Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 #include <ras/ras_event.h>
37
38 /* lock to memory controller's control array */
39 static DEFINE_MUTEX(mem_ctls_mutex);
40 static LIST_HEAD(mc_devices);
41
42 /*
43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44 * apei/ghes and i7core_edac to be used at the same time.
45 */
46 static void const *edac_mc_owner;
47
48 static struct bus_type mc_bus[EDAC_MAX_MCS];
49
50 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51 unsigned len)
52 {
53 struct mem_ctl_info *mci = dimm->mci;
54 int i, n, count = 0;
55 char *p = buf;
56
57 for (i = 0; i < mci->n_layers; i++) {
58 n = snprintf(p, len, "%s %d ",
59 edac_layer_name[mci->layers[i].type],
60 dimm->location[i]);
61 p += n;
62 len -= n;
63 count += n;
64 if (!len)
65 break;
66 }
67
68 return count;
69 }
70
71 #ifdef CONFIG_EDAC_DEBUG
72
73 static void edac_mc_dump_channel(struct rank_info *chan)
74 {
75 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
76 edac_dbg(4, " channel = %p\n", chan);
77 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
78 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
79 }
80
81 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
82 {
83 char location[80];
84
85 edac_dimm_info_location(dimm, location, sizeof(location));
86
87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88 dimm->mci->csbased ? "rank" : "dimm",
89 number, location, dimm->csrow, dimm->cschannel);
90 edac_dbg(4, " dimm = %p\n", dimm);
91 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
95 }
96
97 static void edac_mc_dump_csrow(struct csrow_info *csrow)
98 {
99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100 edac_dbg(4, " csrow = %p\n", csrow);
101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
105 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
106 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
107 }
108
109 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
110 {
111 edac_dbg(3, "\tmci = %p\n", mci);
112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117 mci->nr_csrows, mci->csrows);
118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119 mci->tot_dimms, mci->dimms);
120 edac_dbg(3, "\tdev = %p\n", mci->pdev);
121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122 mci->mod_name, mci->ctl_name);
123 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
124 }
125
126 #endif /* CONFIG_EDAC_DEBUG */
127
128 const char * const edac_mem_types[] = {
129 [MEM_EMPTY] = "Empty csrow",
130 [MEM_RESERVED] = "Reserved csrow type",
131 [MEM_UNKNOWN] = "Unknown csrow type",
132 [MEM_FPM] = "Fast page mode RAM",
133 [MEM_EDO] = "Extended data out RAM",
134 [MEM_BEDO] = "Burst Extended data out RAM",
135 [MEM_SDR] = "Single data rate SDRAM",
136 [MEM_RDR] = "Registered single data rate SDRAM",
137 [MEM_DDR] = "Double data rate SDRAM",
138 [MEM_RDDR] = "Registered Double data rate SDRAM",
139 [MEM_RMBS] = "Rambus DRAM",
140 [MEM_DDR2] = "Unbuffered DDR2 RAM",
141 [MEM_FB_DDR2] = "Fully buffered DDR2",
142 [MEM_RDDR2] = "Registered DDR2 RAM",
143 [MEM_XDR] = "Rambus XDR",
144 [MEM_DDR3] = "Unbuffered DDR3 RAM",
145 [MEM_RDDR3] = "Registered DDR3 RAM",
146 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
147 [MEM_DDR4] = "Unbuffered DDR4 RAM",
148 [MEM_RDDR4] = "Registered DDR4 RAM",
149 };
150 EXPORT_SYMBOL_GPL(edac_mem_types);
151
152 /**
153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154 * @p: pointer to a pointer with the memory offset to be used. At
155 * return, this will be incremented to point to the next offset
156 * @size: Size of the data structure to be reserved
157 * @n_elems: Number of elements that should be reserved
158 *
159 * If 'size' is a constant, the compiler will optimize this whole function
160 * down to either a no-op or the addition of a constant to the value of '*p'.
161 *
162 * The 'p' pointer is absolutely needed to keep the proper advancing
163 * further in memory to the proper offsets when allocating the struct along
164 * with its embedded structs, as edac_device_alloc_ctl_info() does it
165 * above, for example.
166 *
167 * At return, the pointer 'p' will be incremented to be used on a next call
168 * to this function.
169 */
170 void *edac_align_ptr(void **p, unsigned size, int n_elems)
171 {
172 unsigned align, r;
173 void *ptr = *p;
174
175 *p += size * n_elems;
176
177 /*
178 * 'p' can possibly be an unaligned item X such that sizeof(X) is
179 * 'size'. Adjust 'p' so that its alignment is at least as
180 * stringent as what the compiler would provide for X and return
181 * the aligned result.
