ath9k: Enable U-APSD AP mode support
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *pci_ctl;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 * F16h: has only 1 DCT
102 */
103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105 {
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110 }
111
112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114 {
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116 }
117
118 /*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122 {
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129 }
130
131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133 {
134 u8 dct = 0;
135
136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137 if (addr >= 0x140 && addr <= 0x1a0) {
138 dct = (pvt->model >= 0x30) ? 3 : 1;
139 addr -= 0x100;
140 }
141
142 f15h_select_dct(pvt, dct);
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145 }
146
147 /*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161 /*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
165 static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
166 {
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
178 */
179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
184 if (scrubrates[i].scrubval < min_rate)
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
189 }
190
191 scrubval = scrubrates[i].scrubval;
192
193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
194
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
198 return 0;
199 }
200
201 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
202 {
203 struct amd64_pvt *pvt = mci->pvt_info;
204 u32 min_scrubrate = 0x5;
205
206 if (pvt->fam == 0xf)
207 min_scrubrate = 0x0;
208
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
211 f15h_select_dct(pvt, 0);
212
213 return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 }
215
216 static int get_scrub_rate(struct mem_ctl_info *mci)
217 {
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
220 int i, retval = -EINVAL;
221
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
224 f15h_select_dct(pvt, 0);
225
226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
227
228 scrubval = scrubval & 0x001F;
229
230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
231 if (scrubrates[i].scrubval == scrubval) {
232 retval = scrubrates[i].bandwidth;
233 break;
234 }
235 }
236 return retval;
237 }
238
239 /*
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
242 */
243 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
244 {
245 u64 addr;
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
257 }
258
259 /*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267 {
268 struct amd64_pvt *pvt;
269 u8 node_id;
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
283 intlv_en = dram_intlv_en(pvt, 0);
284
285 if (intlv_en == 0) {
286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
287 if (base_limit_match(pvt, sys_addr, node_id))
288 goto found;
289 }
290 goto err_no_match;
291 }
292
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
304 break; /* intlv_sel field matches */
305
306 if (++node_id >= DRAM_RANGES)
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
311 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
315 return NULL;
316 }
317
318 found:
319 return edac_mc_find((int)node_id);
320
321 err_no_match:
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
324
325 return NULL;
326 }
327
328 /*
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
331 */
332 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
334 {
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
337
338 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
341 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
342 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
343 addr_shift = 4;
344
345 /*
346 * F16h and F15h, models 30h and later need two addr_shift values:
347 * 8 for high and 6 for low (cf. F16h BKDG).
348 */
349 } else if (pvt->fam == 0x16 ||
350 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
351 csbase = pvt->csels[dct].csbases[csrow];
352 csmask = pvt->csels[dct].csmasks[csrow >> 1];
353
354 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
355 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
356
357 *mask = ~0ULL;
358 /* poke holes for the csmask */
359 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
360 (GENMASK_ULL(30, 19) << 8));
361
362 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
363 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
364
365 return;
366 } else {
367 csbase = pvt->csels[dct].csbases[csrow];
368 csmask = pvt->csels[dct].csmasks[csrow >> 1];
369 addr_shift = 8;
370
371 if (pvt->fam == 0x15)
372 base_bits = mask_bits =
373 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
374 else
375 base_bits = mask_bits =
376 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
377 }
378
379 *base = (csbase & base_bits) << addr_shift;
380
381 *mask = ~0ULL;
382 /* poke holes for the csmask */
383 *mask &= ~(mask_bits << addr_shift);
384 /* OR them in */
385 *mask |= (csmask & mask_bits) << addr_shift;
386 }
387
388 #define for_each_chip_select(i, dct, pvt) \
389 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
390
391 #define chip_select_base(i, dct, pvt) \
392 pvt->csels[dct].csbases[i]
393
394 #define for_each_chip_select_mask(i, dct, pvt) \
395 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
396
397 /*
398 * @input_addr is an InputAddr associated with the node given by mci. Return the
399 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
400 */
401 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
402 {
403 struct amd64_pvt *pvt;
404 int csrow;
405 u64 base, mask;
406
407 pvt = mci->pvt_info;
408
409 for_each_chip_select(csrow, 0, pvt) {
410 if (!csrow_enabled(csrow, 0, pvt))
411 continue;
412
413 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
414
415 mask = ~mask;
416
417 if ((input_addr & mask) == (base & mask)) {
418 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
419 (unsigned long)input_addr, csrow,
420 pvt->mc_node_id);
421
422 return csrow;
423 }
424 }
425 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
426 (unsigned long)input_addr, pvt->mc_node_id);
427
428 return -1;
429 }
430
431 /*
432 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
433 * for the node represented by mci. Info is passed back in *hole_base,
434 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
435 * info is invalid. Info may be invalid for either of the following reasons:
436 *
437 * - The revision of the node is not E or greater. In this case, the DRAM Hole
438 * Address Register does not exist.
439 *
440 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
441 * indicating that its contents are not valid.
442 *
443 * The values passed back in *hole_base, *hole_offset, and *hole_size are
444 * complete 32-bit values despite the fact that the bitfields in the DHAR
445 * only represent bits 31-24 of the base and offset values.
446 */
447 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
448 u64 *hole_offset, u64 *hole_size)
449 {
450 struct amd64_pvt *pvt = mci->pvt_info;
451
452 /* only revE and later have the DRAM Hole Address Register */
453 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
454 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
455 pvt->ext_model, pvt->mc_node_id);
456 return 1;
457 }
458
459 /* valid for Fam10h and above */
460 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
461 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
462 return 1;
463 }
464
465 if (!dhar_valid(pvt)) {
466 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
467 pvt->mc_node_id);
468 return 1;
469 }
470
471 /* This node has Memory Hoisting */
472
473 /* +------------------+--------------------+--------------------+-----
474 * | memory | DRAM hole | relocated |
475 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
476 * | | | DRAM hole |
477 * | | | [0x100000000, |
478 * | | | (0x100000000+ |
479 * | | | (0xffffffff-x))] |
480 * +------------------+--------------------+--------------------+-----
481 *
482 * Above is a diagram of physical memory showing the DRAM hole and the
483 * relocated addresses from the DRAM hole. As shown, the DRAM hole
484 * starts at address x (the base address) and extends through address
485 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
486 * addresses in the hole so that they start at 0x100000000.
487 */
488
489 *hole_base = dhar_base(pvt);
490 *hole_size = (1ULL << 32) - *hole_base;
491
492 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
493 : k8_dhar_offset(pvt);
494
495 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
496 pvt->mc_node_id, (unsigned long)*hole_base,
497 (unsigned long)*hole_offset, (unsigned long)*hole_size);
498
499 return 0;
500 }
501 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
502
503 /*
504 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
505 * assumed that sys_addr maps to the node given by mci.
506 *
507 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
508 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
509 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
510 * then it is also involved in translating a SysAddr to a DramAddr. Sections
511 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
512 * These parts of the documentation are unclear. I interpret them as follows:
513 *
514 * When node n receives a SysAddr, it processes the SysAddr as follows:
515 *
516 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
517 * Limit registers for node n. If the SysAddr is not within the range
518 * specified by the base and limit values, then node n ignores the Sysaddr
519 * (since it does not map to node n). Otherwise continue to step 2 below.
520 *
521 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
522 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
523 * the range of relocated addresses (starting at 0x100000000) from the DRAM
524 * hole. If not, skip to step 3 below. Else get the value of the
525 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
526 * offset defined by this value from the SysAddr.
527 *
528 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
529 * Base register for node n. To obtain the DramAddr, subtract the base
530 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
531 */
532 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
533 {
534 struct amd64_pvt *pvt = mci->pvt_info;
535 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
536 int ret;
537
538 dram_base = get_dram_base(pvt, pvt->mc_node_id);
539
540 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
541 &hole_size);
542 if (!ret) {
543 if ((sys_addr >= (1ULL << 32)) &&
544 (sys_addr < ((1ULL << 32) + hole_size))) {
545 /* use DHAR to translate SysAddr to DramAddr */
546 dram_addr = sys_addr - hole_offset;
547
548 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
549 (unsigned long)sys_addr,
550 (unsigned long)dram_addr);
551
552 return dram_addr;
553 }
554 }
555
556 /*
557 * Translate the SysAddr to a DramAddr as shown near the start of
558 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
559 * only deals with 40-bit values. Therefore we discard bits 63-40 of
560 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
561 * discard are all 1s. Otherwise the bits we discard are all 0s. See
562 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
563 * Programmer's Manual Volume 1 Application Programming.
564 */
565 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
566
567 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
568 (unsigned long)sys_addr, (unsigned long)dram_addr);
569 return dram_addr;
570 }
571
572 /*
573 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
574 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
575 * for node interleaving.
576 */
577 static int num_node_interleave_bits(unsigned intlv_en)
578 {
579 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
580 int n;
581
582 BUG_ON(intlv_en > 7);
583 n = intlv_shift_table[intlv_en];
584 return n;
585 }
586
587 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
588 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
589 {
590 struct amd64_pvt *pvt;
591 int intlv_shift;
592 u64 input_addr;
593
594 pvt = mci->pvt_info;
595
596 /*
597 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
598 * concerning translating a DramAddr to an InputAddr.
