EDAC: Remove debugging output in scrub rate handling
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119 {
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134 }
135
136 /*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150 /*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 {
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
170 if (scrubrates[i].scrubval < min_rate)
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
184
185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
190 return 0;
191 }
192
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 {
195 struct amd64_pvt *pvt = mci->pvt_info;
196 u32 min_scrubrate = 0x5;
197
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 }
203
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 {
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
208 int i, retval = -EINVAL;
209
210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211
212 scrubval = scrubval & 0x001F;
213
214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215 if (scrubrates[i].scrubval == scrubval) {
216 retval = scrubrates[i].bandwidth;
217 break;
218 }
219 }
220 return retval;
221 }
222
223 /*
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
226 */
227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
229 {
230 u64 addr;
231
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
237 */
238 addr = sys_addr & 0x000000ffffffffffull;
239
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
242 }
243
244 /*
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
247 *
248 * On failure, return NULL.
249 */
250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
252 {
253 struct amd64_pvt *pvt;
254 unsigned node_id;
255 u32 intlv_en, bits;
256
257 /*
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 */
261 pvt = mci->pvt_info;
262
263 /*
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
267 */
268 intlv_en = dram_intlv_en(pvt, 0);
269
270 if (intlv_en == 0) {
271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
273 goto found;
274 }
275 goto err_no_match;
276 }
277
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282 return NULL;
283 }
284
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287 for (node_id = 0; ; ) {
288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 break; /* intlv_sel field matches */
290
291 if (++node_id >= DRAM_RANGES)
292 goto err_no_match;
293 }
294
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
300 return NULL;
301 }
302
303 found:
304 return edac_mc_find((int)node_id);
305
306 err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
309
310 return NULL;
311 }
312
313 /*
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
316 */
317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
319 {
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
322
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
333
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 }
339
340 *base = (csbase & base_bits) << addr_shift;
341
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
347 }
348
349 #define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
352 #define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
354
355 #define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
358 /*
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361 */
362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363 {
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
367
368 pvt = mci->pvt_info;
369
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
372 continue;
373
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376 mask = ~mask;
377
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
382
383 return csrow;
384 }
385 }
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
388
389 return -1;
390 }
391
392 /*
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
397 *
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
400 *
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
403 *
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
407 */
408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
410 {
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
413
414 /* only revE and later have the DRAM Hole Address Register */
415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
419 }
420
421 /* valid for Fam10h and above */
422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
425 }
426
427 if (!dhar_valid(pvt)) {
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
431 }
432
433 /* This node has Memory Hoisting */
434
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
443 *
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
449 */
450
451 base = dhar_base(pvt);
452
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
455
456 if (boot_cpu_data.x86 > 0xf)
457 *hole_offset = f10_dhar_offset(pvt);
458 else
459 *hole_offset = k8_dhar_offset(pvt);
460
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465 return 0;
466 }
467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
469 /*
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
472 *
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
479 *
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
481 *
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
486 *
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
493 *
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497 */
498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499 {
500 struct amd64_pvt *pvt = mci->pvt_info;
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
503
504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
505
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
513
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
518
519 return dram_addr;
520 }
521 }
522
523 /*
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
531 */
532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
533
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
538 }
539
540 /*
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
544 */
545 static int num_node_interleave_bits(unsigned intlv_en)
546 {
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
549
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
553 }
554
555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557 {
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
561
562 pvt = mci->pvt_info;
563
564 /*
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
567 */
568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
571
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
575
576 return input_addr;
577 }
578
579 /*
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
582 */
583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584 {
585 u64 input_addr;
586
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596
597 /*
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
600 */
601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602 {
603 struct amd64_pvt *pvt;
604 unsigned node_id, intlv_shift;
605 u64 bits, dram_addr;
606 u32 intlv_sel;
607
608 /*
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
615 */
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
618
619 BUG_ON(node_id > 7);
620
621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
625
626 return input_addr;
627 }
628
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
631
632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 dram_addr = bits + (intlv_sel << 12);
634
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
638
639 return dram_addr;
640 }
641
642 /*
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
645 */
646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647 {
648 struct amd64_pvt *pvt = mci->pvt_info;
649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
650 int ret = 0;
651
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
658
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
662
663 return sys_addr;
664 }
665 }
666
667 base = get_dram_base(pvt, pvt->mc_node_id);
668 sys_addr = dram_addr + base;
669
670 /*
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
680 */
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
686
687 return sys_addr;
688 }
689
690 /*
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
693 */
694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
696 {
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
699 }
700
701 /*
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
704 */
705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
707 {
708 struct amd64_pvt *pvt;
709 u64 base, mask;
710
711 pvt = mci->pvt_info;
712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
713
714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
715
716 *input_addr_min = base & ~mask;
717 *input_addr_max = base | mask;
718 }
719
720 /* Map the Error address to a PAGE and PAGE OFFSET. */
721 static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
723 {
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
726 }
727
728 /*
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
735 */
736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737 {
738 int csrow;
739
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742 if (csrow == -1)
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
745 return csrow;
746 }
747
748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
749
750 /*
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
753 */
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755 {
756 u8 bit;
757 enum dev_type edac_cap = EDAC_FLAG_NONE;
758
759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760 ? 19
761 : 17;
762
763 if (pvt->dclr0 & BIT(bit))
764 edac_cap = EDAC_FLAG_SECDED;
765
766 return edac_cap;
767 }
768
769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
770
771 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772 {
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
778
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
781
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
785
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
791 }
792
793 /* Display and decode various NB registers for debug purposes. */
794 static void dump_misc_regs(struct amd64_pvt *pvt)
795 {
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798 debugf1(" NB two channel DRAM capable: %s\n",
799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
800
801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
804
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
806
807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
808
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
814
815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
816
817 amd64_debug_display_dimm_sizes(pvt, 0);
818
819 /* everything below this point is Fam10h and above */
820 if (boot_cpu_data.x86 == 0xf)
821 return;
822
823 amd64_debug_display_dimm_sizes(pvt, 1);
824
825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
826
827 /* Only if NOT ganged does dclr1 have valid info */
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
830 }
831
832 /*
833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
834 */
835 static void prep_chip_selects(struct amd64_pvt *pvt)
836 {
837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840 } else {
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
843 }
844 }
845
846 /*
847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
848 */
849 static void read_dct_base_mask(struct amd64_pvt *pvt)
850 {
851 int cs;
852
853 prep_chip_selects(pvt);
854
855 for_each_chip_select(cs, 0, pvt) {
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
860
861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
863 cs, *base0, reg0);
864
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
867
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
871 }
872
873 for_each_chip_select_mask(cs, 0, pvt) {
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
878
879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
881 cs, *mask0, reg0);
882
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
885
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
889 }
890 }
891
892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
893 {
894 enum mem_type type;
895
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904 } else {
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 }
907
908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
909
910 return type;
911 }
912
913 /* Get the number of DCT channels the memory controller is using. */
914 static int k8_early_channel_count(struct amd64_pvt *pvt)
915 {
916 int flag;
917
918 if (pvt->ext_model >= K8_REV_F)
919 /* RevF (NPT) and later */
920 flag = pvt->dclr0 & WIDTH_128;
921 else
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
924
925 /* not used */
926 pvt->dclr1 = 0;
927
928 return (flag) ? 2 : 1;
929 }
930
931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932 static u64 get_error_address(struct mce *m)
933 {
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
937 if (boot_cpu_data.x86 == 0xf) {
938 start_bit = 3;
939 end_bit = 39;
940 }
941
942 return m->addr & GENMASK(start_bit, end_bit);
943 }
944
945 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
946 {
947 int off = range << 3;
948
949 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
950 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
951
952 if (boot_cpu_data.x86 == 0xf)
953 return;
954
955 if (!dram_rw(pvt, range))
956 return;
957
958 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
959 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
960 }
961
962 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
963 u16 syndrome)
964 {
965 struct mem_ctl_info *src_mci;
966 struct amd64_pvt *pvt = mci->pvt_info;
967 int channel, csrow;
968 u32 page, offset;
969
970 /* CHIPKILL enabled */
971 if (pvt->nbcfg & NBCFG_CHIPKILL) {
972 channel = get_channel_from_ecc_syndrome(mci, syndrome);
973 if (channel < 0) {
974 /*
975 * Syndrome didn't map, so we don't know which of the
976 * 2 DIMMs is in error. So we need to ID 'both' of them
977 * as suspect.
