Drivers: edac: remove __dev* attributes.
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 /*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132 {
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
140 f15h_select_dct(pvt, dct);
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144
145 /*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159 /*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
176 */
177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
182 if (scrubrates[i].scrubval < min_rate)
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
187 }
188
189 scrubval = scrubrates[i].scrubval;
190
191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
196 return 0;
197 }
198
199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 {
201 struct amd64_pvt *pvt = mci->pvt_info;
202 u32 min_scrubrate = 0x5;
203
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 }
213
214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 {
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
218 int i, retval = -EINVAL;
219
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225
226 scrubval = scrubval & 0x001F;
227
228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 if (scrubrates[i].scrubval == scrubval) {
230 retval = scrubrates[i].bandwidth;
231 break;
232 }
233 }
234 return retval;
235 }
236
237 /*
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
240 */
241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 unsigned nid)
243 {
244 u64 addr;
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
256 }
257
258 /*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266 {
267 struct amd64_pvt *pvt;
268 unsigned node_id;
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
282 intlv_en = dram_intlv_en(pvt, 0);
283
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
288 }
289 goto err_no_match;
290 }
291
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 break; /* intlv_sel field matches */
304
305 if (++node_id >= DRAM_RANGES)
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
314 return NULL;
315 }
316
317 found:
318 return edac_mc_find((int)node_id);
319
320 err_no_match:
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
323
324 return NULL;
325 }
326
327 /*
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
330 */
331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
333 {
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
336
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
347
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
353
354 *base = (csbase & base_bits) << addr_shift;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
361 }
362
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
372 /*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377 {
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
386 continue;
387
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
391
392 if ((input_addr & mask) == (base & mask)) {
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
396
397 return csrow;
398 }
399 }
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404 }
405
406 /*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424 {
425 struct amd64_pvt *pvt = mci->pvt_info;
426
427 /* only revE and later have the DRAM Hole Address Register */
428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
431 return 1;
432 }
433
434 /* valid for Fam10h and above */
435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
437 return 1;
438 }
439
440 if (!dhar_valid(pvt)) {
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
466
467 if (boot_cpu_data.x86 > 0xf)
468 *hole_offset = f10_dhar_offset(pvt);
469 else
470 *hole_offset = k8_dhar_offset(pvt);
471
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
475
476 return 0;
477 }
478 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
480 /*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510 {
511 struct amd64_pvt *pvt = mci->pvt_info;
512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
513 int ret;
514
515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
543
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
546 return dram_addr;
547 }
548
549 /*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554 static int num_node_interleave_bits(unsigned intlv_en)
555 {
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562 }
563
564 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
565 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566 {
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
580
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
584
585 return input_addr;
586 }
587
588 /*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593 {
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
601
602 return input_addr;
603 }
604
605
606 /*
607 * @input_addr is an InputAddr associated with the node represented by mci.
608 * Translate @input_addr to a DramAddr and return the result.
609 */
610 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
611 {
612 struct amd64_pvt *pvt;
613 unsigned node_id, intlv_shift;
614 u64 bits, dram_addr;
615 u32 intlv_sel;
616
617 /*
618 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * shows how to translate a DramAddr to an InputAddr. Here we reverse
620 * this procedure. When translating from a DramAddr to an InputAddr, the
621 * bits used for node interleaving are discarded. Here we recover these
622 * bits from the IntlvSel field of the DRAM Limit register (section
623 * 3.4.4.2) for the node that input_addr is associated with.
624 */
625 pvt = mci->pvt_info;
626 node_id = pvt->mc_node_id;
627
628 BUG_ON(node_id > 7);
629
630 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
631 if (intlv_shift == 0) {
632 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
633 (unsigned long)input_addr);
634
635 return input_addr;
636 }
637
638 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
639 (input_addr & 0xfff);
640
641 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
642 dram_addr = bits + (intlv_sel << 12);
643
644 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
645 (unsigned long)input_addr,
646 (unsigned long)dram_addr, intlv_shift);
647
648 return dram_addr;
649 }
650
651 /*
652 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
653 * @dram_addr to a SysAddr.
654 */
655 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
656 {
657 struct amd64_pvt *pvt = mci->pvt_info;
658 u64 hole_base, hole_offset, hole_size, base, sys_addr;
659 int ret = 0;
660
661 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
662 &hole_size);
663 if (!ret) {
664 if ((dram_addr >= hole_base) &&
665 (dram_addr < (hole_base + hole_size))) {
666 sys_addr = dram_addr + hole_offset;
667
668 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
669 (unsigned long)dram_addr,
670 (unsigned long)sys_addr);
671
672 return sys_addr;
673 }
674 }
675
676 base = get_dram_base(pvt, pvt->mc_node_id);
677 sys_addr = dram_addr + base;
678
679 /*
680 * The sys_addr we have computed up to this point is a 40-bit value
681 * because the k8 deals with 40-bit values. However, the value we are
682 * supposed to return is a full 64-bit physical address. The AMD
683 * x86-64 architecture specifies that the most significant implemented
684 * address bit through bit 63 of a physical address must be either all
685 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
686 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
687 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
688 * Programming.
689 */
690 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
691
692 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
693 pvt->mc_node_id, (unsigned long)dram_addr,
694 (unsigned long)sys_addr);
695
696 return sys_addr;
697 }
698
699 /*
700 * @input_addr is an InputAddr associated with the node given by mci. Translate
701 * @input_addr to a SysAddr.
702 */
703 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
704 u64 input_addr)
705 {
706 return dram_addr_to_sys_addr(mci,
707 input_addr_to_dram_addr(mci, input_addr));
708 }
709
710 /* Map the Error address to a PAGE and PAGE OFFSET. */
711 static inline void error_address_to_page_and_offset(u64 error_address,
712 struct err_info *err)
713 {
714 err->page = (u32) (error_address >> PAGE_SHIFT);
715 err->offset = ((u32) error_address) & ~PAGE_MASK;
716 }
717
718 /*
719 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
720 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
721 * of a node that detected an ECC memory error. mci represents the node that
722 * the error address maps to (possibly different from the node that detected
723 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
724 * error.
725 */
726 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
727 {
728 int csrow;
729
730 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
731
732 if (csrow == -1)
733 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
734 "address 0x%lx\n", (unsigned long)sys_addr);
735 return csrow;
736 }
737
738 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
739
740 /*
741 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
742 * are ECC capable.