599 */
600 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
601 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
602 (dram_addr & 0xfff);
603
604 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
605 intlv_shift, (unsigned long)dram_addr,
606 (unsigned long)input_addr);
607
608 return input_addr;
609 }
610
611 /*
612 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
613 * assumed that @sys_addr maps to the node given by mci.
614 */
615 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
616 {
617 u64 input_addr;
618
619 input_addr =
620 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
621
622 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
623 (unsigned long)sys_addr, (unsigned long)input_addr);
624
625 return input_addr;
626 }
627
628 /* Map the Error address to a PAGE and PAGE OFFSET. */
629 static inline void error_address_to_page_and_offset(u64 error_address,
630 struct err_info *err)
631 {
632 err->page = (u32) (error_address >> PAGE_SHIFT);
633 err->offset = ((u32) error_address) & ~PAGE_MASK;
634 }
635
636 /*
637 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
638 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
639 * of a node that detected an ECC memory error. mci represents the node that
640 * the error address maps to (possibly different from the node that detected
641 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
642 * error.
643 */
644 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
645 {
646 int csrow;
647
648 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
649
650 if (csrow == -1)
651 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
652 "address 0x%lx\n", (unsigned long)sys_addr);
653 return csrow;
654 }
655
656 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
657
658 /*
659 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
660 * are ECC capable.
661 */
662 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
663 {
664 u8 bit;
665 unsigned long edac_cap = EDAC_FLAG_NONE;
666
667 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
668 ? 19
669 : 17;
670
671 if (pvt->dclr0 & BIT(bit))
672 edac_cap = EDAC_FLAG_SECDED;
673
674 return edac_cap;
675 }
676
677 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
678
679 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
680 {
681 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
682
683 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
684 (dclr & BIT(16)) ? "un" : "",
685 (dclr & BIT(19)) ? "yes" : "no");
686
687 edac_dbg(1, " PAR/ERR parity: %s\n",
688 (dclr & BIT(8)) ? "enabled" : "disabled");
689
690 if (pvt->fam == 0x10)
691 edac_dbg(1, " DCT 128bit mode width: %s\n",
692 (dclr & BIT(11)) ? "128b" : "64b");
693
694 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
695 (dclr & BIT(12)) ? "yes" : "no",
696 (dclr & BIT(13)) ? "yes" : "no",
697 (dclr & BIT(14)) ? "yes" : "no",
698 (dclr & BIT(15)) ? "yes" : "no");
699 }
700
701 /* Display and decode various NB registers for debug purposes. */
702 static void dump_misc_regs(struct amd64_pvt *pvt)
703 {
704 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
705
706 edac_dbg(1, " NB two channel DRAM capable: %s\n",
707 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
708
709 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
710 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
711 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
712
713 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
714
715 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
716
717 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
718 pvt->dhar, dhar_base(pvt),
719 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
720 : f10_dhar_offset(pvt));
721
722 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
723
724 debug_display_dimm_sizes(pvt, 0);
725
726 /* everything below this point is Fam10h and above */
727 if (pvt->fam == 0xf)
728 return;
729
730 debug_display_dimm_sizes(pvt, 1);
731
732 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
733
734 /* Only if NOT ganged does dclr1 have valid info */
735 if (!dct_ganging_enabled(pvt))
736 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
737 }
738
739 /*
740 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
741 */
742 static void prep_chip_selects(struct amd64_pvt *pvt)
743 {
744 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
745 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
746 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
747 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
748 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
749 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
750 } else {
751 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
752 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
753 }
754 }
755
756 /*
757 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
758 */
759 static void read_dct_base_mask(struct amd64_pvt *pvt)
760 {
761 int cs;
762
763 prep_chip_selects(pvt);
764
765 for_each_chip_select(cs, 0, pvt) {
766 int reg0 = DCSB0 + (cs * 4);
767 int reg1 = DCSB1 + (cs * 4);
768 u32 *base0 = &pvt->csels[0].csbases[cs];
769 u32 *base1 = &pvt->csels[1].csbases[cs];
770
771 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
772 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
773 cs, *base0, reg0);
774
775 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
776 continue;
777
778 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
779 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
780 cs, *base1, reg1);
781 }
782
783 for_each_chip_select_mask(cs, 0, pvt) {
784 int reg0 = DCSM0 + (cs * 4);
785 int reg1 = DCSM1 + (cs * 4);
786 u32 *mask0 = &pvt->csels[0].csmasks[cs];
787 u32 *mask1 = &pvt->csels[1].csmasks[cs];
788
789 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
790 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
791 cs, *mask0, reg0);
792
793 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
794 continue;
795
796 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
797 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
798 cs, *mask1, reg1);
799 }
800 }
801
802 static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
803 {
804 enum mem_type type;
805
806 /* F15h supports only DDR3 */
807 if (pvt->fam >= 0x15)
808 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
809 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
810 if (pvt->dchr0 & DDR3_MODE)
811 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
812 else
813 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
814 } else {
815 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
816 }
817
818 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
819
820 return type;
821 }
822
823 /* Get the number of DCT channels the memory controller is using. */
824 static int k8_early_channel_count(struct amd64_pvt *pvt)
825 {
826 int flag;
827
828 if (pvt->ext_model >= K8_REV_F)
829 /* RevF (NPT) and later */
830 flag = pvt->dclr0 & WIDTH_128;
831 else
832 /* RevE and earlier */
833 flag = pvt->dclr0 & REVE_WIDTH_128;
834
835 /* not used */
836 pvt->dclr1 = 0;
837
838 return (flag) ? 2 : 1;
839 }
840
841 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
842 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
843 {
844 u64 addr;
845 u8 start_bit = 1;
846 u8 end_bit = 47;
847
848 if (pvt->fam == 0xf) {
849 start_bit = 3;
850 end_bit = 39;
851 }
852
853 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
854
855 /*
856 * Erratum 637 workaround
857 */
858 if (pvt->fam == 0x15) {
859 struct amd64_pvt *pvt;
860 u64 cc6_base, tmp_addr;
861 u32 tmp;
862 u16 mce_nid;
863 u8 intlv_en;
864
865 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
866 return addr;
867
868 mce_nid = amd_get_nb_id(m->extcpu);
869 pvt = mcis[mce_nid]->pvt_info;
870
871 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
872 intlv_en = tmp >> 21 & 0x7;
873
874 /* add [47:27] + 3 trailing bits */
875 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
876
877 /* reverse and add DramIntlvEn */
878 cc6_base |= intlv_en ^ 0x7;
879
880 /* pin at [47:24] */
881 cc6_base <<= 24;
882
883 if (!intlv_en)
884 return cc6_base | (addr & GENMASK_ULL(23, 0));
885
886 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
887
888 /* faster log2 */
889 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
890
891 /* OR DramIntlvSel into bits [14:12] */
892 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
893
894 /* add remaining [11:0] bits from original MC4_ADDR */
895 tmp_addr |= addr & GENMASK_ULL(11, 0);
896
897 return cc6_base | tmp_addr;
898 }
899
900 return addr;
901 }
902
903 static struct pci_dev *pci_get_related_function(unsigned int vendor,
904 unsigned int device,
905 struct pci_dev *related)
906 {
907 struct pci_dev *dev = NULL;
908
909 while ((dev = pci_get_device(vendor, device, dev))) {
910 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
911 (dev->bus->number == related->bus->number) &&
912 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
913 break;
914 }
915
916 return dev;
917 }
918
919 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
920 {
921 struct amd_northbridge *nb;
922 struct pci_dev *f1 = NULL;
923 unsigned int pci_func;
924 int off = range << 3;
925 u32 llim;
926
927 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
928 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
929
930 if (pvt->fam == 0xf)
931 return;
932
933 if (!dram_rw(pvt, range))
934 return;
935
936 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
937 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
938
939 /* F15h: factor in CC6 save area by reading dst node's limit reg */
940 if (pvt->fam != 0x15)
941 return;
942
943 nb = node_to_amd_nb(dram_dst_node(pvt, range));
944 if (WARN_ON(!nb))
945 return;
946
947 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
948 : PCI_DEVICE_ID_AMD_15H_NB_F1;
949
950 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
951 if (WARN_ON(!f1))
952 return;
953
954 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
955
956 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
957
958 /* {[39:27],111b} */
959 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
960
961 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
962
963 /* [47:40] */
964 pvt->ranges[range].lim.hi |= llim >> 13;
965
966 pci_dev_put(f1);
967 }
968
969 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
970 struct err_info *err)
971 {
972 struct amd64_pvt *pvt = mci->pvt_info;
973
974 error_address_to_page_and_offset(sys_addr, err);
975
976 /*
977 * Find out which node the error address belongs to. This may be
978 * different from the node that detected the error.