978 */
979 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
980 "error reporting race\n", syndrome);
981 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
982 return;
983 }
984 } else {
985 /*
986 * non-chipkill ecc mode
987 *
988 * The k8 documentation is unclear about how to determine the
989 * channel number when using non-chipkill memory. This method
990 * was obtained from email communication with someone at AMD.
991 * (Wish the email was placed in this comment - norsk)
992 */
993 channel = ((sys_addr & BIT(3)) != 0);
994 }
995
996 /*
997 * Find out which node the error address belongs to. This may be
998 * different from the node that detected the error.
999 */
1000 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1001 if (!src_mci) {
1002 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1003 (unsigned long)sys_addr);
1004 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1005 return;
1006 }
1007
1008 /* Now map the sys_addr to a CSROW */
1009 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1010 if (csrow < 0) {
1011 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1012 } else {
1013 error_address_to_page_and_offset(sys_addr, &page, &offset);
1014
1015 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1016 channel, EDAC_MOD_STR);
1017 }
1018 }
1019
1020 static int ddr2_cs_size(unsigned i, bool dct_width)
1021 {
1022 unsigned shift = 0;
1023
1024 if (i <= 2)
1025 shift = i;
1026 else if (!(i & 0x1))
1027 shift = i >> 1;
1028 else
1029 shift = (i + 1) >> 1;
1030
1031 return 128 << (shift + !!dct_width);
1032 }
1033
1034 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1035 unsigned cs_mode)
1036 {
1037 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1038
1039 if (pvt->ext_model >= K8_REV_F) {
1040 WARN_ON(cs_mode > 11);
1041 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1042 }
1043 else if (pvt->ext_model >= K8_REV_D) {
1044 WARN_ON(cs_mode > 10);
1045
1046 if (cs_mode == 3 || cs_mode == 8)
1047 return 32 << (cs_mode - 1);
1048 else
1049 return 32 << cs_mode;
1050 }
1051 else {
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1054 }
1055 }
1056
1057 /*
1058 * Get the number of DCT channels in use.
1059 *
1060 * Return:
1061 * number of Memory Channels in operation
1062 * Pass back:
1063 * contents of the DCL0_LOW register
1064 */
1065 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1066 {
1067 int i, j, channels = 0;
1068
1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1071 return 2;
1072
1073 /*
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1076 * bit will be OFF.
1077 *
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1080 */
1081 debugf0("Data width is not 128 bits - need more decoding\n");
1082
1083 /*
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1087 */
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1090
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1093 channels++;
1094 break;
1095 }
1096 }
1097 }
1098
1099 if (channels > 2)
1100 channels = 2;
1101
1102 amd64_info("MCT channel count: %d\n", channels);
1103
1104 return channels;
1105 }
1106
1107 static int ddr3_cs_size(unsigned i, bool dct_width)
1108 {
1109 unsigned shift = 0;
1110 int cs_size = 0;
1111
1112 if (i == 0 || i == 3 || i == 4)
1113 cs_size = -1;
1114 else if (i <= 2)
1115 shift = i;
1116 else if (i == 12)
1117 shift = 7;
1118 else if (!(i & 0x1))
1119 shift = i >> 1;
1120 else
1121 shift = (i + 1) >> 1;
1122
1123 if (cs_size != -1)
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1125
1126 return cs_size;
1127 }
1128
1129 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1130 unsigned cs_mode)
1131 {
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1133
1134 WARN_ON(cs_mode > 11);
1135
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1138 else
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1140 }
1141
1142 /*
1143 * F15h supports only 64bit DCT interfaces
1144 */
1145 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1146 unsigned cs_mode)
1147 {
1148 WARN_ON(cs_mode > 12);
1149
1150 return ddr3_cs_size(cs_mode, false);
1151 }
1152
1153 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1154 {
1155
1156 if (boot_cpu_data.x86 == 0xf)
1157 return;
1158
1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1160 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1162
1163 debugf0(" DCTs operate in %s mode.\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1165
1166 if (!dct_ganging_enabled(pvt))
1167 debugf0(" Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1169
1170 debugf0(" data interleave for ECC: %s, "
1171 "DRAM cleared since last warm reset: %s\n",
1172 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1173 (dct_memory_cleared(pvt) ? "yes" : "no"));
1174
1175 debugf0(" channel interleave: %s, "
1176 "interleave bits selector: 0x%x\n",
1177 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1178 dct_sel_interleave_addr(pvt));
1179 }
1180
1181 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1182 }
1183
1184 /*
1185 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1186 * Interleaving Modes.
