amd64_edac: Factor in CC6 save area
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
119 {
120 u32 reg = 0;
121 u8 dct = 0;
122
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
126 }
127
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134 }
135
136 /*
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
141 *
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
145 *
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
148 */
149
150 /*
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
153 */
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 {
156 u32 scrubval;
157 int i;
158
159 /*
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
164 */
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 /*
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
169 */
170 if (scrubrates[i].scrubval < min_rate)
171 continue;
172
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
175
176 /*
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
180 */
181 }
182
183 scrubval = scrubrates[i].scrubval;
184
185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186
187 if (scrubval)
188 return scrubrates[i].bandwidth;
189
190 return 0;
191 }
192
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 {
195 struct amd64_pvt *pvt = mci->pvt_info;
196 u32 min_scrubrate = 0x5;
197
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
200
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 }
203
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 {
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
208 int i, retval = -EINVAL;
209
210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211
212 scrubval = scrubval & 0x001F;
213
214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215 if (scrubrates[i].scrubval == scrubval) {
216 retval = scrubrates[i].bandwidth;
217 break;
218 }
219 }
220 return retval;
221 }
222
223 /*
224 * returns true if the SysAddr given by sys_addr matches the
225 * DRAM base/limit associated with node_id
226 */
227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 unsigned nid)
229 {
230 u64 addr;
231
232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
233 * all ones if the most significant implemented address bit is 1.
234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 * Application Programming.
237 */
238 addr = sys_addr & 0x000000ffffffffffull;
239
240 return ((addr >= get_dram_base(pvt, nid)) &&
241 (addr <= get_dram_limit(pvt, nid)));
242 }
243
244 /*
245 * Attempt to map a SysAddr to a node. On success, return a pointer to the
246 * mem_ctl_info structure for the node that the SysAddr maps to.
247 *
248 * On failure, return NULL.
249 */
250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 u64 sys_addr)
252 {
253 struct amd64_pvt *pvt;
254 unsigned node_id;
255 u32 intlv_en, bits;
256
257 /*
258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 */
261 pvt = mci->pvt_info;
262
263 /*
264 * The value of this field should be the same for all DRAM Base
265 * registers. Therefore we arbitrarily choose to read it from the
266 * register for node 0.
267 */
268 intlv_en = dram_intlv_en(pvt, 0);
269
270 if (intlv_en == 0) {
271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272 if (amd64_base_limit_match(pvt, sys_addr, node_id))
273 goto found;
274 }
275 goto err_no_match;
276 }
277
278 if (unlikely((intlv_en != 0x01) &&
279 (intlv_en != 0x03) &&
280 (intlv_en != 0x07))) {
281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282 return NULL;
283 }
284
285 bits = (((u32) sys_addr) >> 12) & intlv_en;
286
287 for (node_id = 0; ; ) {
288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 break; /* intlv_sel field matches */
290
291 if (++node_id >= DRAM_RANGES)
292 goto err_no_match;
293 }
294
295 /* sanity test for sys_addr */
296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 "range for node %d with node interleaving enabled.\n",
299 __func__, sys_addr, node_id);
300 return NULL;
301 }
302
303 found:
304 return edac_mc_find((int)node_id);
305
306 err_no_match:
307 debugf2("sys_addr 0x%lx doesn't match any node\n",
308 (unsigned long)sys_addr);
309
310 return NULL;
311 }
312
313 /*
314 * compute the CS base address of the @csrow on the DRAM controller @dct.
315 * For details see F2x[5C:40] in the processor's BKDG
316 */
317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 u64 *base, u64 *mask)
319 {
320 u64 csbase, csmask, base_bits, mask_bits;
321 u8 addr_shift;
322
323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 csbase = pvt->csels[dct].csbases[csrow];
325 csmask = pvt->csels[dct].csmasks[csrow];
326 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
328 addr_shift = 4;
329 } else {
330 csbase = pvt->csels[dct].csbases[csrow];
331 csmask = pvt->csels[dct].csmasks[csrow >> 1];
332 addr_shift = 8;
333
334 if (boot_cpu_data.x86 == 0x15)
335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 else
337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 }
339
340 *base = (csbase & base_bits) << addr_shift;
341
342 *mask = ~0ULL;
343 /* poke holes for the csmask */
344 *mask &= ~(mask_bits << addr_shift);
345 /* OR them in */
346 *mask |= (csmask & mask_bits) << addr_shift;
347 }
348
349 #define for_each_chip_select(i, dct, pvt) \
350 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351
352 #define chip_select_base(i, dct, pvt) \
353 pvt->csels[dct].csbases[i]
354
355 #define for_each_chip_select_mask(i, dct, pvt) \
356 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357
358 /*
359 * @input_addr is an InputAddr associated with the node given by mci. Return the
360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361 */
362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363 {
364 struct amd64_pvt *pvt;
365 int csrow;
366 u64 base, mask;
367
368 pvt = mci->pvt_info;
369
370 for_each_chip_select(csrow, 0, pvt) {
371 if (!csrow_enabled(csrow, 0, pvt))
372 continue;
373
374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375
376 mask = ~mask;
377
378 if ((input_addr & mask) == (base & mask)) {
379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 (unsigned long)input_addr, csrow,
381 pvt->mc_node_id);
382
383 return csrow;
384 }
385 }
386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 (unsigned long)input_addr, pvt->mc_node_id);
388
389 return -1;
390 }
391
392 /*
393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394 * for the node represented by mci. Info is passed back in *hole_base,
395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
396 * info is invalid. Info may be invalid for either of the following reasons:
397 *
398 * - The revision of the node is not E or greater. In this case, the DRAM Hole
399 * Address Register does not exist.
400 *
401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402 * indicating that its contents are not valid.
403 *
404 * The values passed back in *hole_base, *hole_offset, and *hole_size are
405 * complete 32-bit values despite the fact that the bitfields in the DHAR
406 * only represent bits 31-24 of the base and offset values.
407 */
408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 u64 *hole_offset, u64 *hole_size)
410 {
411 struct amd64_pvt *pvt = mci->pvt_info;
412 u64 base;
413
414 /* only revE and later have the DRAM Hole Address Register */
415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 debugf1(" revision %d for node %d does not support DHAR\n",
417 pvt->ext_model, pvt->mc_node_id);
418 return 1;
419 }
420
421 /* valid for Fam10h and above */
422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
424 return 1;
425 }
426
427 if (!dhar_valid(pvt)) {
428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
429 pvt->mc_node_id);
430 return 1;
431 }
432
433 /* This node has Memory Hoisting */
434
435 /* +------------------+--------------------+--------------------+-----
436 * | memory | DRAM hole | relocated |
437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
438 * | | | DRAM hole |
439 * | | | [0x100000000, |
440 * | | | (0x100000000+ |
441 * | | | (0xffffffff-x))] |
442 * +------------------+--------------------+--------------------+-----
443 *
444 * Above is a diagram of physical memory showing the DRAM hole and the
445 * relocated addresses from the DRAM hole. As shown, the DRAM hole
446 * starts at address x (the base address) and extends through address
447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
448 * addresses in the hole so that they start at 0x100000000.
449 */
450
451 base = dhar_base(pvt);
452
453 *hole_base = base;
454 *hole_size = (0x1ull << 32) - base;
455
456 if (boot_cpu_data.x86 > 0xf)
457 *hole_offset = f10_dhar_offset(pvt);
458 else
459 *hole_offset = k8_dhar_offset(pvt);
460
461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 pvt->mc_node_id, (unsigned long)*hole_base,
463 (unsigned long)*hole_offset, (unsigned long)*hole_size);
464
465 return 0;
466 }
467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468
469 /*
470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
471 * assumed that sys_addr maps to the node given by mci.
472 *
473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476 * then it is also involved in translating a SysAddr to a DramAddr. Sections
477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478 * These parts of the documentation are unclear. I interpret them as follows:
479 *
480 * When node n receives a SysAddr, it processes the SysAddr as follows:
481 *
482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483 * Limit registers for node n. If the SysAddr is not within the range
484 * specified by the base and limit values, then node n ignores the Sysaddr
485 * (since it does not map to node n). Otherwise continue to step 2 below.
486 *
487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489 * the range of relocated addresses (starting at 0x100000000) from the DRAM
490 * hole. If not, skip to step 3 below. Else get the value of the
491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492 * offset defined by this value from the SysAddr.