743 */
744 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
745 {
746 u8 bit;
747 unsigned long edac_cap = EDAC_FLAG_NONE;
748
749 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
750 ? 19
751 : 17;
752
753 if (pvt->dclr0 & BIT(bit))
754 edac_cap = EDAC_FLAG_SECDED;
755
756 return edac_cap;
757 }
758
759 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
760
761 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
762 {
763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
764
765 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
766 (dclr & BIT(16)) ? "un" : "",
767 (dclr & BIT(19)) ? "yes" : "no");
768
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
771
772 if (boot_cpu_data.x86 == 0x10)
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
775
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
781 }
782
783 /* Display and decode various NB registers for debug purposes. */
784 static void dump_misc_regs(struct amd64_pvt *pvt)
785 {
786 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
787
788 edac_dbg(1, " NB two channel DRAM capable: %s\n",
789 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
790
791 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
792 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
793 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
794
795 amd64_dump_dramcfg_low(pvt->dclr0, 0);
796
797 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
798
799 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
800 pvt->dhar, dhar_base(pvt),
801 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
802 : f10_dhar_offset(pvt));
803
804 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
805
806 amd64_debug_display_dimm_sizes(pvt, 0);
807
808 /* everything below this point is Fam10h and above */
809 if (boot_cpu_data.x86 == 0xf)
810 return;
811
812 amd64_debug_display_dimm_sizes(pvt, 1);
813
814 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
815
816 /* Only if NOT ganged does dclr1 have valid info */
817 if (!dct_ganging_enabled(pvt))
818 amd64_dump_dramcfg_low(pvt->dclr1, 1);
819 }
820
821 /*
822 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
823 */
824 static void prep_chip_selects(struct amd64_pvt *pvt)
825 {
826 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
827 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
828 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
829 } else {
830 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
831 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
832 }
833 }
834
835 /*
836 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
837 */
838 static void read_dct_base_mask(struct amd64_pvt *pvt)
839 {
840 int cs;
841
842 prep_chip_selects(pvt);
843
844 for_each_chip_select(cs, 0, pvt) {
845 int reg0 = DCSB0 + (cs * 4);
846 int reg1 = DCSB1 + (cs * 4);
847 u32 *base0 = &pvt->csels[0].csbases[cs];
848 u32 *base1 = &pvt->csels[1].csbases[cs];
849
850 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
851 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
852 cs, *base0, reg0);
853
854 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
855 continue;
856
857 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
858 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
859 cs, *base1, reg1);
860 }
861
862 for_each_chip_select_mask(cs, 0, pvt) {
863 int reg0 = DCSM0 + (cs * 4);
864 int reg1 = DCSM1 + (cs * 4);
865 u32 *mask0 = &pvt->csels[0].csmasks[cs];
866 u32 *mask1 = &pvt->csels[1].csmasks[cs];
867
868 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
869 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
870 cs, *mask0, reg0);
871
872 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
873 continue;
874
875 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
876 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
877 cs, *mask1, reg1);
878 }
879 }
880
881 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
882 {
883 enum mem_type type;
884
885 /* F15h supports only DDR3 */
886 if (boot_cpu_data.x86 >= 0x15)
887 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
888 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
889 if (pvt->dchr0 & DDR3_MODE)
890 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
891 else
892 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
893 } else {
894 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
895 }
896
897 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
898
899 return type;
900 }
901
902 /* Get the number of DCT channels the memory controller is using. */
903 static int k8_early_channel_count(struct amd64_pvt *pvt)
904 {
905 int flag;
906
907 if (pvt->ext_model >= K8_REV_F)
908 /* RevF (NPT) and later */
909 flag = pvt->dclr0 & WIDTH_128;
910 else
911 /* RevE and earlier */
912 flag = pvt->dclr0 & REVE_WIDTH_128;
913
914 /* not used */
915 pvt->dclr1 = 0;
916
917 return (flag) ? 2 : 1;
918 }
919
920 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
921 static u64 get_error_address(struct mce *m)
922 {
923 struct cpuinfo_x86 *c = &boot_cpu_data;
924 u64 addr;
925 u8 start_bit = 1;
926 u8 end_bit = 47;
927
928 if (c->x86 == 0xf) {
929 start_bit = 3;
930 end_bit = 39;
931 }
932
933 addr = m->addr & GENMASK(start_bit, end_bit);
934
935 /*
936 * Erratum 637 workaround
937 */
938 if (c->x86 == 0x15) {
939 struct amd64_pvt *pvt;
940 u64 cc6_base, tmp_addr;
941 u32 tmp;
942 u8 mce_nid, intlv_en;
943
944 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
945 return addr;
946
947 mce_nid = amd_get_nb_id(m->extcpu);
948 pvt = mcis[mce_nid]->pvt_info;
949
950 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
951 intlv_en = tmp >> 21 & 0x7;
952
953 /* add [47:27] + 3 trailing bits */
954 cc6_base = (tmp & GENMASK(0, 20)) << 3;
955
956 /* reverse and add DramIntlvEn */
957 cc6_base |= intlv_en ^ 0x7;
958
959 /* pin at [47:24] */
960 cc6_base <<= 24;
961
962 if (!intlv_en)
963 return cc6_base | (addr & GENMASK(0, 23));
964
965 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
966
967 /* faster log2 */
968 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
969
970 /* OR DramIntlvSel into bits [14:12] */
971 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
972
973 /* add remaining [11:0] bits from original MC4_ADDR */
974 tmp_addr |= addr & GENMASK(0, 11);
975
976 return cc6_base | tmp_addr;
977 }
978
979 return addr;
980 }
981
982 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
983 {
984 struct cpuinfo_x86 *c = &boot_cpu_data;
985 int off = range << 3;
986
987 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
988 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
989
990 if (c->x86 == 0xf)
991 return;
992
993 if (!dram_rw(pvt, range))
994 return;
995
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
998
999 /* Factor in CC6 save area by reading dst node's limit reg */
1000 if (c->x86 == 0x15) {
1001 struct pci_dev *f1 = NULL;
1002 u8 nid = dram_dst_node(pvt, range);
1003 u32 llim;
1004
1005 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1006 if (WARN_ON(!f1))
1007 return;
1008
1009 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1010
1011 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1012
1013 /* {[39:27],111b} */
1014 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1015
1016 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1017
1018 /* [47:40] */
1019 pvt->ranges[range].lim.hi |= llim >> 13;
1020
1021 pci_dev_put(f1);
1022 }
1023 }
1024
1025 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1026 struct err_info *err)
1027 {
1028 struct amd64_pvt *pvt = mci->pvt_info;
1029
1030 error_address_to_page_and_offset(sys_addr, err);
1031
1032 /*
1033 * Find out which node the error address belongs to. This may be
1034 * different from the node that detected the error.
1035 */
1036 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1037 if (!err->src_mci) {
1038 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1039 (unsigned long)sys_addr);
1040 err->err_code = ERR_NODE;
1041 return;
1042 }
1043
1044 /* Now map the sys_addr to a CSROW */
1045 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1046 if (err->csrow < 0) {
1047 err->err_code = ERR_CSROW;
1048 return;
1049 }
1050
1051 /* CHIPKILL enabled */
1052 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1053 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1054 if (err->channel < 0) {
1055 /*
1056 * Syndrome didn't map, so we don't know which of the
1057 * 2 DIMMs is in error. So we need to ID 'both' of them
1058 * as suspect.
1059 */
1060 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1061 "possible error reporting race\n",
1062 err->syndrome);
1063 err->err_code = ERR_CHANNEL;
1064 return;
1065 }
1066 } else {
1067 /*
1068 * non-chipkill ecc mode
1069 *
1070 * The k8 documentation is unclear about how to determine the
1071 * channel number when using non-chipkill memory. This method
1072 * was obtained from email communication with someone at AMD.
1073 * (Wish the email was placed in this comment - norsk)
1074 */
1075 err->channel = ((sys_addr & BIT(3)) != 0);
1076 }
1077 }
1078
1079 static int ddr2_cs_size(unsigned i, bool dct_width)
1080 {
1081 unsigned shift = 0;
1082
1083 if (i <= 2)
1084 shift = i;
1085 else if (!(i & 0x1))
1086 shift = i >> 1;
1087 else
1088 shift = (i + 1) >> 1;
1089
1090 return 128 << (shift + !!dct_width);
1091 }
1092
1093 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1094 unsigned cs_mode)
1095 {
1096 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1097
1098 if (pvt->ext_model >= K8_REV_F) {
1099 WARN_ON(cs_mode > 11);
1100 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1101 }
1102 else if (pvt->ext_model >= K8_REV_D) {
1103 unsigned diff;
1104 WARN_ON(cs_mode > 10);
1105
1106 /*
1107 * the below calculation, besides trying to win an obfuscated C
1108 * contest, maps cs_mode values to DIMM chip select sizes. The
1109 * mappings are:
1110 *
1111 * cs_mode CS size (mb)
1112 * ======= ============
1113 * 0 32
1114 * 1 64
1115 * 2 128
1116 * 3 128
1117 * 4 256
1118 * 5 512
1119 * 6 256
1120 * 7 512
1121 * 8 1024
1122 * 9 1024
1123 * 10 2048
1124 *
1125 * Basically, it calculates a value with which to shift the
1126 * smallest CS size of 32MB.
