_addr
);
2304 if (cfg
->dir
!= STEDMA40_MEM_TO_PERIPH
)
2305 dev_dbg(d40c
->base
->dev
,
2306 "channel was not configured for memory "
2307 "to peripheral transfer (%d) overriding\n",
2309 cfg
->dir
= STEDMA40_MEM_TO_PERIPH
;
2311 config_addr_width
= config
->dst_addr_width
;
2312 config_maxburst
= config
->dst_maxburst
;
2315 dev_err(d40c
->base
->dev
,
2316 "unrecognized channel direction %d\n",
2321 switch (config_addr_width
) {
2322 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
2323 addr_width
= STEDMA40_BYTE_WIDTH
;
2325 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
2326 addr_width
= STEDMA40_HALFWORD_WIDTH
;
2328 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
2329 addr_width
= STEDMA40_WORD_WIDTH
;
2331 case DMA_SLAVE_BUSWIDTH_8_BYTES
:
2332 addr_width
= STEDMA40_DOUBLEWORD_WIDTH
;
2335 dev_err(d40c
->base
->dev
,
2336 "illegal peripheral address width "
2338 config
->src_addr_width
);
2342 if (d40c
->log_num
!= D40_PHY_CHAN
) {
2343 if (config_maxburst
>= 16)
2344 psize
= STEDMA40_PSIZE_LOG_16
;
2345 else if (config_maxburst
>= 8)
2346 psize
= STEDMA40_PSIZE_LOG_8
;
2347 else if (config_maxburst
>= 4)
2348 psize
= STEDMA40_PSIZE_LOG_4
;
2350 psize
= STEDMA40_PSIZE_LOG_1
;
2352 if (config_maxburst
>= 16)
2353 psize
= STEDMA40_PSIZE_PHY_16
;
2354 else if (config_maxburst
>= 8)
2355 psize
= STEDMA40_PSIZE_PHY_8
;
2356 else if (config_maxburst
>= 4)
2357 psize
= STEDMA40_PSIZE_PHY_4
;
2358 else if (config_maxburst
>= 2)
2359 psize
= STEDMA40_PSIZE_PHY_2
;
2361 psize
= STEDMA40_PSIZE_PHY_1
;
2364 /* Set up all the endpoint configs */
2365 cfg
->src_info
.data_width
= addr_width
;
2366 cfg
->src_info
.psize
= psize
;
2367 cfg
->src_info
.big_endian
= false;
2368 cfg
->src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2369 cfg
->dst_info
.data_width
= addr_width
;
2370 cfg
->dst_info
.psize
= psize
;
2371 cfg
->dst_info
.big_endian
= false;
2372 cfg
->dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2374 /* Fill in register values */
2375 if (d40c
->log_num
!= D40_PHY_CHAN
)
2376 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2378 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
,
2379 &d40c
->dst_def_cfg
, false);
2381 /* These settings will take precedence later */
2382 d40c
->runtime_addr
= config_addr
;
2383 d40c
->runtime_direction
= config
->direction
;
2384 dev_dbg(d40c
->base
->dev
,
2385 "configured channel %s for %s, data width %d, "
2386 "maxburst %d bytes, LE, no flow control\n",
2387 dma_chan_name(chan
),
2388 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
2393 static int d40_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
2396 unsigned long flags
;
2397 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2399 if (d40c
->phy_chan
== NULL
) {
2400 dev_err(&d40c
->chan
.dev
->device
,
2401 "[%s] Channel is not allocated!\n", __func__
);
2406 case DMA_TERMINATE_ALL
:
2407 spin_lock_irqsave(&d40c
->lock
, flags
);
2409 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2412 return d40_pause(chan
);
2414 return d40_resume(chan
);
2415 case DMA_SLAVE_CONFIG
:
2416 d40_set_runtime_config(chan
,
2417 (struct dma_slave_config
*) arg
);
2423 /* Other commands are unimplemented */
2427 /* Initialization functions */
2429 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2430 struct d40_chan
*chans
, int offset
,
2434 struct d40_chan
*d40c
;
2436 INIT_LIST_HEAD(&dma
->channels
);
2438 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2441 d40c
->chan
.device
= dma
;
2443 spin_lock_init(&d40c
->lock
);
2445 d40c
->log_num
= D40_PHY_CHAN
;
2447 INIT_LIST_HEAD(&d40c
->active
);
2448 INIT_LIST_HEAD(&d40c
->queue
);
2449 INIT_LIST_HEAD(&d40c
->client
);