493 *
494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495 * Base register for node n. To obtain the DramAddr, subtract the base
496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497 */
498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499 {
500 struct amd64_pvt *pvt = mci->pvt_info;
501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 int ret = 0;
503
504 dram_base = get_dram_base(pvt, pvt->mc_node_id);
505
506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 &hole_size);
508 if (!ret) {
509 if ((sys_addr >= (1ull << 32)) &&
510 (sys_addr < ((1ull << 32) + hole_size))) {
511 /* use DHAR to translate SysAddr to DramAddr */
512 dram_addr = sys_addr - hole_offset;
513
514 debugf2("using DHAR to translate SysAddr 0x%lx to "
515 "DramAddr 0x%lx\n",
516 (unsigned long)sys_addr,
517 (unsigned long)dram_addr);
518
519 return dram_addr;
520 }
521 }
522
523 /*
524 * Translate the SysAddr to a DramAddr as shown near the start of
525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
526 * only deals with 40-bit values. Therefore we discard bits 63-40 of
527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
528 * discard are all 1s. Otherwise the bits we discard are all 0s. See
529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 * Programmer's Manual Volume 1 Application Programming.
531 */
532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
533
534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 (unsigned long)dram_addr);
537 return dram_addr;
538 }
539
540 /*
541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
543 * for node interleaving.
544 */
545 static int num_node_interleave_bits(unsigned intlv_en)
546 {
547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 int n;
549
550 BUG_ON(intlv_en > 7);
551 n = intlv_shift_table[intlv_en];
552 return n;
553 }
554
555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557 {
558 struct amd64_pvt *pvt;
559 int intlv_shift;
560 u64 input_addr;
561
562 pvt = mci->pvt_info;
563
564 /*
565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 * concerning translating a DramAddr to an InputAddr.
567 */
568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 (dram_addr & 0xfff);
571
572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 intlv_shift, (unsigned long)dram_addr,
574 (unsigned long)input_addr);
575
576 return input_addr;
577 }
578
579 /*
580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
581 * assumed that @sys_addr maps to the node given by mci.
582 */
583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584 {
585 u64 input_addr;
586
587 input_addr =
588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589
590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 (unsigned long)sys_addr, (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596
597 /*
598 * @input_addr is an InputAddr associated with the node represented by mci.
599 * Translate @input_addr to a DramAddr and return the result.
600 */
601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602 {
603 struct amd64_pvt *pvt;
604 unsigned node_id, intlv_shift;
605 u64 bits, dram_addr;
606 u32 intlv_sel;
607
608 /*
609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 * this procedure. When translating from a DramAddr to an InputAddr, the
612 * bits used for node interleaving are discarded. Here we recover these
613 * bits from the IntlvSel field of the DRAM Limit register (section
614 * 3.4.4.2) for the node that input_addr is associated with.
615 */
616 pvt = mci->pvt_info;
617 node_id = pvt->mc_node_id;
618
619 BUG_ON(node_id > 7);
620
621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 if (intlv_shift == 0) {
623 debugf1(" InputAddr 0x%lx translates to DramAddr of "
624 "same value\n", (unsigned long)input_addr);
625
626 return input_addr;
627 }
628
629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 (input_addr & 0xfff);
631
632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 dram_addr = bits + (intlv_sel << 12);
634
635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 "(%d node interleave bits)\n", (unsigned long)input_addr,
637 (unsigned long)dram_addr, intlv_shift);
638
639 return dram_addr;
640 }
641
642 /*
643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644 * @dram_addr to a SysAddr.
645 */
646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647 {
648 struct amd64_pvt *pvt = mci->pvt_info;
649 u64 hole_base, hole_offset, hole_size, base, sys_addr;
650 int ret = 0;
651
652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 &hole_size);
654 if (!ret) {
655 if ((dram_addr >= hole_base) &&
656 (dram_addr < (hole_base + hole_size))) {
657 sys_addr = dram_addr + hole_offset;
658
659 debugf1("using DHAR to translate DramAddr 0x%lx to "
660 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 (unsigned long)sys_addr);
662
663 return sys_addr;
664 }
665 }
666
667 base = get_dram_base(pvt, pvt->mc_node_id);
668 sys_addr = dram_addr + base;
669
670 /*
671 * The sys_addr we have computed up to this point is a 40-bit value
672 * because the k8 deals with 40-bit values. However, the value we are
673 * supposed to return is a full 64-bit physical address. The AMD
674 * x86-64 architecture specifies that the most significant implemented
675 * address bit through bit 63 of a physical address must be either all
676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
677 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 * Programming.
680 */
681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682
683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 pvt->mc_node_id, (unsigned long)dram_addr,
685 (unsigned long)sys_addr);
686
687 return sys_addr;
688 }
689
690 /*
691 * @input_addr is an InputAddr associated with the node given by mci. Translate
692 * @input_addr to a SysAddr.
693 */
694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 u64 input_addr)
696 {
697 return dram_addr_to_sys_addr(mci,
698 input_addr_to_dram_addr(mci, input_addr));
699 }
700
701 /*
702 * Find the minimum and maximum InputAddr values that map to the given @csrow.
703 * Pass back these values in *input_addr_min and *input_addr_max.
704 */
705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 u64 *input_addr_min, u64 *input_addr_max)
707 {
708 struct amd64_pvt *pvt;
709 u64 base, mask;
710
711 pvt = mci->pvt_info;
712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
713
714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
715
716 *input_addr_min = base & ~mask;
717 *input_addr_max = base | mask;
718 }
719
720 /* Map the Error address to a PAGE and PAGE OFFSET. */
721 static inline void error_address_to_page_and_offset(u64 error_address,
722 u32 *page, u32 *offset)
723 {
724 *page = (u32) (error_address >> PAGE_SHIFT);
725 *offset = ((u32) error_address) & ~PAGE_MASK;
726 }
727
728 /*
729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731 * of a node that detected an ECC memory error. mci represents the node that
732 * the error address maps to (possibly different from the node that detected
733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
734 * error.
735 */
736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737 {
738 int csrow;
739
740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741
742 if (csrow == -1)
743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 "address 0x%lx\n", (unsigned long)sys_addr);
745 return csrow;
746 }
747
748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
749
750 /*
751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752 * are ECC capable.
753 */
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755 {
756 u8 bit;
757 enum dev_type edac_cap = EDAC_FLAG_NONE;
758
759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760 ? 19
761 : 17;
762
763 if (pvt->dclr0 & BIT(bit))
764 edac_cap = EDAC_FLAG_SECDED;
765
766 return edac_cap;
767 }
768
769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
770
771 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772 {
773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774
775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 (dclr & BIT(16)) ? "un" : "",
777 (dclr & BIT(19)) ? "yes" : "no");
778
779 debugf1(" PAR/ERR parity: %s\n",
780 (dclr & BIT(8)) ? "enabled" : "disabled");
781
782 if (boot_cpu_data.x86 == 0x10)
783 debugf1(" DCT 128bit mode width: %s\n",
784 (dclr & BIT(11)) ? "128b" : "64b");
785
786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr & BIT(12)) ? "yes" : "no",
788 (dclr & BIT(13)) ? "yes" : "no",
789 (dclr & BIT(14)) ? "yes" : "no",
790 (dclr & BIT(15)) ? "yes" : "no");
791 }
792
793 /* Display and decode various NB registers for debug purposes. */
794 static void dump_misc_regs(struct amd64_pvt *pvt)
795 {
796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797
798 debugf1(" NB two channel DRAM capable: %s\n",
799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
800
801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
804
805 amd64_dump_dramcfg_low(pvt->dclr0, 0);
806
807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
808
809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 "offset: 0x%08x\n",
811 pvt->dhar, dhar_base(pvt),
812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 : f10_dhar_offset(pvt));
814
815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
816
817 amd64_debug_display_dimm_sizes(pvt, 0);
818
819 /* everything below this point is Fam10h and above */
820 if (boot_cpu_data.x86 == 0xf)
821 return;
822
823 amd64_debug_display_dimm_sizes(pvt, 1);
824
825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
826
827 /* Only if NOT ganged does dclr1 have valid info */
828 if (!dct_ganging_enabled(pvt))