1187 */
1188 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1189 bool hi_range_sel, u8 intlv_en)
1190 {
1191 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1192
1193 if (dct_ganging_enabled(pvt))
1194 return 0;
1195
1196 if (hi_range_sel)
1197 return dct_sel_high;
1198
1199 /*
1200 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1201 */
1202 if (dct_interleave_enabled(pvt)) {
1203 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1204
1205 /* return DCT select function: 0=DCT0, 1=DCT1 */
1206 if (!intlv_addr)
1207 return sys_addr >> 6 & 1;
1208
1209 if (intlv_addr & 0x2) {
1210 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1211 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1212
1213 return ((sys_addr >> shift) & 1) ^ temp;
1214 }
1215
1216 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1217 }
1218
1219 if (dct_high_range_enabled(pvt))
1220 return ~dct_sel_high & 1;
1221
1222 return 0;
1223 }
1224
1225 /* Convert the sys_addr to the normalized DCT address */
1226 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1227 u64 sys_addr, bool hi_rng,
1228 u32 dct_sel_base_addr)
1229 {
1230 u64 chan_off;
1231 u64 dram_base = get_dram_base(pvt, range);
1232 u64 hole_off = f10_dhar_offset(pvt);
1233 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1234
1235 if (hi_rng) {
1236 /*
1237 * if
1238 * base address of high range is below 4Gb
1239 * (bits [47:27] at [31:11])
1240 * DRAM address space on this DCT is hoisted above 4Gb &&
1241 * sys_addr > 4Gb
1242 *
1243 * remove hole offset from sys_addr
1244 * else
1245 * remove high range offset from sys_addr
1246 */
1247 if ((!(dct_sel_base_addr >> 16) ||
1248 dct_sel_base_addr < dhar_base(pvt)) &&
1249 dhar_valid(pvt) &&
1250 (sys_addr >= BIT_64(32)))
1251 chan_off = hole_off;
1252 else
1253 chan_off = dct_sel_base_off;
1254 } else {
1255 /*
1256 * if
1257 * we have a valid hole &&
1258 * sys_addr > 4Gb
1259 *
1260 * remove hole
1261 * else
1262 * remove dram base to normalize to DCT address
1263 */
1264 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1265 chan_off = hole_off;
1266 else
1267 chan_off = dram_base;
1268 }
1269
1270 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1271 }
1272
1273 /*
1274 * checks if the csrow passed in is marked as SPARED, if so returns the new
1275 * spare row
1276 */
1277 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1278 {
1279 int tmp_cs;
1280
1281 if (online_spare_swap_done(pvt, dct) &&
1282 csrow == online_spare_bad_dramcs(pvt, dct)) {
1283
1284 for_each_chip_select(tmp_cs, dct, pvt) {
1285 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1286 csrow = tmp_cs;
1287 break;
1288 }
1289 }
1290 }
1291 return csrow;
1292 }
1293
1294 /*
1295 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1296 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1297 *
1298 * Return:
1299 * -EINVAL: NOT FOUND
1300 * 0..csrow = Chip-Select Row
1301 */
1302 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1303 {
1304 struct mem_ctl_info *mci;
1305 struct amd64_pvt *pvt;
1306 u64 cs_base, cs_mask;
1307 int cs_found = -EINVAL;
1308 int csrow;
1309
1310 mci = mcis[nid];
1311 if (!mci)
1312 return cs_found;
1313
1314 pvt = mci->pvt_info;
1315
1316 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1317
1318 for_each_chip_select(csrow, dct, pvt) {
1319 if (!csrow_enabled(csrow, dct, pvt))
1320 continue;
1321
1322 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1323
1324 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1325 csrow, cs_base, cs_mask);
1326
1327 cs_mask = ~cs_mask;
1328
1329 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1330 "(CSBase & ~CSMask)=0x%llx\n",
1331 (in_addr & cs_mask), (cs_base & cs_mask));
1332
1333 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1334 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1335
1336 debugf1(" MATCH csrow=%d\n", cs_found);
1337 break;
1338 }
1339 }
1340 return cs_found;
1341 }
1342
1343 /*
1344 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1345 * swapped with a region located at the bottom of memory so that the GPU can use
1346 * the interleaved region and thus two channels.
1347 */
1348 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1349 {
1350 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1351
1352 if (boot_cpu_data.x86 == 0x10) {
1353 /* only revC3 and revE have that feature */
1354 if (boot_cpu_data.x86_model < 4 ||
1355 (boot_cpu_data.x86_model < 0xa &&
1356 boot_cpu_data.x86_mask < 3))
1357 return sys_addr;
1358 }
1359
1360 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1361
1362 if (!(swap_reg & 0x1))
1363 return sys_addr;
1364
1365 swap_base = (swap_reg >> 3) & 0x7f;
1366 swap_limit = (swap_reg >> 11) & 0x7f;
1367 rgn_size = (swap_reg >> 20) & 0x7f;
1368 tmp_addr = sys_addr >> 27;
1369
1370 if (!(sys_addr >> 34) &&
1371 (((tmp_addr >= swap_base) &&
1372 (tmp_addr <= swap_limit)) ||
1373 (tmp_addr < rgn_size)))
1374 return sys_addr ^ (u64)swap_base << 27;
1375
1376 return sys_addr;
1377 }
1378
1379 /* For a given @dram_range, check if @sys_addr falls within it. */
1380 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1381 u64 sys_addr, int *nid, int *chan_sel)
1382 {
1383 int cs_found = -EINVAL;
1384 u64 chan_addr;
1385 u32 dct_sel_base;
1386 u8 channel;
1387 bool high_range = false;
1388
1389 u8 node_id = dram_dst_node(pvt, range);
1390 u8 intlv_en = dram_intlv_en(pvt, range);
1391 u32 intlv_sel = dram_intlv_sel(pvt, range);
1392
1393 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1394 range, sys_addr, get_dram_limit(pvt, range));
1395
1396 if (dhar_valid(pvt) &&
1397 dhar_base(pvt) <= sys_addr &&
1398 sys_addr < BIT_64(32)) {
1399 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1400 sys_addr);
1401 return -EINVAL;
1402 }
1403
1404 if (intlv_en &&
1405 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1406 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1407 intlv_en, intlv_sel);
1408 return -EINVAL;
1409 }
1410
1411 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1412
1413 dct_sel_base = dct_sel_baseaddr(pvt);
1414
1415 /*
1416 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1417 * select between DCT0 and DCT1.
1418 */
1419 if (dct_high_range_enabled(pvt) &&
1420 !dct_ganging_enabled(pvt) &&
1421 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1422 high_range = true;
1423
1424 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1425
1426 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1427 high_range, dct_sel_base);
1428
1429 /* Remove node interleaving, see F1x120 */
1430 if (intlv_en)
1431 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1432 (chan_addr & 0xfff);
1433
1434 /* remove channel interleave */
1435 if (dct_interleave_enabled(pvt) &&
1436 !dct_high_range_enabled(pvt) &&
1437 !dct_ganging_enabled(pvt)) {
1438
1439 if (dct_sel_interleave_addr(pvt) != 1) {
1440 if (dct_sel_interleave_addr(pvt) == 0x3)
1441 /* hash 9 */
1442 chan_addr = ((chan_addr >> 10) << 9) |
1443 (chan_addr & 0x1ff);
1444 else
1445 /* A[6] or hash 6 */
1446 chan_addr = ((chan_addr >> 7) << 6) |
1447 (chan_addr & 0x3f);
1448 } else
1449 /* A[12] */
1450 chan_addr = ((chan_addr >> 13) << 12) |
1451 (chan_addr & 0xfff);
1452 }
1453
1454 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1455
1456 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1457
1458 if (cs_found >= 0) {
1459 *nid = node_id;
1460 *chan_sel = channel;
1461 }
1462 return cs_found;
1463 }
1464
1465 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1466 int *node, int *chan_sel)
1467 {
1468 int cs_found = -EINVAL;
1469 unsigned range;
1470
1471 for (range = 0; range < DRAM_RANGES; range++) {
1472
1473 if (!dram_rw(pvt, range))
1474 continue;
1475
1476 if ((get_dram_base(pvt, range) <= sys_addr) &&
1477 (get_dram_limit(pvt, range) >= sys_addr)) {
1478
1479 cs_found = f1x_match_to_this_node(pvt, range,
1480 sys_addr, node,
1481 chan_sel);
1482 if (cs_found >= 0)
1483 break;
1484 }
1485 }
1486 return cs_found;
1487 }
1488
1489 /*
1490 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1491 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1492 *
1493 * The @sys_addr is usually an error address received from the hardware
1494 * (MCX_ADDR).
