Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 /*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132 {
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
140 f15h_select_dct(pvt, dct);
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144
145 /*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159 /*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 */
174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 /*
176 * skip scrub rates which aren't recommended
177 * (see F10 BKDG, F3x58)
178 */
179 if (scrubrates[i].scrubval < min_rate)
180 continue;
181
182 if (scrubrates[i].bandwidth <= new_bw)
183 break;
184
185 /*
186 * if no suitable bandwidth found, turn off DRAM scrubbing
187 * entirely by falling back to the last element in the
188 * scrubrates array.
189 */
190 }
191
192 scrubval = scrubrates[i].scrubval;
193
194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195
196 if (scrubval)
197 return scrubrates[i].bandwidth;
198
199 return 0;
200 }
201
202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 {
204 struct amd64_pvt *pvt = mci->pvt_info;
205 u32 min_scrubrate = 0x5;
206
207 if (boot_cpu_data.x86 == 0xf)
208 min_scrubrate = 0x0;
209
210 /* F15h Erratum #505 */
211 if (boot_cpu_data.x86 == 0x15)
212 f15h_select_dct(pvt, 0);
213
214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 }
216
217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 {
219 struct amd64_pvt *pvt = mci->pvt_info;
220 u32 scrubval = 0;
221 int i, retval = -EINVAL;
222
223 /* F15h Erratum #505 */
224 if (boot_cpu_data.x86 == 0x15)
225 f15h_select_dct(pvt, 0);
226
227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228
229 scrubval = scrubval & 0x001F;
230
231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232 if (scrubrates[i].scrubval == scrubval) {
233 retval = scrubrates[i].bandwidth;
234 break;
235 }
236 }
237 return retval;
238 }
239
240 /*
241 * returns true if the SysAddr given by sys_addr matches the
242 * DRAM base/limit associated with node_id
243 */
244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 unsigned nid)
246 {
247 u64 addr;
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
257 return ((addr >= get_dram_base(pvt, nid)) &&
258 (addr <= get_dram_limit(pvt, nid)));
259 }
260
261 /*
262 * Attempt to map a SysAddr to a node. On success, return a pointer to the
263 * mem_ctl_info structure for the node that the SysAddr maps to.
264 *
265 * On failure, return NULL.
266 */
267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 u64 sys_addr)
269 {
270 struct amd64_pvt *pvt;
271 unsigned node_id;
272 u32 intlv_en, bits;
273
274 /*
275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 */
278 pvt = mci->pvt_info;
279
280 /*
281 * The value of this field should be the same for all DRAM Base
282 * registers. Therefore we arbitrarily choose to read it from the
283 * register for node 0.
284 */
285 intlv_en = dram_intlv_en(pvt, 0);
286
287 if (intlv_en == 0) {
288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289 if (amd64_base_limit_match(pvt, sys_addr, node_id))
290 goto found;
291 }
292 goto err_no_match;
293 }
294
295 if (unlikely((intlv_en != 0x01) &&
296 (intlv_en != 0x03) &&
297 (intlv_en != 0x07))) {
298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 return NULL;
300 }
301
302 bits = (((u32) sys_addr) >> 12) & intlv_en;
303
304 for (node_id = 0; ; ) {
305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 break; /* intlv_sel field matches */
307
308 if (++node_id >= DRAM_RANGES)
309 goto err_no_match;
310 }
311
312 /* sanity test for sys_addr */
313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 "range for node %d with node interleaving enabled.\n",
316 __func__, sys_addr, node_id);
317 return NULL;
318 }
319
320 found:
321 return edac_mc_find((int)node_id);
322
323 err_no_match:
324 debugf2("sys_addr 0x%lx doesn't match any node\n",
325 (unsigned long)sys_addr);
326
327 return NULL;
328 }
329
330 /*
331 * compute the CS base address of the @csrow on the DRAM controller @dct.
332 * For details see F2x[5C:40] in the processor's BKDG
333 */
334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 u64 *base, u64 *mask)
336 {
337 u64 csbase, csmask, base_bits, mask_bits;
338 u8 addr_shift;
339
340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 csbase = pvt->csels[dct].csbases[csrow];
342 csmask = pvt->csels[dct].csmasks[csrow];
343 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
345 addr_shift = 4;
346 } else {
347 csbase = pvt->csels[dct].csbases[csrow];
348 csmask = pvt->csels[dct].csmasks[csrow >> 1];
349 addr_shift = 8;
350
351 if (boot_cpu_data.x86 == 0x15)
352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 else
354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 }
356
357 *base = (csbase & base_bits) << addr_shift;
358
359 *mask = ~0ULL;
360 /* poke holes for the csmask */
361 *mask &= ~(mask_bits << addr_shift);
362 /* OR them in */
363 *mask |= (csmask & mask_bits) << addr_shift;
364 }
365
366 #define for_each_chip_select(i, dct, pvt) \
367 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368
369 #define chip_select_base(i, dct, pvt) \
370 pvt->csels[dct].csbases[i]
371
372 #define for_each_chip_select_mask(i, dct, pvt) \
373 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374
375 /*
376 * @input_addr is an InputAddr associated with the node given by mci. Return the
377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378 */
379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380 {
381 struct amd64_pvt *pvt;
382 int csrow;
383 u64 base, mask;
384
385 pvt = mci->pvt_info;
386
387 for_each_chip_select(csrow, 0, pvt) {
388 if (!csrow_enabled(csrow, 0, pvt))
389 continue;
390
391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392
393 mask = ~mask;
394
395 if ((input_addr & mask) == (base & mask)) {
396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 (unsigned long)input_addr, csrow,
398 pvt->mc_node_id);
399
400 return csrow;
401 }
402 }
403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 (unsigned long)input_addr, pvt->mc_node_id);
405
406 return -1;
407 }
408
409 /*
410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411 * for the node represented by mci. Info is passed back in *hole_base,
412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
413 * info is invalid. Info may be invalid for either of the following reasons:
414 *
415 * - The revision of the node is not E or greater. In this case, the DRAM Hole
416 * Address Register does not exist.
417 *
418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419 * indicating that its contents are not valid.
420 *
421 * The values passed back in *hole_base, *hole_offset, and *hole_size are
422 * complete 32-bit values despite the fact that the bitfields in the DHAR
423 * only represent bits 31-24 of the base and offset values.
424 */
425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 u64 *hole_offset, u64 *hole_size)
427 {
428 struct amd64_pvt *pvt = mci->pvt_info;
429 u64 base;
430
431 /* only revE and later have the DRAM Hole Address Register */
432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 debugf1(" revision %d for node %d does not support DHAR\n",
434 pvt->ext_model, pvt->mc_node_id);
435 return 1;
436 }
437
438 /* valid for Fam10h and above */
439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
441 return 1;
442 }
443
444 if (!dhar_valid(pvt)) {
445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
446 pvt->mc_node_id);
447 return 1;
448 }
449
450 /* This node has Memory Hoisting */
451
452 /* +------------------+--------------------+--------------------+-----
453 * | memory | DRAM hole | relocated |
454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
455 * | | | DRAM hole |
456 * | | | [0x100000000, |
457 * | | | (0x100000000+ |
458 * | | | (0xffffffff-x))] |
459 * +------------------+--------------------+--------------------+-----
460 *
461 * Above is a diagram of physical memory showing the DRAM hole and the
462 * relocated addresses from the DRAM hole. As shown, the DRAM hole
463 * starts at address x (the base address) and extends through address
464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
465 * addresses in the hole so that they start at 0x100000000.
466 */
467
468 base = dhar_base(pvt);
469
470 *hole_base = base;
471 *hole_size = (0x1ull << 32) - base;
472
473 if (boot_cpu_data.x86 > 0xf)
474 *hole_offset = f10_dhar_offset(pvt);
475 else
476 *hole_offset = k8_dhar_offset(pvt);
477
478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 pvt->mc_node_id, (unsigned long)*hole_base,
480 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481
482 return 0;
483 }
484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485
486 /*
487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
488 * assumed that sys_addr maps to the node given by mci.
489 *
490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493 * then it is also involved in translating a SysAddr to a DramAddr. Sections
494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495 * These parts of the documentation are unclear. I interpret them as follows:
496 *
497 * When node n receives a SysAddr, it processes the SysAddr as follows:
498 *
499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500 * Limit registers for node n. If the SysAddr is not within the range
501 * specified by the base and limit values, then node n ignores the Sysaddr
502 * (since it does not map to node n). Otherwise continue to step 2 below.
503 *
504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506 * the range of relocated addresses (starting at 0x100000000) from the DRAM
507 * hole. If not, skip to step 3 below. Else get the value of the
508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509 * offset defined by this value from the SysAddr.