979 */
980 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
981 if (!err->src_mci) {
982 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
983 (unsigned long)sys_addr);
984 err->err_code = ERR_NODE;
985 return;
986 }
987
988 /* Now map the sys_addr to a CSROW */
989 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
990 if (err->csrow < 0) {
991 err->err_code = ERR_CSROW;
992 return;
993 }
994
995 /* CHIPKILL enabled */
996 if (pvt->nbcfg & NBCFG_CHIPKILL) {
997 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
998 if (err->channel < 0) {
999 /*
1000 * Syndrome didn't map, so we don't know which of the
1001 * 2 DIMMs is in error. So we need to ID 'both' of them
1002 * as suspect.
1003 */
1004 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1005 "possible error reporting race\n",
1006 err->syndrome);
1007 err->err_code = ERR_CHANNEL;
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
1019 err->channel = ((sys_addr & BIT(3)) != 0);
1020 }
1021 }
1022
1023 static int ddr2_cs_size(unsigned i, bool dct_width)
1024 {
1025 unsigned shift = 0;
1026
1027 if (i <= 2)
1028 shift = i;
1029 else if (!(i & 0x1))
1030 shift = i >> 1;
1031 else
1032 shift = (i + 1) >> 1;
1033
1034 return 128 << (shift + !!dct_width);
1035 }
1036
1037 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1038 unsigned cs_mode)
1039 {
1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041
1042 if (pvt->ext_model >= K8_REV_F) {
1043 WARN_ON(cs_mode > 11);
1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 }
1046 else if (pvt->ext_model >= K8_REV_D) {
1047 unsigned diff;
1048 WARN_ON(cs_mode > 10);
1049
1050 /*
1051 * the below calculation, besides trying to win an obfuscated C
1052 * contest, maps cs_mode values to DIMM chip select sizes. The
1053 * mappings are:
1054 *
1055 * cs_mode CS size (mb)
1056 * ======= ============
1057 * 0 32
1058 * 1 64
1059 * 2 128
1060 * 3 128
1061 * 4 256
1062 * 5 512
1063 * 6 256
1064 * 7 512
1065 * 8 1024
1066 * 9 1024
1067 * 10 2048
1068 *
1069 * Basically, it calculates a value with which to shift the
1070 * smallest CS size of 32MB.
1071 *
1072 * ddr[23]_cs_size have a similar purpose.
1073 */
1074 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1075
1076 return 32 << (cs_mode - diff);
1077 }
1078 else {
1079 WARN_ON(cs_mode > 6);
1080 return 32 << cs_mode;
1081 }
1082 }
1083
1084 /*
1085 * Get the number of DCT channels in use.
1086 *
1087 * Return:
1088 * number of Memory Channels in operation
1089 * Pass back:
1090 * contents of the DCL0_LOW register
1091 */
1092 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1093 {
1094 int i, j, channels = 0;
1095
1096 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1097 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1098 return 2;
1099
1100 /*
1101 * Need to check if in unganged mode: In such, there are 2 channels,
1102 * but they are not in 128 bit mode and thus the above 'dclr0' status
1103 * bit will be OFF.
1104 *
1105 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1106 * their CSEnable bit on. If so, then SINGLE DIMM case.
1107 */
1108 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1109
1110 /*
1111 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1112 * is more than just one DIMM present in unganged mode. Need to check
1113 * both controllers since DIMMs can be placed in either one.
1114 */
1115 for (i = 0; i < 2; i++) {
1116 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1117
1118 for (j = 0; j < 4; j++) {
1119 if (DBAM_DIMM(j, dbam) > 0) {
1120 channels++;
1121 break;
1122 }
1123 }
1124 }
1125
1126 if (channels > 2)
1127 channels = 2;
1128
1129 amd64_info("MCT channel count: %d\n", channels);
1130
1131 return channels;
1132 }
1133
1134 static int ddr3_cs_size(unsigned i, bool dct_width)
1135 {
1136 unsigned shift = 0;
1137 int cs_size = 0;
1138
1139 if (i == 0 || i == 3 || i == 4)
1140 cs_size = -1;
1141 else if (i <= 2)
1142 shift = i;
1143 else if (i == 12)
1144 shift = 7;
1145 else if (!(i & 0x1))
1146 shift = i >> 1;
1147 else
1148 shift = (i + 1) >> 1;
1149
1150 if (cs_size != -1)
1151 cs_size = (128 * (1 << !!dct_width)) << shift;
1152
1153 return cs_size;
1154 }
1155
1156 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1157 unsigned cs_mode)
1158 {
1159 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1160
1161 WARN_ON(cs_mode > 11);
1162
1163 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1164 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1165 else
1166 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1167 }
1168
1169 /*
1170 * F15h supports only 64bit DCT interfaces
1171 */
1172 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1173 unsigned cs_mode)
1174 {
1175 WARN_ON(cs_mode > 12);
1176
1177 return ddr3_cs_size(cs_mode, false);
1178 }
1179
1180 /*
1181 * F16h and F15h model 30h have only limited cs_modes.
1182 */
1183 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1184 unsigned cs_mode)
1185 {
1186 WARN_ON(cs_mode > 12);
1187
1188 if (cs_mode == 6 || cs_mode == 8 ||
1189 cs_mode == 9 || cs_mode == 12)
1190 return -1;
1191 else
1192 return ddr3_cs_size(cs_mode, false);
1193 }
1194
1195 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1196 {
1197
1198 if (pvt->fam == 0xf)
1199 return;
1200
1201 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1202 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1203 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1204
1205 edac_dbg(0, " DCTs operate in %s mode\n",
1206 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1207
1208 if (!dct_ganging_enabled(pvt))
1209 edac_dbg(0, " Address range split per DCT: %s\n",
1210 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1211
1212 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1213 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1214 (dct_memory_cleared(pvt) ? "yes" : "no"));
1215
1216 edac_dbg(0, " channel interleave: %s, "
1217 "interleave bits selector: 0x%x\n",
1218 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1219 dct_sel_interleave_addr(pvt));
1220 }
1221
1222 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1223 }
1224
1225 /*
1226 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1227 * 2.10.12 Memory Interleaving Modes).
1228 */
1229 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1230 u8 intlv_en, int num_dcts_intlv,
1231 u32 dct_sel)
1232 {
1233 u8 channel = 0;
1234 u8 select;
1235
1236 if (!(intlv_en))
1237 return (u8)(dct_sel);
1238
1239 if (num_dcts_intlv == 2) {
1240 select = (sys_addr >> 8) & 0x3;
1241 channel = select ? 0x3 : 0;
1242 } else if (num_dcts_intlv == 4)
1243 channel = (sys_addr >> 8) & 0x7;
1244
1245 return channel;
1246 }
1247
1248 /*
1249 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1250 * Interleaving Modes.
1251 */
1252 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1253 bool hi_range_sel, u8 intlv_en)
1254 {
1255 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1256
1257 if (dct_ganging_enabled(pvt))
1258 return 0;
1259
1260 if (hi_range_sel)
1261 return dct_sel_high;
1262
1263 /*
1264 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1265 */
1266 if (dct_interleave_enabled(pvt)) {
1267 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1268
1269 /* return DCT select function: 0=DCT0, 1=DCT1 */
1270 if (!intlv_addr)
1271 return sys_addr >> 6 & 1;
1272
1273 if (intlv_addr & 0x2) {
1274 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1275 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1276
1277 return ((sys_addr >> shift) & 1) ^ temp;
1278 }
1279
1280 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1281 }
1282
1283 if (dct_high_range_enabled(pvt))
1284 return ~dct_sel_high & 1;
1285
1286 return 0;
1287 }
1288
1289 /* Convert the sys_addr to the normalized DCT address */
1290 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1291 u64 sys_addr, bool hi_rng,
1292 u32 dct_sel_base_addr)
1293 {
1294 u64 chan_off;
1295 u64 dram_base = get_dram_base(pvt, range);
1296 u64 hole_off = f10_dhar_offset(pvt);
1297 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1298
1299 if (hi_rng) {
1300 /*
1301 * if
1302 * base address of high range is below 4Gb
1303 * (bits [47:27] at [31:11])
1304 * DRAM address space on this DCT is hoisted above 4Gb &&
1305 * sys_addr > 4Gb
1306 *
1307 * remove hole offset from sys_addr
1308 * else
1309 * remove high range offset from sys_addr
1310 */
1311 if ((!(dct_sel_base_addr >> 16) ||
1312 dct_sel_base_addr < dhar_base(pvt)) &&
1313 dhar_valid(pvt) &&
1314 (sys_addr >= BIT_64(32)))
1315 chan_off = hole_off;
1316 else
1317 chan_off = dct_sel_base_off;
1318 } else {
1319 /*
1320 * if
1321 * we have a valid hole &&
1322 * sys_addr > 4Gb
1323 *
1324 * remove hole
1325 * else
1326 * remove dram base to normalize to DCT address
1327 */
1328 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1329 chan_off = hole_off;
1330 else
1331 chan_off = dram_base;
1332 }
1333
1334 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1335 }
1336
1337 /*
1338 * checks if the csrow passed in is marked as SPARED, if so returns the new
1339 * spare row
1340 */
1341 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1342 {
1343 int tmp_cs;
1344
1345 if (online_spare_swap_done(pvt, dct) &&
1346 csrow == online_spare_bad_dramcs(pvt, dct)) {
1347
1348 for_each_chip_select(tmp_cs, dct, pvt) {
1349 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1350 csrow = tmp_cs;
1351 break;
1352 }
1353 }
1354 }
1355 return csrow;
1356 }
1357
1358 /*
1359 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1360 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1361 *
1362 * Return:
1363 * -EINVAL: NOT FOUND
1364 * 0..csrow = Chip-Select Row
1365 */
1366 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1367 {
1368 struct mem_ctl_info *mci;
1369 struct amd64_pvt *pvt;
1370 u64 cs_base, cs_mask;
1371 int cs_found = -EINVAL;
1372 int csrow;
1373
1374 mci = mcis[nid];
1375 if (!mci)
1376 return cs_found;
1377
1378 pvt = mci->pvt_info;
1379
1380 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1381
1382 for_each_chip_select(csrow, dct, pvt) {
1383 if (!csrow_enabled(csrow, dct, pvt))
1384 continue;
1385
1386 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1387
1388 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1389 csrow, cs_base, cs_mask);
1390
1391 cs_mask = ~cs_mask;
1392
1393 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1394 (in_addr & cs_mask), (cs_base & cs_mask));
1395
1396 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1397 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1398 cs_found = csrow;
1399 break;
1400 }
1401 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1402
1403 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1404 break;
1405 }
1406 }
1407 return cs_found;
1408 }
1409
1410 /*
1411 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1412 * swapped with a region located at the bottom of memory so that the GPU can use
1413 * the interleaved region and thus two channels.