1495 */
1496 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1497 u16 syndrome)
1498 {
1499 struct amd64_pvt *pvt = mci->pvt_info;
1500 u32 page, offset;
1501 int nid, csrow, chan = 0;
1502
1503 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1504
1505 if (csrow < 0) {
1506 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1507 return;
1508 }
1509
1510 error_address_to_page_and_offset(sys_addr, &page, &offset);
1511
1512 /*
1513 * We need the syndromes for channel detection only when we're
1514 * ganged. Otherwise @chan should already contain the channel at
1515 * this point.
1516 */
1517 if (dct_ganging_enabled(pvt))
1518 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1519
1520 if (chan >= 0)
1521 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1522 EDAC_MOD_STR);
1523 else
1524 /*
1525 * Channel unknown, report all channels on this CSROW as failed.
1526 */
1527 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1528 edac_mc_handle_ce(mci, page, offset, syndrome,
1529 csrow, chan, EDAC_MOD_STR);
1530 }
1531
1532 /*
1533 * debug routine to display the memory sizes of all logical DIMMs and its
1534 * CSROWs
1535 */
1536 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1537 {
1538 int dimm, size0, size1, factor = 0;
1539 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1540 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1541
1542 if (boot_cpu_data.x86 == 0xf) {
1543 if (pvt->dclr0 & WIDTH_128)
1544 factor = 1;
1545
1546 /* K8 families < revF not supported yet */
1547 if (pvt->ext_model < K8_REV_F)
1548 return;
1549 else
1550 WARN_ON(ctrl != 0);
1551 }
1552
1553 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1554 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1555 : pvt->csels[0].csbases;
1556
1557 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1558
1559 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1560
1561 /* Dump memory sizes for DIMM and its CSROWs */
1562 for (dimm = 0; dimm < 4; dimm++) {
1563
1564 size0 = 0;
1565 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1566 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1567 DBAM_DIMM(dimm, dbam));
1568
1569 size1 = 0;
1570 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1571 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1572 DBAM_DIMM(dimm, dbam));
1573
1574 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1575 dimm * 2, size0 << factor,
1576 dimm * 2 + 1, size1 << factor);
1577 }
1578 }
1579
1580 static struct amd64_family_type amd64_family_types[] = {
1581 [K8_CPUS] = {
1582 .ctl_name = "K8",
1583 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1584 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1585 .ops = {
1586 .early_channel_count = k8_early_channel_count,
1587 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1588 .dbam_to_cs = k8_dbam_to_chip_select,
1589 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1590 }
1591 },
1592 [F10_CPUS] = {
1593 .ctl_name = "F10h",
1594 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1595 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1596 .ops = {
1597 .early_channel_count = f1x_early_channel_count,
1598 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1599 .dbam_to_cs = f10_dbam_to_chip_select,
1600 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1601 }
1602 },
1603 [F15_CPUS] = {
1604 .ctl_name = "F15h",
1605 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1606 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1607 .ops = {
1608 .early_channel_count = f1x_early_channel_count,
1609 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1610 .dbam_to_cs = f15_dbam_to_chip_select,
1611 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1612 }
1613 },
1614 };
1615
1616 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1617 unsigned int device,
1618 struct pci_dev *related)
1619 {
1620 struct pci_dev *dev = NULL;
1621
1622 dev = pci_get_device(vendor, device, dev);
1623 while (dev) {
1624 if ((dev->bus->number == related->bus->number) &&
1625 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1626 break;
1627 dev = pci_get_device(vendor, device, dev);
1628 }
1629
1630 return dev;
1631 }
1632
1633 /*
1634 * These are tables of eigenvectors (one per line) which can be used for the
1635 * construction of the syndrome tables. The modified syndrome search algorithm
1636 * uses those to find the symbol in error and thus the DIMM.
1637 *
1638 * Algorithm courtesy of Ross LaFetra from AMD.
1639 */
1640 static u16 x4_vectors[] = {
1641 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1642 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1643 0x0001, 0x0002, 0x0004, 0x0008,
1644 0x1013, 0x3032, 0x4044, 0x8088,
1645 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1646 0x4857, 0xc4fe, 0x13cc, 0x3288,
1647 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1648 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1649 0x15c1, 0x2a42, 0x89ac, 0x4758,
1650 0x2b03, 0x1602, 0x4f0c, 0xca08,
1651 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1652 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1653 0x2b87, 0x164e, 0x642c, 0xdc18,
1654 0x40b9, 0x80de, 0x1094, 0x20e8,
1655 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1656 0x11c1, 0x2242, 0x84ac, 0x4c58,
1657 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1658 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1659 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1660 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1661 0x16b3, 0x3d62, 0x4f34, 0x8518,
1662 0x1e2f, 0x391a, 0x5cac, 0xf858,
1663 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1664 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1665 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1666 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1667 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1668 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1669 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1670 0x185d, 0x2ca6, 0x7914, 0x9e28,
1671 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1672 0x4199, 0x82ee, 0x19f4, 0x2e58,
1673 0x4807, 0xc40e, 0x130c, 0x3208,
1674 0x1905, 0x2e0a, 0x5804, 0xac08,
1675 0x213f, 0x132a, 0xadfc, 0x5ba8,
1676 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1677 };
1678
1679 static u16 x8_vectors[] = {
1680 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1681 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1682 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1683 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1684 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1685 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1686 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1687 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1688 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1689 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1690 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1691 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1692 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1693 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1694 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1695 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1696 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1697 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1698 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1699 };
1700
1701 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1702 unsigned v_dim)
1703 {
1704 unsigned int i, err_sym;
1705
1706 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1707 u16 s = syndrome;
1708 unsigned v_idx = err_sym * v_dim;
1709 unsigned v_end = (err_sym + 1) * v_dim;
1710
1711 /* walk over all 16 bits of the syndrome */
1712 for (i = 1; i < (1U << 16); i <<= 1) {
1713
1714 /* if bit is set in that eigenvector... */
1715 if (v_idx < v_end && vectors[v_idx] & i) {
1716 u16 ev_comp = vectors[v_idx++];
1717
1718 /* ... and bit set in the modified syndrome, */
1719 if (s & i) {
1720 /* remove it. */
1721 s ^= ev_comp;
1722
1723 if (!s)
1724 return err_sym;
1725 }
1726
1727 } else if (s & i)
1728 /* can't get to zero, move to next symbol */
1729 break;
1730 }
1731 }
1732
1733 debugf0("syndrome(%x) not found\n", syndrome);
1734 return -1;
1735 }
1736
1737 static int map_err_sym_to_channel(int err_sym, int sym_size)
1738 {
1739 if (sym_size == 4)
1740 switch (err_sym) {
1741 case 0x20:
1742 case 0x21:
1743 return 0;
1744 break;
1745 case 0x22:
1746 case 0x23:
1747 return 1;
1748 break;
1749 default:
1750 return err_sym >> 4;
1751 break;
1752 }
1753 /* x8 symbols */
1754 else
1755 switch (err_sym) {
1756 /* imaginary bits not in a DIMM */
1757 case 0x10:
1758 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1759 err_sym);
1760 return -1;
1761 break;
1762
1763 case 0x11:
1764 return 0;
1765 break;
1766 case 0x12:
1767 return 1;
1768 break;
1769 default:
1770 return err_sym >> 3;
1771 break;
1772 }
1773 return -1;
1774 }
1775
1776 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1777 {
1778 struct amd64_pvt *pvt = mci->pvt_info;
1779 int err_sym = -1;
1780
1781 if (pvt->ecc_sym_sz == 8)
1782 err_sym = decode_syndrome(syndrome, x8_vectors,
1783 ARRAY_SIZE(x8_vectors),
1784 pvt->ecc_sym_sz);
1785 else if (pvt->ecc_sym_sz == 4)
1786 err_sym = decode_syndrome(syndrome, x4_vectors,
1787 ARRAY_SIZE(x4_vectors),
1788 pvt->ecc_sym_sz);
1789 else {
1790 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1791 return err_sym;
1792 }
1793
1794 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1795 }
1796
1797 /*
1798 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1799 * ADDRESS and process.