510 *
511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512 * Base register for node n. To obtain the DramAddr, subtract the base
513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514 */
515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516 {
517 struct amd64_pvt *pvt = mci->pvt_info;
518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 int ret = 0;
520
521 dram_base = get_dram_base(pvt, pvt->mc_node_id);
522
523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 &hole_size);
525 if (!ret) {
526 if ((sys_addr >= (1ull << 32)) &&
527 (sys_addr < ((1ull << 32) + hole_size))) {
528 /* use DHAR to translate SysAddr to DramAddr */
529 dram_addr = sys_addr - hole_offset;
530
531 debugf2("using DHAR to translate SysAddr 0x%lx to "
532 "DramAddr 0x%lx\n",
533 (unsigned long)sys_addr,
534 (unsigned long)dram_addr);
535
536 return dram_addr;
537 }
538 }
539
540 /*
541 * Translate the SysAddr to a DramAddr as shown near the start of
542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
543 * only deals with 40-bit values. Therefore we discard bits 63-40 of
544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
545 * discard are all 1s. Otherwise the bits we discard are all 0s. See
546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 * Programmer's Manual Volume 1 Application Programming.
548 */
549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550
551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 (unsigned long)dram_addr);
554 return dram_addr;
555 }
556
557 /*
558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
560 * for node interleaving.
561 */
562 static int num_node_interleave_bits(unsigned intlv_en)
563 {
564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 int n;
566
567 BUG_ON(intlv_en > 7);
568 n = intlv_shift_table[intlv_en];
569 return n;
570 }
571
572 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
573 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574 {
575 struct amd64_pvt *pvt;
576 int intlv_shift;
577 u64 input_addr;
578
579 pvt = mci->pvt_info;
580
581 /*
582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 * concerning translating a DramAddr to an InputAddr.
584 */
585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 (dram_addr & 0xfff);
588
589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 intlv_shift, (unsigned long)dram_addr,
591 (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596 /*
597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
598 * assumed that @sys_addr maps to the node given by mci.
599 */
600 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601 {
602 u64 input_addr;
603
604 input_addr =
605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606
607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 (unsigned long)sys_addr, (unsigned long)input_addr);
609
610 return input_addr;
611 }
612
613
614 /*
615 * @input_addr is an InputAddr associated with the node represented by mci.
616 * Translate @input_addr to a DramAddr and return the result.
617 */
618 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619 {
620 struct amd64_pvt *pvt;
621 unsigned node_id, intlv_shift;
622 u64 bits, dram_addr;
623 u32 intlv_sel;
624
625 /*
626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 * this procedure. When translating from a DramAddr to an InputAddr, the
629 * bits used for node interleaving are discarded. Here we recover these
630 * bits from the IntlvSel field of the DRAM Limit register (section
631 * 3.4.4.2) for the node that input_addr is associated with.
632 */
633 pvt = mci->pvt_info;
634 node_id = pvt->mc_node_id;
635
636 BUG_ON(node_id > 7);
637
638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 if (intlv_shift == 0) {
640 debugf1(" InputAddr 0x%lx translates to DramAddr of "
641 "same value\n", (unsigned long)input_addr);
642
643 return input_addr;
644 }
645
646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 (input_addr & 0xfff);
648
649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 dram_addr = bits + (intlv_sel << 12);
651
652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 "(%d node interleave bits)\n", (unsigned long)input_addr,
654 (unsigned long)dram_addr, intlv_shift);
655
656 return dram_addr;
657 }
658
659 /*
660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661 * @dram_addr to a SysAddr.
662 */
663 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664 {
665 struct amd64_pvt *pvt = mci->pvt_info;
666 u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 int ret = 0;
668
669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 &hole_size);
671 if (!ret) {
672 if ((dram_addr >= hole_base) &&
673 (dram_addr < (hole_base + hole_size))) {
674 sys_addr = dram_addr + hole_offset;
675
676 debugf1("using DHAR to translate DramAddr 0x%lx to "
677 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 (unsigned long)sys_addr);
679
680 return sys_addr;
681 }
682 }
683
684 base = get_dram_base(pvt, pvt->mc_node_id);
685 sys_addr = dram_addr + base;
686
687 /*
688 * The sys_addr we have computed up to this point is a 40-bit value
689 * because the k8 deals with 40-bit values. However, the value we are
690 * supposed to return is a full 64-bit physical address. The AMD
691 * x86-64 architecture specifies that the most significant implemented
692 * address bit through bit 63 of a physical address must be either all
693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
694 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 * Programming.
697 */
698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699
700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 pvt->mc_node_id, (unsigned long)dram_addr,
702 (unsigned long)sys_addr);
703
704 return sys_addr;
705 }
706
707 /*
708 * @input_addr is an InputAddr associated with the node given by mci. Translate
709 * @input_addr to a SysAddr.
710 */
711 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 u64 input_addr)
713 {
714 return dram_addr_to_sys_addr(mci,
715 input_addr_to_dram_addr(mci, input_addr));
716 }
717
718 /* Map the Error address to a PAGE and PAGE OFFSET. */
719 static inline void error_address_to_page_and_offset(u64 error_address,
720 u32 *page, u32 *offset)
721 {
722 *page = (u32) (error_address >> PAGE_SHIFT);
723 *offset = ((u32) error_address) & ~PAGE_MASK;
724 }
725
726 /*
727 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
728 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
729 * of a node that detected an ECC memory error. mci represents the node that
730 * the error address maps to (possibly different from the node that detected
731 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
732 * error.
733 */
734 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
735 {
736 int csrow;
737
738 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
739
740 if (csrow == -1)
741 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
742 "address 0x%lx\n", (unsigned long)sys_addr);
743 return csrow;
744 }
745
746 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
747
748 /*
749 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
750 * are ECC capable.
751 */
752 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
753 {
754 u8 bit;
755 unsigned long edac_cap = EDAC_FLAG_NONE;
756
757 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
758 ? 19
759 : 17;
760
761 if (pvt->dclr0 & BIT(bit))
762 edac_cap = EDAC_FLAG_SECDED;
763
764 return edac_cap;
765 }
766
767 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
768
769 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
770 {
771 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
772
773 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
774 (dclr & BIT(16)) ? "un" : "",
775 (dclr & BIT(19)) ? "yes" : "no");
776
777 debugf1(" PAR/ERR parity: %s\n",
778 (dclr & BIT(8)) ? "enabled" : "disabled");
779
780 if (boot_cpu_data.x86 == 0x10)
781 debugf1(" DCT 128bit mode width: %s\n",
782 (dclr & BIT(11)) ? "128b" : "64b");
783
784 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
785 (dclr & BIT(12)) ? "yes" : "no",
786 (dclr & BIT(13)) ? "yes" : "no",
787 (dclr & BIT(14)) ? "yes" : "no",
788 (dclr & BIT(15)) ? "yes" : "no");
789 }
790
791 /* Display and decode various NB registers for debug purposes. */
792 static void dump_misc_regs(struct amd64_pvt *pvt)
793 {
794 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
795
796 debugf1(" NB two channel DRAM capable: %s\n",
797 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
798
799 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
800 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
801 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
802
803 amd64_dump_dramcfg_low(pvt->dclr0, 0);
804
805 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
806
807 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
808 "offset: 0x%08x\n",
809 pvt->dhar, dhar_base(pvt),
810 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
811 : f10_dhar_offset(pvt));
812
813 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
814
815 amd64_debug_display_dimm_sizes(pvt, 0);
816
817 /* everything below this point is Fam10h and above */
818 if (boot_cpu_data.x86 == 0xf)
819 return;
820
821 amd64_debug_display_dimm_sizes(pvt, 1);
822
823 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
824
825 /* Only if NOT ganged does dclr1 have valid info */
826 if (!dct_ganging_enabled(pvt))
827 amd64_dump_dramcfg_low(pvt->dclr1, 1);
828 }
829
830 /*
831 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
832 */
833 static void prep_chip_selects(struct amd64_pvt *pvt)
834 {
835 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
836 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
838 } else {
839 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
840 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
841 }
842 }
843
844 /*
845 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
846 */
847 static void read_dct_base_mask(struct amd64_pvt *pvt)
848 {
849 int cs;
850
851 prep_chip_selects(pvt);
852
853 for_each_chip_select(cs, 0, pvt) {
854 int reg0 = DCSB0 + (cs * 4);
855 int reg1 = DCSB1 + (cs * 4);
856 u32 *base0 = &pvt->csels[0].csbases[cs];
857 u32 *base1 = &pvt->csels[1].csbases[cs];
858
859 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
860 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
861 cs, *base0, reg0);
862
863 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
864 continue;
865
866 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
867 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
868 cs, *base1, reg1);
869 }
870
871 for_each_chip_select_mask(cs, 0, pvt) {
872 int reg0 = DCSM0 + (cs * 4);
873 int reg1 = DCSM1 + (cs * 4);
874 u32 *mask0 = &pvt->csels[0].csmasks[cs];
875 u32 *mask1 = &pvt->csels[1].csmasks[cs];
876
877 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
878 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
879 cs, *mask0, reg0);
880