1127 *
1128 * ddr[23]_cs_size have a similar purpose.
1129 */
1130 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1131
1132 return 32 << (cs_mode - diff);
1133 }
1134 else {
1135 WARN_ON(cs_mode > 6);
1136 return 32 << cs_mode;
1137 }
1138 }
1139
1140 /*
1141 * Get the number of DCT channels in use.
1142 *
1143 * Return:
1144 * number of Memory Channels in operation
1145 * Pass back:
1146 * contents of the DCL0_LOW register
1147 */
1148 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1149 {
1150 int i, j, channels = 0;
1151
1152 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1153 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1154 return 2;
1155
1156 /*
1157 * Need to check if in unganged mode: In such, there are 2 channels,
1158 * but they are not in 128 bit mode and thus the above 'dclr0' status
1159 * bit will be OFF.
1160 *
1161 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1162 * their CSEnable bit on. If so, then SINGLE DIMM case.
1163 */
1164 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1165
1166 /*
1167 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1168 * is more than just one DIMM present in unganged mode. Need to check
1169 * both controllers since DIMMs can be placed in either one.
1170 */
1171 for (i = 0; i < 2; i++) {
1172 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1173
1174 for (j = 0; j < 4; j++) {
1175 if (DBAM_DIMM(j, dbam) > 0) {
1176 channels++;
1177 break;
1178 }
1179 }
1180 }
1181
1182 if (channels > 2)
1183 channels = 2;
1184
1185 amd64_info("MCT channel count: %d\n", channels);
1186
1187 return channels;
1188 }
1189
1190 static int ddr3_cs_size(unsigned i, bool dct_width)
1191 {
1192 unsigned shift = 0;
1193 int cs_size = 0;
1194
1195 if (i == 0 || i == 3 || i == 4)
1196 cs_size = -1;
1197 else if (i <= 2)
1198 shift = i;
1199 else if (i == 12)
1200 shift = 7;
1201 else if (!(i & 0x1))
1202 shift = i >> 1;
1203 else
1204 shift = (i + 1) >> 1;
1205
1206 if (cs_size != -1)
1207 cs_size = (128 * (1 << !!dct_width)) << shift;
1208
1209 return cs_size;
1210 }
1211
1212 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1213 unsigned cs_mode)
1214 {
1215 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1216
1217 WARN_ON(cs_mode > 11);
1218
1219 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1220 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1221 else
1222 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1223 }
1224
1225 /*
1226 * F15h supports only 64bit DCT interfaces
1227 */
1228 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1229 unsigned cs_mode)
1230 {
1231 WARN_ON(cs_mode > 12);
1232
1233 return ddr3_cs_size(cs_mode, false);
1234 }
1235
1236 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1237 {
1238
1239 if (boot_cpu_data.x86 == 0xf)
1240 return;
1241
1242 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1243 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1244 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1245
1246 edac_dbg(0, " DCTs operate in %s mode\n",
1247 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1248
1249 if (!dct_ganging_enabled(pvt))
1250 edac_dbg(0, " Address range split per DCT: %s\n",
1251 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1252
1253 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1254 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1255 (dct_memory_cleared(pvt) ? "yes" : "no"));
1256
1257 edac_dbg(0, " channel interleave: %s, "
1258 "interleave bits selector: 0x%x\n",
1259 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1260 dct_sel_interleave_addr(pvt));
1261 }
1262
1263 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1264 }
1265
1266 /*
1267 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1268 * Interleaving Modes.
1269 */
1270 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1271 bool hi_range_sel, u8 intlv_en)
1272 {
1273 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1274
1275 if (dct_ganging_enabled(pvt))
1276 return 0;
1277
1278 if (hi_range_sel)
1279 return dct_sel_high;
1280
1281 /*
1282 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1283 */
1284 if (dct_interleave_enabled(pvt)) {
1285 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1286
1287 /* return DCT select function: 0=DCT0, 1=DCT1 */
1288 if (!intlv_addr)
1289 return sys_addr >> 6 & 1;
1290
1291 if (intlv_addr & 0x2) {
1292 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1293 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1294
1295 return ((sys_addr >> shift) & 1) ^ temp;
1296 }
1297
1298 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1299 }
1300
1301 if (dct_high_range_enabled(pvt))
1302 return ~dct_sel_high & 1;
1303
1304 return 0;
1305 }
1306
1307 /* Convert the sys_addr to the normalized DCT address */
1308 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1309 u64 sys_addr, bool hi_rng,
1310 u32 dct_sel_base_addr)
1311 {
1312 u64 chan_off;
1313 u64 dram_base = get_dram_base(pvt, range);
1314 u64 hole_off = f10_dhar_offset(pvt);
1315 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1316
1317 if (hi_rng) {
1318 /*
1319 * if
1320 * base address of high range is below 4Gb
1321 * (bits [47:27] at [31:11])
1322 * DRAM address space on this DCT is hoisted above 4Gb &&
1323 * sys_addr > 4Gb
1324 *
1325 * remove hole offset from sys_addr
1326 * else
1327 * remove high range offset from sys_addr
1328 */
1329 if ((!(dct_sel_base_addr >> 16) ||
1330 dct_sel_base_addr < dhar_base(pvt)) &&
1331 dhar_valid(pvt) &&
1332 (sys_addr >= BIT_64(32)))
1333 chan_off = hole_off;
1334 else
1335 chan_off = dct_sel_base_off;
1336 } else {
1337 /*
1338 * if
1339 * we have a valid hole &&
1340 * sys_addr > 4Gb
1341 *
1342 * remove hole
1343 * else
1344 * remove dram base to normalize to DCT address
1345 */
1346 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1347 chan_off = hole_off;
1348 else
1349 chan_off = dram_base;
1350 }
1351
1352 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1353 }
1354
1355 /*
1356 * checks if the csrow passed in is marked as SPARED, if so returns the new
1357 * spare row
1358 */
1359 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1360 {
1361 int tmp_cs;
1362
1363 if (online_spare_swap_done(pvt, dct) &&
1364 csrow == online_spare_bad_dramcs(pvt, dct)) {
1365
1366 for_each_chip_select(tmp_cs, dct, pvt) {
1367 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1368 csrow = tmp_cs;
1369 break;
1370 }
1371 }
1372 }
1373 return csrow;
1374 }
1375
1376 /*
1377 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1378 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1379 *
1380 * Return:
1381 * -EINVAL: NOT FOUND
1382 * 0..csrow = Chip-Select Row
1383 */
1384 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1385 {
1386 struct mem_ctl_info *mci;
1387 struct amd64_pvt *pvt;
1388 u64 cs_base, cs_mask;
1389 int cs_found = -EINVAL;
1390 int csrow;
1391
1392 mci = mcis[nid];
1393 if (!mci)
1394 return cs_found;
1395
1396 pvt = mci->pvt_info;
1397
1398 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1399
1400 for_each_chip_select(csrow, dct, pvt) {
1401 if (!csrow_enabled(csrow, dct, pvt))
1402 continue;
1403
1404 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1405
1406 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1407 csrow, cs_base, cs_mask);
1408
1409 cs_mask = ~cs_mask;
1410
1411 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1412 (in_addr & cs_mask), (cs_base & cs_mask));
1413
1414 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1415 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1416
1417 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1418 break;
1419 }
1420 }
1421 return cs_found;
1422 }
1423
1424 /*
1425 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1426 * swapped with a region located at the bottom of memory so that the GPU can use
1427 * the interleaved region and thus two channels.