829 amd64_dump_dramcfg_low(pvt->dclr1, 1);
830 }
831
832 /*
833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
834 */
835 static void prep_chip_selects(struct amd64_pvt *pvt)
836 {
837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840 } else {
841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
843 }
844 }
845
846 /*
847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
848 */
849 static void read_dct_base_mask(struct amd64_pvt *pvt)
850 {
851 int cs;
852
853 prep_chip_selects(pvt);
854
855 for_each_chip_select(cs, 0, pvt) {
856 int reg0 = DCSB0 + (cs * 4);
857 int reg1 = DCSB1 + (cs * 4);
858 u32 *base0 = &pvt->csels[0].csbases[cs];
859 u32 *base1 = &pvt->csels[1].csbases[cs];
860
861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
863 cs, *base0, reg0);
864
865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 continue;
867
868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
870 cs, *base1, reg1);
871 }
872
873 for_each_chip_select_mask(cs, 0, pvt) {
874 int reg0 = DCSM0 + (cs * 4);
875 int reg1 = DCSM1 + (cs * 4);
876 u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 u32 *mask1 = &pvt->csels[1].csmasks[cs];
878
879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
881 cs, *mask0, reg0);
882
883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 continue;
885
886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
888 cs, *mask1, reg1);
889 }
890 }
891
892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
893 {
894 enum mem_type type;
895
896 /* F15h supports only DDR3 */
897 if (boot_cpu_data.x86 >= 0x15)
898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 if (pvt->dchr0 & DDR3_MODE)
901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
902 else
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904 } else {
905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 }
907
908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
909
910 return type;
911 }
912
913 /* Get the number of DCT channels the memory controller is using. */
914 static int k8_early_channel_count(struct amd64_pvt *pvt)
915 {
916 int flag;
917
918 if (pvt->ext_model >= K8_REV_F)
919 /* RevF (NPT) and later */
920 flag = pvt->dclr0 & WIDTH_128;
921 else
922 /* RevE and earlier */
923 flag = pvt->dclr0 & REVE_WIDTH_128;
924
925 /* not used */
926 pvt->dclr1 = 0;
927
928 return (flag) ? 2 : 1;
929 }
930
931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932 static u64 get_error_address(struct mce *m)
933 {
934 u8 start_bit = 1;
935 u8 end_bit = 47;
936
937 if (boot_cpu_data.x86 == 0xf) {
938 start_bit = 3;
939 end_bit = 39;
940 }
941
942 return m->addr & GENMASK(start_bit, end_bit);
943 }
944
945 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
946 {
947 struct cpuinfo_x86 *c = &boot_cpu_data;
948 int off = range << 3;
949
950 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
951 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
952
953 if (c->x86 == 0xf)
954 return;
955
956 if (!dram_rw(pvt, range))
957 return;
958
959 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
960 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
961
962 /* Factor in CC6 save area by reading dst node's limit reg */
963 if (c->x86 == 0x15) {
964 struct pci_dev *f1 = NULL;
965 u8 nid = dram_dst_node(pvt, range);
966 u32 llim;
967
968 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
969 if (WARN_ON(!f1))
970 return;
971
972 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
973
974 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
975
976 /* {[39:27],111b} */
977 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
978
979 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
980
981 /* [47:40] */
982 pvt->ranges[range].lim.hi |= llim >> 13;
983
984 pci_dev_put(f1);
985 }
986 }
987
988 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
989 u16 syndrome)
990 {
991 struct mem_ctl_info *src_mci;
992 struct amd64_pvt *pvt = mci->pvt_info;
993 int channel, csrow;
994 u32 page, offset;
995
996 /* CHIPKILL enabled */
997 if (pvt->nbcfg & NBCFG_CHIPKILL) {
998 channel = get_channel_from_ecc_syndrome(mci, syndrome);
999 if (channel < 0) {
1000 /*
1001 * Syndrome didn't map, so we don't know which of the
1002 * 2 DIMMs is in error. So we need to ID 'both' of them
1003 * as suspect.
1004 */
1005 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1006 "error reporting race\n", syndrome);
1007 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
1019 channel = ((sys_addr & BIT(3)) != 0);
1020 }
1021
1022 /*
1023 * Find out which node the error address belongs to. This may be
1024 * different from the node that detected the error.
1025 */
1026 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1027 if (!src_mci) {
1028 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1029 (unsigned long)sys_addr);
1030 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1031 return;
1032 }
1033
1034 /* Now map the sys_addr to a CSROW */
1035 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1036 if (csrow < 0) {
1037 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1038 } else {
1039 error_address_to_page_and_offset(sys_addr, &page, &offset);
1040
1041 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1042 channel, EDAC_MOD_STR);
1043 }
1044 }
1045
1046 static int ddr2_cs_size(unsigned i, bool dct_width)
1047 {
1048 unsigned shift = 0;
1049
1050 if (i <= 2)
1051 shift = i;
1052 else if (!(i & 0x1))
1053 shift = i >> 1;
1054 else
1055 shift = (i + 1) >> 1;
1056
1057 return 128 << (shift + !!dct_width);
1058 }
1059
1060 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1061 unsigned cs_mode)
1062 {
1063 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1064
1065 if (pvt->ext_model >= K8_REV_F) {
1066 WARN_ON(cs_mode > 11);
1067 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1068 }
1069 else if (pvt->ext_model >= K8_REV_D) {
1070 WARN_ON(cs_mode > 10);
1071
1072 if (cs_mode == 3 || cs_mode == 8)
1073 return 32 << (cs_mode - 1);
1074 else
1075 return 32 << cs_mode;
1076 }
1077 else {
1078 WARN_ON(cs_mode > 6);
1079 return 32 << cs_mode;
1080 }
1081 }
1082
1083 /*
1084 * Get the number of DCT channels in use.
1085 *
1086 * Return:
1087 * number of Memory Channels in operation
1088 * Pass back:
1089 * contents of the DCL0_LOW register
1090 */
1091 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1092 {
1093 int i, j, channels = 0;
1094
1095 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1096 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1097 return 2;
1098
1099 /*
1100 * Need to check if in unganged mode: In such, there are 2 channels,
1101 * but they are not in 128 bit mode and thus the above 'dclr0' status
1102 * bit will be OFF.
1103 *
1104 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1105 * their CSEnable bit on. If so, then SINGLE DIMM case.
1106 */
1107 debugf0("Data width is not 128 bits - need more decoding\n");
1108
1109 /*
1110 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1111 * is more than just one DIMM present in unganged mode. Need to check
1112 * both controllers since DIMMs can be placed in either one.
1113 */
1114 for (i = 0; i < 2; i++) {
1115 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1116
1117 for (j = 0; j < 4; j++) {
1118 if (DBAM_DIMM(j, dbam) > 0) {
1119 channels++;
1120 break;
1121 }
1122 }
1123 }
1124
1125 if (channels > 2)
1126 channels = 2;
1127
1128 amd64_info("MCT channel count: %d\n", channels);
1129
1130 return channels;
1131 }
1132
1133 static int ddr3_cs_size(unsigned i, bool dct_width)
1134 {
1135 unsigned shift = 0;
1136 int cs_size = 0;
1137
1138 if (i == 0 || i == 3 || i == 4)
1139 cs_size = -1;
1140 else if (i <= 2)
1141 shift = i;
1142 else if (i == 12)
1143 shift = 7;
1144 else if (!(i & 0x1))
1145 shift = i >> 1;
1146 else
1147 shift = (i + 1) >> 1;
1148
1149 if (cs_size != -1)
1150 cs_size = (128 * (1 << !!dct_width)) << shift;
1151
1152 return cs_size;
1153 }
1154
1155 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1156 unsigned cs_mode)
1157 {
1158 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1159
1160 WARN_ON(cs_mode > 11);
1161
1162 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1163 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1164 else
1165 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1166 }
1167
1168 /*
1169 * F15h supports only 64bit DCT interfaces
1170 */
1171 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1172 unsigned cs_mode)
1173 {
1174 WARN_ON(cs_mode > 12);
1175
1176 return ddr3_cs_size(cs_mode, false);
1177 }
1178
1179 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1180 {
1181
1182 if (boot_cpu_data.x86 == 0xf)
1183 return;
1184
1185 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1186 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1187 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1188
1189 debugf0(" DCTs operate in %s mode.\n",
1190 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1191
1192 if (!dct_ganging_enabled(pvt))
1193 debugf0(" Address range split per DCT: %s\n",
1194 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1195
1196 debugf0(" data interleave for ECC: %s, "
1197 "DRAM cleared since last warm reset: %s\n",
1198 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1199 (dct_memory_cleared(pvt) ? "yes" : "no"));
1200
1201 debugf0(" channel interleave: %s, "
1202 "interleave bits selector: 0x%x\n",
1203 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1204 dct_sel_interleave_addr(pvt));
1205 }
1206
1207 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1208 }
1209
1210 /*
1211 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1212 * Interleaving Modes.