881 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
882 continue;
883
884 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
885 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
886 cs, *mask1, reg1);
887 }
888 }
889
890 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
891 {
892 enum mem_type type;
893
894 /* F15h supports only DDR3 */
895 if (boot_cpu_data.x86 >= 0x15)
896 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
897 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
898 if (pvt->dchr0 & DDR3_MODE)
899 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
900 else
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
902 } else {
903 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
904 }
905
906 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
907
908 return type;
909 }
910
911 /* Get the number of DCT channels the memory controller is using. */
912 static int k8_early_channel_count(struct amd64_pvt *pvt)
913 {
914 int flag;
915
916 if (pvt->ext_model >= K8_REV_F)
917 /* RevF (NPT) and later */
918 flag = pvt->dclr0 & WIDTH_128;
919 else
920 /* RevE and earlier */
921 flag = pvt->dclr0 & REVE_WIDTH_128;
922
923 /* not used */
924 pvt->dclr1 = 0;
925
926 return (flag) ? 2 : 1;
927 }
928
929 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
930 static u64 get_error_address(struct mce *m)
931 {
932 struct cpuinfo_x86 *c = &boot_cpu_data;
933 u64 addr;
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
937 if (c->x86 == 0xf) {
938 start_bit = 3;
939 end_bit = 39;
940 }
941
942 addr = m->addr & GENMASK(start_bit, end_bit);
943
944 /*
945 * Erratum 637 workaround
946 */
947 if (c->x86 == 0x15) {
948 struct amd64_pvt *pvt;
949 u64 cc6_base, tmp_addr;
950 u32 tmp;
951 u8 mce_nid, intlv_en;
952
953 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
954 return addr;
955
956 mce_nid = amd_get_nb_id(m->extcpu);
957 pvt = mcis[mce_nid]->pvt_info;
958
959 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
960 intlv_en = tmp >> 21 & 0x7;
961
962 /* add [47:27] + 3 trailing bits */
963 cc6_base = (tmp & GENMASK(0, 20)) << 3;
964
965 /* reverse and add DramIntlvEn */
966 cc6_base |= intlv_en ^ 0x7;
967
968 /* pin at [47:24] */
969 cc6_base <<= 24;
970
971 if (!intlv_en)
972 return cc6_base | (addr & GENMASK(0, 23));
973
974 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
975
976 /* faster log2 */
977 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
978
979 /* OR DramIntlvSel into bits [14:12] */
980 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
981
982 /* add remaining [11:0] bits from original MC4_ADDR */
983 tmp_addr |= addr & GENMASK(0, 11);
984
985 return cc6_base | tmp_addr;
986 }
987
988 return addr;
989 }
990
991 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
992 {
993 struct cpuinfo_x86 *c = &boot_cpu_data;
994 int off = range << 3;
995
996 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
997 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
998
999 if (c->x86 == 0xf)
1000 return;
1001
1002 if (!dram_rw(pvt, range))
1003 return;
1004
1005 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1006 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1007
1008 /* Factor in CC6 save area by reading dst node's limit reg */
1009 if (c->x86 == 0x15) {
1010 struct pci_dev *f1 = NULL;
1011 u8 nid = dram_dst_node(pvt, range);
1012 u32 llim;
1013
1014 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1015 if (WARN_ON(!f1))
1016 return;
1017
1018 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1019
1020 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1021
1022 /* {[39:27],111b} */
1023 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1024
1025 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1026
1027 /* [47:40] */
1028 pvt->ranges[range].lim.hi |= llim >> 13;
1029
1030 pci_dev_put(f1);
1031 }
1032 }
1033
1034 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1035 u16 syndrome)
1036 {
1037 struct mem_ctl_info *src_mci;
1038 struct amd64_pvt *pvt = mci->pvt_info;
1039 int channel, csrow;
1040 u32 page, offset;
1041
1042 error_address_to_page_and_offset(sys_addr, &page, &offset);
1043
1044 /*
1045 * Find out which node the error address belongs to. This may be
1046 * different from the node that detected the error.
1047 */
1048 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1049 if (!src_mci) {
1050 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1051 (unsigned long)sys_addr);
1052 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1053 page, offset, syndrome,
1054 -1, -1, -1,
1055 EDAC_MOD_STR,
1056 "failed to map error addr to a node",
1057 NULL);
1058 return;
1059 }
1060
1061 /* Now map the sys_addr to a CSROW */
1062 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1063 if (csrow < 0) {
1064 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1065 page, offset, syndrome,
1066 -1, -1, -1,
1067 EDAC_MOD_STR,
1068 "failed to map error addr to a csrow",
1069 NULL);
1070 return;
1071 }
1072
1073 /* CHIPKILL enabled */
1074 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1076 if (channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
1082 amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1083 "possible error reporting race\n",
1084 syndrome);
1085 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1086 page, offset, syndrome,
1087 csrow, -1, -1,
1088 EDAC_MOD_STR,
1089 "unknown syndrome - possible error reporting race",
1090 NULL);
1091 return;
1092 }
1093 } else {
1094 /*
1095 * non-chipkill ecc mode
1096 *
1097 * The k8 documentation is unclear about how to determine the
1098 * channel number when using non-chipkill memory. This method
1099 * was obtained from email communication with someone at AMD.
1100 * (Wish the email was placed in this comment - norsk)
1101 */
1102 channel = ((sys_addr & BIT(3)) != 0);
1103 }
1104
1105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci,
1106 page, offset, syndrome,
1107 csrow, channel, -1,
1108 EDAC_MOD_STR, "", NULL);
1109 }
1110
1111 static int ddr2_cs_size(unsigned i, bool dct_width)
1112 {
1113 unsigned shift = 0;
1114
1115 if (i <= 2)
1116 shift = i;
1117 else if (!(i & 0x1))
1118 shift = i >> 1;
1119 else
1120 shift = (i + 1) >> 1;
1121
1122 return 128 << (shift + !!dct_width);
1123 }
1124
1125 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 unsigned cs_mode)
1127 {
1128 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129
1130 if (pvt->ext_model >= K8_REV_F) {
1131 WARN_ON(cs_mode > 11);
1132 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 }
1134 else if (pvt->ext_model >= K8_REV_D) {
1135 unsigned diff;
1136 WARN_ON(cs_mode > 10);
1137
1138 /*
1139 * the below calculation, besides trying to win an obfuscated C
1140 * contest, maps cs_mode values to DIMM chip select sizes. The
1141 * mappings are:
1142 *
1143 * cs_mode CS size (mb)
1144 * ======= ============
1145 * 0 32
1146 * 1 64
1147 * 2 128
1148 * 3 128
1149 * 4 256
1150 * 5 512
1151 * 6 256
1152 * 7 512
1153 * 8 1024
1154 * 9 1024
1155 * 10 2048
1156 *
1157 * Basically, it calculates a value with which to shift the
1158 * smallest CS size of 32MB.
1159 *
1160 * ddr[23]_cs_size have a similar purpose.
1161 */
1162 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1163
1164 return 32 << (cs_mode - diff);
1165 }
1166 else {
1167 WARN_ON(cs_mode > 6);
1168 return 32 << cs_mode;
1169 }
1170 }
1171
1172 /*
1173 * Get the number of DCT channels in use.
1174 *
1175 * Return:
1176 * number of Memory Channels in operation
1177 * Pass back:
1178 * contents of the DCL0_LOW register
1179 */
1180 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1181 {
1182 int i, j, channels = 0;
1183
1184 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1185 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1186 return 2;
1187
1188 /*
1189 * Need to check if in unganged mode: In such, there are 2 channels,
1190 * but they are not in 128 bit mode and thus the above 'dclr0' status
1191 * bit will be OFF.
1192 *
1193 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1194 * their CSEnable bit on. If so, then SINGLE DIMM case.
1195 */
1196 debugf0("Data width is not 128 bits - need more decoding\n");
1197
1198 /*
1199 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1200 * is more than just one DIMM present in unganged mode. Need to check
1201 * both controllers since DIMMs can be placed in either one.
1202 */
1203 for (i = 0; i < 2; i++) {
1204 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1205
1206 for (j = 0; j < 4; j++) {
1207 if (DBAM_DIMM(j, dbam) > 0) {
1208 channels++;
1209 break;
1210 }
1211 }
1212 }
1213
1214 if (channels > 2)
1215 channels = 2;
1216
1217 amd64_info("MCT channel count: %d\n", channels);
1218
1219 return channels;
1220 }
1221
1222 static int ddr3_cs_size(unsigned i, bool dct_width)
1223 {
1224 unsigned shift = 0;
1225 int cs_size = 0;
1226
1227 if (i == 0 || i == 3 || i == 4)
1228 cs_size = -1;
1229 else if (i <= 2)
1230 shift = i;
1231 else if (i == 12)
1232 shift = 7;
1233 else if (!(i & 0x1))
1234 shift = i >> 1;
1235 else
1236 shift = (i + 1) >> 1;
1237
1238 if (cs_size != -1)
1239 cs_size = (128 * (1 << !!dct_width)) << shift;
1240
1241 return cs_size;
1242 }
1243
1244 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1245 unsigned cs_mode)
1246 {
1247 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1248
1249 WARN_ON(cs_mode > 11);
1250
1251 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1252 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1253 else
1254 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1255 }
1256
1257 /*
1258 * F15h supports only 64bit DCT interfaces
1259 */
1260 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261 unsigned cs_mode)
1262 {
1263 WARN_ON(cs_mode > 12);
1264
1265 return ddr3_cs_size(cs_mode, false);
1266 }
1267
1268 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1269 {
1270
1271 if (boot_cpu_data.x86 == 0xf)
1272 return;
1273
1274 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1275 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1276 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1277
1278 debugf0(" DCTs operate in %s mode.\n",
1279 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1280
1281 if (!dct_ganging_enabled(pvt))
1282 debugf0(" Address range split per DCT: %s\n",
1283 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1284
1285 debugf0(" data interleave for ECC: %s, "
1286 "DRAM cleared since last warm reset: %s\n",
1287 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1288 (dct_memory_cleared(pvt) ? "yes" : "no"));
1289
1290 debugf0(" channel interleave: %s, "
1291 "interleave bits selector: 0x%x\n",
1292 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1293 dct_sel_interleave_addr(pvt));
1294 }
1295
1296 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1297 }
1298
1299 /*
1300 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 * Interleaving Modes.