1414 */
1415 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1416 {
1417 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1418
1419 if (pvt->fam == 0x10) {
1420 /* only revC3 and revE have that feature */
1421 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1422 return sys_addr;
1423 }
1424
1425 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1426
1427 if (!(swap_reg & 0x1))
1428 return sys_addr;
1429
1430 swap_base = (swap_reg >> 3) & 0x7f;
1431 swap_limit = (swap_reg >> 11) & 0x7f;
1432 rgn_size = (swap_reg >> 20) & 0x7f;
1433 tmp_addr = sys_addr >> 27;
1434
1435 if (!(sys_addr >> 34) &&
1436 (((tmp_addr >= swap_base) &&
1437 (tmp_addr <= swap_limit)) ||
1438 (tmp_addr < rgn_size)))
1439 return sys_addr ^ (u64)swap_base << 27;
1440
1441 return sys_addr;
1442 }
1443
1444 /* For a given @dram_range, check if @sys_addr falls within it. */
1445 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1446 u64 sys_addr, int *chan_sel)
1447 {
1448 int cs_found = -EINVAL;
1449 u64 chan_addr;
1450 u32 dct_sel_base;
1451 u8 channel;
1452 bool high_range = false;
1453
1454 u8 node_id = dram_dst_node(pvt, range);
1455 u8 intlv_en = dram_intlv_en(pvt, range);
1456 u32 intlv_sel = dram_intlv_sel(pvt, range);
1457
1458 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1459 range, sys_addr, get_dram_limit(pvt, range));
1460
1461 if (dhar_valid(pvt) &&
1462 dhar_base(pvt) <= sys_addr &&
1463 sys_addr < BIT_64(32)) {
1464 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1465 sys_addr);
1466 return -EINVAL;
1467 }
1468
1469 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1470 return -EINVAL;
1471
1472 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1473
1474 dct_sel_base = dct_sel_baseaddr(pvt);
1475
1476 /*
1477 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1478 * select between DCT0 and DCT1.
1479 */
1480 if (dct_high_range_enabled(pvt) &&
1481 !dct_ganging_enabled(pvt) &&
1482 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1483 high_range = true;
1484
1485 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1486
1487 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1488 high_range, dct_sel_base);
1489
1490 /* Remove node interleaving, see F1x120 */
1491 if (intlv_en)
1492 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1493 (chan_addr & 0xfff);
1494
1495 /* remove channel interleave */
1496 if (dct_interleave_enabled(pvt) &&
1497 !dct_high_range_enabled(pvt) &&
1498 !dct_ganging_enabled(pvt)) {
1499
1500 if (dct_sel_interleave_addr(pvt) != 1) {
1501 if (dct_sel_interleave_addr(pvt) == 0x3)
1502 /* hash 9 */
1503 chan_addr = ((chan_addr >> 10) << 9) |
1504 (chan_addr & 0x1ff);
1505 else
1506 /* A[6] or hash 6 */
1507 chan_addr = ((chan_addr >> 7) << 6) |
1508 (chan_addr & 0x3f);
1509 } else
1510 /* A[12] */
1511 chan_addr = ((chan_addr >> 13) << 12) |
1512 (chan_addr & 0xfff);
1513 }
1514
1515 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1516
1517 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1518
1519 if (cs_found >= 0)
1520 *chan_sel = channel;
1521
1522 return cs_found;
1523 }
1524
1525 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1526 u64 sys_addr, int *chan_sel)
1527 {
1528 int cs_found = -EINVAL;
1529 int num_dcts_intlv = 0;
1530 u64 chan_addr, chan_offset;
1531 u64 dct_base, dct_limit;
1532 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1533 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1534
1535 u64 dhar_offset = f10_dhar_offset(pvt);
1536 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1537 u8 node_id = dram_dst_node(pvt, range);
1538 u8 intlv_en = dram_intlv_en(pvt, range);
1539
1540 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1541 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1542
1543 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1544 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1545
1546 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1547 range, sys_addr, get_dram_limit(pvt, range));
1548
1549 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1550 !(get_dram_limit(pvt, range) >= sys_addr))
1551 return -EINVAL;
1552
1553 if (dhar_valid(pvt) &&
1554 dhar_base(pvt) <= sys_addr &&
1555 sys_addr < BIT_64(32)) {
1556 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1557 sys_addr);
1558 return -EINVAL;
1559 }
1560
1561 /* Verify sys_addr is within DCT Range. */
1562 dct_base = (u64) dct_sel_baseaddr(pvt);
1563 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1564
1565 if (!(dct_cont_base_reg & BIT(0)) &&
1566 !(dct_base <= (sys_addr >> 27) &&
1567 dct_limit >= (sys_addr >> 27)))
1568 return -EINVAL;
1569
1570 /* Verify number of dct's that participate in channel interleaving. */
1571 num_dcts_intlv = (int) hweight8(intlv_en);
1572
1573 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1574 return -EINVAL;
1575
1576 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1577 num_dcts_intlv, dct_sel);
1578
1579 /* Verify we stay within the MAX number of channels allowed */
1580 if (channel > 3)
1581 return -EINVAL;
1582
1583 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1584
1585 /* Get normalized DCT addr */
1586 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1587 chan_offset = dhar_offset;
1588 else
1589 chan_offset = dct_base << 27;
1590
1591 chan_addr = sys_addr - chan_offset;
1592
1593 /* remove channel interleave */
1594 if (num_dcts_intlv == 2) {
1595 if (intlv_addr == 0x4)
1596 chan_addr = ((chan_addr >> 9) << 8) |
1597 (chan_addr & 0xff);
1598 else if (intlv_addr == 0x5)
1599 chan_addr = ((chan_addr >> 10) << 9) |
1600 (chan_addr & 0x1ff);
1601 else
1602 return -EINVAL;
1603
1604 } else if (num_dcts_intlv == 4) {
1605 if (intlv_addr == 0x4)
1606 chan_addr = ((chan_addr >> 10) << 8) |
1607 (chan_addr & 0xff);
1608 else if (intlv_addr == 0x5)
1609 chan_addr = ((chan_addr >> 11) << 9) |
1610 (chan_addr & 0x1ff);
1611 else
1612 return -EINVAL;
1613 }
1614
1615 if (dct_offset_en) {
1616 amd64_read_pci_cfg(pvt->F1,
1617 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1618 &tmp);
1619 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1620 }
1621
1622 f15h_select_dct(pvt, channel);
1623
1624 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1625
1626 /*
1627 * Find Chip select:
1628 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1629 * there is support for 4 DCT's, but only 2 are currently functional.
1630 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1631 * pvt->csels[1]. So we need to use '1' here to get correct info.
1632 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1633 */
1634 alias_channel = (channel == 3) ? 1 : channel;
1635
1636 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1637
1638 if (cs_found >= 0)
1639 *chan_sel = alias_channel;
1640
1641 return cs_found;
1642 }
1643
1644 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1645 u64 sys_addr,
1646 int *chan_sel)
1647 {
1648 int cs_found = -EINVAL;
1649 unsigned range;
1650
1651 for (range = 0; range < DRAM_RANGES; range++) {
1652 if (!dram_rw(pvt, range))
1653 continue;
1654
1655 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1656 cs_found = f15_m30h_match_to_this_node(pvt, range,
1657 sys_addr,
1658 chan_sel);
1659
1660 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1661 (get_dram_limit(pvt, range) >= sys_addr)) {
1662 cs_found = f1x_match_to_this_node(pvt, range,
1663 sys_addr, chan_sel);
1664 if (cs_found >= 0)
1665 break;
1666 }
1667 }
1668 return cs_found;
1669 }
1670
1671 /*
1672 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1673 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1674 *
1675 * The @sys_addr is usually an error address received from the hardware
1676 * (MCX_ADDR).