1428 */
1429 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1430 {
1431 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1432
1433 if (boot_cpu_data.x86 == 0x10) {
1434 /* only revC3 and revE have that feature */
1435 if (boot_cpu_data.x86_model < 4 ||
1436 (boot_cpu_data.x86_model < 0xa &&
1437 boot_cpu_data.x86_mask < 3))
1438 return sys_addr;
1439 }
1440
1441 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1442
1443 if (!(swap_reg & 0x1))
1444 return sys_addr;
1445
1446 swap_base = (swap_reg >> 3) & 0x7f;
1447 swap_limit = (swap_reg >> 11) & 0x7f;
1448 rgn_size = (swap_reg >> 20) & 0x7f;
1449 tmp_addr = sys_addr >> 27;
1450
1451 if (!(sys_addr >> 34) &&
1452 (((tmp_addr >= swap_base) &&
1453 (tmp_addr <= swap_limit)) ||
1454 (tmp_addr < rgn_size)))
1455 return sys_addr ^ (u64)swap_base << 27;
1456
1457 return sys_addr;
1458 }
1459
1460 /* For a given @dram_range, check if @sys_addr falls within it. */
1461 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1462 u64 sys_addr, int *chan_sel)
1463 {
1464 int cs_found = -EINVAL;
1465 u64 chan_addr;
1466 u32 dct_sel_base;
1467 u8 channel;
1468 bool high_range = false;
1469
1470 u8 node_id = dram_dst_node(pvt, range);
1471 u8 intlv_en = dram_intlv_en(pvt, range);
1472 u32 intlv_sel = dram_intlv_sel(pvt, range);
1473
1474 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1475 range, sys_addr, get_dram_limit(pvt, range));
1476
1477 if (dhar_valid(pvt) &&
1478 dhar_base(pvt) <= sys_addr &&
1479 sys_addr < BIT_64(32)) {
1480 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1481 sys_addr);
1482 return -EINVAL;
1483 }
1484
1485 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1486 return -EINVAL;
1487
1488 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1489
1490 dct_sel_base = dct_sel_baseaddr(pvt);
1491
1492 /*
1493 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1494 * select between DCT0 and DCT1.
1495 */
1496 if (dct_high_range_enabled(pvt) &&
1497 !dct_ganging_enabled(pvt) &&
1498 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1499 high_range = true;
1500
1501 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1502
1503 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1504 high_range, dct_sel_base);
1505
1506 /* Remove node interleaving, see F1x120 */
1507 if (intlv_en)
1508 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1509 (chan_addr & 0xfff);
1510
1511 /* remove channel interleave */
1512 if (dct_interleave_enabled(pvt) &&
1513 !dct_high_range_enabled(pvt) &&
1514 !dct_ganging_enabled(pvt)) {
1515
1516 if (dct_sel_interleave_addr(pvt) != 1) {
1517 if (dct_sel_interleave_addr(pvt) == 0x3)
1518 /* hash 9 */
1519 chan_addr = ((chan_addr >> 10) << 9) |
1520 (chan_addr & 0x1ff);
1521 else
1522 /* A[6] or hash 6 */
1523 chan_addr = ((chan_addr >> 7) << 6) |
1524 (chan_addr & 0x3f);
1525 } else
1526 /* A[12] */
1527 chan_addr = ((chan_addr >> 13) << 12) |
1528 (chan_addr & 0xfff);
1529 }
1530
1531 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1532
1533 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1534
1535 if (cs_found >= 0)
1536 *chan_sel = channel;
1537
1538 return cs_found;
1539 }
1540
1541 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1542 int *chan_sel)
1543 {
1544 int cs_found = -EINVAL;
1545 unsigned range;
1546
1547 for (range = 0; range < DRAM_RANGES; range++) {
1548
1549 if (!dram_rw(pvt, range))
1550 continue;
1551
1552 if ((get_dram_base(pvt, range) <= sys_addr) &&
1553 (get_dram_limit(pvt, range) >= sys_addr)) {
1554
1555 cs_found = f1x_match_to_this_node(pvt, range,
1556 sys_addr, chan_sel);
1557 if (cs_found >= 0)
1558 break;
1559 }
1560 }
1561 return cs_found;
1562 }
1563
1564 /*
1565 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1566 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1567 *
1568 * The @sys_addr is usually an error address received from the hardware
1569 * (MCX_ADDR).
1570 */
1571 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1572 struct err_info *err)
1573 {
1574 struct amd64_pvt *pvt = mci->pvt_info;
1575
1576 error_address_to_page_and_offset(sys_addr, err);
1577
1578 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1579 if (err->csrow < 0) {
1580 err->err_code = ERR_CSROW;
1581 return;
1582 }
1583
1584 /*
1585 * We need the syndromes for channel detection only when we're
1586 * ganged. Otherwise @chan should already contain the channel at
1587 * this point.
1588 */
1589 if (dct_ganging_enabled(pvt))
1590 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1591 }
1592
1593 /*
1594 * debug routine to display the memory sizes of all logical DIMMs and its
1595 * CSROWs
1596 */
1597 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1598 {
1599 int dimm, size0, size1;
1600 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1601 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1602
1603 if (boot_cpu_data.x86 == 0xf) {
1604 /* K8 families < revF not supported yet */
1605 if (pvt->ext_model < K8_REV_F)
1606 return;
1607 else
1608 WARN_ON(ctrl != 0);
1609 }
1610
1611 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1612 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1613 : pvt->csels[0].csbases;
1614
1615 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1616 ctrl, dbam);
1617
1618 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1619
1620 /* Dump memory sizes for DIMM and its CSROWs */
1621 for (dimm = 0; dimm < 4; dimm++) {
1622
1623 size0 = 0;
1624 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1625 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1626 DBAM_DIMM(dimm, dbam));
1627
1628 size1 = 0;
1629 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1630 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1631 DBAM_DIMM(dimm, dbam));
1632
1633 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1634 dimm * 2, size0,
1635 dimm * 2 + 1, size1);
1636 }
1637 }
1638
1639 static struct amd64_family_type amd64_family_types[] = {
1640 [K8_CPUS] = {
1641 .ctl_name = "K8",
1642 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1643 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1644 .ops = {
1645 .early_channel_count = k8_early_channel_count,
1646 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1647 .dbam_to_cs = k8_dbam_to_chip_select,
1648 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1649 }
1650 },
1651 [F10_CPUS] = {
1652 .ctl_name = "F10h",
1653 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1654 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1655 .ops = {
1656 .early_channel_count = f1x_early_channel_count,
1657 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1658 .dbam_to_cs = f10_dbam_to_chip_select,
1659 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1660 }
1661 },
1662 [F15_CPUS] = {
1663 .ctl_name = "F15h",
1664 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1665 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1666 .ops = {
1667 .early_channel_count = f1x_early_channel_count,
1668 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1669 .dbam_to_cs = f15_dbam_to_chip_select,
1670 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1671 }
1672 },
1673 };
1674
1675 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1676 unsigned int device,
1677 struct pci_dev *related)
1678 {
1679 struct pci_dev *dev = NULL;
1680
1681 dev = pci_get_device(vendor, device, dev);
1682 while (dev) {
1683 if ((dev->bus->number == related->bus->number) &&
1684 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1685 break;
1686 dev = pci_get_device(vendor, device, dev);
1687 }
1688
1689 return dev;
1690 }
1691
1692 /*
1693 * These are tables of eigenvectors (one per line) which can be used for the
1694 * construction of the syndrome tables. The modified syndrome search algorithm
1695 * uses those to find the symbol in error and thus the DIMM.
1696 *
1697 * Algorithm courtesy of Ross LaFetra from AMD.