1213 */
1214 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1215 bool hi_range_sel, u8 intlv_en)
1216 {
1217 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1218
1219 if (dct_ganging_enabled(pvt))
1220 return 0;
1221
1222 if (hi_range_sel)
1223 return dct_sel_high;
1224
1225 /*
1226 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1227 */
1228 if (dct_interleave_enabled(pvt)) {
1229 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1230
1231 /* return DCT select function: 0=DCT0, 1=DCT1 */
1232 if (!intlv_addr)
1233 return sys_addr >> 6 & 1;
1234
1235 if (intlv_addr & 0x2) {
1236 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1237 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1238
1239 return ((sys_addr >> shift) & 1) ^ temp;
1240 }
1241
1242 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1243 }
1244
1245 if (dct_high_range_enabled(pvt))
1246 return ~dct_sel_high & 1;
1247
1248 return 0;
1249 }
1250
1251 /* Convert the sys_addr to the normalized DCT address */
1252 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1253 u64 sys_addr, bool hi_rng,
1254 u32 dct_sel_base_addr)
1255 {
1256 u64 chan_off;
1257 u64 dram_base = get_dram_base(pvt, range);
1258 u64 hole_off = f10_dhar_offset(pvt);
1259 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1260
1261 if (hi_rng) {
1262 /*
1263 * if
1264 * base address of high range is below 4Gb
1265 * (bits [47:27] at [31:11])
1266 * DRAM address space on this DCT is hoisted above 4Gb &&
1267 * sys_addr > 4Gb
1268 *
1269 * remove hole offset from sys_addr
1270 * else
1271 * remove high range offset from sys_addr
1272 */
1273 if ((!(dct_sel_base_addr >> 16) ||
1274 dct_sel_base_addr < dhar_base(pvt)) &&
1275 dhar_valid(pvt) &&
1276 (sys_addr >= BIT_64(32)))
1277 chan_off = hole_off;
1278 else
1279 chan_off = dct_sel_base_off;
1280 } else {
1281 /*
1282 * if
1283 * we have a valid hole &&
1284 * sys_addr > 4Gb
1285 *
1286 * remove hole
1287 * else
1288 * remove dram base to normalize to DCT address
1289 */
1290 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1291 chan_off = hole_off;
1292 else
1293 chan_off = dram_base;
1294 }
1295
1296 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1297 }
1298
1299 /*
1300 * checks if the csrow passed in is marked as SPARED, if so returns the new
1301 * spare row
1302 */
1303 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1304 {
1305 int tmp_cs;
1306
1307 if (online_spare_swap_done(pvt, dct) &&
1308 csrow == online_spare_bad_dramcs(pvt, dct)) {
1309
1310 for_each_chip_select(tmp_cs, dct, pvt) {
1311 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1312 csrow = tmp_cs;
1313 break;
1314 }
1315 }
1316 }
1317 return csrow;
1318 }
1319
1320 /*
1321 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1322 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1323 *
1324 * Return:
1325 * -EINVAL: NOT FOUND
1326 * 0..csrow = Chip-Select Row
1327 */
1328 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1329 {
1330 struct mem_ctl_info *mci;
1331 struct amd64_pvt *pvt;
1332 u64 cs_base, cs_mask;
1333 int cs_found = -EINVAL;
1334 int csrow;
1335
1336 mci = mcis[nid];
1337 if (!mci)
1338 return cs_found;
1339
1340 pvt = mci->pvt_info;
1341
1342 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1343
1344 for_each_chip_select(csrow, dct, pvt) {
1345 if (!csrow_enabled(csrow, dct, pvt))
1346 continue;
1347
1348 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1349
1350 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1351 csrow, cs_base, cs_mask);
1352
1353 cs_mask = ~cs_mask;
1354
1355 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1356 "(CSBase & ~CSMask)=0x%llx\n",
1357 (in_addr & cs_mask), (cs_base & cs_mask));
1358
1359 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1360 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1361
1362 debugf1(" MATCH csrow=%d\n", cs_found);
1363 break;
1364 }
1365 }
1366 return cs_found;
1367 }
1368
1369 /*
1370 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1371 * swapped with a region located at the bottom of memory so that the GPU can use
1372 * the interleaved region and thus two channels.
1373 */
1374 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1375 {
1376 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1377
1378 if (boot_cpu_data.x86 == 0x10) {
1379 /* only revC3 and revE have that feature */
1380 if (boot_cpu_data.x86_model < 4 ||
1381 (boot_cpu_data.x86_model < 0xa &&
1382 boot_cpu_data.x86_mask < 3))
1383 return sys_addr;
1384 }
1385
1386 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1387
1388 if (!(swap_reg & 0x1))
1389 return sys_addr;
1390
1391 swap_base = (swap_reg >> 3) & 0x7f;
1392 swap_limit = (swap_reg >> 11) & 0x7f;
1393 rgn_size = (swap_reg >> 20) & 0x7f;
1394 tmp_addr = sys_addr >> 27;
1395
1396 if (!(sys_addr >> 34) &&
1397 (((tmp_addr >= swap_base) &&
1398 (tmp_addr <= swap_limit)) ||
1399 (tmp_addr < rgn_size)))
1400 return sys_addr ^ (u64)swap_base << 27;
1401
1402 return sys_addr;
1403 }
1404
1405 /* For a given @dram_range, check if @sys_addr falls within it. */
1406 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1407 u64 sys_addr, int *nid, int *chan_sel)
1408 {
1409 int cs_found = -EINVAL;
1410 u64 chan_addr;
1411 u32 dct_sel_base;
1412 u8 channel;
1413 bool high_range = false;
1414
1415 u8 node_id = dram_dst_node(pvt, range);
1416 u8 intlv_en = dram_intlv_en(pvt, range);
1417 u32 intlv_sel = dram_intlv_sel(pvt, range);
1418
1419 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1420 range, sys_addr, get_dram_limit(pvt, range));
1421
1422 if (dhar_valid(pvt) &&
1423 dhar_base(pvt) <= sys_addr &&
1424 sys_addr < BIT_64(32)) {
1425 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1426 sys_addr);
1427 return -EINVAL;
1428 }
1429
1430 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1431 return -EINVAL;
1432
1433 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1434
1435 dct_sel_base = dct_sel_baseaddr(pvt);
1436
1437 /*
1438 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1439 * select between DCT0 and DCT1.
1440 */
1441 if (dct_high_range_enabled(pvt) &&
1442 !dct_ganging_enabled(pvt) &&
1443 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1444 high_range = true;
1445
1446 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1447
1448 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1449 high_range, dct_sel_base);
1450
1451 /* Remove node interleaving, see F1x120 */
1452 if (intlv_en)
1453 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1454 (chan_addr & 0xfff);
1455
1456 /* remove channel interleave */
1457 if (dct_interleave_enabled(pvt) &&
1458 !dct_high_range_enabled(pvt) &&
1459 !dct_ganging_enabled(pvt)) {
1460
1461 if (dct_sel_interleave_addr(pvt) != 1) {
1462 if (dct_sel_interleave_addr(pvt) == 0x3)
1463 /* hash 9 */
1464 chan_addr = ((chan_addr >> 10) << 9) |
1465 (chan_addr & 0x1ff);
1466 else
1467 /* A[6] or hash 6 */
1468 chan_addr = ((chan_addr >> 7) << 6) |
1469 (chan_addr & 0x3f);
1470 } else
1471 /* A[12] */
1472 chan_addr = ((chan_addr >> 13) << 12) |
1473 (chan_addr & 0xfff);
1474 }
1475
1476 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1477
1478 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1479
1480 if (cs_found >= 0) {
1481 *nid = node_id;
1482 *chan_sel = channel;
1483 }
1484 return cs_found;
1485 }
1486
1487 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1488 int *node, int *chan_sel)
1489 {
1490 int cs_found = -EINVAL;
1491 unsigned range;
1492
1493 for (range = 0; range < DRAM_RANGES; range++) {
1494
1495 if (!dram_rw(pvt, range))
1496 continue;
1497
1498 if ((get_dram_base(pvt, range) <= sys_addr) &&
1499 (get_dram_limit(pvt, range) >= sys_addr)) {
1500
1501 cs_found = f1x_match_to_this_node(pvt, range,
1502 sys_addr, node,
1503 chan_sel);
1504 if (cs_found >= 0)
1505 break;
1506 }
1507 }
1508 return cs_found;
1509 }
1510
1511 /*
1512 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1513 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1514 *
1515 * The @sys_addr is usually an error address received from the hardware
1516 * (MCX_ADDR).
1517 */
1518 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1519 u16 syndrome)
1520 {
1521 struct amd64_pvt *pvt = mci->pvt_info;
1522 u32 page, offset;
1523 int nid, csrow, chan = 0;
1524
1525 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1526
1527 if (csrow < 0) {
1528 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1529 return;
1530 }
1531
1532 error_address_to_page_and_offset(sys_addr, &page, &offset);
1533
1534 /*
1535 * We need the syndromes for channel detection only when we're
1536 * ganged. Otherwise @chan should already contain the channel at
1537 * this point.