1800 */
1801 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1802 {
1803 struct amd64_pvt *pvt = mci->pvt_info;
1804 u64 sys_addr;
1805 u16 syndrome;
1806
1807 /* Ensure that the Error Address is VALID */
1808 if (!(m->status & MCI_STATUS_ADDRV)) {
1809 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1810 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1811 return;
1812 }
1813
1814 sys_addr = get_error_address(m);
1815 syndrome = extract_syndrome(m->status);
1816
1817 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1818
1819 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1820 }
1821
1822 /* Handle any Un-correctable Errors (UEs) */
1823 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1824 {
1825 struct mem_ctl_info *log_mci, *src_mci = NULL;
1826 int csrow;
1827 u64 sys_addr;
1828 u32 page, offset;
1829
1830 log_mci = mci;
1831
1832 if (!(m->status & MCI_STATUS_ADDRV)) {
1833 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1834 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1835 return;
1836 }
1837
1838 sys_addr = get_error_address(m);
1839
1840 /*
1841 * Find out which node the error address belongs to. This may be
1842 * different from the node that detected the error.
1843 */
1844 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1845 if (!src_mci) {
1846 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1847 (unsigned long)sys_addr);
1848 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1849 return;
1850 }
1851
1852 log_mci = src_mci;
1853
1854 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1855 if (csrow < 0) {
1856 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1857 (unsigned long)sys_addr);
1858 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1859 } else {
1860 error_address_to_page_and_offset(sys_addr, &page, &offset);
1861 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1862 }
1863 }
1864
1865 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1866 struct mce *m)
1867 {
1868 u16 ec = EC(m->status);
1869 u8 xec = XEC(m->status, 0x1f);
1870 u8 ecc_type = (m->status >> 45) & 0x3;
1871
1872 /* Bail early out if this was an 'observed' error */
1873 if (PP(ec) == NBSL_PP_OBS)
1874 return;
1875
1876 /* Do only ECC errors */
1877 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1878 return;
1879
1880 if (ecc_type == 2)
1881 amd64_handle_ce(mci, m);
1882 else if (ecc_type == 1)
1883 amd64_handle_ue(mci, m);
1884 }
1885
1886 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1887 {
1888 struct mem_ctl_info *mci = mcis[node_id];
1889
1890 __amd64_decode_bus_error(mci, m);
1891 }
1892
1893 /*
1894 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1895 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1896 */
1897 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1898 {
1899 /* Reserve the ADDRESS MAP Device */
1900 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1901 if (!pvt->F1) {
1902 amd64_err("error address map device not found: "
1903 "vendor %x device 0x%x (broken BIOS?)\n",
1904 PCI_VENDOR_ID_AMD, f1_id);
1905 return -ENODEV;
1906 }
1907
1908 /* Reserve the MISC Device */
1909 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1910 if (!pvt->F3) {
1911 pci_dev_put(pvt->F1);
1912 pvt->F1 = NULL;
1913
1914 amd64_err("error F3 device not found: "
1915 "vendor %x device 0x%x (broken BIOS?)\n",
1916 PCI_VENDOR_ID_AMD, f3_id);
1917
1918 return -ENODEV;
1919 }
1920 debugf1("F1: %s\n", pci_name(pvt->F1));
1921 debugf1("F2: %s\n", pci_name(pvt->F2));
1922 debugf1("F3: %s\n", pci_name(pvt->F3));
1923
1924 return 0;
1925 }
1926
1927 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1928 {
1929 pci_dev_put(pvt->F1);
1930 pci_dev_put(pvt->F3);
1931 }
1932
1933 /*
1934 * Retrieve the hardware registers of the memory controller (this includes the
1935 * 'Address Map' and 'Misc' device regs)
1936 */
1937 static void read_mc_regs(struct amd64_pvt *pvt)
1938 {
1939 struct cpuinfo_x86 *c = &boot_cpu_data;
1940 u64 msr_val;
1941 u32 tmp;
1942 unsigned range;
1943
1944 /*
1945 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1946 * those are Read-As-Zero
1947 */
1948 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1949 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
1950
1951 /* check first whether TOP_MEM2 is enabled */
1952 rdmsrl(MSR_K8_SYSCFG, msr_val);
1953 if (msr_val & (1U << 21)) {
1954 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1955 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1956 } else
1957 debugf0(" TOP_MEM2 disabled.\n");
1958
1959 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1960
1961 read_dram_ctl_register(pvt);
1962
1963 for (range = 0; range < DRAM_RANGES; range++) {
1964 u8 rw;
1965
1966 /* read settings for this DRAM range */
1967 read_dram_base_limit_regs(pvt, range);
1968
1969 rw = dram_rw(pvt, range);
1970 if (!rw)
1971 continue;
1972
1973 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1974 range,
1975 get_dram_base(pvt, range),
1976 get_dram_limit(pvt, range));
1977
1978 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1979 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1980 (rw & 0x1) ? "R" : "-",
1981 (rw & 0x2) ? "W" : "-",
1982 dram_intlv_sel(pvt, range),
1983 dram_dst_node(pvt, range));
1984 }
1985
1986 read_dct_base_mask(pvt);
1987
1988 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1989 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1990
1991 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1992
1993 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1994 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1995
1996 if (!dct_ganging_enabled(pvt)) {
1997 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1998 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1999 }
2000
2001 pvt->ecc_sym_sz = 4;
2002
2003 if (c->x86 >= 0x10) {
2004 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2005 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2006
2007 /* F10h, revD and later can do x8 ECC too */
2008 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2009 pvt->ecc_sym_sz = 8;
2010 }
2011 dump_misc_regs(pvt);
2012 }
2013
2014 /*
2015 * NOTE: CPU Revision Dependent code
2016 *
2017 * Input:
2018 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2019 * k8 private pointer to -->
2020 * DRAM Bank Address mapping register
2021 * node_id
2022 * DCL register where dual_channel_active is
2023 *
2024 * The DBAM register consists of 4 sets of 4 bits each definitions:
2025 *
2026 * Bits: CSROWs
2027 * 0-3 CSROWs 0 and 1
2028 * 4-7 CSROWs 2 and 3
2029 * 8-11 CSROWs 4 and 5
2030 * 12-15 CSROWs 6 and 7
2031 *
2032 * Values range from: 0 to 15
2033 * The meaning of the values depends on CPU revision and dual-channel state,
2034 * see relevant BKDG more info.