1302 */
1303 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 bool hi_range_sel, u8 intlv_en)
1305 {
1306 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1307
1308 if (dct_ganging_enabled(pvt))
1309 return 0;
1310
1311 if (hi_range_sel)
1312 return dct_sel_high;
1313
1314 /*
1315 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1316 */
1317 if (dct_interleave_enabled(pvt)) {
1318 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1319
1320 /* return DCT select function: 0=DCT0, 1=DCT1 */
1321 if (!intlv_addr)
1322 return sys_addr >> 6 & 1;
1323
1324 if (intlv_addr & 0x2) {
1325 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1326 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1327
1328 return ((sys_addr >> shift) & 1) ^ temp;
1329 }
1330
1331 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1332 }
1333
1334 if (dct_high_range_enabled(pvt))
1335 return ~dct_sel_high & 1;
1336
1337 return 0;
1338 }
1339
1340 /* Convert the sys_addr to the normalized DCT address */
1341 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1342 u64 sys_addr, bool hi_rng,
1343 u32 dct_sel_base_addr)
1344 {
1345 u64 chan_off;
1346 u64 dram_base = get_dram_base(pvt, range);
1347 u64 hole_off = f10_dhar_offset(pvt);
1348 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1349
1350 if (hi_rng) {
1351 /*
1352 * if
1353 * base address of high range is below 4Gb
1354 * (bits [47:27] at [31:11])
1355 * DRAM address space on this DCT is hoisted above 4Gb &&
1356 * sys_addr > 4Gb
1357 *
1358 * remove hole offset from sys_addr
1359 * else
1360 * remove high range offset from sys_addr
1361 */
1362 if ((!(dct_sel_base_addr >> 16) ||
1363 dct_sel_base_addr < dhar_base(pvt)) &&
1364 dhar_valid(pvt) &&
1365 (sys_addr >= BIT_64(32)))
1366 chan_off = hole_off;
1367 else
1368 chan_off = dct_sel_base_off;
1369 } else {
1370 /*
1371 * if
1372 * we have a valid hole &&
1373 * sys_addr > 4Gb
1374 *
1375 * remove hole
1376 * else
1377 * remove dram base to normalize to DCT address
1378 */
1379 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1380 chan_off = hole_off;
1381 else
1382 chan_off = dram_base;
1383 }
1384
1385 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1386 }
1387
1388 /*
1389 * checks if the csrow passed in is marked as SPARED, if so returns the new
1390 * spare row
1391 */
1392 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1393 {
1394 int tmp_cs;
1395
1396 if (online_spare_swap_done(pvt, dct) &&
1397 csrow == online_spare_bad_dramcs(pvt, dct)) {
1398
1399 for_each_chip_select(tmp_cs, dct, pvt) {
1400 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1401 csrow = tmp_cs;
1402 break;
1403 }
1404 }
1405 }
1406 return csrow;
1407 }
1408
1409 /*
1410 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1411 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1412 *
1413 * Return:
1414 * -EINVAL: NOT FOUND
1415 * 0..csrow = Chip-Select Row
1416 */
1417 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1418 {
1419 struct mem_ctl_info *mci;
1420 struct amd64_pvt *pvt;
1421 u64 cs_base, cs_mask;
1422 int cs_found = -EINVAL;
1423 int csrow;
1424
1425 mci = mcis[nid];
1426 if (!mci)
1427 return cs_found;
1428
1429 pvt = mci->pvt_info;
1430
1431 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1432
1433 for_each_chip_select(csrow, dct, pvt) {
1434 if (!csrow_enabled(csrow, dct, pvt))
1435 continue;
1436
1437 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1438
1439 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1440 csrow, cs_base, cs_mask);
1441
1442 cs_mask = ~cs_mask;
1443
1444 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1445 "(CSBase & ~CSMask)=0x%llx\n",
1446 (in_addr & cs_mask), (cs_base & cs_mask));
1447
1448 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1449 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1450
1451 debugf1(" MATCH csrow=%d\n", cs_found);
1452 break;
1453 }
1454 }
1455 return cs_found;
1456 }
1457
1458 /*
1459 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1460 * swapped with a region located at the bottom of memory so that the GPU can use
1461 * the interleaved region and thus two channels.
1462 */
1463 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1464 {
1465 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1466
1467 if (boot_cpu_data.x86 == 0x10) {
1468 /* only revC3 and revE have that feature */
1469 if (boot_cpu_data.x86_model < 4 ||
1470 (boot_cpu_data.x86_model < 0xa &&
1471 boot_cpu_data.x86_mask < 3))
1472 return sys_addr;
1473 }
1474
1475 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1476
1477 if (!(swap_reg & 0x1))
1478 return sys_addr;
1479
1480 swap_base = (swap_reg >> 3) & 0x7f;
1481 swap_limit = (swap_reg >> 11) & 0x7f;
1482 rgn_size = (swap_reg >> 20) & 0x7f;
1483 tmp_addr = sys_addr >> 27;
1484
1485 if (!(sys_addr >> 34) &&
1486 (((tmp_addr >= swap_base) &&
1487 (tmp_addr <= swap_limit)) ||
1488 (tmp_addr < rgn_size)))
1489 return sys_addr ^ (u64)swap_base << 27;
1490
1491 return sys_addr;
1492 }
1493
1494 /* For a given @dram_range, check if @sys_addr falls within it. */
1495 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1496 u64 sys_addr, int *nid, int *chan_sel)
1497 {
1498 int cs_found = -EINVAL;
1499 u64 chan_addr;
1500 u32 dct_sel_base;
1501 u8 channel;
1502 bool high_range = false;
1503
1504 u8 node_id = dram_dst_node(pvt, range);
1505 u8 intlv_en = dram_intlv_en(pvt, range);
1506 u32 intlv_sel = dram_intlv_sel(pvt, range);
1507
1508 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1509 range, sys_addr, get_dram_limit(pvt, range));
1510
1511 if (dhar_valid(pvt) &&
1512 dhar_base(pvt) <= sys_addr &&
1513 sys_addr < BIT_64(32)) {
1514 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1515 sys_addr);
1516 return -EINVAL;
1517 }
1518
1519 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1520 return -EINVAL;
1521
1522 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1523
1524 dct_sel_base = dct_sel_baseaddr(pvt);
1525
1526 /*
1527 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1528 * select between DCT0 and DCT1.
1529 */
1530 if (dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt) &&
1532 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1533 high_range = true;
1534
1535 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1536
1537 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1538 high_range, dct_sel_base);
1539
1540 /* Remove node interleaving, see F1x120 */
1541 if (intlv_en)
1542 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1543 (chan_addr & 0xfff);
1544
1545 /* remove channel interleave */
1546 if (dct_interleave_enabled(pvt) &&
1547 !dct_high_range_enabled(pvt) &&
1548 !dct_ganging_enabled(pvt)) {
1549
1550 if (dct_sel_interleave_addr(pvt) != 1) {
1551 if (dct_sel_interleave_addr(pvt) == 0x3)
1552 /* hash 9 */
1553 chan_addr = ((chan_addr >> 10) << 9) |
1554 (chan_addr & 0x1ff);
1555 else
1556 /* A[6] or hash 6 */
1557 chan_addr = ((chan_addr >> 7) << 6) |
1558 (chan_addr & 0x3f);
1559 } else
1560 /* A[12] */
1561 chan_addr = ((chan_addr >> 13) << 12) |
1562 (chan_addr & 0xfff);
1563 }
1564
1565 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1566
1567 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1568
1569 if (cs_found >= 0) {
1570 *nid = node_id;
1571 *chan_sel = channel;
1572 }
1573 return cs_found;
1574 }
1575
1576 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1577 int *node, int *chan_sel)
1578 {
1579 int cs_found = -EINVAL;
1580 unsigned range;
1581
1582 for (range = 0; range < DRAM_RANGES; range++) {
1583
1584 if (!dram_rw(pvt, range))
1585 continue;
1586
1587 if ((get_dram_base(pvt, range) <= sys_addr) &&
1588 (get_dram_limit(pvt, range) >= sys_addr)) {
1589
1590 cs_found = f1x_match_to_this_node(pvt, range,
1591 sys_addr, node,
1592 chan_sel);
1593 if (cs_found >= 0)
1594 break;
1595 }
1596 }
1597 return cs_found;
1598 }
1599
1600 /*
1601 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1602 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1603 *
1604 * The @sys_addr is usually an error address received from the hardware
1605 * (MCX_ADDR).