1677 */
1678 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1679 struct err_info *err)
1680 {
1681 struct amd64_pvt *pvt = mci->pvt_info;
1682
1683 error_address_to_page_and_offset(sys_addr, err);
1684
1685 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1686 if (err->csrow < 0) {
1687 err->err_code = ERR_CSROW;
1688 return;
1689 }
1690
1691 /*
1692 * We need the syndromes for channel detection only when we're
1693 * ganged. Otherwise @chan should already contain the channel at
1694 * this point.
1695 */
1696 if (dct_ganging_enabled(pvt))
1697 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1698 }
1699
1700 /*
1701 * debug routine to display the memory sizes of all logical DIMMs and its
1702 * CSROWs
1703 */
1704 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1705 {
1706 int dimm, size0, size1;
1707 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1708 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1709
1710 if (pvt->fam == 0xf) {
1711 /* K8 families < revF not supported yet */
1712 if (pvt->ext_model < K8_REV_F)
1713 return;
1714 else
1715 WARN_ON(ctrl != 0);
1716 }
1717
1718 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1719 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1720 : pvt->csels[0].csbases;
1721
1722 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1723 ctrl, dbam);
1724
1725 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1726
1727 /* Dump memory sizes for DIMM and its CSROWs */
1728 for (dimm = 0; dimm < 4; dimm++) {
1729
1730 size0 = 0;
1731 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1732 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1733 DBAM_DIMM(dimm, dbam));
1734
1735 size1 = 0;
1736 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1737 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1738 DBAM_DIMM(dimm, dbam));
1739
1740 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1741 dimm * 2, size0,
1742 dimm * 2 + 1, size1);
1743 }
1744 }
1745
1746 static struct amd64_family_type family_types[] = {
1747 [K8_CPUS] = {
1748 .ctl_name = "K8",
1749 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1750 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1751 .ops = {
1752 .early_channel_count = k8_early_channel_count,
1753 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1754 .dbam_to_cs = k8_dbam_to_chip_select,
1755 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1756 }
1757 },
1758 [F10_CPUS] = {
1759 .ctl_name = "F10h",
1760 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1761 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1762 .ops = {
1763 .early_channel_count = f1x_early_channel_count,
1764 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1765 .dbam_to_cs = f10_dbam_to_chip_select,
1766 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1767 }
1768 },
1769 [F15_CPUS] = {
1770 .ctl_name = "F15h",
1771 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1772 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1773 .ops = {
1774 .early_channel_count = f1x_early_channel_count,
1775 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1776 .dbam_to_cs = f15_dbam_to_chip_select,
1777 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1778 }
1779 },
1780 [F15_M30H_CPUS] = {
1781 .ctl_name = "F15h_M30h",
1782 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1783 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1784 .ops = {
1785 .early_channel_count = f1x_early_channel_count,
1786 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1787 .dbam_to_cs = f16_dbam_to_chip_select,
1788 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1789 }
1790 },
1791 [F16_CPUS] = {
1792 .ctl_name = "F16h",
1793 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1794 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1795 .ops = {
1796 .early_channel_count = f1x_early_channel_count,
1797 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1798 .dbam_to_cs = f16_dbam_to_chip_select,
1799 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1800 }
1801 },
1802 };
1803
1804 /*
1805 * These are tables of eigenvectors (one per line) which can be used for the
1806 * construction of the syndrome tables. The modified syndrome search algorithm
1807 * uses those to find the symbol in error and thus the DIMM.
1808 *
1809 * Algorithm courtesy of Ross LaFetra from AMD.
1810 */
1811 static const u16 x4_vectors[] = {
1812 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1813 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1814 0x0001, 0x0002, 0x0004, 0x0008,
1815 0x1013, 0x3032, 0x4044, 0x8088,
1816 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1817 0x4857, 0xc4fe, 0x13cc, 0x3288,
1818 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1819 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1820 0x15c1, 0x2a42, 0x89ac, 0x4758,
1821 0x2b03, 0x1602, 0x4f0c, 0xca08,
1822 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1823 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1824 0x2b87, 0x164e, 0x642c, 0xdc18,
1825 0x40b9, 0x80de, 0x1094, 0x20e8,
1826 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1827 0x11c1, 0x2242, 0x84ac, 0x4c58,
1828 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1829 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1830 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1831 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1832 0x16b3, 0x3d62, 0x4f34, 0x8518,
1833 0x1e2f, 0x391a, 0x5cac, 0xf858,
1834 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1835 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1836 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1837 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1838 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1839 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1840 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1841 0x185d, 0x2ca6, 0x7914, 0x9e28,
1842 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1843 0x4199, 0x82ee, 0x19f4, 0x2e58,
1844 0x4807, 0xc40e, 0x130c, 0x3208,
1845 0x1905, 0x2e0a, 0x5804, 0xac08,
1846 0x213f, 0x132a, 0xadfc, 0x5ba8,
1847 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1848 };
1849
1850 static const u16 x8_vectors[] = {
1851 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1852 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1853 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1854 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1855 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1856 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1857 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1858 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1859 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1860 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1861 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1862 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1863 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1864 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1865 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1866 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1867 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1868 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1869 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1870 };
1871
1872 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1873 unsigned v_dim)
1874 {
1875 unsigned int i, err_sym;
1876
1877 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1878 u16 s = syndrome;
1879 unsigned v_idx = err_sym * v_dim;
1880 unsigned v_end = (err_sym + 1) * v_dim;
1881
1882 /* walk over all 16 bits of the syndrome */
1883 for (i = 1; i < (1U << 16); i <<= 1) {
1884
1885 /* if bit is set in that eigenvector... */
1886 if (v_idx < v_end && vectors[v_idx] & i) {
1887 u16 ev_comp = vectors[v_idx++];
1888
1889 /* ... and bit set in the modified syndrome, */
1890 if (s & i) {
1891 /* remove it. */
1892 s ^= ev_comp;
1893
1894 if (!s)
1895 return err_sym;
1896 }
1897
1898 } else if (s & i)
1899 /* can't get to zero, move to next symbol */
1900 break;
1901 }
1902 }
1903
1904 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1905 return -1;
1906 }
1907
1908 static int map_err_sym_to_channel(int err_sym, int sym_size)
1909 {
1910 if (sym_size == 4)
1911 switch (err_sym) {
1912 case 0x20:
1913 case 0x21:
1914 return 0;
1915 break;
1916 case 0x22:
1917 case 0x23:
1918 return 1;
1919 break;
1920 default:
1921 return err_sym >> 4;
1922 break;
1923 }
1924 /* x8 symbols */
1925 else
1926 switch (err_sym) {
1927 /* imaginary bits not in a DIMM */
1928 case 0x10:
1929 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1930 err_sym);
1931 return -1;
1932 break;
1933
1934 case 0x11:
1935 return 0;
1936 break;
1937 case 0x12:
1938 return 1;
1939 break;
1940 default:
1941 return err_sym >> 3;
1942 break;
1943 }
1944 return -1;
1945 }
1946
1947 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1948 {
1949 struct amd64_pvt *pvt = mci->pvt_info;
1950 int err_sym = -1;
1951
1952 if (pvt->ecc_sym_sz == 8)
1953 err_sym = decode_syndrome(syndrome, x8_vectors,
1954 ARRAY_SIZE(x8_vectors),
1955 pvt->ecc_sym_sz);
1956 else if (pvt->ecc_sym_sz == 4)