2451 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2452 (unsigned long) d40c
);
2454 list_add_tail(&d40c
->chan
.device_node
,
2459 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2460 int num_reserved_chans
)
2464 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2465 0, base
->num_log_chans
);
2467 dma_cap_zero(base
->dma_slave
.cap_mask
);
2468 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2470 base
->dma_slave
.device_alloc_chan_resources
= d40_alloc_chan_resources
;
2471 base
->dma_slave
.device_free_chan_resources
= d40_free_chan_resources
;
2472 base
->dma_slave
.device_prep_dma_memcpy
= d40_prep_memcpy
;
2473 base
->dma_slave
.device_prep_dma_sg
= d40_prep_sg
;
2474 base
->dma_slave
.device_prep_slave_sg
= d40_prep_slave_sg
;
2475 base
->dma_slave
.device_tx_status
= d40_tx_status
;
2476 base
->dma_slave
.device_issue_pending
= d40_issue_pending
;
2477 base
->dma_slave
.device_control
= d40_control
;
2478 base
->dma_slave
.dev
= base
->dev
;
2480 err
= dma_async_device_register(&base
->dma_slave
);
2484 "[%s] Failed to register slave channels\n",
2489 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2490 base
->num_log_chans
, base
->plat_data
->memcpy_len
);
2492 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2493 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2494 dma_cap_set(DMA_SG
, base
->dma_slave
.cap_mask
);
2496 base
->dma_memcpy
.device_alloc_chan_resources
= d40_alloc_chan_resources
;
2497 base
->dma_memcpy
.device_free_chan_resources
= d40_free_chan_resources
;
2498 base
->dma_memcpy
.device_prep_dma_memcpy
= d40_prep_memcpy
;
2499 base
->dma_slave
.device_prep_dma_sg
= d40_prep_sg
;
2500 base
->dma_memcpy
.device_prep_slave_sg
= d40_prep_slave_sg
;
2501 base
->dma_memcpy
.device_tx_status
= d40_tx_status
;
2502 base
->dma_memcpy
.device_issue_pending
= d40_issue_pending
;
2503 base
->dma_memcpy
.device_control
= d40_control
;
2504 base
->dma_memcpy
.dev
= base
->dev
;
2506 * This controller can only access address at even
2507 * 32bit boundaries, i.e. 2^2
2509 base
->dma_memcpy
.copy_align
= 2;
2511 err
= dma_async_device_register(&base
->dma_memcpy
);
2515 "[%s] Failed to regsiter memcpy only channels\n",
2520 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2521 0, num_reserved_chans
);
2523 dma_cap_zero(base
->dma_both
.cap_mask
);
2524 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2525 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2526 dma_cap_set(DMA_SG
, base
->dma_slave
.cap_mask
);
2528 base
->dma_both
.device_alloc_chan_resources
= d40_alloc_chan_resources
;
2529 base
->dma_both
.device_free_chan_resources
= d40_free_chan_resources
;
2530 base
->dma_both
.device_prep_dma_memcpy
= d40_prep_memcpy
;
2531 base
->dma_slave
.device_prep_dma_sg
= d40_prep_sg
;
2532 base
->dma_both
.device_prep_slave_sg
= d40_prep_slave_sg
;
2533 base
->dma_both
.device_tx_status
= d40_tx_status
;
2534 base
->dma_both
.device_issue_pending
= d40_issue_pending
;
2535 base
->dma_both
.device_control
= d40_control
;
2536 base
->dma_both
.dev
= base
->dev
;
2537 base
->dma_both
.copy_align
= 2;
2538 err
= dma_async_device_register(&base
->dma_both
);
2542 "[%s] Failed to register logical and physical capable channels\n",
2548 dma_async_device_unregister(&base
->dma_memcpy
);
2550 dma_async_device_unregister(&base
->dma_slave
);
2555 /* Initialization functions. */
2557 static int __init
d40_phy_res_init(struct d40_base
*base
)
2560 int num_phy_chans_avail
= 0;
2562 int odd_even_bit
= -2;
2564 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
2565 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
2567 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2568 base
->phy_res
[i
].num
= i
;
2569 odd_even_bit
+= 2 * ((i
% 2) == 0);