1538 */
1539 if (dct_ganging_enabled(pvt))
1540 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1541
1542 if (chan >= 0)
1543 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1544 EDAC_MOD_STR);
1545 else
1546 /*
1547 * Channel unknown, report all channels on this CSROW as failed.
1548 */
1549 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1550 edac_mc_handle_ce(mci, page, offset, syndrome,
1551 csrow, chan, EDAC_MOD_STR);
1552 }
1553
1554 /*
1555 * debug routine to display the memory sizes of all logical DIMMs and its
1556 * CSROWs
1557 */
1558 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1559 {
1560 int dimm, size0, size1, factor = 0;
1561 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1562 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1563
1564 if (boot_cpu_data.x86 == 0xf) {
1565 if (pvt->dclr0 & WIDTH_128)
1566 factor = 1;
1567
1568 /* K8 families < revF not supported yet */
1569 if (pvt->ext_model < K8_REV_F)
1570 return;
1571 else
1572 WARN_ON(ctrl != 0);
1573 }
1574
1575 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1576 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1577 : pvt->csels[0].csbases;
1578
1579 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1580
1581 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1582
1583 /* Dump memory sizes for DIMM and its CSROWs */
1584 for (dimm = 0; dimm < 4; dimm++) {
1585
1586 size0 = 0;
1587 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1588 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1589 DBAM_DIMM(dimm, dbam));
1590
1591 size1 = 0;
1592 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1593 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1594 DBAM_DIMM(dimm, dbam));
1595
1596 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1597 dimm * 2, size0 << factor,
1598 dimm * 2 + 1, size1 << factor);
1599 }
1600 }
1601
1602 static struct amd64_family_type amd64_family_types[] = {
1603 [K8_CPUS] = {
1604 .ctl_name = "K8",
1605 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1606 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1607 .ops = {
1608 .early_channel_count = k8_early_channel_count,
1609 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1610 .dbam_to_cs = k8_dbam_to_chip_select,
1611 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1612 }
1613 },
1614 [F10_CPUS] = {
1615 .ctl_name = "F10h",
1616 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1617 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1618 .ops = {
1619 .early_channel_count = f1x_early_channel_count,
1620 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1621 .dbam_to_cs = f10_dbam_to_chip_select,
1622 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1623 }
1624 },
1625 [F15_CPUS] = {
1626 .ctl_name = "F15h",
1627 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1628 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1629 .ops = {
1630 .early_channel_count = f1x_early_channel_count,
1631 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1632 .dbam_to_cs = f15_dbam_to_chip_select,
1633 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1634 }
1635 },
1636 };
1637
1638 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1639 unsigned int device,
1640 struct pci_dev *related)
1641 {
1642 struct pci_dev *dev = NULL;
1643
1644 dev = pci_get_device(vendor, device, dev);
1645 while (dev) {
1646 if ((dev->bus->number == related->bus->number) &&
1647 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1648 break;
1649 dev = pci_get_device(vendor, device, dev);
1650 }
1651
1652 return dev;
1653 }
1654
1655 /*
1656 * These are tables of eigenvectors (one per line) which can be used for the
1657 * construction of the syndrome tables. The modified syndrome search algorithm
1658 * uses those to find the symbol in error and thus the DIMM.
1659 *
1660 * Algorithm courtesy of Ross LaFetra from AMD.
1661 */
1662 static u16 x4_vectors[] = {
1663 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1664 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1665 0x0001, 0x0002, 0x0004, 0x0008,
1666 0x1013, 0x3032, 0x4044, 0x8088,
1667 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1668 0x4857, 0xc4fe, 0x13cc, 0x3288,
1669 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1670 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1671 0x15c1, 0x2a42, 0x89ac, 0x4758,
1672 0x2b03, 0x1602, 0x4f0c, 0xca08,
1673 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1674 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1675 0x2b87, 0x164e, 0x642c, 0xdc18,
1676 0x40b9, 0x80de, 0x1094, 0x20e8,
1677 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1678 0x11c1, 0x2242, 0x84ac, 0x4c58,
1679 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1680 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1681 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1682 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1683 0x16b3, 0x3d62, 0x4f34, 0x8518,
1684 0x1e2f, 0x391a, 0x5cac, 0xf858,
1685 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1686 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1687 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1688 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1689 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1690 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1691 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1692 0x185d, 0x2ca6, 0x7914, 0x9e28,
1693 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1694 0x4199, 0x82ee, 0x19f4, 0x2e58,
1695 0x4807, 0xc40e, 0x130c, 0x3208,
1696 0x1905, 0x2e0a, 0x5804, 0xac08,
1697 0x213f, 0x132a, 0xadfc, 0x5ba8,
1698 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1699 };
1700
1701 static u16 x8_vectors[] = {
1702 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1703 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1704 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1705 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1706 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1707 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1708 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1709 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1710 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1711 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1712 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1713 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1714 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1715 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1716 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1717 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1718 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1719 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1720 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1721 };
1722
1723 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1724 unsigned v_dim)
1725 {
1726 unsigned int i, err_sym;
1727
1728 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1729 u16 s = syndrome;
1730 unsigned v_idx = err_sym * v_dim;
1731 unsigned v_end = (err_sym + 1) * v_dim;
1732
1733 /* walk over all 16 bits of the syndrome */
1734 for (i = 1; i < (1U << 16); i <<= 1) {
1735
1736 /* if bit is set in that eigenvector... */
1737 if (v_idx < v_end && vectors[v_idx] & i) {
1738 u16 ev_comp = vectors[v_idx++];
1739
1740 /* ... and bit set in the modified syndrome, */
1741 if (s & i) {
1742 /* remove it. */
1743 s ^= ev_comp;
1744
1745 if (!s)
1746 return err_sym;
1747 }
1748
1749 } else if (s & i)
1750 /* can't get to zero, move to next symbol */
1751 break;
1752 }
1753 }
1754
1755 debugf0("syndrome(%x) not found\n", syndrome);
1756 return -1;
1757 }
1758
1759 static int map_err_sym_to_channel(int err_sym, int sym_size)
1760 {
1761 if (sym_size == 4)
1762 switch (err_sym) {
1763 case 0x20:
1764 case 0x21:
1765 return 0;
1766 break;
1767 case 0x22:
1768 case 0x23:
1769 return 1;
1770 break;
1771 default:
1772 return err_sym >> 4;
1773 break;
1774 }
1775 /* x8 symbols */
1776 else
1777 switch (err_sym) {
1778 /* imaginary bits not in a DIMM */
1779 case 0x10:
1780 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1781 err_sym);
1782 return -1;
1783 break;
1784
1785 case 0x11:
1786 return 0;
1787 break;
1788 case 0x12:
1789 return 1;
1790 break;
1791 default:
1792 return err_sym >> 3;
1793 break;
1794 }
1795 return -1;
1796 }
1797
1798 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1799 {
1800 struct amd64_pvt *pvt = mci->pvt_info;
1801 int err_sym = -1;
1802
1803 if (pvt->ecc_sym_sz == 8)
1804 err_sym = decode_syndrome(syndrome, x8_vectors,
1805 ARRAY_SIZE(x8_vectors),
1806 pvt->ecc_sym_sz);
1807 else if (pvt->ecc_sym_sz == 4)
1808 err_sym = decode_syndrome(syndrome, x4_vectors,
1809 ARRAY_SIZE(x4_vectors),
1810 pvt->ecc_sym_sz);
1811 else {
1812 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1813 return err_sym;
1814 }
1815
1816 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1817 }
1818
1819 /*
1820 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1821 * ADDRESS and process.
1822 */
1823 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1824 {
1825 struct amd64_pvt *pvt = mci->pvt_info;
1826 u64 sys_addr;
1827 u16 syndrome;
1828
1829 /* Ensure that the Error Address is VALID */
1830 if (!(m->status & MCI_STATUS_ADDRV)) {
1831 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1832 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1833 return;
1834 }
1835
1836 sys_addr = get_error_address(m);
1837 syndrome = extract_syndrome(m->status);
1838
1839 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1840
1841 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1842 }
1843
1844 /* Handle any Un-correctable Errors (UEs) */
1845 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1846 {
1847 struct mem_ctl_info *log_mci, *src_mci = NULL;
1848 int csrow;
1849 u64 sys_addr;
1850 u32 page, offset;
1851
1852 log_mci = mci;
1853
1854 if (!(m->status & MCI_STATUS_ADDRV)) {
1855 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1856 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1857 return;
1858 }
1859
1860 sys_addr = get_error_address(m);
1861
1862 /*
1863 * Find out which node the error address belongs to. This may be
1864 * different from the node that detected the error.