1698 */
1699 static u16 x4_vectors[] = {
1700 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1701 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1702 0x0001, 0x0002, 0x0004, 0x0008,
1703 0x1013, 0x3032, 0x4044, 0x8088,
1704 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1705 0x4857, 0xc4fe, 0x13cc, 0x3288,
1706 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1707 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1708 0x15c1, 0x2a42, 0x89ac, 0x4758,
1709 0x2b03, 0x1602, 0x4f0c, 0xca08,
1710 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1711 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1712 0x2b87, 0x164e, 0x642c, 0xdc18,
1713 0x40b9, 0x80de, 0x1094, 0x20e8,
1714 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1715 0x11c1, 0x2242, 0x84ac, 0x4c58,
1716 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1717 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1718 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1719 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1720 0x16b3, 0x3d62, 0x4f34, 0x8518,
1721 0x1e2f, 0x391a, 0x5cac, 0xf858,
1722 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1723 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1724 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1725 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1726 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1727 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1728 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1729 0x185d, 0x2ca6, 0x7914, 0x9e28,
1730 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1731 0x4199, 0x82ee, 0x19f4, 0x2e58,
1732 0x4807, 0xc40e, 0x130c, 0x3208,
1733 0x1905, 0x2e0a, 0x5804, 0xac08,
1734 0x213f, 0x132a, 0xadfc, 0x5ba8,
1735 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1736 };
1737
1738 static u16 x8_vectors[] = {
1739 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1740 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1741 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1742 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1743 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1744 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1745 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1746 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1747 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1748 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1749 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1750 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1751 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1752 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1753 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1754 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1755 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1756 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1757 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1758 };
1759
1760 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1761 unsigned v_dim)
1762 {
1763 unsigned int i, err_sym;
1764
1765 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1766 u16 s = syndrome;
1767 unsigned v_idx = err_sym * v_dim;
1768 unsigned v_end = (err_sym + 1) * v_dim;
1769
1770 /* walk over all 16 bits of the syndrome */
1771 for (i = 1; i < (1U << 16); i <<= 1) {
1772
1773 /* if bit is set in that eigenvector... */
1774 if (v_idx < v_end && vectors[v_idx] & i) {
1775 u16 ev_comp = vectors[v_idx++];
1776
1777 /* ... and bit set in the modified syndrome, */
1778 if (s & i) {
1779 /* remove it. */
1780 s ^= ev_comp;
1781
1782 if (!s)
1783 return err_sym;
1784 }
1785
1786 } else if (s & i)
1787 /* can't get to zero, move to next symbol */
1788 break;
1789 }
1790 }
1791
1792 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1793 return -1;
1794 }
1795
1796 static int map_err_sym_to_channel(int err_sym, int sym_size)
1797 {
1798 if (sym_size == 4)
1799 switch (err_sym) {
1800 case 0x20:
1801 case 0x21:
1802 return 0;
1803 break;
1804 case 0x22:
1805 case 0x23:
1806 return 1;
1807 break;
1808 default:
1809 return err_sym >> 4;
1810 break;
1811 }
1812 /* x8 symbols */
1813 else
1814 switch (err_sym) {
1815 /* imaginary bits not in a DIMM */
1816 case 0x10:
1817 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1818 err_sym);
1819 return -1;
1820 break;
1821
1822 case 0x11:
1823 return 0;
1824 break;
1825 case 0x12:
1826 return 1;
1827 break;
1828 default:
1829 return err_sym >> 3;
1830 break;
1831 }
1832 return -1;
1833 }
1834
1835 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1836 {
1837 struct amd64_pvt *pvt = mci->pvt_info;
1838 int err_sym = -1;
1839
1840 if (pvt->ecc_sym_sz == 8)
1841 err_sym = decode_syndrome(syndrome, x8_vectors,
1842 ARRAY_SIZE(x8_vectors),
1843 pvt->ecc_sym_sz);
1844 else if (pvt->ecc_sym_sz == 4)
1845 err_sym = decode_syndrome(syndrome, x4_vectors,
1846 ARRAY_SIZE(x4_vectors),
1847 pvt->ecc_sym_sz);
1848 else {
1849 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1850 return err_sym;
1851 }
1852
1853 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1854 }
1855
1856 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1857 u8 ecc_type)
1858 {
1859 enum hw_event_mc_err_type err_type;
1860 const char *string;
1861
1862 if (ecc_type == 2)
1863 err_type = HW_EVENT_ERR_CORRECTED;
1864 else if (ecc_type == 1)
1865 err_type = HW_EVENT_ERR_UNCORRECTED;
1866 else {
1867 WARN(1, "Something is rotten in the state of Denmark.\n");
1868 return;
1869 }
1870
1871 switch (err->err_code) {
1872 case DECODE_OK:
1873 string = "";
1874 break;
1875 case ERR_NODE:
1876 string = "Failed to map error addr to a node";
1877 break;
1878 case ERR_CSROW:
1879 string = "Failed to map error addr to a csrow";
1880 break;
1881 case ERR_CHANNEL:
1882 string = "unknown syndrome - possible error reporting race";
1883 break;
1884 default:
1885 string = "WTF error";
1886 break;
1887 }
1888
1889 edac_mc_handle_error(err_type, mci, 1,
1890 err->page, err->offset, err->syndrome,
1891 err->csrow, err->channel, -1,
1892 string, "");
1893 }
1894
1895 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1896 struct mce *m)
1897 {
1898 struct amd64_pvt *pvt = mci->pvt_info;
1899 u8 ecc_type = (m->status >> 45) & 0x3;
1900 u8 xec = XEC(m->status, 0x1f);
1901 u16 ec = EC(m->status);
1902 u64 sys_addr;
1903 struct err_info err;
1904
1905 /* Bail out early if this was an 'observed' error */
1906 if (PP(ec) == NBSL_PP_OBS)
1907 return;
1908
1909 /* Do only ECC errors */
1910 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1911 return;
1912
1913 memset(&err, 0, sizeof(err));
1914
1915 sys_addr = get_error_address(m);
1916
1917 if (ecc_type == 2)
1918 err.syndrome = extract_syndrome(m->status);
1919
1920 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1921
1922 __log_bus_error(mci, &err, ecc_type);
1923 }
1924
1925 void amd64_decode_bus_error(int node_id, struct mce *m)
1926 {
1927 __amd64_decode_bus_error(mcis[node_id], m);
1928 }
1929
1930 /*
1931 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1932 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1933 */
1934 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1935 {
1936 /* Reserve the ADDRESS MAP Device */
1937 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1938 if (!pvt->F1) {
1939 amd64_err("error address map device not found: "
1940 "vendor %x device 0x%x (broken BIOS?)\n",
1941 PCI_VENDOR_ID_AMD, f1_id);
1942 return -ENODEV;
1943 }
1944
1945 /* Reserve the MISC Device */
1946 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1947 if (!pvt->F3) {
1948 pci_dev_put(pvt->F1);
1949 pvt->F1 = NULL;
1950
1951 amd64_err("error F3 device not found: "
1952 "vendor %x device 0x%x (broken BIOS?)\n",
1953 PCI_VENDOR_ID_AMD, f3_id);
1954
1955 return -ENODEV;
1956 }
1957 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1958 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1959 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
1960
1961 return 0;
1962 }
1963
1964 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1965 {
1966 pci_dev_put(pvt->F1);
1967 pci_dev_put(pvt->F3);
1968 }
1969
1970 /*
1971 * Retrieve the hardware registers of the memory controller (this includes the
1972 * 'Address Map' and 'Misc' device regs)
1973 */
1974 static void read_mc_regs(struct amd64_pvt *pvt)
1975 {
1976 struct cpuinfo_x86 *c = &boot_cpu_data;
1977 u64 msr_val;
1978 u32 tmp;
1979 unsigned range;
1980
1981 /*
1982 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1983 * those are Read-As-Zero
1984 */
1985 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1986 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
1987
1988 /* check first whether TOP_MEM2 is enabled */
1989 rdmsrl(MSR_K8_SYSCFG, msr_val);
1990 if (msr_val & (1U << 21)) {
1991 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1992 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1993 } else
1994 edac_dbg(0, " TOP_MEM2 disabled\n");
1995
1996 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1997
1998 read_dram_ctl_register(pvt);
1999
2000 for (range = 0; range < DRAM_RANGES; range++) {
2001 u8 rw;
2002
2003 /* read settings for this DRAM range */
2004 read_dram_base_limit_regs(pvt, range);
2005
2006 rw = dram_rw(pvt, range);
2007 if (!rw)
2008 continue;
2009
2010 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2011 range,
2012 get_dram_base(pvt, range),
2013 get_dram_limit(pvt, range));
2014
2015 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2016 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2017 (rw & 0x1) ? "R" : "-",
2018 (rw & 0x2) ? "W" : "-",
2019 dram_intlv_sel(pvt, range),
2020 dram_dst_node(pvt, range));
2021 }
2022
2023 read_dct_base_mask(pvt);
2024
2025 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2026 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2027
2028 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2029
2030 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2031 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2032
2033 if (!dct_ganging_enabled(pvt)) {
2034 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2035 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2036 }
2037
2038 pvt->ecc_sym_sz = 4;
2039
2040 if (c->x86 >= 0x10) {
2041 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2042 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2043
2044 /* F10h, revD and later can do x8 ECC too */
2045 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2046 pvt->ecc_sym_sz = 8;
2047 }
2048 dump_misc_regs(pvt);
2049 }
2050
2051 /*
2052 * NOTE: CPU Revision Dependent code
2053 *
2054 * Input:
2055 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2056 * k8 private pointer to -->
2057 * DRAM Bank Address mapping register
2058 * node_id
2059 * DCL register where dual_channel_active is
2060 *
2061 * The DBAM register consists of 4 sets of 4 bits each definitions:
2062 *
2063 * Bits: CSROWs
2064 * 0-3 CSROWs 0 and 1
2065 * 4-7 CSROWs 2 and 3
2066 * 8-11 CSROWs 4 and 5
2067 * 12-15 CSROWs 6 and 7
2068 *
2069 * Values range from: 0 to 15
2070 * The meaning of the values depends on CPU revision and dual-channel state,
2071 * see relevant BKDG more info.