2570 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
2571 /* Mark security only channels as occupied */
2572 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
2573 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
2575 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
2576 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
2577 num_phy_chans_avail
++;
2579 spin_lock_init(&base
->phy_res
[i
].lock
);
2582 /* Mark disabled channels as occupied */
2583 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
2584 int chan
= base
->plat_data
->disabled_channels
[i
];
2586 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
2587 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
2588 num_phy_chans_avail
--;
2591 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
2592 num_phy_chans_avail
, base
->num_phy_chans
);
2594 /* Verify settings extended vs standard */
2595 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
2597 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2599 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
2600 (val
[0] & 0x3) != 1)
2602 "[%s] INFO: channel %d is misconfigured (%d)\n",
2603 __func__
, i
, val
[0] & 0x3);
2605 val
[0] = val
[0] >> 2;
2608 return num_phy_chans_avail
;
2611 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
2613 static const struct d40_reg_val dma_id_regs
[] = {
2615 { .reg
= D40_DREG_PERIPHID0
, .val
= 0x0040},
2616 { .reg
= D40_DREG_PERIPHID1
, .val
= 0x0000},
2618 * D40_DREG_PERIPHID2 Depends on HW revision:
2619 * MOP500/HREF ED has 0x0008,
2621 * HREF V1 has 0x0028
2623 { .reg
= D40_DREG_PERIPHID3
, .val
= 0x0000},
2626 { .reg
= D40_DREG_CELLID0
, .val
= 0x000d},
2627 { .reg
= D40_DREG_CELLID1
, .val
= 0x00f0},
2628 { .reg
= D40_DREG_CELLID2
, .val
= 0x0005},
2629 { .reg
= D40_DREG_CELLID3
, .val
= 0x00b1}
2631 struct stedma40_platform_data
*plat_data
;
2632 struct clk
*clk
= NULL
;
2633 void __iomem
*virtbase
= NULL
;
2634 struct resource
*res
= NULL
;
2635 struct d40_base
*base
= NULL
;
2636 int num_log_chans
= 0;
2642 clk
= clk_get(&pdev
->dev
, NULL
);
2645 dev_err(&pdev
->dev
, "[%s] No matching clock found\n",
2652 /* Get IO for DMAC base address */
2653 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
2657 if (request_mem_region(res
->start
, resource_size(res
),
2658 D40_NAME
" I/O base") == NULL
)
2661 virtbase
= ioremap(res
->start
, resource_size(res
));
2665 /* HW version check */
2666 for (i
= 0; i
< ARRAY_SIZE(dma_id_regs
); i
++) {
2667 if (dma_id_regs
[i
].val
!=
2668 readl(virtbase
+ dma_id_regs
[i
].reg
)) {
2670 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2674 readl(virtbase
+ dma_id_regs
[i
].reg
));
2679 /* Get silicon revision and designer */
2680 val
= readl(virtbase
+ D40_DREG_PERIPHID2
);
2682 if ((val
& D40_DREG_PERIPHID2_DESIGNER_MASK
) !=
2685 "[%s] Unknown designer! Got %x wanted %x\n",
2686 __func__
, val
& D40_DREG_PERIPHID2_DESIGNER_MASK
,
2691 rev
= (val
& D40_DREG_PERIPHID2_REV_MASK
) >>
2692 D40_DREG_PERIPHID2_REV_POS
;
2694 /* The number of physical channels on this HW */
2695 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
2697 dev_info(&pdev
->dev
, "hardware revision: %d @ 0x%x\n",
2700 plat_data
= pdev
->dev
.platform_data
;
2702 /* Count the number of logical channels in use */
2703 for (i
= 0; i
< plat_data
->dev_len
; i
++)
2704 if (plat_data
->dev_rx
[i
] != 0)
2707 for (i
= 0; i
< plat_data
->dev_len
; i
++)
2708 if (plat_data
->dev_tx
[i
] != 0)
2711 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
2712 (num_phy_chans
+ num_log_chans
+ plat_data
->memcpy_len
) *
2713 sizeof(struct d40_chan
), GFP_KERNEL
);
2716 dev_err(&pdev
->dev
, "[%s] Out of memory\n", __func__
);
2722 base
->num_phy_chans
= num_phy_chans