1957 err_sym = decode_syndrome(syndrome, x4_vectors,
1958 ARRAY_SIZE(x4_vectors),
1959 pvt->ecc_sym_sz);
1960 else {
1961 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1962 return err_sym;
1963 }
1964
1965 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1966 }
1967
1968 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1969 u8 ecc_type)
1970 {
1971 enum hw_event_mc_err_type err_type;
1972 const char *string;
1973
1974 if (ecc_type == 2)
1975 err_type = HW_EVENT_ERR_CORRECTED;
1976 else if (ecc_type == 1)
1977 err_type = HW_EVENT_ERR_UNCORRECTED;
1978 else {
1979 WARN(1, "Something is rotten in the state of Denmark.\n");
1980 return;
1981 }
1982
1983 switch (err->err_code) {
1984 case DECODE_OK:
1985 string = "";
1986 break;
1987 case ERR_NODE:
1988 string = "Failed to map error addr to a node";
1989 break;
1990 case ERR_CSROW:
1991 string = "Failed to map error addr to a csrow";
1992 break;
1993 case ERR_CHANNEL:
1994 string = "unknown syndrome - possible error reporting race";
1995 break;
1996 default:
1997 string = "WTF error";
1998 break;
1999 }
2000
2001 edac_mc_handle_error(err_type, mci, 1,
2002 err->page, err->offset, err->syndrome,
2003 err->csrow, err->channel, -1,
2004 string, "");
2005 }
2006
2007 static inline void decode_bus_error(int node_id, struct mce *m)
2008 {
2009 struct mem_ctl_info *mci = mcis[node_id];
2010 struct amd64_pvt *pvt = mci->pvt_info;
2011 u8 ecc_type = (m->status >> 45) & 0x3;
2012 u8 xec = XEC(m->status, 0x1f);
2013 u16 ec = EC(m->status);
2014 u64 sys_addr;
2015 struct err_info err;
2016
2017 /* Bail out early if this was an 'observed' error */
2018 if (PP(ec) == NBSL_PP_OBS)
2019 return;
2020
2021 /* Do only ECC errors */
2022 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2023 return;
2024
2025 memset(&err, 0, sizeof(err));
2026
2027 sys_addr = get_error_address(pvt, m);
2028
2029 if (ecc_type == 2)
2030 err.syndrome = extract_syndrome(m->status);
2031
2032 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2033
2034 __log_bus_error(mci, &err, ecc_type);
2035 }
2036
2037 /*
2038 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2039 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2040 */
2041 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2042 {
2043 /* Reserve the ADDRESS MAP Device */
2044 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2045 if (!pvt->F1) {
2046 amd64_err("error address map device not found: "
2047 "vendor %x device 0x%x (broken BIOS?)\n",
2048 PCI_VENDOR_ID_AMD, f1_id);
2049 return -ENODEV;
2050 }
2051
2052 /* Reserve the MISC Device */
2053 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2054 if (!pvt->F3) {
2055 pci_dev_put(pvt->F1);
2056 pvt->F1 = NULL;
2057
2058 amd64_err("error F3 device not found: "
2059 "vendor %x device 0x%x (broken BIOS?)\n",
2060 PCI_VENDOR_ID_AMD, f3_id);
2061
2062 return -ENODEV;
2063 }
2064 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2065 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2066 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2067
2068 return 0;
2069 }
2070
2071 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2072 {
2073 pci_dev_put(pvt->F1);
2074 pci_dev_put(pvt->F3);
2075 }
2076
2077 /*
2078 * Retrieve the hardware registers of the memory controller (this includes the
2079 * 'Address Map' and 'Misc' device regs)
2080 */
2081 static void read_mc_regs(struct amd64_pvt *pvt)
2082 {
2083 unsigned range;
2084 u64 msr_val;
2085 u32 tmp;
2086
2087 /*
2088 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2089 * those are Read-As-Zero
2090 */
2091 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2092 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2093
2094 /* check first whether TOP_MEM2 is enabled */
2095 rdmsrl(MSR_K8_SYSCFG, msr_val);
2096 if (msr_val & (1U << 21)) {
2097 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2098 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2099 } else
2100 edac_dbg(0, " TOP_MEM2 disabled\n");
2101
2102 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2103
2104 read_dram_ctl_register(pvt);
2105
2106 for (range = 0; range < DRAM_RANGES; range++) {
2107 u8 rw;
2108
2109 /* read settings for this DRAM range */
2110 read_dram_base_limit_regs(pvt, range);
2111
2112 rw = dram_rw(pvt, range);
2113 if (!rw)
2114 continue;
2115
2116 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2117 range,
2118 get_dram_base(pvt, range),
2119 get_dram_limit(pvt, range));
2120
2121 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2122 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2123 (rw & 0x1) ? "R" : "-",
2124 (rw & 0x2) ? "W" : "-",
2125 dram_intlv_sel(pvt, range),
2126 dram_dst_node(pvt, range));
2127 }
2128
2129 read_dct_base_mask(pvt);
2130
2131 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2132 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2133
2134 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2135
2136 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2137 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2138
2139 if (!dct_ganging_enabled(pvt)) {
2140 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2141 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2142 }
2143
2144 pvt->ecc_sym_sz = 4;
2145
2146 if (pvt->fam >= 0x10) {
2147 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2148 if (pvt->fam != 0x16)
2149 /* F16h has only DCT0 */
2150 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2151
2152 /* F10h, revD and later can do x8 ECC too */
2153 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2154 pvt->ecc_sym_sz = 8;
2155 }
2156 dump_misc_regs(pvt);
2157 }
2158
2159 /*
2160 * NOTE: CPU Revision Dependent code
2161 *
2162 * Input:
2163 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2164 * k8 private pointer to -->
2165 * DRAM Bank Address mapping register
2166 * node_id
2167 * DCL register where dual_channel_active is
2168 *
2169 * The DBAM register consists of 4 sets of 4 bits each definitions:
2170 *
2171 * Bits: CSROWs
2172 * 0-3 CSROWs 0 and 1
2173 * 4-7 CSROWs 2 and 3
2174 * 8-11 CSROWs 4 and 5
2175 * 12-15 CSROWs 6 and 7
2176 *
2177 * Values range from: 0 to 15
2178 * The meaning of the values depends on CPU revision and dual-channel state,
2179 * see relevant BKDG more info.
2180 *
2181 * The memory controller provides for total of only 8 CSROWs in its current
2182 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2183 * single channel or two (2) DIMMs in dual channel mode.
2184 *
2185 * The following code logic collapses the various tables for CSROW based on CPU
2186 * revision.
2187 *
2188 * Returns:
2189 * The number of PAGE_SIZE pages on the specified CSROW number it
2190 * encompasses
2191 *
2192 */
2193 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2194 {
2195 u32 cs_mode, nr_pages;
2196 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2197
2198
2199 /*
2200 * The math on this doesn't look right on the surface because x/2*4 can
2201 * be simplified to x*2 but this expression makes use of the fact that
2202 * it is integral math where 1/2=0. This intermediate value becomes the
2203 * number of bits to shift the DBAM register to extract the proper CSROW
2204 * field.
2205 */
2206 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2207
2208 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2209
2210 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2211 csrow_nr, dct, cs_mode);
2212 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2213
2214 return nr_pages;
2215 }
2216
2217 /*
2218 * Initialize the array of csrow attribute instances, based on the values
2219 * from pci config hardware registers.
2220 */
2221 static int init_csrows(struct mem_ctl_info *mci)
2222 {
2223 struct amd64_pvt *pvt = mci->pvt_info;
2224 struct csrow_info *csrow;
2225 struct dimm_info *dimm;
2226 enum edac_type edac_mode;
2227 enum mem_type mtype;
2228 int i, j, empty = 1;
2229 int nr_pages = 0;
2230 u32 val;
2231
2232 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2233
2234 pvt->nbcfg = val;
2235
2236 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2237 pvt->mc_node_id, val,
2238 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2239
2240 /*
2241 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2242 */
2243 for_each_chip_select(i, 0, pvt) {
2244 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2245 bool row_dct1 = false;
2246
2247 if (pvt->fam != 0xf)
2248 row_dct1 = !!csrow_enabled(i, 1, pvt);
2249
2250 if (!row_dct0 && !row_dct1)
2251 continue;
2252
2253 csrow = mci->csrows[i];
2254 empty = 0;
2255
2256 edac_dbg(1, "MC node: %d, csrow: %d\n",
2257 pvt->mc_node_id, i);
2258
2259 if (row_dct0) {
2260 nr_pages = get_csrow_nr_pages(pvt, 0, i);
2261 csrow->channels[0]->dimm->nr_pages = nr_pages;
2262 }
2263
2264 /* K8 has only one DCT */
2265 if (pvt->fam != 0xf && row_dct1) {
2266 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2267
2268 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2269 nr_pages += row_dct1_pages;
2270 }
2271
2272 mtype = determine_memory_type(pvt, i);
2273
2274 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2275
2276 /*
2277 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2278 */