1606 */
1607 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1608 u16 syndrome)
1609 {
1610 struct amd64_pvt *pvt = mci->pvt_info;
1611 u32 page, offset;
1612 int nid, csrow, chan = 0;
1613
1614 error_address_to_page_and_offset(sys_addr, &page, &offset);
1615
1616 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1617
1618 if (csrow < 0) {
1619 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1620 page, offset, syndrome,
1621 -1, -1, -1,
1622 EDAC_MOD_STR,
1623 "failed to map error addr to a csrow",
1624 NULL);
1625 return;
1626 }
1627
1628 /*
1629 * We need the syndromes for channel detection only when we're
1630 * ganged. Otherwise @chan should already contain the channel at
1631 * this point.
1632 */
1633 if (dct_ganging_enabled(pvt))
1634 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1635
1636 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1637 page, offset, syndrome,
1638 csrow, chan, -1,
1639 EDAC_MOD_STR, "", NULL);
1640 }
1641
1642 /*
1643 * debug routine to display the memory sizes of all logical DIMMs and its
1644 * CSROWs
1645 */
1646 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1647 {
1648 int dimm, size0, size1, factor = 0;
1649 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1650 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1651
1652 if (boot_cpu_data.x86 == 0xf) {
1653 if (pvt->dclr0 & WIDTH_128)
1654 factor = 1;
1655
1656 /* K8 families < revF not supported yet */
1657 if (pvt->ext_model < K8_REV_F)
1658 return;
1659 else
1660 WARN_ON(ctrl != 0);
1661 }
1662
1663 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1664 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1665 : pvt->csels[0].csbases;
1666
1667 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1668
1669 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1670
1671 /* Dump memory sizes for DIMM and its CSROWs */
1672 for (dimm = 0; dimm < 4; dimm++) {
1673
1674 size0 = 0;
1675 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1676 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1677 DBAM_DIMM(dimm, dbam));
1678
1679 size1 = 0;
1680 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1681 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1682 DBAM_DIMM(dimm, dbam));
1683
1684 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1685 dimm * 2, size0 << factor,
1686 dimm * 2 + 1, size1 << factor);
1687 }
1688 }
1689
1690 static struct amd64_family_type amd64_family_types[] = {
1691 [K8_CPUS] = {
1692 .ctl_name = "K8",
1693 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1694 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1695 .ops = {
1696 .early_channel_count = k8_early_channel_count,
1697 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1698 .dbam_to_cs = k8_dbam_to_chip_select,
1699 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1700 }
1701 },
1702 [F10_CPUS] = {
1703 .ctl_name = "F10h",
1704 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1705 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1706 .ops = {
1707 .early_channel_count = f1x_early_channel_count,
1708 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1709 .dbam_to_cs = f10_dbam_to_chip_select,
1710 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1711 }
1712 },
1713 [F15_CPUS] = {
1714 .ctl_name = "F15h",
1715 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1716 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1717 .ops = {
1718 .early_channel_count = f1x_early_channel_count,
1719 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1720 .dbam_to_cs = f15_dbam_to_chip_select,
1721 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1722 }
1723 },
1724 };
1725
1726 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1727 unsigned int device,
1728 struct pci_dev *related)
1729 {
1730 struct pci_dev *dev = NULL;
1731
1732 dev = pci_get_device(vendor, device, dev);
1733 while (dev) {
1734 if ((dev->bus->number == related->bus->number) &&
1735 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1736 break;
1737 dev = pci_get_device(vendor, device, dev);
1738 }
1739
1740 return dev;
1741 }
1742
1743 /*
1744 * These are tables of eigenvectors (one per line) which can be used for the
1745 * construction of the syndrome tables. The modified syndrome search algorithm
1746 * uses those to find the symbol in error and thus the DIMM.
1747 *
1748 * Algorithm courtesy of Ross LaFetra from AMD.
1749 */
1750 static u16 x4_vectors[] = {
1751 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1752 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1753 0x0001, 0x0002, 0x0004, 0x0008,
1754 0x1013, 0x3032, 0x4044, 0x8088,
1755 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1756 0x4857, 0xc4fe, 0x13cc, 0x3288,
1757 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1758 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1759 0x15c1, 0x2a42, 0x89ac, 0x4758,
1760 0x2b03, 0x1602, 0x4f0c, 0xca08,
1761 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1762 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1763 0x2b87, 0x164e, 0x642c, 0xdc18,
1764 0x40b9, 0x80de, 0x1094, 0x20e8,
1765 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1766 0x11c1, 0x2242, 0x84ac, 0x4c58,
1767 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1768 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1769 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1770 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1771 0x16b3, 0x3d62, 0x4f34, 0x8518,
1772 0x1e2f, 0x391a, 0x5cac, 0xf858,
1773 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1774 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1775 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1776 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1777 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1778 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1779 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1780 0x185d, 0x2ca6, 0x7914, 0x9e28,
1781 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1782 0x4199, 0x82ee, 0x19f4, 0x2e58,
1783 0x4807, 0xc40e, 0x130c, 0x3208,
1784 0x1905, 0x2e0a, 0x5804, 0xac08,
1785 0x213f, 0x132a, 0xadfc, 0x5ba8,
1786 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1787 };
1788
1789 static u16 x8_vectors[] = {
1790 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1791 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1792 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1793 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1794 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1795 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1796 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1797 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1798 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1799 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1800 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1801 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1802 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1803 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1804 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1805 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1806 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1807 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1808 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1809 };
1810
1811 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1812 unsigned v_dim)
1813 {
1814 unsigned int i, err_sym;
1815
1816 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1817 u16 s = syndrome;
1818 unsigned v_idx = err_sym * v_dim;
1819 unsigned v_end = (err_sym + 1) * v_dim;
1820
1821 /* walk over all 16 bits of the syndrome */
1822 for (i = 1; i < (1U << 16); i <<= 1) {
1823
1824 /* if bit is set in that eigenvector... */
1825 if (v_idx < v_end && vectors[v_idx] & i) {
1826 u16 ev_comp = vectors[v_idx++];
1827
1828 /* ... and bit set in the modified syndrome, */
1829 if (s & i) {
1830 /* remove it. */
1831 s ^= ev_comp;
1832
1833 if (!s)
1834 return err_sym;
1835 }
1836
1837 } else if (s & i)
1838 /* can't get to zero, move to next symbol */
1839 break;
1840 }
1841 }
1842
1843 debugf0("syndrome(%x) not found\n", syndrome);
1844 return -1;
1845 }
1846
1847 static int map_err_sym_to_channel(int err_sym, int sym_size)
1848 {
1849 if (sym_size == 4)
1850 switch (err_sym) {
1851 case 0x20:
1852 case 0x21:
1853 return 0;
1854 break;
1855 case 0x22:
1856 case 0x23:
1857 return 1;
1858 break;
1859 default:
1860 return err_sym >> 4;
1861 break;
1862 }
1863 /* x8 symbols */
1864 else
1865 switch (err_sym) {
1866 /* imaginary bits not in a DIMM */
1867 case 0x10:
1868 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1869 err_sym);
1870 return -1;
1871 break;
1872
1873 case 0x11:
1874 return 0;
1875 break;
1876 case 0x12:
1877 return 1;
1878 break;
1879 default:
1880 return err_sym >> 3;
1881 break;
1882 }
1883 return -1;
1884 }
1885
1886 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1887 {
1888 struct amd64_pvt *pvt = mci->pvt_info;
1889 int err_sym = -1;
1890
1891 if (pvt->ecc_sym_sz == 8)
1892 err_sym = decode_syndrome(syndrome, x8_vectors,
1893 ARRAY_SIZE(x8_vectors),
1894 pvt->ecc_sym_sz);
1895 else if (pvt->ecc_sym_sz == 4)
1896 err_sym = decode_syndrome(syndrome, x4_vectors,
1897 ARRAY_SIZE(x4_vectors),
1898 pvt->ecc_sym_sz);
1899 else {
1900 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1901 return err_sym;
1902 }
1903
1904 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1905 }
1906
1907 /*
1908 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1909 * ADDRESS and process.