;
2723 base
->num_log_chans
= num_log_chans
;
2724 base
->phy_start
= res
->start
;
2725 base
->phy_size
= resource_size(res
);
2726 base
->virtbase
= virtbase
;
2727 base
->plat_data
= plat_data
;
2728 base
->dev
= &pdev
->dev
;
2729 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
2730 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
2732 base
->phy_res
= kzalloc(num_phy_chans
* sizeof(struct d40_phy_res
),
2737 base
->lookup_phy_chans
= kzalloc(num_phy_chans
*
2738 sizeof(struct d40_chan
*),
2740 if (!base
->lookup_phy_chans
)
2743 if (num_log_chans
+ plat_data
->memcpy_len
) {
2745 * The max number of logical channels are event lines for all
2746 * src devices and dst devices
2748 base
->lookup_log_chans
= kzalloc(plat_data
->dev_len
* 2 *
2749 sizeof(struct d40_chan
*),
2751 if (!base
->lookup_log_chans
)
2755 base
->lcla_pool
.alloc_map
= kzalloc(num_phy_chans
*
2756 sizeof(struct d40_desc
*) *
2757 D40_LCLA_LINK_PER_EVENT_GRP
,
2759 if (!base
->lcla_pool
.alloc_map
)
2762 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
2763 0, SLAB_HWCACHE_ALIGN
,
2765 if (base
->desc_slab
== NULL
)
2778 release_mem_region(res
->start
,
2779 resource_size(res
));
2784 kfree(base
->lcla_pool
.alloc_map
);
2785 kfree(base
->lookup_log_chans
);
2786 kfree(base
->lookup_phy_chans
);
2787 kfree(base
->phy_res
);
2794 static void __init
d40_hw_init(struct d40_base
*base
)
2797 static const struct d40_reg_val dma_init_reg
[] = {
2798 /* Clock every part of the DMA block from start */
2799 { .reg
= D40_DREG_GCC
, .val
= 0x0000ff01},
2801 /* Interrupts on all logical channels */
2802 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
2803 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
2804 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
2805 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
2806 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
2807 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
2808 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
2809 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
2810 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
2811 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
2812 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
2813 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
2816 u32 prmseo
[2] = {0, 0};
2817 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2821 for (i
= 0; i
< ARRAY_SIZE(dma_init_reg
); i
++)
2822 writel(dma_init_reg
[i
].val
,
2823 base
->virtbase
+ dma_init_reg
[i
].reg
);
2825 /* Configure all our dma channels to default settings */
2826 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2828 activeo
[i
% 2] = activeo
[i
% 2] << 2;
2830 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
2832 activeo
[i
% 2] |= 3;
2836 /* Enable interrupt # */
2837 pcmis
= (pcmis
<< 1) | 1;
2839 /* Clear interrupt # */
2840 pcicr
= (pcicr
<< 1) | 1;
2842 /* Set channel to physical mode */
2843 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
2848 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
2849 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
2850 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
2851 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
2853 /* Write which interrupt to enable */
2854 writel(pcmis
, base
->virtbase
+ D40_DREG_PCMIS
);
2856 /* Write which interrupt to clear */
2857 writel(pcicr
, base
->virtbase
+ D40_DREG_PCICR
);
2861 static int __init
d40_lcla_allocate(struct d40_base
*base
)
2863 unsigned long *page_list
;
2868 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2869 * To full fill this hardware requirement without wasting 256 kb
2870 * we allocate pages until we get an aligned one.