2072 *
2073 * The memory controller provides for total of only 8 CSROWs in its current
2074 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2075 * single channel or two (2) DIMMs in dual channel mode.
2076 *
2077 * The following code logic collapses the various tables for CSROW based on CPU
2078 * revision.
2079 *
2080 * Returns:
2081 * The number of PAGE_SIZE pages on the specified CSROW number it
2082 * encompasses
2083 *
2084 */
2085 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2086 {
2087 u32 cs_mode, nr_pages;
2088 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2089
2090
2091 /*
2092 * The math on this doesn't look right on the surface because x/2*4 can
2093 * be simplified to x*2 but this expression makes use of the fact that
2094 * it is integral math where 1/2=0. This intermediate value becomes the
2095 * number of bits to shift the DBAM register to extract the proper CSROW
2096 * field.
2097 */
2098 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2099
2100 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2101
2102 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2103 csrow_nr, dct, cs_mode);
2104 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2105
2106 return nr_pages;
2107 }
2108
2109 /*
2110 * Initialize the array of csrow attribute instances, based on the values
2111 * from pci config hardware registers.
2112 */
2113 static int init_csrows(struct mem_ctl_info *mci)
2114 {
2115 struct amd64_pvt *pvt = mci->pvt_info;
2116 struct csrow_info *csrow;
2117 struct dimm_info *dimm;
2118 enum edac_type edac_mode;
2119 enum mem_type mtype;
2120 int i, j, empty = 1;
2121 int nr_pages = 0;
2122 u32 val;
2123
2124 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2125
2126 pvt->nbcfg = val;
2127
2128 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2129 pvt->mc_node_id, val,
2130 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2131
2132 /*
2133 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2134 */
2135 for_each_chip_select(i, 0, pvt) {
2136 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2137 bool row_dct1 = false;
2138
2139 if (boot_cpu_data.x86 != 0xf)
2140 row_dct1 = !!csrow_enabled(i, 1, pvt);
2141
2142 if (!row_dct0 && !row_dct1)
2143 continue;
2144
2145 csrow = mci->csrows[i];
2146 empty = 0;
2147
2148 edac_dbg(1, "MC node: %d, csrow: %d\n",
2149 pvt->mc_node_id, i);
2150
2151 if (row_dct0)
2152 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2153
2154 /* K8 has only one DCT */
2155 if (boot_cpu_data.x86 != 0xf && row_dct1)
2156 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2157
2158 mtype = amd64_determine_memory_type(pvt, i);
2159
2160 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2161
2162 /*
2163 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2164 */
2165 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2166 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2167 EDAC_S4ECD4ED : EDAC_SECDED;
2168 else
2169 edac_mode = EDAC_NONE;
2170
2171 for (j = 0; j < pvt->channel_count; j++) {
2172 dimm = csrow->channels[j]->dimm;
2173 dimm->mtype = mtype;
2174 dimm->edac_mode = edac_mode;
2175 dimm->nr_pages = nr_pages;
2176 }
2177 csrow->nr_pages = nr_pages;
2178 }
2179
2180 return empty;
2181 }
2182
2183 /* get all cores on this DCT */
2184 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2185 {
2186 int cpu;
2187
2188 for_each_online_cpu(cpu)
2189 if (amd_get_nb_id(cpu) == nid)
2190 cpumask_set_cpu(cpu, mask);
2191 }
2192
2193 /* check MCG_CTL on all the cpus on this node */
2194 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2195 {
2196 cpumask_var_t mask;
2197 int cpu, nbe;
2198 bool ret = false;
2199
2200 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2201 amd64_warn("%s: Error allocating mask\n", __func__);
2202 return false;
2203 }
2204
2205 get_cpus_on_this_dct_cpumask(mask, nid);
2206
2207 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2208
2209 for_each_cpu(cpu, mask) {
2210 struct msr *reg = per_cpu_ptr(msrs, cpu);
2211 nbe = reg->l & MSR_MCGCTL_NBE;
2212
2213 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2214 cpu, reg->q,
2215 (nbe ? "enabled" : "disabled"));
2216
2217 if (!nbe)
2218 goto out;
2219 }
2220 ret = true;
2221
2222 out:
2223 free_cpumask_var(mask);
2224 return ret;
2225 }
2226
2227 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2228 {
2229 cpumask_var_t cmask;
2230 int cpu;
2231
2232 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2233 amd64_warn("%s: error allocating mask\n", __func__);
2234 return false;
2235 }
2236
2237 get_cpus_on_this_dct_cpumask(cmask, nid);
2238
2239 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2240
2241 for_each_cpu(cpu, cmask) {
2242
2243 struct msr *reg = per_cpu_ptr(msrs, cpu);
2244
2245 if (on) {
2246 if (reg->l & MSR_MCGCTL_NBE)
2247 s->flags.nb_mce_enable = 1;
2248
2249 reg->l |= MSR_MCGCTL_NBE;
2250 } else {
2251 /*
2252 * Turn off NB MCE reporting only when it was off before
2253 */
2254 if (!s->flags.nb_mce_enable)
2255 reg->l &= ~MSR_MCGCTL_NBE;
2256 }
2257 }
2258 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2259
2260 free_cpumask_var(cmask);
2261
2262 return 0;
2263 }
2264
2265 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2266 struct pci_dev *F3)
2267 {
2268 bool ret = true;
2269 u32 value, mask = 0x3; /* UECC/CECC enable */
2270
2271 if (toggle_ecc_err_reporting(s, nid, ON)) {
2272 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2273 return false;
2274 }
2275
2276 amd64_read_pci_cfg(F3, NBCTL, &value);
2277
2278 s->old_nbctl = value & mask;
2279 s->nbctl_valid = true;
2280
2281 value |= mask;
2282 amd64_write_pci_cfg(F3, NBCTL, value);
2283
2284 amd64_read_pci_cfg(F3, NBCFG, &value);
2285
2286 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2287 nid, value, !!(value & NBCFG_ECC_ENABLE));
2288
2289 if (!(value & NBCFG_ECC_ENABLE)) {