1910 */
1911 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1912 {
1913 struct amd64_pvt *pvt = mci->pvt_info;
1914 u64 sys_addr;
1915 u16 syndrome;
1916
1917 /* Ensure that the Error Address is VALID */
1918 if (!(m->status & MCI_STATUS_ADDRV)) {
1919 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1920 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1921 0, 0, 0,
1922 -1, -1, -1,
1923 EDAC_MOD_STR,
1924 "HW has no ERROR_ADDRESS available",
1925 NULL);
1926 return;
1927 }
1928
1929 sys_addr = get_error_address(m);
1930 syndrome = extract_syndrome(m->status);
1931
1932 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1933
1934 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1935 }
1936
1937 /* Handle any Un-correctable Errors (UEs) */
1938 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1939 {
1940 struct mem_ctl_info *log_mci, *src_mci = NULL;
1941 int csrow;
1942 u64 sys_addr;
1943 u32 page, offset;
1944
1945 log_mci = mci;
1946
1947 if (!(m->status & MCI_STATUS_ADDRV)) {
1948 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1949 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1950 0, 0, 0,
1951 -1, -1, -1,
1952 EDAC_MOD_STR,
1953 "HW has no ERROR_ADDRESS available",
1954 NULL);
1955 return;
1956 }
1957
1958 sys_addr = get_error_address(m);
1959 error_address_to_page_and_offset(sys_addr, &page, &offset);
1960
1961 /*
1962 * Find out which node the error address belongs to. This may be
1963 * different from the node that detected the error.
1964 */
1965 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1966 if (!src_mci) {
1967 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1968 (unsigned long)sys_addr);
1969 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1970 page, offset, 0,
1971 -1, -1, -1,
1972 EDAC_MOD_STR,
1973 "ERROR ADDRESS NOT mapped to a MC", NULL);
1974 return;
1975 }
1976
1977 log_mci = src_mci;
1978
1979 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1980 if (csrow < 0) {
1981 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1982 (unsigned long)sys_addr);
1983 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1984 page, offset, 0,
1985 -1, -1, -1,
1986 EDAC_MOD_STR,
1987 "ERROR ADDRESS NOT mapped to CS",
1988 NULL);
1989 } else {
1990 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1991 page, offset, 0,
1992 csrow, -1, -1,
1993 EDAC_MOD_STR, "", NULL);
1994 }
1995 }
1996
1997 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1998 struct mce *m)
1999 {
2000 u16 ec = EC(m->status);
2001 u8 xec = XEC(m->status, 0x1f);
2002 u8 ecc_type = (m->status >> 45) & 0x3;
2003
2004 /* Bail early out if this was an 'observed' error */
2005 if (PP(ec) == NBSL_PP_OBS)
2006 return;
2007
2008 /* Do only ECC errors */
2009 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2010 return;
2011
2012 if (ecc_type == 2)
2013 amd64_handle_ce(mci, m);
2014 else if (ecc_type == 1)
2015 amd64_handle_ue(mci, m);
2016 }
2017
2018 void amd64_decode_bus_error(int node_id, struct mce *m)
2019 {
2020 __amd64_decode_bus_error(mcis[node_id], m);
2021 }
2022
2023 /*
2024 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2025 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2026 */
2027 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2028 {
2029 /* Reserve the ADDRESS MAP Device */
2030 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2031 if (!pvt->F1) {
2032 amd64_err("error address map device not found: "
2033 "vendor %x device 0x%x (broken BIOS?)\n",
2034 PCI_VENDOR_ID_AMD, f1_id);
2035 return -ENODEV;
2036 }
2037
2038 /* Reserve the MISC Device */
2039 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2040 if (!pvt->F3) {
2041 pci_dev_put(pvt->F1);
2042 pvt->F1 = NULL;
2043
2044 amd64_err("error F3 device not found: "
2045 "vendor %x device 0x%x (broken BIOS?)\n",
2046 PCI_VENDOR_ID_AMD, f3_id);
2047
2048 return -ENODEV;
2049 }
2050 debugf1("F1: %s\n", pci_name(pvt->F1));
2051 debugf1("F2: %s\n", pci_name(pvt->F2));
2052 debugf1("F3: %s\n", pci_name(pvt->F3));
2053
2054 return 0;
2055 }
2056
2057 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2058 {
2059 pci_dev_put(pvt->F1);
2060 pci_dev_put(pvt->F3);
2061 }
2062
2063 /*
2064 * Retrieve the hardware registers of the memory controller (this includes the
2065 * 'Address Map' and 'Misc' device regs)
2066 */
2067 static void read_mc_regs(struct amd64_pvt *pvt)
2068 {
2069 struct cpuinfo_x86 *c = &boot_cpu_data;
2070 u64 msr_val;
2071 u32 tmp;
2072 unsigned range;
2073
2074 /*
2075 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2076 * those are Read-As-Zero
2077 */
2078 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2079 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2080
2081 /* check first whether TOP_MEM2 is enabled */
2082 rdmsrl(MSR_K8_SYSCFG, msr_val);
2083 if (msr_val & (1U << 21)) {
2084 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2085 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2086 } else
2087 debugf0(" TOP_MEM2 disabled.\n");
2088
2089 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2090
2091 read_dram_ctl_register(pvt);
2092
2093 for (range = 0; range < DRAM_RANGES; range++) {
2094 u8 rw;
2095
2096 /* read settings for this DRAM range */
2097 read_dram_base_limit_regs(pvt, range);
2098
2099 rw = dram_rw(pvt, range);
2100 if (!rw)
2101 continue;
2102
2103 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2104 range,
2105 get_dram_base(pvt, range),
2106 get_dram_limit(pvt, range));
2107
2108 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2109 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2110 (rw & 0x1) ? "R" : "-",
2111 (rw & 0x2) ? "W" : "-",
2112 dram_intlv_sel(pvt, range),
2113 dram_dst_node(pvt, range));
2114 }
2115
2116 read_dct_base_mask(pvt);
2117
2118 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2119 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2120
2121 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2122
2123 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2124 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2125
2126 if (!dct_ganging_enabled(pvt)) {
2127 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2128 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2129 }
2130
2131 pvt->ecc_sym_sz = 4;
2132
2133 if (c->x86 >= 0x10) {
2134 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2135 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2136
2137 /* F10h, revD and later can do x8 ECC too */
2138 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2139 pvt->ecc_sym_sz = 8;
2140 }
2141 dump_misc_regs(pvt);
2142 }
2143
2144 /*
2145 * NOTE: CPU Revision Dependent code
2146 *
2147 * Input:
2148 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2149 * k8 private pointer to -->
2150 * DRAM Bank Address mapping register
2151 * node_id
2152 * DCL register where dual_channel_active is
2153 *
2154 * The DBAM register consists of 4 sets of 4 bits each definitions:
2155 *
2156 * Bits: CSROWs
2157 * 0-3 CSROWs 0 and 1
2158 * 4-7 CSROWs 2 and 3
2159 * 8-11 CSROWs 4 and 5
2160 * 12-15 CSROWs 6 and 7
2161 *
2162 * Values range from: 0 to 15
2163 * The meaning of the values depends on CPU revision and dual-channel state,
2164 * see relevant BKDG more info.
2165 *
2166 * The memory controller provides for total of only 8 CSROWs in its current
2167 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2168 * single channel or two (2) DIMMs in dual channel mode.
2169 *
2170 * The following code logic collapses the various tables for CSROW based on CPU
2171 * revision.
2172 *
2173 * Returns:
2174 * The number of PAGE_SIZE pages on the specified CSROW number it
2175 * encompasses
2176 *
2177 */
2178 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2179 {
2180 u32 cs_mode, nr_pages;
2181 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2182
2183 /*
2184 * The math on this doesn't look right on the surface because x/2*4 can
2185 * be simplified to x*2 but this expression makes use of the fact that
2186 * it is integral math where 1/2=0. This intermediate value becomes the
2187 * number of bits to shift the DBAM register to extract the proper CSROW
2188 * field.
2189 */
2190 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2191
2192 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2193
2194 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2195 debugf0(" nr_pages/channel= %u channel-count = %d\n",
2196 nr_pages, pvt->channel_count);
2197
2198 return nr_pages;
2199 }
2200
2201 /*
2202 * Initialize the array of csrow attribute instances, based on the values
2203 * from pci config hardware registers.