2872 page_list
= kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS
,
2880 /* Calculating how many pages that are required */
2881 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
2883 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
2884 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
2885 base
->lcla_pool
.pages
);
2886 if (!page_list
[i
]) {
2889 "[%s] Failed to allocate %d pages.\n",
2890 __func__
, base
->lcla_pool
.pages
);
2892 for (j
= 0; j
< i
; j
++)
2893 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
2897 if ((virt_to_phys((void *)page_list
[i
]) &
2898 (LCLA_ALIGNMENT
- 1)) == 0)
2902 for (j
= 0; j
< i
; j
++)
2903 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
2905 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
2906 base
->lcla_pool
.base
= (void *)page_list
[i
];
2909 * After many attempts and no succees with finding the correct
2910 * alignment, try with allocating a big buffer.
2913 "[%s] Failed to get %d pages @ 18 bit align.\n",
2914 __func__
, base
->lcla_pool
.pages
);
2915 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
2916 base
->num_phy_chans
+
2919 if (!base
->lcla_pool
.base_unaligned
) {
2924 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
2928 writel(virt_to_phys(base
->lcla_pool
.base
),
2929 base
->virtbase
+ D40_DREG_LCLA
);
2935 static int __init
d40_probe(struct platform_device
*pdev
)
2939 struct d40_base
*base
;
2940 struct resource
*res
= NULL
;
2941 int num_reserved_chans
;
2944 base
= d40_hw_detect_init(pdev
);
2949 num_reserved_chans
= d40_phy_res_init(base
);
2951 platform_set_drvdata(pdev
, base
);
2953 spin_lock_init(&base
->interrupt_lock
);
2954 spin_lock_init(&base
->execmd_lock
);
2956 /* Get IO for logical channel parameter address */
2957 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
2961 "[%s] No \"lcpa\" memory resource\n",
2965 base
->lcpa_size
= resource_size(res
);
2966 base
->phy_lcpa
= res
->start
;
2968 if (request_mem_region(res
->start
, resource_size(res
),
2969 D40_NAME
" I/O lcpa") == NULL
) {
2972 "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2973 __func__
, res
->start
, res
->end
);
2977 /* We make use of ESRAM memory for this. */
2978 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
2979 if (res
->start
!= val
&& val
!= 0) {
2980 dev_warn(&pdev
->dev
,
2981 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2982 __func__
, val
, res
->start
);
2984 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
2986 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
2987 if (!base
->lcpa_base
) {
2990 "[%s] Failed to ioremap LCPA region\n",
2995 ret
= d40_lcla_allocate(base
);
2997 dev_err(&pdev
->dev
, "[%s] Failed to allocate LCLA area\n",
3002 spin_lock_init(&base
->lcla_pool
.lock
);
3004 base
->irq
= platform_get_irq(pdev
, 0);
3006 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3009 dev_err(&pdev
->dev
, "[%s] No IRQ defined\n", __func__
);
3013 err
= d40_dmaengine_init(base
, num_reserved_chans
);
3019 dev_info(base
->dev
, "initialized\n");
3024 if (base
->desc_slab
)
3025 kmem_cache_destroy(base
->desc_slab
);
3027 iounmap(base
->virtbase
);
3028 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3029 free_pages((unsigned long)base
->lcla_pool
.base
,
3030 base
->lcla_pool
.pages
);
3032 kfree(base
->lcla_pool
.base_unaligned
);
3035 release_mem_region(base
->phy_lcpa
,
3037 if (base
->phy_start
)
3038 release_mem_region(base
->phy_start
,
3041 clk_disable(base
->clk
);
3045 kfree(base
->lcla_pool
.alloc_map
);
3046 kfree(base
->lookup_log_chans
);
3047 kfree(base
->lookup_phy_chans
);
3048 kfree(base
->phy_res
);
3052 dev_err(&pdev
->dev
, "[%s] probe failed\n", __func__
);
3056 static struct platform_driver d40_driver
= {
3058 .owner
= THIS_MODULE
,
3063 int __init
stedma40_init(void)
3065 return platform_driver_probe(&d40_driver
, d40_probe
);
3067 arch_initcall(stedma40_init
);