182 * Here we assume that the alignment of a "long long" is the most
183 * stringent alignment that the compiler will ever provide by default.
184 * As far as I know, this is a reasonable assumption.
185 */
186 if (size > sizeof(long))
187 align = sizeof(long long);
188 else if (size > sizeof(int))
189 align = sizeof(long);
190 else if (size > sizeof(short))
191 align = sizeof(int);
192 else if (size > sizeof(char))
193 align = sizeof(short);
194 else
195 return (char *)ptr;
196
197 r = (unsigned long)p % align;
198
199 if (r == 0)
200 return (char *)ptr;
201
202 *p += align - r;
203
204 return (void *)(((unsigned long)ptr) + align - r);
205 }
206
207 static void _edac_mc_free(struct mem_ctl_info *mci)
208 {
209 int i, chn, row;
210 struct csrow_info *csr;
211 const unsigned int tot_dimms = mci->tot_dimms;
212 const unsigned int tot_channels = mci->num_cschannel;
213 const unsigned int tot_csrows = mci->nr_csrows;
214
215 if (mci->dimms) {
216 for (i = 0; i < tot_dimms; i++)
217 kfree(mci->dimms[i]);
218 kfree(mci->dimms);
219 }
220 if (mci->csrows) {
221 for (row = 0; row < tot_csrows; row++) {
222 csr = mci->csrows[row];
223 if (csr) {
224 if (csr->channels) {
225 for (chn = 0; chn < tot_channels; chn++)
226 kfree(csr->channels[chn]);
227 kfree(csr->channels);
228 }
229 kfree(csr);
230 }
231 }
232 kfree(mci->csrows);
233 }
234 kfree(mci);
235 }
236
237 /**
238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239 * @mc_num: Memory controller number
240 * @n_layers: Number of MC hierarchy layers
241 * layers: Describes each layer as seen by the Memory Controller
242 * @size_pvt: size of private storage needed
243 *
244 *
245 * Everything is kmalloc'ed as one big chunk - more efficient.
246 * Only can be used if all structures have the same lifetime - otherwise
247 * you have to allocate and initialize your own structures.
248 *
249 * Use edac_mc_free() to free mc structures allocated by this function.
250 *
251 * NOTE: drivers handle multi-rank memories in different ways: in some
252 * drivers, one multi-rank memory stick is mapped as one entry, while, in
253 * others, a single multi-rank memory stick would be mapped into several
254 * entries. Currently, this function will allocate multiple struct dimm_info
255 * on such scenarios, as grouping the multiple ranks require drivers change.
256 *
257 * Returns:
258 * On failure: NULL
259 * On success: struct mem_ctl_info pointer
260 */
261 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262 unsigned n_layers,
263 struct edac_mc_layer *layers,
264 unsigned sz_pvt)
265 {
266 struct mem_ctl_info *mci;
267 struct edac_mc_layer *layer;
268 struct csrow_info *csr;
269 struct rank_info *chan;
270 struct dimm_info *dimm;
271 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272 unsigned pos[EDAC_MAX_LAYERS];
273 unsigned size, tot_dimms = 1, count = 1;
274 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
275 void *pvt, *p, *ptr = NULL;
276 int i, j, row, chn, n, len, off;
277 bool per_rank = false;
278
279 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280 /*
281 * Calculate the total amount of dimms and csrows/cschannels while
282 * in the old API emulation mode
283 */
284 for (i = 0; i < n_layers; i++) {
285 tot_dimms *= layers[i].size;
286 if (layers[i].is_virt_csrow)
287 tot_csrows *= layers[i].size;
288 else
289 tot_channels *= layers[i].size;
290
291 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292 per_rank = true;
293 }
294
295 /* Figure out the offsets of the various items from the start of an mc
296 * structure. We want the alignment of each item to be at least as
297 * stringent as what the compiler would provide if we could simply
298 * hardcode everything into a single struct.
299 */
300 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
301 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
302 for (i = 0; i < n_layers; i++) {
303 count *= layers[i].size;
304 edac_dbg(4, "errcount layer %d size %d\n", i, count);
305 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307 tot_errcount += 2 * count;
308 }
309
310 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
311 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
312 size = ((unsigned long)pvt) + sz_pvt;
313
314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315 size,
316 tot_dimms,
317 per_rank ? "ranks" : "dimms",
318 tot_csrows * tot_channels);
319
320 mci = kzalloc(size, GFP_KERNEL);
321 if (mci == NULL)
322 return NULL;
323
324 /* Adjust pointers so they point within the memory we just allocated
325 * rather than an imaginary chunk of memory located at address 0.