2204 */
2205 static int init_csrows(struct mem_ctl_info *mci)
2206 {
2207 struct csrow_info *csrow;
2208 struct amd64_pvt *pvt = mci->pvt_info;
2209 u64 base, mask;
2210 u32 val;
2211 int i, j, empty = 1;
2212 enum mem_type mtype;
2213 enum edac_type edac_mode;
2214 int nr_pages = 0;
2215
2216 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2217
2218 pvt->nbcfg = val;
2219
2220 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2221 pvt->mc_node_id, val,
2222 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2223
2224 for_each_chip_select(i, 0, pvt) {
2225 csrow = &mci->csrows[i];
2226
2227 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2228 debugf1("----CSROW %d EMPTY for node %d\n", i,
2229 pvt->mc_node_id);
2230 continue;
2231 }
2232
2233 debugf1("----CSROW %d VALID for MC node %d\n",
2234 i, pvt->mc_node_id);
2235
2236 empty = 0;
2237 if (csrow_enabled(i, 0, pvt))
2238 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2239 if (csrow_enabled(i, 1, pvt))
2240 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2241
2242 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2243 /* 8 bytes of resolution */
2244
2245 mtype = amd64_determine_memory_type(pvt, i);
2246
2247 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2248 debugf1(" nr_pages: %u\n", nr_pages * pvt->channel_count);
2249
2250 /*
2251 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2252 */
2253 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2254 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2255 EDAC_S4ECD4ED : EDAC_SECDED;
2256 else
2257 edac_mode = EDAC_NONE;
2258
2259 for (j = 0; j < pvt->channel_count; j++) {
2260 csrow->channels[j].dimm->mtype = mtype;
2261 csrow->channels[j].dimm->edac_mode = edac_mode;
2262 csrow->channels[j].dimm->nr_pages = nr_pages;
2263 }
2264 }
2265
2266 return empty;
2267 }
2268
2269 /* get all cores on this DCT */
2270 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2271 {
2272 int cpu;
2273
2274 for_each_online_cpu(cpu)
2275 if (amd_get_nb_id(cpu) == nid)
2276 cpumask_set_cpu(cpu, mask);
2277 }
2278
2279 /* check MCG_CTL on all the cpus on this node */
2280 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2281 {
2282 cpumask_var_t mask;
2283 int cpu, nbe;
2284 bool ret = false;
2285
2286 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2287 amd64_warn("%s: Error allocating mask\n", __func__);
2288 return false;
2289 }
2290
2291 get_cpus_on_this_dct_cpumask(mask, nid);
2292
2293 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2294
2295 for_each_cpu(cpu, mask) {
2296 struct msr *reg = per_cpu_ptr(msrs, cpu);
2297 nbe = reg->l & MSR_MCGCTL_NBE;
2298
2299 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2300 cpu, reg->q,
2301 (nbe ? "enabled" : "disabled"));
2302
2303 if (!nbe)
2304 goto out;
2305 }
2306 ret = true;
2307
2308 out:
2309 free_cpumask_var(mask);
2310 return ret;
2311 }
2312
2313 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2314 {
2315 cpumask_var_t cmask;
2316 int cpu;
2317
2318 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2319 amd64_warn("%s: error allocating mask\n", __func__);
2320 return false;
2321 }
2322
2323 get_cpus_on_this_dct_cpumask(cmask, nid);
2324
2325 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2326
2327 for_each_cpu(cpu, cmask) {
2328
2329 struct msr *reg = per_cpu_ptr(msrs, cpu);
2330
2331 if (on) {
2332 if (reg->l & MSR_MCGCTL_NBE)
2333 s->flags.nb_mce_enable = 1;
2334
2335 reg->l |= MSR_MCGCTL_NBE;
2336 } else {
2337 /*
2338 * Turn off NB MCE reporting only when it was off before
2339 */
2340 if (!s->flags.nb_mce_enable)
2341 reg->l &= ~MSR_MCGCTL_NBE;
2342 }
2343 }
2344 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2345
2346 free_cpumask_var(cmask);
2347
2348 return 0;
2349 }
2350
2351 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2352 struct pci_dev *F3)
2353 {
2354 bool ret = true;
2355 u32 value, mask = 0x3; /* UECC/CECC enable */
2356
2357 if (toggle_ecc_err_reporting(s, nid, ON)) {
2358 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2359 return false;
2360 }
2361
2362 amd64_read_pci_cfg(F3, NBCTL, &value);
2363
2364 s->old_nbctl = value & mask;
2365 s->nbctl_valid = true;
2366
2367 value |= mask;
2368 amd64_write_pci_cfg(F3, NBCTL, value);
2369
2370 amd64_read_pci_cfg(F3, NBCFG, &value);
2371
2372 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2373 nid, value, !!(value & NBCFG_ECC_ENABLE));
2374
2375 if (!(value & NBCFG_ECC_ENABLE)) {
2376 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2377
2378 s->flags.nb_ecc_prev = 0;
2379
2380 /* Attempt to turn on DRAM ECC Enable */
2381 value |= NBCFG_ECC_ENABLE;
2382 amd64_write_pci_cfg(F3, NBCFG, value);
2383
2384 amd64_read_pci_cfg(F3, NBCFG, &value);
2385
2386 if (!(value & NBCFG_ECC_ENABLE)) {
2387 amd64_warn("Hardware rejected DRAM ECC enable,"
2388 "check memory DIMM configuration.\n");
2389 ret = false;
2390 } else {
2391 amd64_info("Hardware accepted DRAM ECC Enable\n");
2392 }
2393 } else {
2394 s->flags.nb_ecc_prev = 1;
2395 }
2396
2397 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2398 nid, value, !!(value & NBCFG_ECC_ENABLE));
2399
2400 return ret;
2401 }
2402
2403 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2404 struct pci_dev *F3)
2405 {
2406 u32 value, mask = 0x3; /* UECC/CECC enable */
2407
2408
2409 if (!s->nbctl_valid)
2410 return;
2411
2412 amd64_read_pci_cfg(F3, NBCTL, &value);
2413 value &= ~mask;
2414 value |= s->old_nbctl;
2415
2416 amd64_write_pci_cfg(F3, NBCTL, value);
2417
2418 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2419 if (!s->flags.nb_ecc_prev) {
2420 amd64_read_pci_cfg(F3, NBCFG, &value);
2421 value &= ~NBCFG_ECC_ENABLE;
2422 amd64_write_pci_cfg(F3, NBCFG, value);
2423 }
2424
2425 /* restore the NB Enable MCGCTL bit */
2426 if (toggle_ecc_err_reporting(s, nid, OFF))
2427 amd64_warn("Error restoring NB MCGCTL settings!\n");
2428 }
2429
2430 /*
2431 * EDAC requires that the BIOS have ECC enabled before
2432 * taking over the processing of ECC errors. A command line
2433 * option allows to force-enable hardware ECC later in
2434 * enable_ecc_error_reporting().
2435 */
2436 static const char *ecc_msg =
2437 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2438 " Either enable ECC checking or force module loading by setting "
2439 "'ecc_enable_override'.\n"
2440 " (Note that use of the override may cause unknown side effects.)\n";
2441
2442 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2443 {
2444 u32 value;
2445 u8 ecc_en = 0;
2446 bool nb_mce_en = false;
2447
2448 amd64_read_pci_cfg(F3, NBCFG, &value);
2449
2450 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2451 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2452
2453 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2454 if (!nb_mce_en)
2455 amd64_notice("NB MCE bank disabled, set MSR "
2456 "0x%08x[4] on node %d to enable.\n",
2457 MSR_IA32_MCG_CTL, nid);
2458
2459 if (!ecc_en || !nb_mce_en) {
2460 amd64_notice("%s", ecc_msg);
2461 return false;
2462 }
2463 return true;
2464 }
2465
2466 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2467 ARRAY_SIZE(amd64_inj_attrs) +
2468 1];
2469
2470 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2471
2472 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2473 {
2474 unsigned int i = 0, j = 0;
2475
2476 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2477 sysfs_attrs[i] = amd64_dbg_attrs[i];
2478
2479 if (boot_cpu_data.x86 >= 0x10)
2480 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2481 sysfs_attrs[i] = amd64_inj_attrs[j];
2482
2483 sysfs_attrs[i] = terminator;
2484
2485 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2486 }
2487
2488 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2489 struct amd64_family_type *fam)
2490 {
2491 struct amd64_pvt *pvt = mci->pvt_info;
2492
2493 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2494 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2495
2496 if (pvt->nbcap & NBCAP_SECDED)
2497 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2498
2499 if (pvt->nbcap & NBCAP_CHIPKILL)
2500 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2501
2502 mci->edac_cap = amd64_determine_edac_cap(pvt);
2503 mci->mod_name = EDAC_MOD_STR;
2504 mci->mod_ver = EDAC_AMD64_VERSION;
2505 mci->ctl_name = fam->ctl_name;
2506 mci->dev_name = pci_name(pvt->F2);
2507 mci->ctl_page_to_phys = NULL;
2508
2509 /* memory scrubber interface */
2510 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2511 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2512 }
2513
2514 /*
2515 * returns a pointer to the family descriptor on success, NULL otherwise.
2516 */
2517 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2518 {
2519 u8 fam = boot_cpu_data.x86;
2520 struct amd64_family_type *fam_type = NULL;
2521
2522 switch (fam) {
2523 case 0xf:
2524 fam_type = &amd64_family_types[K8_CPUS];
2525 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2526 break;
2527
2528 case 0x10:
2529 fam_type = &amd64_family_types[F10_CPUS];
2530 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2531 break;
2532
2533 case 0x15:
2534 fam_type = &amd64_family_types[F15_CPUS];
2535 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2536 break;
2537
2538 default:
2539 amd64_err("Unsupported family!\n");
2540 return NULL;
2541 }
2542
2543 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2544
2545 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2546 (fam == 0xf ?