2290 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2291
2292 s->flags.nb_ecc_prev = 0;
2293
2294 /* Attempt to turn on DRAM ECC Enable */
2295 value |= NBCFG_ECC_ENABLE;
2296 amd64_write_pci_cfg(F3, NBCFG, value);
2297
2298 amd64_read_pci_cfg(F3, NBCFG, &value);
2299
2300 if (!(value & NBCFG_ECC_ENABLE)) {
2301 amd64_warn("Hardware rejected DRAM ECC enable,"
2302 "check memory DIMM configuration.\n");
2303 ret = false;
2304 } else {
2305 amd64_info("Hardware accepted DRAM ECC Enable\n");
2306 }
2307 } else {
2308 s->flags.nb_ecc_prev = 1;
2309 }
2310
2311 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2312 nid, value, !!(value & NBCFG_ECC_ENABLE));
2313
2314 return ret;
2315 }
2316
2317 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2318 struct pci_dev *F3)
2319 {
2320 u32 value, mask = 0x3; /* UECC/CECC enable */
2321
2322
2323 if (!s->nbctl_valid)
2324 return;
2325
2326 amd64_read_pci_cfg(F3, NBCTL, &value);
2327 value &= ~mask;
2328 value |= s->old_nbctl;
2329
2330 amd64_write_pci_cfg(F3, NBCTL, value);
2331
2332 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2333 if (!s->flags.nb_ecc_prev) {
2334 amd64_read_pci_cfg(F3, NBCFG, &value);
2335 value &= ~NBCFG_ECC_ENABLE;
2336 amd64_write_pci_cfg(F3, NBCFG, value);
2337 }
2338
2339 /* restore the NB Enable MCGCTL bit */
2340 if (toggle_ecc_err_reporting(s, nid, OFF))
2341 amd64_warn("Error restoring NB MCGCTL settings!\n");
2342 }
2343
2344 /*
2345 * EDAC requires that the BIOS have ECC enabled before
2346 * taking over the processing of ECC errors. A command line
2347 * option allows to force-enable hardware ECC later in
2348 * enable_ecc_error_reporting().
2349 */
2350 static const char *ecc_msg =
2351 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2352 " Either enable ECC checking or force module loading by setting "
2353 "'ecc_enable_override'.\n"
2354 " (Note that use of the override may cause unknown side effects.)\n";
2355
2356 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2357 {
2358 u32 value;
2359 u8 ecc_en = 0;
2360 bool nb_mce_en = false;
2361
2362 amd64_read_pci_cfg(F3, NBCFG, &value);
2363
2364 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2365 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2366
2367 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2368 if (!nb_mce_en)
2369 amd64_notice("NB MCE bank disabled, set MSR "
2370 "0x%08x[4] on node %d to enable.\n",
2371 MSR_IA32_MCG_CTL, nid);
2372
2373 if (!ecc_en || !nb_mce_en) {
2374 amd64_notice("%s", ecc_msg);
2375 return false;
2376 }
2377 return true;
2378 }
2379
2380 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2381 {
2382 int rc;
2383
2384 rc = amd64_create_sysfs_dbg_files(mci);
2385 if (rc < 0)
2386 return rc;
2387
2388 if (boot_cpu_data.x86 >= 0x10) {
2389 rc = amd64_create_sysfs_inject_files(mci);
2390 if (rc < 0)
2391 return rc;
2392 }
2393
2394 return 0;
2395 }
2396
2397 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2398 {
2399 amd64_remove_sysfs_dbg_files(mci);
2400
2401 if (boot_cpu_data.x86 >= 0x10)
2402 amd64_remove_sysfs_inject_files(mci);
2403 }
2404
2405 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2406 struct amd64_family_type *fam)
2407 {
2408 struct amd64_pvt *pvt = mci->pvt_info;
2409
2410 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2411 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2412
2413 if (pvt->nbcap & NBCAP_SECDED)
2414 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2415
2416 if (pvt->nbcap & NBCAP_CHIPKILL)
2417 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2418
2419 mci->edac_cap = amd64_determine_edac_cap(pvt);
2420 mci->mod_name = EDAC_MOD_STR;
2421 mci->mod_ver = EDAC_AMD64_VERSION;
2422 mci->ctl_name = fam->ctl_name;
2423 mci->dev_name = pci_name(pvt->F2);
2424 mci->ctl_page_to_phys = NULL;
2425
2426 /* memory scrubber interface */
2427 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2428 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2429 }
2430
2431 /*
2432 * returns a pointer to the family descriptor on success, NULL otherwise.
2433 */
2434 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2435 {
2436 u8 fam = boot_cpu_data.x86;
2437 struct amd64_family_type *fam_type = NULL;
2438
2439 switch (fam) {
2440 case 0xf:
2441 fam_type = &amd64_family_types[K8_CPUS];
2442 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2443 break;
2444
2445 case 0x10:
2446 fam_type = &amd64_family_types[F10_CPUS];
2447 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2448 break;
2449
2450 case 0x15:
2451 fam_type = &amd64_family_types[F15_CPUS];
2452 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2453 break;
2454
2455 default:
2456 amd64_err("Unsupported family!\n");
2457 return NULL;
2458 }
2459
2460 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2461
2462 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2463 (fam == 0xf ?
2464 (pvt->ext_model >= K8_REV_F ? "revF or later "
2465 : "revE or earlier ")
2466 : ""), pvt->mc_node_id);
2467 return fam_type;
2468 }
2469
2470 static int amd64_init_one_instance(struct pci_dev *F2)
2471 {
2472 struct amd64_pvt *pvt = NULL;
2473 struct amd64_family_type *fam_type = NULL;
2474 struct mem_ctl_info *mci = NULL;
2475 struct edac_mc_layer layers[2];
2476 int err = 0, ret;
2477 u8 nid = get_node_id(F2);
2478
2479 ret = -ENOMEM;
2480 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2481 if (!pvt)
2482 goto err_ret;
2483
2484 pvt->mc_node_id = nid;
2485 pvt->F2 = F2;
2486
2487 ret = -EINVAL;
2488 fam_type = amd64_per_family_init(pvt);
2489 if (!fam_type)
2490 goto err_free;
2491
2492 ret = -ENODEV;
2493 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2494 if (err)
2495 goto err_free;
2496
2497 read_mc_regs(pvt);
2498
2499 /*
2500 * We need to determine how many memory channels there are. Then use
2501 * that information for calculating the size of the dynamic instance
2502 * tables in the 'mci' structure.