2035 *
2036 * The memory controller provides for total of only 8 CSROWs in its current
2037 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2038 * single channel or two (2) DIMMs in dual channel mode.
2039 *
2040 * The following code logic collapses the various tables for CSROW based on CPU
2041 * revision.
2042 *
2043 * Returns:
2044 * The number of PAGE_SIZE pages on the specified CSROW number it
2045 * encompasses
2046 *
2047 */
2048 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2049 {
2050 u32 cs_mode, nr_pages;
2051
2052 /*
2053 * The math on this doesn't look right on the surface because x/2*4 can
2054 * be simplified to x*2 but this expression makes use of the fact that
2055 * it is integral math where 1/2=0. This intermediate value becomes the
2056 * number of bits to shift the DBAM register to extract the proper CSROW
2057 * field.
2058 */
2059 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2060
2061 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2062
2063 /*
2064 * If dual channel then double the memory size of single channel.
2065 * Channel count is 1 or 2
2066 */
2067 nr_pages <<= (pvt->channel_count - 1);
2068
2069 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2070 debugf0(" nr_pages= %u channel-count = %d\n",
2071 nr_pages, pvt->channel_count);
2072
2073 return nr_pages;
2074 }
2075
2076 /*
2077 * Initialize the array of csrow attribute instances, based on the values
2078 * from pci config hardware registers.
2079 */
2080 static int init_csrows(struct mem_ctl_info *mci)
2081 {
2082 struct csrow_info *csrow;
2083 struct amd64_pvt *pvt = mci->pvt_info;
2084 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2085 u32 val;
2086 int i, empty = 1;
2087
2088 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2089
2090 pvt->nbcfg = val;
2091
2092 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2093 pvt->mc_node_id, val,
2094 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2095
2096 for_each_chip_select(i, 0, pvt) {
2097 csrow = &mci->csrows[i];
2098
2099 if (!csrow_enabled(i, 0, pvt)) {
2100 debugf1("----CSROW %d EMPTY for node %d\n", i,
2101 pvt->mc_node_id);
2102 continue;
2103 }
2104
2105 debugf1("----CSROW %d VALID for MC node %d\n",
2106 i, pvt->mc_node_id);
2107
2108 empty = 0;
2109 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2110 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2111 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2112 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2113 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2114 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2115
2116 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2117 csrow->page_mask = ~mask;
2118 /* 8 bytes of resolution */
2119
2120 csrow->mtype = amd64_determine_memory_type(pvt, i);
2121
2122 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2123 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2124 (unsigned long)input_addr_min,
2125 (unsigned long)input_addr_max);
2126 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2127 (unsigned long)sys_addr, csrow->page_mask);
2128 debugf1(" nr_pages: %u first_page: 0x%lx "
2129 "last_page: 0x%lx\n",
2130 (unsigned)csrow->nr_pages,
2131 csrow->first_page, csrow->last_page);
2132
2133 /*
2134 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2135 */
2136 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2137 csrow->edac_mode =
2138 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2139 EDAC_S4ECD4ED : EDAC_SECDED;
2140 else
2141 csrow->edac_mode = EDAC_NONE;
2142 }
2143
2144 return empty;
2145 }
2146
2147 /* get all cores on this DCT */
2148 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2149 {
2150 int cpu;
2151
2152 for_each_online_cpu(cpu)
2153 if (amd_get_nb_id(cpu) == nid)
2154 cpumask_set_cpu(cpu, mask);
2155 }
2156
2157 /* check MCG_CTL on all the cpus on this node */
2158 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2159 {
2160 cpumask_var_t mask;
2161 int cpu, nbe;
2162 bool ret = false;
2163
2164 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2165 amd64_warn("%s: Error allocating mask\n", __func__);
2166 return false;
2167 }
2168
2169 get_cpus_on_this_dct_cpumask(mask, nid);
2170
2171 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2172
2173 for_each_cpu(cpu, mask) {
2174 struct msr *reg = per_cpu_ptr(msrs, cpu);
2175 nbe = reg->l & MSR_MCGCTL_NBE;
2176
2177 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2178 cpu, reg->q,
2179 (nbe ? "enabled" : "disabled"));
2180
2181 if (!nbe)
2182 goto out;
2183 }
2184 ret = true;
2185
2186 out:
2187 free_cpumask_var(mask);
2188 return ret;
2189 }
2190
2191 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2192 {
2193 cpumask_var_t cmask;
2194 int cpu;
2195
2196 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2197 amd64_warn("%s: error allocating mask\n", __func__);
2198 return false;
2199 }
2200
2201 get_cpus_on_this_dct_cpumask(cmask, nid);
2202
2203 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2204
2205 for_each_cpu(cpu, cmask) {
2206
2207 struct msr *reg = per_cpu_ptr(msrs, cpu);
2208
2209 if (on) {
2210 if (reg->l & MSR_MCGCTL_NBE)
2211 s->flags.nb_mce_enable = 1;
2212
2213 reg->l |= MSR_MCGCTL_NBE;
2214 } else {
2215 /*
2216 * Turn off NB MCE reporting only when it was off before
2217 */
2218 if (!s->flags.nb_mce_enable)
2219 reg->l &= ~MSR_MCGCTL_NBE;
2220 }
2221 }
2222 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2223
2224 free_cpumask_var(cmask);
2225
2226 return 0;
2227 }
2228
2229 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2230 struct pci_dev *F3)
2231 {
2232 bool ret = true;
2233 u32 value, mask = 0x3; /* UECC/CECC enable */
2234
2235 if (toggle_ecc_err_reporting(s, nid, ON)) {
2236 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2237 return false;
2238 }
2239
2240 amd64_read_pci_cfg(F3, NBCTL, &value);
2241
2242 s->old_nbctl = value & mask;
2243 s->nbctl_valid = true;
2244
2245 value |= mask;
2246 amd64_write_pci_cfg(F3, NBCTL, value);
2247
2248 amd64_read_pci_cfg(F3, NBCFG, &value);
2249
2250 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2251 nid, value, !!(value & NBCFG_ECC_ENABLE));
2252
2253 if (!(value & NBCFG_ECC_ENABLE)) {
2254 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2255
2256 s->flags.nb_ecc_prev = 0;
2257
2258 /* Attempt to turn on DRAM ECC Enable */
2259 value |= NBCFG_ECC_ENABLE;
2260 amd64_write_pci_cfg(F3, NBCFG, value);
2261
2262 amd64_read_pci_cfg(F3, NBCFG, &value);
2263
2264 if (!(value & NBCFG_ECC_ENABLE)) {
2265 amd64_warn("Hardware rejected DRAM ECC enable,"
2266 "check memory DIMM configuration.\n");
2267 ret = false;
2268 } else {
2269 amd64_info("Hardware accepted DRAM ECC Enable\n");
2270 }
2271 } else {
2272 s->flags.nb_ecc_prev = 1;
2273 }
2274
2275 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2276 nid, value, !!(value & NBCFG_ECC_ENABLE));
2277
2278 return ret;
2279 }
2280
2281 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2282 struct pci_dev *F3)
2283 {
2284 u32 value, mask = 0x3; /* UECC/CECC enable */
2285
2286
2287 if (!s->nbctl_valid)
2288 return;
2289
2290 amd64_read_pci_cfg(F3, NBCTL, &value);
2291 value &= ~mask;
2292 value |= s->old_nbctl;
2293
2294 amd64_write_pci_cfg(F3, NBCTL, value);
2295
2296 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2297 if (!s->flags.nb_ecc_prev) {
2298 amd64_read_pci_cfg(F3, NBCFG, &value);
2299 value &= ~NBCFG_ECC_ENABLE;
2300 amd64_write_pci_cfg(F3, NBCFG, value);
2301 }
2302
2303 /* restore the NB Enable MCGCTL bit */
2304 if (toggle_ecc_err_reporting(s, nid, OFF))
2305 amd64_warn("Error restoring NB MCGCTL settings!\n");
2306 }
2307
2308 /*
2309 * EDAC requires that the BIOS have ECC enabled before
2310 * taking over the processing of ECC errors. A command line
2311 * option allows to force-enable hardware ECC later in
2312 * enable_ecc_error_reporting().