1865 */
1866 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1867 if (!src_mci) {
1868 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1869 (unsigned long)sys_addr);
1870 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1871 return;
1872 }
1873
1874 log_mci = src_mci;
1875
1876 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1877 if (csrow < 0) {
1878 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1879 (unsigned long)sys_addr);
1880 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1881 } else {
1882 error_address_to_page_and_offset(sys_addr, &page, &offset);
1883 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1884 }
1885 }
1886
1887 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1888 struct mce *m)
1889 {
1890 u16 ec = EC(m->status);
1891 u8 xec = XEC(m->status, 0x1f);
1892 u8 ecc_type = (m->status >> 45) & 0x3;
1893
1894 /* Bail early out if this was an 'observed' error */
1895 if (PP(ec) == NBSL_PP_OBS)
1896 return;
1897
1898 /* Do only ECC errors */
1899 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1900 return;
1901
1902 if (ecc_type == 2)
1903 amd64_handle_ce(mci, m);
1904 else if (ecc_type == 1)
1905 amd64_handle_ue(mci, m);
1906 }
1907
1908 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1909 {
1910 struct mem_ctl_info *mci = mcis[node_id];
1911
1912 __amd64_decode_bus_error(mci, m);
1913 }
1914
1915 /*
1916 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1917 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1918 */
1919 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1920 {
1921 /* Reserve the ADDRESS MAP Device */
1922 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1923 if (!pvt->F1) {
1924 amd64_err("error address map device not found: "
1925 "vendor %x device 0x%x (broken BIOS?)\n",
1926 PCI_VENDOR_ID_AMD, f1_id);
1927 return -ENODEV;
1928 }
1929
1930 /* Reserve the MISC Device */
1931 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1932 if (!pvt->F3) {
1933 pci_dev_put(pvt->F1);
1934 pvt->F1 = NULL;
1935
1936 amd64_err("error F3 device not found: "
1937 "vendor %x device 0x%x (broken BIOS?)\n",
1938 PCI_VENDOR_ID_AMD, f3_id);
1939
1940 return -ENODEV;
1941 }
1942 debugf1("F1: %s\n", pci_name(pvt->F1));
1943 debugf1("F2: %s\n", pci_name(pvt->F2));
1944 debugf1("F3: %s\n", pci_name(pvt->F3));
1945
1946 return 0;
1947 }
1948
1949 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1950 {
1951 pci_dev_put(pvt->F1);
1952 pci_dev_put(pvt->F3);
1953 }
1954
1955 /*
1956 * Retrieve the hardware registers of the memory controller (this includes the
1957 * 'Address Map' and 'Misc' device regs)
1958 */
1959 static void read_mc_regs(struct amd64_pvt *pvt)
1960 {
1961 struct cpuinfo_x86 *c = &boot_cpu_data;
1962 u64 msr_val;
1963 u32 tmp;
1964 unsigned range;
1965
1966 /*
1967 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1968 * those are Read-As-Zero
1969 */
1970 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1971 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
1972
1973 /* check first whether TOP_MEM2 is enabled */
1974 rdmsrl(MSR_K8_SYSCFG, msr_val);
1975 if (msr_val & (1U << 21)) {
1976 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1977 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1978 } else
1979 debugf0(" TOP_MEM2 disabled.\n");
1980
1981 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1982
1983 read_dram_ctl_register(pvt);
1984
1985 for (range = 0; range < DRAM_RANGES; range++) {
1986 u8 rw;
1987
1988 /* read settings for this DRAM range */
1989 read_dram_base_limit_regs(pvt, range);
1990
1991 rw = dram_rw(pvt, range);
1992 if (!rw)
1993 continue;
1994
1995 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1996 range,
1997 get_dram_base(pvt, range),
1998 get_dram_limit(pvt, range));
1999
2000 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2001 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2002 (rw & 0x1) ? "R" : "-",
2003 (rw & 0x2) ? "W" : "-",
2004 dram_intlv_sel(pvt, range),
2005 dram_dst_node(pvt, range));
2006 }
2007
2008 read_dct_base_mask(pvt);
2009
2010 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2011 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2012
2013 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2014
2015 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2016 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2017
2018 if (!dct_ganging_enabled(pvt)) {
2019 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2020 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2021 }
2022
2023 pvt->ecc_sym_sz = 4;
2024
2025 if (c->x86 >= 0x10) {
2026 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2027 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2028
2029 /* F10h, revD and later can do x8 ECC too */
2030 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2031 pvt->ecc_sym_sz = 8;
2032 }
2033 dump_misc_regs(pvt);
2034 }
2035
2036 /*
2037 * NOTE: CPU Revision Dependent code
2038 *
2039 * Input:
2040 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2041 * k8 private pointer to -->
2042 * DRAM Bank Address mapping register
2043 * node_id
2044 * DCL register where dual_channel_active is
2045 *
2046 * The DBAM register consists of 4 sets of 4 bits each definitions:
2047 *
2048 * Bits: CSROWs
2049 * 0-3 CSROWs 0 and 1
2050 * 4-7 CSROWs 2 and 3
2051 * 8-11 CSROWs 4 and 5
2052 * 12-15 CSROWs 6 and 7
2053 *
2054 * Values range from: 0 to 15
2055 * The meaning of the values depends on CPU revision and dual-channel state,
2056 * see relevant BKDG more info.
2057 *
2058 * The memory controller provides for total of only 8 CSROWs in its current
2059 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2060 * single channel or two (2) DIMMs in dual channel mode.
2061 *
2062 * The following code logic collapses the various tables for CSROW based on CPU
2063 * revision.
2064 *
2065 * Returns:
2066 * The number of PAGE_SIZE pages on the specified CSROW number it
2067 * encompasses
2068 *
2069 */
2070 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2071 {
2072 u32 cs_mode, nr_pages;
2073
2074 /*
2075 * The math on this doesn't look right on the surface because x/2*4 can
2076 * be simplified to x*2 but this expression makes use of the fact that
2077 * it is integral math where 1/2=0. This intermediate value becomes the
2078 * number of bits to shift the DBAM register to extract the proper CSROW
2079 * field.
2080 */
2081 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2082
2083 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2084
2085 /*
2086 * If dual channel then double the memory size of single channel.
2087 * Channel count is 1 or 2
2088 */
2089 nr_pages <<= (pvt->channel_count - 1);
2090
2091 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2092 debugf0(" nr_pages= %u channel-count = %d\n",
2093 nr_pages, pvt->channel_count);
2094
2095 return nr_pages;
2096 }
2097
2098 /*
2099 * Initialize the array of csrow attribute instances, based on the values
2100 * from pci config hardware registers.