2279 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2280 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2281 EDAC_S4ECD4ED : EDAC_SECDED;
2282 else
2283 edac_mode = EDAC_NONE;
2284
2285 for (j = 0; j < pvt->channel_count; j++) {
2286 dimm = csrow->channels[j]->dimm;
2287 dimm->mtype = mtype;
2288 dimm->edac_mode = edac_mode;
2289 }
2290 }
2291
2292 return empty;
2293 }
2294
2295 /* get all cores on this DCT */
2296 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2297 {
2298 int cpu;
2299
2300 for_each_online_cpu(cpu)
2301 if (amd_get_nb_id(cpu) == nid)
2302 cpumask_set_cpu(cpu, mask);
2303 }
2304
2305 /* check MCG_CTL on all the cpus on this node */
2306 static bool nb_mce_bank_enabled_on_node(u16 nid)
2307 {
2308 cpumask_var_t mask;
2309 int cpu, nbe;
2310 bool ret = false;
2311
2312 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2313 amd64_warn("%s: Error allocating mask\n", __func__);
2314 return false;
2315 }
2316
2317 get_cpus_on_this_dct_cpumask(mask, nid);
2318
2319 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2320
2321 for_each_cpu(cpu, mask) {
2322 struct msr *reg = per_cpu_ptr(msrs, cpu);
2323 nbe = reg->l & MSR_MCGCTL_NBE;
2324
2325 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2326 cpu, reg->q,
2327 (nbe ? "enabled" : "disabled"));
2328
2329 if (!nbe)
2330 goto out;
2331 }
2332 ret = true;
2333
2334 out:
2335 free_cpumask_var(mask);
2336 return ret;
2337 }
2338
2339 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2340 {
2341 cpumask_var_t cmask;
2342 int cpu;
2343
2344 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2345 amd64_warn("%s: error allocating mask\n", __func__);
2346 return false;
2347 }
2348
2349 get_cpus_on_this_dct_cpumask(cmask, nid);
2350
2351 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2352
2353 for_each_cpu(cpu, cmask) {
2354
2355 struct msr *reg = per_cpu_ptr(msrs, cpu);
2356
2357 if (on) {
2358 if (reg->l & MSR_MCGCTL_NBE)
2359 s->flags.nb_mce_enable = 1;
2360
2361 reg->l |= MSR_MCGCTL_NBE;
2362 } else {
2363 /*
2364 * Turn off NB MCE reporting only when it was off before
2365 */
2366 if (!s->flags.nb_mce_enable)
2367 reg->l &= ~MSR_MCGCTL_NBE;
2368 }
2369 }
2370 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2371
2372 free_cpumask_var(cmask);
2373
2374 return 0;
2375 }
2376
2377 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2378 struct pci_dev *F3)
2379 {
2380 bool ret = true;
2381 u32 value, mask = 0x3; /* UECC/CECC enable */
2382
2383 if (toggle_ecc_err_reporting(s, nid, ON)) {
2384 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2385 return false;
2386 }
2387
2388 amd64_read_pci_cfg(F3, NBCTL, &value);
2389
2390 s->old_nbctl = value & mask;
2391 s->nbctl_valid = true;
2392
2393 value |= mask;
2394 amd64_write_pci_cfg(F3, NBCTL, value);
2395
2396 amd64_read_pci_cfg(F3, NBCFG, &value);
2397
2398 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2399 nid, value, !!(value & NBCFG_ECC_ENABLE));
2400
2401 if (!(value & NBCFG_ECC_ENABLE)) {
2402 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2403
2404 s->flags.nb_ecc_prev = 0;
2405
2406 /* Attempt to turn on DRAM ECC Enable */
2407 value |= NBCFG_ECC_ENABLE;
2408 amd64_write_pci_cfg(F3, NBCFG, value);
2409
2410 amd64_read_pci_cfg(F3, NBCFG, &value);
2411
2412 if (!(value & NBCFG_ECC_ENABLE)) {
2413 amd64_warn("Hardware rejected DRAM ECC enable,"
2414 "check memory DIMM configuration.\n");
2415 ret = false;
2416 } else {
2417 amd64_info("Hardware accepted DRAM ECC Enable\n");
2418 }
2419 } else {
2420 s->flags.nb_ecc_prev = 1;
2421 }
2422
2423 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2424 nid, value, !!(value & NBCFG_ECC_ENABLE));
2425
2426 return ret;
2427 }
2428
2429 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2430 struct pci_dev *F3)
2431 {
2432 u32 value, mask = 0x3; /* UECC/CECC enable */
2433
2434
2435 if (!s->nbctl_valid)
2436 return;
2437
2438 amd64_read_pci_cfg(F3, NBCTL, &value);
2439 value &= ~mask;
2440 value |= s->old_nbctl;
2441
2442 amd64_write_pci_cfg(F3, NBCTL, value);
2443
2444 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2445 if (!s->flags.nb_ecc_prev) {
2446 amd64_read_pci_cfg(F3, NBCFG, &value);
2447 value &= ~NBCFG_ECC_ENABLE;
2448 amd64_write_pci_cfg(F3, NBCFG, value);
2449 }
2450
2451 /* restore the NB Enable MCGCTL bit */
2452 if (toggle_ecc_err_reporting(s, nid, OFF))
2453 amd64_warn("Error restoring NB MCGCTL settings!\n");
2454 }
2455
2456 /*
2457 * EDAC requires that the BIOS have ECC enabled before
2458 * taking over the processing of ECC errors. A command line
2459 * option allows to force-enable hardware ECC later in
2460 * enable_ecc_error_reporting().
2461 */
2462 static const char *ecc_msg =
2463 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2464 " Either enable ECC checking or force module loading by setting "
2465 "'ecc_enable_override'.\n"
2466 " (Note that use of the override may cause unknown side effects.)\n";
2467
2468 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2469 {
2470 u32 value;
2471 u8 ecc_en = 0;
2472 bool nb_mce_en = false;
2473
2474 amd64_read_pci_cfg(F3, NBCFG, &value);
2475
2476 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2477 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2478
2479 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2480 if (!nb_mce_en)
2481 amd64_notice("NB MCE bank disabled, set MSR "
2482 "0x%08x[4] on node %d to enable.\n",
2483 MSR_IA32_MCG_CTL, nid);
2484
2485 if (!ecc_en || !nb_mce_en) {
2486 amd64_notice("%s", ecc_msg);
2487 return false;
2488 }
2489 return true;
2490 }
2491
2492 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2493 {
2494 struct amd64_pvt *pvt = mci->pvt_info;
2495 int rc;
2496
2497 rc = amd64_create_sysfs_dbg_files(mci);
2498 if (rc < 0)
2499 return rc;
2500
2501 if (pvt->fam >= 0x10) {
2502 rc = amd64_create_sysfs_inject_files(mci);
2503 if (rc < 0)
2504 return rc;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2511 {
2512 struct amd64_pvt *pvt = mci->pvt_info;
2513
2514 amd64_remove_sysfs_dbg_files(mci);
2515
2516 if (pvt->fam >= 0x10)
2517 amd64_remove_sysfs_inject_files(mci);
2518 }
2519
2520 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2521 struct amd64_family_type *fam)
2522 {
2523 struct amd64_pvt *pvt = mci->pvt_info;
2524
2525 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2526 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2527
2528 if (pvt->nbcap & NBCAP_SECDED)
2529 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2530
2531 if (pvt->nbcap & NBCAP_CHIPKILL)
2532 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2533
2534 mci->edac_cap = determine_edac_cap(pvt);
2535 mci->mod_name = EDAC_MOD_STR;
2536 mci->mod_ver = EDAC_AMD64_VERSION;
2537 mci->ctl_name = fam->ctl_name;
2538 mci->dev_name = pci_name(pvt->F2);
2539 mci->ctl_page_to_phys = NULL;
2540
2541 /* memory scrubber interface */
2542 mci->set_sdram_scrub_rate = set_scrub_rate;
2543 mci->get_sdram_scrub_rate = get_scrub_rate;
2544 }
2545
2546 /*
2547 * returns a pointer to the family descriptor on success, NULL otherwise.
2548 */
2549 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2550 {
2551 struct amd64_family_type *fam_type = NULL;
2552
2553 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2554 pvt->stepping = boot_cpu_data.x86_mask;
2555 pvt->model = boot_cpu_data.x86_model;
2556 pvt->fam = boot_cpu_data.x86;
2557
2558 switch (pvt->fam) {
2559 case 0xf:
2560 fam_type = &family_types[K8_CPUS];
2561 pvt->ops = &family_types[K8_CPUS].ops;
2562 break;
2563
2564 case 0x10:
2565 fam_type = &family_types[F10_CPUS];
2566 pvt->ops = &family_types[F10_CPUS].ops;
2567 break;
2568
2569 case 0x15:
2570 if (pvt->model == 0x30) {
2571 fam_type = &family_types[F15_M30H_CPUS];
2572 pvt->ops = &family_types[F15_M30H_CPUS].ops;
2573 break;
2574 }
2575
2576 fam_type = &family_types[F15_CPUS];
2577 pvt->ops = &family_types[F15_CPUS].ops;
2578 break;
2579
2580 case 0x16:
2581 fam_type = &family_types[F16_CPUS];
2582 pvt->ops = &family_types[F16_CPUS].ops;
2583 break;
2584
2585 default:
2586 amd64_err("Unsupported family!\n");
2587 return NULL;
2588 }
2589
2590 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2591 (pvt->fam == 0xf ?
2592 (pvt->ext_model >= K8_REV_F ? "revF or later "
2593 : "revE or earlier ")
2594 : ""), pvt->mc_node_id);
2595 return fam_type;
2596 }
2597
2598 static int init_one_instance(struct pci_dev *F2)
2599 {
2600 struct amd64_pvt *pvt = NULL;
2601 struct amd64_family_type *fam_type = NULL;
2602 struct mem_ctl_info *mci = NULL;
2603 struct edac_mc_layer layers[2];
2604 int err = 0, ret;
2605 u16 nid = amd_get_node_id(F2);
2606
2607 ret = -ENOMEM;
2608 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2609 if (!pvt)
2610 goto err_ret;
2611
2612 pvt->mc_node_id = nid;
2613 pvt->F2 = F2;
2614
2615 ret = -EINVAL;
2616 fam_type = per_family_init(pvt);
2617 if (!fam_type)
2618 goto err_free;
2619
2620 ret = -ENODEV;
2621 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2622 if (err)
2623 goto err_free;
2624
2625 read_mc_regs(pvt);
2626
2627 /*
2628 * We need to determine how many memory channels there are. Then use
2629 * that information for calculating the size of the dynamic instance
2630 * tables in the 'mci' structure.