326 */
327 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
328 for (i = 0; i < n_layers; i++) {
329 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331 }
332 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
333
334 /* setup index and various internal pointers */
335 mci->mc_idx = mc_num;
336 mci->tot_dimms = tot_dimms;
337 mci->pvt_info = pvt;
338 mci->n_layers = n_layers;
339 mci->layers = layer;
340 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341 mci->nr_csrows = tot_csrows;
342 mci->num_cschannel = tot_channels;
343 mci->csbased = per_rank;
344
345 /*
346 * Alocate and fill the csrow/channels structs
347 */
348 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
349 if (!mci->csrows)
350 goto error;
351 for (row = 0; row < tot_csrows; row++) {
352 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353 if (!csr)
354 goto error;
355 mci->csrows[row] = csr;
356 csr->csrow_idx = row;
357 csr->mci = mci;
358 csr->nr_channels = tot_channels;
359 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
360 GFP_KERNEL);
361 if (!csr->channels)
362 goto error;
363
364 for (chn = 0; chn < tot_channels; chn++) {
365 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366 if (!chan)
367 goto error;
368 csr->channels[chn] = chan;
369 chan->chan_idx = chn;
370 chan->csrow = csr;
371 }
372 }
373
374 /*
375 * Allocate and fill the dimm structs
376 */
377 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
378 if (!mci->dimms)
379 goto error;
380
381 memset(&pos, 0, sizeof(pos));
382 row = 0;
383 chn = 0;
384 for (i = 0; i < tot_dimms; i++) {
385 chan = mci->csrows[row]->channels[chn];
386 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387 if (off < 0 || off >= tot_dimms) {
388 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389 goto error;
390 }
391
392 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
393 if (!dimm)
394 goto error;
395 mci->dimms[off] = dimm;
396 dimm->mci = mci;
397
398 /*
399 * Copy DIMM location and initialize it.
400 */
401 len = sizeof(dimm->label);
402 p = dimm->label;
403 n = snprintf(p, len, "mc#%u", mc_num);
404 p += n;
405 len -= n;
406 for (j = 0; j < n_layers; j++) {
407 n = snprintf(p, len, "%s#%u",
408 edac_layer_name[layers[j].type],
409 pos[j]);
410 p += n;
411 len -= n;
412 dimm->location[j] = pos[j];
413
414 if (len <= 0)
415 break;
416 }
417
418 /* Link it to the csrows old API data */
419 chan->dimm = dimm;
420 dimm->csrow = row;
421 dimm->cschannel = chn;
422
423 /* Increment csrow location */
424 if (layers[0].is_virt_csrow) {
425 chn++;
426 if (chn == tot_channels) {
427 chn = 0;
428 row++;
429 }
430 } else {
431 row++;
432 if (row == tot_csrows) {
433 row = 0;
434 chn++;
435 }
436 }
437
438 /* Increment dimm location */
439 for (j = n_layers - 1; j >= 0; j--) {
440 pos[j]++;
441 if (pos[j] < layers[j].size)
442 break;
443 pos[j] = 0;
444 }
445 }
446
447 mci->op_state = OP_ALLOC;
448
449 return mci;
450
451 error:
452 _edac_mc_free(mci);
453
454 return NULL;
455 }
456 EXPORT_SYMBOL_GPL(edac_mc_alloc);
457
458 /**
459 * edac_mc_free
460 * 'Free' a previously allocated 'mci' structure
461 * @mci: pointer to a struct mem_ctl_info structure
462 */
463 void edac_mc_free(struct mem_ctl_info *mci)
464 {
465 edac_dbg(1, "\n");
466
467 /* If we're not yet registered with sysfs free only what was allocated
468 * in edac_mc_alloc().