2313 */
2314 static const char *ecc_msg =
2315 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2316 " Either enable ECC checking or force module loading by setting "
2317 "'ecc_enable_override'.\n"
2318 " (Note that use of the override may cause unknown side effects.)\n";
2319
2320 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2321 {
2322 u32 value;
2323 u8 ecc_en = 0;
2324 bool nb_mce_en = false;
2325
2326 amd64_read_pci_cfg(F3, NBCFG, &value);
2327
2328 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2329 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2330
2331 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2332 if (!nb_mce_en)
2333 amd64_notice("NB MCE bank disabled, set MSR "
2334 "0x%08x[4] on node %d to enable.\n",
2335 MSR_IA32_MCG_CTL, nid);
2336
2337 if (!ecc_en || !nb_mce_en) {
2338 amd64_notice("%s", ecc_msg);
2339 return false;
2340 }
2341 return true;
2342 }
2343
2344 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2345 ARRAY_SIZE(amd64_inj_attrs) +
2346 1];
2347
2348 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2349
2350 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2351 {
2352 unsigned int i = 0, j = 0;
2353
2354 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2355 sysfs_attrs[i] = amd64_dbg_attrs[i];
2356
2357 if (boot_cpu_data.x86 >= 0x10)
2358 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2359 sysfs_attrs[i] = amd64_inj_attrs[j];
2360
2361 sysfs_attrs[i] = terminator;
2362
2363 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2364 }
2365
2366 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2367 struct amd64_family_type *fam)
2368 {
2369 struct amd64_pvt *pvt = mci->pvt_info;
2370
2371 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2372 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2373
2374 if (pvt->nbcap & NBCAP_SECDED)
2375 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2376
2377 if (pvt->nbcap & NBCAP_CHIPKILL)
2378 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2379
2380 mci->edac_cap = amd64_determine_edac_cap(pvt);
2381 mci->mod_name = EDAC_MOD_STR;
2382 mci->mod_ver = EDAC_AMD64_VERSION;
2383 mci->ctl_name = fam->ctl_name;
2384 mci->dev_name = pci_name(pvt->F2);
2385 mci->ctl_page_to_phys = NULL;
2386
2387 /* memory scrubber interface */
2388 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2389 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2390 }
2391
2392 /*
2393 * returns a pointer to the family descriptor on success, NULL otherwise.
2394 */
2395 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2396 {
2397 u8 fam = boot_cpu_data.x86;
2398 struct amd64_family_type *fam_type = NULL;
2399
2400 switch (fam) {
2401 case 0xf:
2402 fam_type = &amd64_family_types[K8_CPUS];
2403 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2404 break;
2405
2406 case 0x10:
2407 fam_type = &amd64_family_types[F10_CPUS];
2408 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2409 break;
2410
2411 case 0x15:
2412 fam_type = &amd64_family_types[F15_CPUS];
2413 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2414 break;
2415
2416 default:
2417 amd64_err("Unsupported family!\n");
2418 return NULL;
2419 }
2420
2421 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2422
2423 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2424 (fam == 0xf ?
2425 (pvt->ext_model >= K8_REV_F ? "revF or later "
2426 : "revE or earlier ")
2427 : ""), pvt->mc_node_id);
2428 return fam_type;
2429 }
2430
2431 static int amd64_init_one_instance(struct pci_dev *F2)
2432 {
2433 struct amd64_pvt *pvt = NULL;
2434 struct amd64_family_type *fam_type = NULL;
2435 struct mem_ctl_info *mci = NULL;
2436 int err = 0, ret;
2437 u8 nid = get_node_id(F2);
2438
2439 ret = -ENOMEM;
2440 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2441 if (!pvt)
2442 goto err_ret;
2443
2444 pvt->mc_node_id = nid;
2445 pvt->F2 = F2;
2446
2447 ret = -EINVAL;
2448 fam_type = amd64_per_family_init(pvt);
2449 if (!fam_type)
2450 goto err_free;
2451
2452 ret = -ENODEV;
2453 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2454 if (err)
2455 goto err_free;
2456
2457 read_mc_regs(pvt);
2458
2459 /*
2460 * We need to determine how many memory channels there are. Then use
2461 * that information for calculating the size of the dynamic instance
2462 * tables in the 'mci' structure.