2503 */
2504 ret = -EINVAL;
2505 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2506 if (pvt->channel_count < 0)
2507 goto err_siblings;
2508
2509 ret = -ENOMEM;
2510 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2511 layers[0].size = pvt->csels[0].b_cnt;
2512 layers[0].is_virt_csrow = true;
2513 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2514 layers[1].size = pvt->channel_count;
2515 layers[1].is_virt_csrow = false;
2516 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2517 if (!mci)
2518 goto err_siblings;
2519
2520 mci->pvt_info = pvt;
2521 mci->pdev = &pvt->F2->dev;
2522 mci->csbased = 1;
2523
2524 setup_mci_misc_attrs(mci, fam_type);
2525
2526 if (init_csrows(mci))
2527 mci->edac_cap = EDAC_FLAG_NONE;
2528
2529 ret = -ENODEV;
2530 if (edac_mc_add_mc(mci)) {
2531 edac_dbg(1, "failed edac_mc_add_mc()\n");
2532 goto err_add_mc;
2533 }
2534 if (set_mc_sysfs_attrs(mci)) {
2535 edac_dbg(1, "failed edac_mc_add_mc()\n");
2536 goto err_add_sysfs;
2537 }
2538
2539 /* register stuff with EDAC MCE */
2540 if (report_gart_errors)
2541 amd_report_gart_errors(true);
2542
2543 amd_register_ecc_decoder(amd64_decode_bus_error);
2544
2545 mcis[nid] = mci;
2546
2547 atomic_inc(&drv_instances);
2548
2549 return 0;
2550
2551 err_add_sysfs:
2552 edac_mc_del_mc(mci->pdev);
2553 err_add_mc:
2554 edac_mc_free(mci);
2555
2556 err_siblings:
2557 free_mc_sibling_devs(pvt);
2558
2559 err_free:
2560 kfree(pvt);
2561
2562 err_ret:
2563 return ret;
2564 }
2565
2566 static int amd64_probe_one_instance(struct pci_dev *pdev,
2567 const struct pci_device_id *mc_type)
2568 {
2569 u8 nid = get_node_id(pdev);
2570 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2571 struct ecc_settings *s;
2572 int ret = 0;
2573
2574 ret = pci_enable_device(pdev);
2575 if (ret < 0) {
2576 edac_dbg(0, "ret=%d\n", ret);
2577 return -EIO;
2578 }
2579
2580 ret = -ENOMEM;
2581 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2582 if (!s)
2583 goto err_out;
2584
2585 ecc_stngs[nid] = s;
2586
2587 if (!ecc_enabled(F3, nid)) {
2588 ret = -ENODEV;
2589
2590 if (!ecc_enable_override)
2591 goto err_enable;
2592
2593 amd64_warn("Forcing ECC on!\n");
2594
2595 if (!enable_ecc_error_reporting(s, nid, F3))
2596 goto err_enable;
2597 }
2598
2599 ret = amd64_init_one_instance(pdev);
2600 if (ret < 0) {
2601 amd64_err("Error probing instance: %d\n", nid);
2602 restore_ecc_error_reporting(s, nid, F3);
2603 }
2604
2605 return ret;
2606
2607 err_enable:
2608 kfree(s);
2609 ecc_stngs[nid] = NULL;
2610
2611 err_out:
2612 return ret;
2613 }
2614
2615 static void amd64_remove_one_instance(struct pci_dev *pdev)
2616 {
2617 struct mem_ctl_info *mci;
2618 struct amd64_pvt *pvt;
2619 u8 nid = get_node_id(pdev);
2620 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2621 struct ecc_settings *s = ecc_stngs[nid];
2622
2623 mci = find_mci_by_dev(&pdev->dev);
2624 del_mc_sysfs_attrs(mci);
2625 /* Remove from EDAC CORE tracking list */
2626 mci = edac_mc_del_mc(&pdev->dev);
2627 if (!mci)
2628 return;
2629
2630 pvt = mci->pvt_info;
2631
2632 restore_ecc_error_reporting(s, nid, F3);
2633
2634 free_mc_sibling_devs(pvt);
2635
2636 /* unregister from EDAC MCE */
2637 amd_report_gart_errors(false);
2638 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2639
2640 kfree(ecc_stngs[nid]);
2641 ecc_stngs[nid] = NULL;
2642
2643 /* Free the EDAC CORE resources */
2644 mci->pvt_info = NULL;
2645 mcis[nid] = NULL;
2646
2647 kfree(pvt);
2648 edac_mc_free(mci);
2649 }
2650
2651 /*
2652 * This table is part of the interface for loading drivers for PCI devices. The
2653 * PCI core identifies what devices are on a system during boot, and then
2654 * inquiry this table to see if this driver is for a given device found.
2655 */
2656 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2657 {
2658 .vendor = PCI_VENDOR_ID_AMD,
2659 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2660 .subvendor = PCI_ANY_ID,
2661 .subdevice = PCI_ANY_ID,
2662 .class = 0,
2663 .class_mask = 0,
2664 },
2665 {
2666 .vendor = PCI_VENDOR_ID_AMD,
2667 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2668 .subvendor = PCI_ANY_ID,
2669 .subdevice = PCI_ANY_ID,
2670 .class = 0,
2671 .class_mask = 0,
2672 },
2673 {
2674 .vendor = PCI_VENDOR_ID_AMD,
2675 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2676 .subvendor = PCI_ANY_ID,
2677 .subdevice = PCI_ANY_ID,
2678 .class = 0,
2679 .class_mask = 0,
2680 },
2681
2682 {0, }
2683 };
2684 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2685
2686 static struct pci_driver amd64_pci_driver = {
2687 .name = EDAC_MOD_STR,
2688 .probe = amd64_probe_one_instance,
2689 .remove = amd64_remove_one_instance,
2690 .id_table = amd64_pci_table,
2691 };
2692
2693 static void setup_pci_device(void)
2694 {
2695 struct mem_ctl_info *mci;
2696 struct amd64_pvt *pvt;
2697
2698 if (amd64_ctl_pci)
2699 return;
2700
2701 mci = mcis[0];
2702 if (mci) {
2703
2704 pvt = mci->pvt_info;
2705 amd64_ctl_pci =
2706 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2707
2708 if (!amd64_ctl_pci) {
2709 pr_warning("%s(): Unable to create PCI control\n",
2710 __func__);
2711
2712 pr_warning("%s(): PCI error report via EDAC not set\n",
2713 __func__);
2714 }
2715 }
2716 }
2717
2718 static int __init amd64_edac_init(void)
2719 {
2720 int err = -ENODEV;
2721
2722 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2723
2724 opstate_init();
2725
2726 if (amd_cache_northbridges() < 0)
2727 goto err_ret;
2728
2729 err = -ENOMEM;
2730 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2731 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2732 if (!(mcis && ecc_stngs))
2733 goto err_free;
2734
2735 msrs = msrs_alloc();
2736 if (!msrs)
2737 goto err_free;
2738
2739 err = pci_register_driver(&amd64_pci_driver);
2740 if (err)
2741 goto err_pci;
2742
2743 err = -ENODEV;
2744 if (!atomic_read(&drv_instances))
2745 goto err_no_instances;
2746
2747 setup_pci_device();
2748 return 0;
2749
2750 err_no_instances:
2751 pci_unregister_driver(&amd64_pci_driver);
2752
2753 err_pci:
2754 msrs_free(msrs);
2755 msrs = NULL;
2756
2757 err_free:
2758 kfree(mcis);
2759 mcis = NULL;
2760
2761 kfree(ecc_stngs);
2762 ecc_stngs = NULL;
2763
2764 err_ret:
2765 return err;
2766 }
2767
2768 static void __exit amd64_edac_exit(void)
2769 {
2770 if (amd64_ctl_pci)
2771 edac_pci_release_generic_ctl(amd64_ctl_pci);
2772
2773 pci_unregister_driver(&amd64_pci_driver);
2774
2775 kfree(ecc_stngs);
2776 ecc_stngs = NULL;
2777
2778 kfree(mcis);
2779 mcis = NULL;
2780
2781 msrs_free(msrs);
2782 msrs = NULL;
2783 }
2784
2785 module_init(amd64_edac_init);
2786 module_exit(amd64_edac_exit);
2787
2788 MODULE_LICENSE("GPL");
2789 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2790 "Dave Peterson, Thayne Harbaugh");
2791 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2792 EDAC_AMD64_VERSION);
2793
2794 module_param(edac_op_state, int, 0444);
2795 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.095731 seconds and 5 git commands to generate.