2101 */
2102 static int init_csrows(struct mem_ctl_info *mci)
2103 {
2104 struct csrow_info *csrow;
2105 struct amd64_pvt *pvt = mci->pvt_info;
2106 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2107 u32 val;
2108 int i, empty = 1;
2109
2110 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2111
2112 pvt->nbcfg = val;
2113
2114 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2115 pvt->mc_node_id, val,
2116 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2117
2118 for_each_chip_select(i, 0, pvt) {
2119 csrow = &mci->csrows[i];
2120
2121 if (!csrow_enabled(i, 0, pvt)) {
2122 debugf1("----CSROW %d EMPTY for node %d\n", i,
2123 pvt->mc_node_id);
2124 continue;
2125 }
2126
2127 debugf1("----CSROW %d VALID for MC node %d\n",
2128 i, pvt->mc_node_id);
2129
2130 empty = 0;
2131 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2132 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2133 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2134 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2135 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2136 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2137
2138 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2139 csrow->page_mask = ~mask;
2140 /* 8 bytes of resolution */
2141
2142 csrow->mtype = amd64_determine_memory_type(pvt, i);
2143
2144 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2145 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2146 (unsigned long)input_addr_min,
2147 (unsigned long)input_addr_max);
2148 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2149 (unsigned long)sys_addr, csrow->page_mask);
2150 debugf1(" nr_pages: %u first_page: 0x%lx "
2151 "last_page: 0x%lx\n",
2152 (unsigned)csrow->nr_pages,
2153 csrow->first_page, csrow->last_page);
2154
2155 /*
2156 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2157 */
2158 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2159 csrow->edac_mode =
2160 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2161 EDAC_S4ECD4ED : EDAC_SECDED;
2162 else
2163 csrow->edac_mode = EDAC_NONE;
2164 }
2165
2166 return empty;
2167 }
2168
2169 /* get all cores on this DCT */
2170 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2171 {
2172 int cpu;
2173
2174 for_each_online_cpu(cpu)
2175 if (amd_get_nb_id(cpu) == nid)
2176 cpumask_set_cpu(cpu, mask);
2177 }
2178
2179 /* check MCG_CTL on all the cpus on this node */
2180 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2181 {
2182 cpumask_var_t mask;
2183 int cpu, nbe;
2184 bool ret = false;
2185
2186 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2187 amd64_warn("%s: Error allocating mask\n", __func__);
2188 return false;
2189 }
2190
2191 get_cpus_on_this_dct_cpumask(mask, nid);
2192
2193 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2194
2195 for_each_cpu(cpu, mask) {
2196 struct msr *reg = per_cpu_ptr(msrs, cpu);
2197 nbe = reg->l & MSR_MCGCTL_NBE;
2198
2199 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2200 cpu, reg->q,
2201 (nbe ? "enabled" : "disabled"));
2202
2203 if (!nbe)
2204 goto out;
2205 }
2206 ret = true;
2207
2208 out:
2209 free_cpumask_var(mask);
2210 return ret;
2211 }
2212
2213 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2214 {
2215 cpumask_var_t cmask;
2216 int cpu;
2217
2218 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2219 amd64_warn("%s: error allocating mask\n", __func__);
2220 return false;
2221 }
2222
2223 get_cpus_on_this_dct_cpumask(cmask, nid);
2224
2225 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2226
2227 for_each_cpu(cpu, cmask) {
2228
2229 struct msr *reg = per_cpu_ptr(msrs, cpu);
2230
2231 if (on) {
2232 if (reg->l & MSR_MCGCTL_NBE)
2233 s->flags.nb_mce_enable = 1;
2234
2235 reg->l |= MSR_MCGCTL_NBE;
2236 } else {
2237 /*
2238 * Turn off NB MCE reporting only when it was off before
2239 */
2240 if (!s->flags.nb_mce_enable)
2241 reg->l &= ~MSR_MCGCTL_NBE;
2242 }
2243 }
2244 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2245
2246 free_cpumask_var(cmask);
2247
2248 return 0;
2249 }
2250
2251 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2252 struct pci_dev *F3)
2253 {
2254 bool ret = true;
2255 u32 value, mask = 0x3; /* UECC/CECC enable */
2256
2257 if (toggle_ecc_err_reporting(s, nid, ON)) {
2258 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2259 return false;
2260 }
2261
2262 amd64_read_pci_cfg(F3, NBCTL, &value);
2263
2264 s->old_nbctl = value & mask;
2265 s->nbctl_valid = true;
2266
2267 value |= mask;
2268 amd64_write_pci_cfg(F3, NBCTL, value);
2269
2270 amd64_read_pci_cfg(F3, NBCFG, &value);
2271
2272 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2273 nid, value, !!(value & NBCFG_ECC_ENABLE));
2274
2275 if (!(value & NBCFG_ECC_ENABLE)) {
2276 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2277
2278 s->flags.nb_ecc_prev = 0;
2279
2280 /* Attempt to turn on DRAM ECC Enable */
2281 value |= NBCFG_ECC_ENABLE;
2282 amd64_write_pci_cfg(F3, NBCFG, value);
2283
2284 amd64_read_pci_cfg(F3, NBCFG, &value);
2285
2286 if (!(value & NBCFG_ECC_ENABLE)) {
2287 amd64_warn("Hardware rejected DRAM ECC enable,"
2288 "check memory DIMM configuration.\n");
2289 ret = false;
2290 } else {
2291 amd64_info("Hardware accepted DRAM ECC Enable\n");
2292 }
2293 } else {
2294 s->flags.nb_ecc_prev = 1;
2295 }
2296
2297 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2298 nid, value, !!(value & NBCFG_ECC_ENABLE));
2299
2300 return ret;
2301 }
2302
2303 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2304 struct pci_dev *F3)
2305 {
2306 u32 value, mask = 0x3; /* UECC/CECC enable */
2307
2308
2309 if (!s->nbctl_valid)
2310 return;
2311
2312 amd64_read_pci_cfg(F3, NBCTL, &value);
2313 value &= ~mask;
2314 value |= s->old_nbctl;
2315
2316 amd64_write_pci_cfg(F3, NBCTL, value);
2317
2318 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2319 if (!s->flags.nb_ecc_prev) {
2320 amd64_read_pci_cfg(F3, NBCFG, &value);
2321 value &= ~NBCFG_ECC_ENABLE;
2322 amd64_write_pci_cfg(F3, NBCFG, value);
2323 }
2324
2325 /* restore the NB Enable MCGCTL bit */
2326 if (toggle_ecc_err_reporting(s, nid, OFF))
2327 amd64_warn("Error restoring NB MCGCTL settings!\n");
2328 }
2329
2330 /*
2331 * EDAC requires that the BIOS have ECC enabled before
2332 * taking over the processing of ECC errors. A command line
2333 * option allows to force-enable hardware ECC later in
2334 * enable_ecc_error_reporting().
2335 */
2336 static const char *ecc_msg =
2337 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2338 " Either enable ECC checking or force module loading by setting "
2339 "'ecc_enable_override'.\n"
2340 " (Note that use of the override may cause unknown side effects.)\n";
2341
2342 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2343 {
2344 u32 value;
2345 u8 ecc_en = 0;
2346 bool nb_mce_en = false;
2347
2348 amd64_read_pci_cfg(F3, NBCFG, &value);
2349
2350 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2351 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2352
2353 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2354 if (!nb_mce_en)
2355 amd64_notice("NB MCE bank disabled, set MSR "
2356 "0x%08x[4] on node %d to enable.\n",
2357 MSR_IA32_MCG_CTL, nid);
2358
2359 if (!ecc_en || !nb_mce_en) {
2360 amd64_notice("%s", ecc_msg);
2361 return false;
2362 }
2363 return true;
2364 }
2365
2366 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2367 ARRAY_SIZE(amd64_inj_attrs) +
2368 1];
2369
2370 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2371
2372 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2373 {
2374 unsigned int i = 0, j = 0;
2375
2376 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2377 sysfs_attrs[i] = amd64_dbg_attrs[i];
2378
2379 if (boot_cpu_data.x86 >= 0x10)
2380 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2381 sysfs_attrs[i] = amd64_inj_attrs[j];
2382
2383 sysfs_attrs[i] = terminator;
2384
2385 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2386 }
2387
2388 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2389 struct amd64_family_type *fam)
2390 {
2391 struct amd64_pvt *pvt = mci->pvt_info;
2392
2393 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2394 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2395
2396 if (pvt->nbcap & NBCAP_SECDED)
2397 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2398
2399 if (pvt->nbcap & NBCAP_CHIPKILL)
2400 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2401
2402 mci->edac_cap = amd64_determine_edac_cap(pvt);
2403 mci->mod_name = EDAC_MOD_STR;
2404 mci->mod_ver = EDAC_AMD64_VERSION;
2405 mci->ctl_name = fam->ctl_name;
2406 mci->dev_name = pci_name(pvt->F2);
2407 mci->ctl_page_to_phys = NULL;
2408
2409 /* memory scrubber interface */
2410 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2411 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2412 }
2413
2414 /*
2415 * returns a pointer to the family descriptor on success, NULL otherwise.
2416 */
2417 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2418 {
2419 u8 fam = boot_cpu_data.x86;
2420 struct amd64_family_type *fam_type = NULL;
2421
2422 switch (fam) {
2423 case 0xf:
2424 fam_type = &amd64_family_types[K8_CPUS];
2425 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2426 break;
2427
2428 case 0x10:
2429 fam_type = &amd64_family_types[F10_CPUS];
2430 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2431 break;
2432
2433 case 0x15:
2434 fam_type = &amd64_family_types[F15_CPUS];
2435 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2436 break;
2437
2438 default:
2439 amd64_err("Unsupported family!\n");
2440 return NULL;
2441 }
2442
2443 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2444
2445 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2446 (fam == 0xf ?