2463 */
2464 ret = -EINVAL;
2465 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2466 if (pvt->channel_count < 0)
2467 goto err_siblings;
2468
2469 ret = -ENOMEM;
2470 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2471 if (!mci)
2472 goto err_siblings;
2473
2474 mci->pvt_info = pvt;
2475 mci->dev = &pvt->F2->dev;
2476
2477 setup_mci_misc_attrs(mci, fam_type);
2478
2479 if (init_csrows(mci))
2480 mci->edac_cap = EDAC_FLAG_NONE;
2481
2482 set_mc_sysfs_attrs(mci);
2483
2484 ret = -ENODEV;
2485 if (edac_mc_add_mc(mci)) {
2486 debugf1("failed edac_mc_add_mc()\n");
2487 goto err_add_mc;
2488 }
2489
2490 /* register stuff with EDAC MCE */
2491 if (report_gart_errors)
2492 amd_report_gart_errors(true);
2493
2494 amd_register_ecc_decoder(amd64_decode_bus_error);
2495
2496 mcis[nid] = mci;
2497
2498 atomic_inc(&drv_instances);
2499
2500 return 0;
2501
2502 err_add_mc:
2503 edac_mc_free(mci);
2504
2505 err_siblings:
2506 free_mc_sibling_devs(pvt);
2507
2508 err_free:
2509 kfree(pvt);
2510
2511 err_ret:
2512 return ret;
2513 }
2514
2515 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2516 const struct pci_device_id *mc_type)
2517 {
2518 u8 nid = get_node_id(pdev);
2519 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2520 struct ecc_settings *s;
2521 int ret = 0;
2522
2523 ret = pci_enable_device(pdev);
2524 if (ret < 0) {
2525 debugf0("ret=%d\n", ret);
2526 return -EIO;
2527 }
2528
2529 ret = -ENOMEM;
2530 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2531 if (!s)
2532 goto err_out;
2533
2534 ecc_stngs[nid] = s;
2535
2536 if (!ecc_enabled(F3, nid)) {
2537 ret = -ENODEV;
2538
2539 if (!ecc_enable_override)
2540 goto err_enable;
2541
2542 amd64_warn("Forcing ECC on!\n");
2543
2544 if (!enable_ecc_error_reporting(s, nid, F3))
2545 goto err_enable;
2546 }
2547
2548 ret = amd64_init_one_instance(pdev);
2549 if (ret < 0) {
2550 amd64_err("Error probing instance: %d\n", nid);
2551 restore_ecc_error_reporting(s, nid, F3);
2552 }
2553
2554 return ret;
2555
2556 err_enable:
2557 kfree(s);
2558 ecc_stngs[nid] = NULL;
2559
2560 err_out:
2561 return ret;
2562 }
2563
2564 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2565 {
2566 struct mem_ctl_info *mci;
2567 struct amd64_pvt *pvt;
2568 u8 nid = get_node_id(pdev);
2569 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2570 struct ecc_settings *s = ecc_stngs[nid];
2571
2572 /* Remove from EDAC CORE tracking list */
2573 mci = edac_mc_del_mc(&pdev->dev);
2574 if (!mci)
2575 return;
2576
2577 pvt = mci->pvt_info;
2578
2579 restore_ecc_error_reporting(s, nid, F3);
2580
2581 free_mc_sibling_devs(pvt);
2582
2583 /* unregister from EDAC MCE */
2584 amd_report_gart_errors(false);
2585 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2586
2587 kfree(ecc_stngs[nid]);
2588 ecc_stngs[nid] = NULL;
2589
2590 /* Free the EDAC CORE resources */
2591 mci->pvt_info = NULL;
2592 mcis[nid] = NULL;
2593
2594 kfree(pvt);
2595 edac_mc_free(mci);
2596 }
2597
2598 /*
2599 * This table is part of the interface for loading drivers for PCI devices. The
2600 * PCI core identifies what devices are on a system during boot, and then
2601 * inquiry this table to see if this driver is for a given device found.
2602 */
2603 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2604 {
2605 .vendor = PCI_VENDOR_ID_AMD,
2606 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2607 .subvendor = PCI_ANY_ID,
2608 .subdevice = PCI_ANY_ID,
2609 .class = 0,
2610 .class_mask = 0,
2611 },
2612 {
2613 .vendor = PCI_VENDOR_ID_AMD,
2614 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2615 .subvendor = PCI_ANY_ID,
2616 .subdevice = PCI_ANY_ID,
2617 .class = 0,
2618 .class_mask = 0,
2619 },
2620 {
2621 .vendor = PCI_VENDOR_ID_AMD,
2622 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2623 .subvendor = PCI_ANY_ID,
2624 .subdevice = PCI_ANY_ID,
2625 .class = 0,
2626 .class_mask = 0,
2627 },
2628
2629 {0, }
2630 };
2631 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2632
2633 static struct pci_driver amd64_pci_driver = {
2634 .name = EDAC_MOD_STR,
2635 .probe = amd64_probe_one_instance,
2636 .remove = __devexit_p(amd64_remove_one_instance),
2637 .id_table = amd64_pci_table,
2638 };
2639
2640 static void setup_pci_device(void)
2641 {
2642 struct mem_ctl_info *mci;
2643 struct amd64_pvt *pvt;
2644
2645 if (amd64_ctl_pci)
2646 return;
2647
2648 mci = mcis[0];
2649 if (mci) {
2650
2651 pvt = mci->pvt_info;
2652 amd64_ctl_pci =
2653 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2654
2655 if (!amd64_ctl_pci) {
2656 pr_warning("%s(): Unable to create PCI control\n",
2657 __func__);
2658
2659 pr_warning("%s(): PCI error report via EDAC not set\n",
2660 __func__);
2661 }
2662 }
2663 }
2664
2665 static int __init amd64_edac_init(void)
2666 {
2667 int err = -ENODEV;
2668
2669 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2670
2671 opstate_init();
2672
2673 if (amd_cache_northbridges() < 0)
2674 goto err_ret;
2675
2676 err = -ENOMEM;
2677 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2678 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2679 if (!(mcis && ecc_stngs))
2680 goto err_free;
2681
2682 msrs = msrs_alloc();
2683 if (!msrs)
2684 goto err_free;
2685
2686 err = pci_register_driver(&amd64_pci_driver);
2687 if (err)
2688 goto err_pci;
2689
2690 err = -ENODEV;
2691 if (!atomic_read(&drv_instances))
2692 goto err_no_instances;
2693
2694 setup_pci_device();
2695 return 0;
2696
2697 err_no_instances:
2698 pci_unregister_driver(&amd64_pci_driver);
2699
2700 err_pci:
2701 msrs_free(msrs);
2702 msrs = NULL;
2703
2704 err_free:
2705 kfree(mcis);
2706 mcis = NULL;
2707
2708 kfree(ecc_stngs);
2709 ecc_stngs = NULL;
2710
2711 err_ret:
2712 return err;
2713 }
2714
2715 static void __exit amd64_edac_exit(void)
2716 {
2717 if (amd64_ctl_pci)
2718 edac_pci_release_generic_ctl(amd64_ctl_pci);
2719
2720 pci_unregister_driver(&amd64_pci_driver);
2721
2722 kfree(ecc_stngs);
2723 ecc_stngs = NULL;
2724
2725 kfree(mcis);
2726 mcis = NULL;
2727
2728 msrs_free(msrs);
2729 msrs = NULL;
2730 }
2731
2732 module_init(amd64_edac_init);
2733 module_exit(amd64_edac_exit);
2734
2735 MODULE_LICENSE("GPL");
2736 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2737 "Dave Peterson, Thayne Harbaugh");
2738 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2739 EDAC_AMD64_VERSION);
2740
2741 module_param(edac_op_state, int, 0444);
2742 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.119855 seconds and 5 git commands to generate.