2631 */
2632 ret = -EINVAL;
2633 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2634 if (pvt->channel_count < 0)
2635 goto err_siblings;
2636
2637 ret = -ENOMEM;
2638 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2639 layers[0].size = pvt->csels[0].b_cnt;
2640 layers[0].is_virt_csrow = true;
2641 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2642
2643 /*
2644 * Always allocate two channels since we can have setups with DIMMs on
2645 * only one channel. Also, this simplifies handling later for the price
2646 * of a couple of KBs tops.
2647 */
2648 layers[1].size = 2;
2649 layers[1].is_virt_csrow = false;
2650
2651 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2652 if (!mci)
2653 goto err_siblings;
2654
2655 mci->pvt_info = pvt;
2656 mci->pdev = &pvt->F2->dev;
2657
2658 setup_mci_misc_attrs(mci, fam_type);
2659
2660 if (init_csrows(mci))
2661 mci->edac_cap = EDAC_FLAG_NONE;
2662
2663 ret = -ENODEV;
2664 if (edac_mc_add_mc(mci)) {
2665 edac_dbg(1, "failed edac_mc_add_mc()\n");
2666 goto err_add_mc;
2667 }
2668 if (set_mc_sysfs_attrs(mci)) {
2669 edac_dbg(1, "failed edac_mc_add_mc()\n");
2670 goto err_add_sysfs;
2671 }
2672
2673 /* register stuff with EDAC MCE */
2674 if (report_gart_errors)
2675 amd_report_gart_errors(true);
2676
2677 amd_register_ecc_decoder(decode_bus_error);
2678
2679 mcis[nid] = mci;
2680
2681 atomic_inc(&drv_instances);
2682
2683 return 0;
2684
2685 err_add_sysfs:
2686 edac_mc_del_mc(mci->pdev);
2687 err_add_mc:
2688 edac_mc_free(mci);
2689
2690 err_siblings:
2691 free_mc_sibling_devs(pvt);
2692
2693 err_free:
2694 kfree(pvt);
2695
2696 err_ret:
2697 return ret;
2698 }
2699
2700 static int probe_one_instance(struct pci_dev *pdev,
2701 const struct pci_device_id *mc_type)
2702 {
2703 u16 nid = amd_get_node_id(pdev);
2704 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2705 struct ecc_settings *s;
2706 int ret = 0;
2707
2708 ret = pci_enable_device(pdev);
2709 if (ret < 0) {
2710 edac_dbg(0, "ret=%d\n", ret);
2711 return -EIO;
2712 }
2713
2714 ret = -ENOMEM;
2715 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2716 if (!s)
2717 goto err_out;
2718
2719 ecc_stngs[nid] = s;
2720
2721 if (!ecc_enabled(F3, nid)) {
2722 ret = -ENODEV;
2723
2724 if (!ecc_enable_override)
2725 goto err_enable;
2726
2727 amd64_warn("Forcing ECC on!\n");
2728
2729 if (!enable_ecc_error_reporting(s, nid, F3))
2730 goto err_enable;
2731 }
2732
2733 ret = init_one_instance(pdev);
2734 if (ret < 0) {
2735 amd64_err("Error probing instance: %d\n", nid);
2736 restore_ecc_error_reporting(s, nid, F3);
2737 }
2738
2739 return ret;
2740
2741 err_enable:
2742 kfree(s);
2743 ecc_stngs[nid] = NULL;
2744
2745 err_out:
2746 return ret;
2747 }
2748
2749 static void remove_one_instance(struct pci_dev *pdev)
2750 {
2751 struct mem_ctl_info *mci;
2752 struct amd64_pvt *pvt;
2753 u16 nid = amd_get_node_id(pdev);
2754 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2755 struct ecc_settings *s = ecc_stngs[nid];
2756
2757 mci = find_mci_by_dev(&pdev->dev);
2758 WARN_ON(!mci);
2759
2760 del_mc_sysfs_attrs(mci);
2761 /* Remove from EDAC CORE tracking list */
2762 mci = edac_mc_del_mc(&pdev->dev);
2763 if (!mci)
2764 return;
2765
2766 pvt = mci->pvt_info;
2767
2768 restore_ecc_error_reporting(s, nid, F3);
2769
2770 free_mc_sibling_devs(pvt);
2771
2772 /* unregister from EDAC MCE */
2773 amd_report_gart_errors(false);
2774 amd_unregister_ecc_decoder(decode_bus_error);
2775
2776 kfree(ecc_stngs[nid]);
2777 ecc_stngs[nid] = NULL;
2778
2779 /* Free the EDAC CORE resources */
2780 mci->pvt_info = NULL;
2781 mcis[nid] = NULL;
2782
2783 kfree(pvt);
2784 edac_mc_free(mci);
2785 }
2786
2787 /*
2788 * This table is part of the interface for loading drivers for PCI devices. The
2789 * PCI core identifies what devices are on a system during boot, and then
2790 * inquiry this table to see if this driver is for a given device found.
2791 */
2792 static const struct pci_device_id amd64_pci_table[] = {
2793 {
2794 .vendor = PCI_VENDOR_ID_AMD,
2795 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2796 .subvendor = PCI_ANY_ID,
2797 .subdevice = PCI_ANY_ID,
2798 .class = 0,
2799 .class_mask = 0,
2800 },
2801 {
2802 .vendor = PCI_VENDOR_ID_AMD,
2803 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2804 .subvendor = PCI_ANY_ID,
2805 .subdevice = PCI_ANY_ID,
2806 .class = 0,
2807 .class_mask = 0,
2808 },
2809 {
2810 .vendor = PCI_VENDOR_ID_AMD,
2811 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2812 .subvendor = PCI_ANY_ID,
2813 .subdevice = PCI_ANY_ID,
2814 .class = 0,
2815 .class_mask = 0,
2816 },
2817 {
2818 .vendor = PCI_VENDOR_ID_AMD,
2819 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2820 .subvendor = PCI_ANY_ID,
2821 .subdevice = PCI_ANY_ID,
2822 .class = 0,
2823 .class_mask = 0,
2824 },
2825 {
2826 .vendor = PCI_VENDOR_ID_AMD,
2827 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2828 .subvendor = PCI_ANY_ID,
2829 .subdevice = PCI_ANY_ID,
2830 .class = 0,
2831 .class_mask = 0,
2832 },
2833
2834 {0, }
2835 };
2836 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2837
2838 static struct pci_driver amd64_pci_driver = {
2839 .name = EDAC_MOD_STR,
2840 .probe = probe_one_instance,
2841 .remove = remove_one_instance,
2842 .id_table = amd64_pci_table,
2843 };
2844
2845 static void setup_pci_device(void)
2846 {
2847 struct mem_ctl_info *mci;
2848 struct amd64_pvt *pvt;
2849
2850 if (pci_ctl)
2851 return;
2852
2853 mci = mcis[0];
2854 if (!mci)
2855 return;
2856
2857 pvt = mci->pvt_info;
2858 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2859 if (!pci_ctl) {
2860 pr_warn("%s(): Unable to create PCI control\n", __func__);
2861 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2862 }
2863 }
2864
2865 static int __init amd64_edac_init(void)
2866 {
2867 int err = -ENODEV;
2868
2869 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2870
2871 opstate_init();
2872
2873 if (amd_cache_northbridges() < 0)
2874 goto err_ret;
2875
2876 err = -ENOMEM;
2877 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2878 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2879 if (!(mcis && ecc_stngs))
2880 goto err_free;
2881
2882 msrs = msrs_alloc();
2883 if (!msrs)
2884 goto err_free;
2885
2886 err = pci_register_driver(&amd64_pci_driver);
2887 if (err)
2888 goto err_pci;
2889
2890 err = -ENODEV;
2891 if (!atomic_read(&drv_instances))
2892 goto err_no_instances;
2893
2894 setup_pci_device();
2895 return 0;
2896
2897 err_no_instances:
2898 pci_unregister_driver(&amd64_pci_driver);
2899
2900 err_pci:
2901 msrs_free(msrs);
2902 msrs = NULL;
2903
2904 err_free:
2905 kfree(mcis);
2906 mcis = NULL;
2907
2908 kfree(ecc_stngs);
2909 ecc_stngs = NULL;
2910
2911 err_ret:
2912 return err;
2913 }
2914
2915 static void __exit amd64_edac_exit(void)
2916 {
2917 if (pci_ctl)
2918 edac_pci_release_generic_ctl(pci_ctl);
2919
2920 pci_unregister_driver(&amd64_pci_driver);
2921
2922 kfree(ecc_stngs);
2923 ecc_stngs = NULL;
2924
2925 kfree(mcis);
2926 mcis = NULL;
2927
2928 msrs_free(msrs);
2929 msrs = NULL;
2930 }
2931
2932 module_init(amd64_edac_init);
2933 module_exit(amd64_edac_exit);
2934
2935 MODULE_LICENSE("GPL");
2936 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2937 "Dave Peterson, Thayne Harbaugh");
2938 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2939 EDAC_AMD64_VERSION);
2940
2941 module_param(edac_op_state, int, 0444);
2942 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.097439 seconds and 5 git commands to generate.