2447 (pvt->ext_model >= K8_REV_F ? "revF or later "
2448 : "revE or earlier ")
2449 : ""), pvt->mc_node_id);
2450 return fam_type;
2451 }
2452
2453 static int amd64_init_one_instance(struct pci_dev *F2)
2454 {
2455 struct amd64_pvt *pvt = NULL;
2456 struct amd64_family_type *fam_type = NULL;
2457 struct mem_ctl_info *mci = NULL;
2458 int err = 0, ret;
2459 u8 nid = get_node_id(F2);
2460
2461 ret = -ENOMEM;
2462 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2463 if (!pvt)
2464 goto err_ret;
2465
2466 pvt->mc_node_id = nid;
2467 pvt->F2 = F2;
2468
2469 ret = -EINVAL;
2470 fam_type = amd64_per_family_init(pvt);
2471 if (!fam_type)
2472 goto err_free;
2473
2474 ret = -ENODEV;
2475 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2476 if (err)
2477 goto err_free;
2478
2479 read_mc_regs(pvt);
2480
2481 /*
2482 * We need to determine how many memory channels there are. Then use
2483 * that information for calculating the size of the dynamic instance
2484 * tables in the 'mci' structure.
2485 */
2486 ret = -EINVAL;
2487 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2488 if (pvt->channel_count < 0)
2489 goto err_siblings;
2490
2491 ret = -ENOMEM;
2492 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2493 if (!mci)
2494 goto err_siblings;
2495
2496 mci->pvt_info = pvt;
2497 mci->dev = &pvt->F2->dev;
2498
2499 setup_mci_misc_attrs(mci, fam_type);
2500
2501 if (init_csrows(mci))
2502 mci->edac_cap = EDAC_FLAG_NONE;
2503
2504 set_mc_sysfs_attrs(mci);
2505
2506 ret = -ENODEV;
2507 if (edac_mc_add_mc(mci)) {
2508 debugf1("failed edac_mc_add_mc()\n");
2509 goto err_add_mc;
2510 }
2511
2512 /* register stuff with EDAC MCE */
2513 if (report_gart_errors)
2514 amd_report_gart_errors(true);
2515
2516 amd_register_ecc_decoder(amd64_decode_bus_error);
2517
2518 mcis[nid] = mci;
2519
2520 atomic_inc(&drv_instances);
2521
2522 return 0;
2523
2524 err_add_mc:
2525 edac_mc_free(mci);
2526
2527 err_siblings:
2528 free_mc_sibling_devs(pvt);
2529
2530 err_free:
2531 kfree(pvt);
2532
2533 err_ret:
2534 return ret;
2535 }
2536
2537 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2538 const struct pci_device_id *mc_type)
2539 {
2540 u8 nid = get_node_id(pdev);
2541 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2542 struct ecc_settings *s;
2543 int ret = 0;
2544
2545 ret = pci_enable_device(pdev);
2546 if (ret < 0) {
2547 debugf0("ret=%d\n", ret);
2548 return -EIO;
2549 }
2550
2551 ret = -ENOMEM;
2552 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2553 if (!s)
2554 goto err_out;
2555
2556 ecc_stngs[nid] = s;
2557
2558 if (!ecc_enabled(F3, nid)) {
2559 ret = -ENODEV;
2560
2561 if (!ecc_enable_override)
2562 goto err_enable;
2563
2564 amd64_warn("Forcing ECC on!\n");
2565
2566 if (!enable_ecc_error_reporting(s, nid, F3))
2567 goto err_enable;
2568 }
2569
2570 ret = amd64_init_one_instance(pdev);
2571 if (ret < 0) {
2572 amd64_err("Error probing instance: %d\n", nid);
2573 restore_ecc_error_reporting(s, nid, F3);
2574 }
2575
2576 return ret;
2577
2578 err_enable:
2579 kfree(s);
2580 ecc_stngs[nid] = NULL;
2581
2582 err_out:
2583 return ret;
2584 }
2585
2586 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2587 {
2588 struct mem_ctl_info *mci;
2589 struct amd64_pvt *pvt;
2590 u8 nid = get_node_id(pdev);
2591 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2592 struct ecc_settings *s = ecc_stngs[nid];
2593
2594 /* Remove from EDAC CORE tracking list */
2595 mci = edac_mc_del_mc(&pdev->dev);
2596 if (!mci)
2597 return;
2598
2599 pvt = mci->pvt_info;
2600
2601 restore_ecc_error_reporting(s, nid, F3);
2602
2603 free_mc_sibling_devs(pvt);
2604
2605 /* unregister from EDAC MCE */
2606 amd_report_gart_errors(false);
2607 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2608
2609 kfree(ecc_stngs[nid]);
2610 ecc_stngs[nid] = NULL;
2611
2612 /* Free the EDAC CORE resources */
2613 mci->pvt_info = NULL;
2614 mcis[nid] = NULL;
2615
2616 kfree(pvt);
2617 edac_mc_free(mci);
2618 }
2619
2620 /*
2621 * This table is part of the interface for loading drivers for PCI devices. The
2622 * PCI core identifies what devices are on a system during boot, and then
2623 * inquiry this table to see if this driver is for a given device found.
2624 */
2625 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2626 {
2627 .vendor = PCI_VENDOR_ID_AMD,
2628 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2629 .subvendor = PCI_ANY_ID,
2630 .subdevice = PCI_ANY_ID,
2631 .class = 0,
2632 .class_mask = 0,
2633 },
2634 {
2635 .vendor = PCI_VENDOR_ID_AMD,
2636 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2637 .subvendor = PCI_ANY_ID,
2638 .subdevice = PCI_ANY_ID,
2639 .class = 0,
2640 .class_mask = 0,
2641 },
2642 {
2643 .vendor = PCI_VENDOR_ID_AMD,
2644 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2645 .subvendor = PCI_ANY_ID,
2646 .subdevice = PCI_ANY_ID,
2647 .class = 0,
2648 .class_mask = 0,
2649 },
2650
2651 {0, }
2652 };
2653 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2654
2655 static struct pci_driver amd64_pci_driver = {
2656 .name = EDAC_MOD_STR,
2657 .probe = amd64_probe_one_instance,
2658 .remove = __devexit_p(amd64_remove_one_instance),
2659 .id_table = amd64_pci_table,
2660 };
2661
2662 static void setup_pci_device(void)
2663 {
2664 struct mem_ctl_info *mci;
2665 struct amd64_pvt *pvt;
2666
2667 if (amd64_ctl_pci)
2668 return;
2669
2670 mci = mcis[0];
2671 if (mci) {
2672
2673 pvt = mci->pvt_info;
2674 amd64_ctl_pci =
2675 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2676
2677 if (!amd64_ctl_pci) {
2678 pr_warning("%s(): Unable to create PCI control\n",
2679 __func__);
2680
2681 pr_warning("%s(): PCI error report via EDAC not set\n",
2682 __func__);
2683 }
2684 }
2685 }
2686
2687 static int __init amd64_edac_init(void)
2688 {
2689 int err = -ENODEV;
2690
2691 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2692
2693 opstate_init();
2694
2695 if (amd_cache_northbridges() < 0)
2696 goto err_ret;
2697
2698 err = -ENOMEM;
2699 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2700 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2701 if (!(mcis && ecc_stngs))
2702 goto err_free;
2703
2704 msrs = msrs_alloc();
2705 if (!msrs)
2706 goto err_free;
2707
2708 err = pci_register_driver(&amd64_pci_driver);
2709 if (err)
2710 goto err_pci;
2711
2712 err = -ENODEV;
2713 if (!atomic_read(&drv_instances))
2714 goto err_no_instances;
2715
2716 setup_pci_device();
2717 return 0;
2718
2719 err_no_instances:
2720 pci_unregister_driver(&amd64_pci_driver);
2721
2722 err_pci:
2723 msrs_free(msrs);
2724 msrs = NULL;
2725
2726 err_free:
2727 kfree(mcis);
2728 mcis = NULL;
2729
2730 kfree(ecc_stngs);
2731 ecc_stngs = NULL;
2732
2733 err_ret:
2734 return err;
2735 }
2736
2737 static void __exit amd64_edac_exit(void)
2738 {
2739 if (amd64_ctl_pci)
2740 edac_pci_release_generic_ctl(amd64_ctl_pci);
2741
2742 pci_unregister_driver(&amd64_pci_driver);
2743
2744 kfree(ecc_stngs);
2745 ecc_stngs = NULL;
2746
2747 kfree(mcis);
2748 mcis = NULL;
2749
2750 msrs_free(msrs);
2751 msrs = NULL;
2752 }
2753
2754 module_init(amd64_edac_init);
2755 module_exit(amd64_edac_exit);
2756
2757 MODULE_LICENSE("GPL");
2758 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2759 "Dave Peterson, Thayne Harbaugh");
2760 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2761 EDAC_AMD64_VERSION);
2762
2763 module_param(edac_op_state, int, 0444);
2764 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.149021 seconds and 6 git commands to generate.