2547 (pvt->ext_model >= K8_REV_F ? "revF or later "
2548 : "revE or earlier ")
2549 : ""), pvt->mc_node_id);
2550 return fam_type;
2551 }
2552
2553 static int amd64_init_one_instance(struct pci_dev *F2)
2554 {
2555 struct amd64_pvt *pvt = NULL;
2556 struct amd64_family_type *fam_type = NULL;
2557 struct mem_ctl_info *mci = NULL;
2558 struct edac_mc_layer layers[2];
2559 int err = 0, ret;
2560 u8 nid = get_node_id(F2);
2561
2562 ret = -ENOMEM;
2563 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2564 if (!pvt)
2565 goto err_ret;
2566
2567 pvt->mc_node_id = nid;
2568 pvt->F2 = F2;
2569
2570 ret = -EINVAL;
2571 fam_type = amd64_per_family_init(pvt);
2572 if (!fam_type)
2573 goto err_free;
2574
2575 ret = -ENODEV;
2576 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2577 if (err)
2578 goto err_free;
2579
2580 read_mc_regs(pvt);
2581
2582 /*
2583 * We need to determine how many memory channels there are. Then use
2584 * that information for calculating the size of the dynamic instance
2585 * tables in the 'mci' structure.
2586 */
2587 ret = -EINVAL;
2588 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2589 if (pvt->channel_count < 0)
2590 goto err_siblings;
2591
2592 ret = -ENOMEM;
2593 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2594 layers[0].size = pvt->csels[0].b_cnt;
2595 layers[0].is_virt_csrow = true;
2596 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2597 layers[1].size = pvt->channel_count;
2598 layers[1].is_virt_csrow = false;
2599 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2600 if (!mci)
2601 goto err_siblings;
2602
2603 mci->pvt_info = pvt;
2604 mci->dev = &pvt->F2->dev;
2605
2606 setup_mci_misc_attrs(mci, fam_type);
2607
2608 if (init_csrows(mci))
2609 mci->edac_cap = EDAC_FLAG_NONE;
2610
2611 set_mc_sysfs_attrs(mci);
2612
2613 ret = -ENODEV;
2614 if (edac_mc_add_mc(mci)) {
2615 debugf1("failed edac_mc_add_mc()\n");
2616 goto err_add_mc;
2617 }
2618
2619 /* register stuff with EDAC MCE */
2620 if (report_gart_errors)
2621 amd_report_gart_errors(true);
2622
2623 amd_register_ecc_decoder(amd64_decode_bus_error);
2624
2625 mcis[nid] = mci;
2626
2627 atomic_inc(&drv_instances);
2628
2629 return 0;
2630
2631 err_add_mc:
2632 edac_mc_free(mci);
2633
2634 err_siblings:
2635 free_mc_sibling_devs(pvt);
2636
2637 err_free:
2638 kfree(pvt);
2639
2640 err_ret:
2641 return ret;
2642 }
2643
2644 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2645 const struct pci_device_id *mc_type)
2646 {
2647 u8 nid = get_node_id(pdev);
2648 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2649 struct ecc_settings *s;
2650 int ret = 0;
2651
2652 ret = pci_enable_device(pdev);
2653 if (ret < 0) {
2654 debugf0("ret=%d\n", ret);
2655 return -EIO;
2656 }
2657
2658 ret = -ENOMEM;
2659 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2660 if (!s)
2661 goto err_out;
2662
2663 ecc_stngs[nid] = s;
2664
2665 if (!ecc_enabled(F3, nid)) {
2666 ret = -ENODEV;
2667
2668 if (!ecc_enable_override)
2669 goto err_enable;
2670
2671 amd64_warn("Forcing ECC on!\n");
2672
2673 if (!enable_ecc_error_reporting(s, nid, F3))
2674 goto err_enable;
2675 }
2676
2677 ret = amd64_init_one_instance(pdev);
2678 if (ret < 0) {
2679 amd64_err("Error probing instance: %d\n", nid);
2680 restore_ecc_error_reporting(s, nid, F3);
2681 }
2682
2683 return ret;
2684
2685 err_enable:
2686 kfree(s);
2687 ecc_stngs[nid] = NULL;
2688
2689 err_out:
2690 return ret;
2691 }
2692
2693 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2694 {
2695 struct mem_ctl_info *mci;
2696 struct amd64_pvt *pvt;
2697 u8 nid = get_node_id(pdev);
2698 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2699 struct ecc_settings *s = ecc_stngs[nid];
2700
2701 /* Remove from EDAC CORE tracking list */
2702 mci = edac_mc_del_mc(&pdev->dev);
2703 if (!mci)
2704 return;
2705
2706 pvt = mci->pvt_info;
2707
2708 restore_ecc_error_reporting(s, nid, F3);
2709
2710 free_mc_sibling_devs(pvt);
2711
2712 /* unregister from EDAC MCE */
2713 amd_report_gart_errors(false);
2714 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2715
2716 kfree(ecc_stngs[nid]);
2717 ecc_stngs[nid] = NULL;
2718
2719 /* Free the EDAC CORE resources */
2720 mci->pvt_info = NULL;
2721 mcis[nid] = NULL;
2722
2723 kfree(pvt);
2724 edac_mc_free(mci);
2725 }
2726
2727 /*
2728 * This table is part of the interface for loading drivers for PCI devices. The
2729 * PCI core identifies what devices are on a system during boot, and then
2730 * inquiry this table to see if this driver is for a given device found.
2731 */
2732 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2733 {
2734 .vendor = PCI_VENDOR_ID_AMD,
2735 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2736 .subvendor = PCI_ANY_ID,
2737 .subdevice = PCI_ANY_ID,
2738 .class = 0,
2739 .class_mask = 0,
2740 },
2741 {
2742 .vendor = PCI_VENDOR_ID_AMD,
2743 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2744 .subvendor = PCI_ANY_ID,
2745 .subdevice = PCI_ANY_ID,
2746 .class = 0,
2747 .class_mask = 0,
2748 },
2749 {
2750 .vendor = PCI_VENDOR_ID_AMD,
2751 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2752 .subvendor = PCI_ANY_ID,
2753 .subdevice = PCI_ANY_ID,
2754 .class = 0,
2755 .class_mask = 0,
2756 },
2757
2758 {0, }
2759 };
2760 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2761
2762 static struct pci_driver amd64_pci_driver = {
2763 .name = EDAC_MOD_STR,
2764 .probe = amd64_probe_one_instance,
2765 .remove = __devexit_p(amd64_remove_one_instance),
2766 .id_table = amd64_pci_table,
2767 };
2768
2769 static void setup_pci_device(void)
2770 {
2771 struct mem_ctl_info *mci;
2772 struct amd64_pvt *pvt;
2773
2774 if (amd64_ctl_pci)
2775 return;
2776
2777 mci = mcis[0];
2778 if (mci) {
2779
2780 pvt = mci->pvt_info;
2781 amd64_ctl_pci =
2782 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2783
2784 if (!amd64_ctl_pci) {
2785 pr_warning("%s(): Unable to create PCI control\n",
2786 __func__);
2787
2788 pr_warning("%s(): PCI error report via EDAC not set\n",
2789 __func__);
2790 }
2791 }
2792 }
2793
2794 static int __init amd64_edac_init(void)
2795 {
2796 int err = -ENODEV;
2797
2798 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2799
2800 opstate_init();
2801
2802 if (amd_cache_northbridges() < 0)
2803 goto err_ret;
2804
2805 err = -ENOMEM;
2806 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2807 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2808 if (!(mcis && ecc_stngs))
2809 goto err_free;
2810
2811 msrs = msrs_alloc();
2812 if (!msrs)
2813 goto err_free;
2814
2815 err = pci_register_driver(&amd64_pci_driver);
2816 if (err)
2817 goto err_pci;
2818
2819 err = -ENODEV;
2820 if (!atomic_read(&drv_instances))
2821 goto err_no_instances;
2822
2823 setup_pci_device();
2824 return 0;
2825
2826 err_no_instances:
2827 pci_unregister_driver(&amd64_pci_driver);
2828
2829 err_pci:
2830 msrs_free(msrs);
2831 msrs = NULL;
2832
2833 err_free:
2834 kfree(mcis);
2835 mcis = NULL;
2836
2837 kfree(ecc_stngs);
2838 ecc_stngs = NULL;
2839
2840 err_ret:
2841 return err;
2842 }
2843
2844 static void __exit amd64_edac_exit(void)
2845 {
2846 if (amd64_ctl_pci)
2847 edac_pci_release_generic_ctl(amd64_ctl_pci);
2848
2849 pci_unregister_driver(&amd64_pci_driver);
2850
2851 kfree(ecc_stngs);
2852 ecc_stngs = NULL;
2853
2854 kfree(mcis);
2855 mcis = NULL;
2856
2857 msrs_free(msrs);
2858 msrs = NULL;
2859 }
2860
2861 module_init(amd64_edac_init);
2862 module_exit(amd64_edac_exit);
2863
2864 MODULE_LICENSE("GPL");
2865 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2866 "Dave Peterson, Thayne Harbaugh");
2867 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2868 EDAC_AMD64_VERSION);
2869
2870 module_param(edac_op_state, int, 0444);
2871 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.092398 seconds and 6 git commands to generate.