469 */
470 if (!device_is_registered(&mci->dev)) {
471 _edac_mc_free(mci);
472 return;
473 }
474
475 /* the mci instance is freed here, when the sysfs object is dropped */
476 edac_unregister_sysfs(mci);
477 }
478 EXPORT_SYMBOL_GPL(edac_mc_free);
479
480
481 /**
482 * find_mci_by_dev
483 *
484 * scan list of controllers looking for the one that manages
485 * the 'dev' device
486 * @dev: pointer to a struct device related with the MCI
487 */
488 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
489 {
490 struct mem_ctl_info *mci;
491 struct list_head *item;
492
493 edac_dbg(3, "\n");
494
495 list_for_each(item, &mc_devices) {
496 mci = list_entry(item, struct mem_ctl_info, link);
497
498 if (mci->pdev == dev)
499 return mci;
500 }
501
502 return NULL;
503 }
504 EXPORT_SYMBOL_GPL(find_mci_by_dev);
505
506 /*
507 * handler for EDAC to check if NMI type handler has asserted interrupt
508 */
509 static int edac_mc_assert_error_check_and_clear(void)
510 {
511 int old_state;
512
513 if (edac_op_state == EDAC_OPSTATE_POLL)
514 return 1;
515
516 old_state = edac_err_assert;
517 edac_err_assert = 0;
518
519 return old_state;
520 }
521
522 /*
523 * edac_mc_workq_function
524 * performs the operation scheduled by a workq request
525 */
526 static void edac_mc_workq_function(struct work_struct *work_req)
527 {
528 struct delayed_work *d_work = to_delayed_work(work_req);
529 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
530
531 mutex_lock(&mem_ctls_mutex);
532
533 /* if this control struct has movd to offline state, we are done */
534 if (mci->op_state == OP_OFFLINE) {
535 mutex_unlock(&mem_ctls_mutex);
536 return;
537 }
538
539 /* Only poll controllers that are running polled and have a check */
540 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541 mci->edac_check(mci);
542
543 mutex_unlock(&mem_ctls_mutex);
544
545 /* Reschedule */
546 queue_delayed_work(edac_workqueue, &mci->work,
547 msecs_to_jiffies(edac_mc_get_poll_msec()));
548 }
549
550 /*
551 * edac_mc_workq_setup
552 * initialize a workq item for this mci
553 * passing in the new delay period in msec
554 *
555 * locking model:
556 *
557 * called with the mem_ctls_mutex held
558 */
559 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560 bool init)
561 {
562 edac_dbg(0, "\n");
563
564 /* if this instance is not in the POLL state, then simply return */
565 if (mci->op_state != OP_RUNNING_POLL)
566 return;
567
568 if (init)
569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575 * edac_mc_workq_teardown
576 * stop the workq processing on this mci
577 *
578 * locking model:
579 *
580 * called WITHOUT lock held
581 */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584 int status;
585
586 if (mci->op_state != OP_RUNNING_POLL)
587 return;
588
589 status = cancel_delayed_work(&mci->work);
590 if (status == 0) {
591 edac_dbg(0, "not canceled, flush the queue\n");
592
593 /* workq instance might be running, wait for it */
594 flush_workqueue(edac_workqueue);
595 }
596 }
597
598 /*
599 * edac_mc_reset_delay_period(unsigned long value)
600 *
601 * user space has updated our poll period value, need to
602 * reset our workq delays
603 */
604 void edac_mc_reset_delay_period(unsigned long value)
605 {
606 struct mem_ctl_info *mci;
607 struct list_head *item;
608
609 mutex_lock(&mem_ctls_mutex);
610
611 list_for_each(item, &mc_devices) {
612 mci = list_entry(item, struct mem_ctl_info, link);
613
614 edac_mc_workq_setup(mci, value, false);
615 }
616
617 mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623 * Before calling this function, caller must
624 * assign a unique value to mci->mc_idx.
625 *
626 * locking model:
627 *
628 * called with the mem_ctls_mutex lock held
629 */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632 struct list_head *item, *insert_before;
633 struct mem_ctl_info *p;
634
635 insert_before = &mc_devices;
636
637 p = find_mci_by_dev(mci->pdev);
638 if (unlikely(p != NULL))
639 goto fail0;
640
641 list_for_each(item, &mc_devices) {
642 p = list_entry(item, struct mem_ctl_info, link);
643
644 if (p->mc_idx >= mci->mc_idx) {
645 if (unlikely(p->mc_idx == mci->mc_idx))
646 goto fail1;
647
648 insert_before = item;
649 break;
650 }
651 }
652
653 list_add_tail_rcu(&mci->link, insert_before);
654 atomic_inc(&edac_handlers);
655 return 0;
656
657 fail0:
658 edac_printk(KERN_WARNING, EDAC_MC,
659 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661 return 1;
662
663 fail1:
664 edac_printk(KERN_WARNING, EDAC_MC,
665 "bug in low-level driver: attempt to assign\n"
666 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667 return 1;
668 }
669
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672 int handlers = atomic_dec_return(&edac_handlers);
673 list_del_rcu(&mci->link);
674
675 /* these are for safe removal of devices from global list while
676 * NMI handlers may be traversing list
677 */
678 synchronize_rcu();
679 INIT_LIST_HEAD(&mci->link);
680
681 return handlers;
682 }
683
684 /**
685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686 *
687 * If found, return a pointer to the structure.
688 * Else return NULL.
689 *
690 * Caller must hold mem_ctls_mutex.
691 */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694 struct list_head *item;
695 struct mem_ctl_info *mci;
696
697 list_for_each(item, &mc_devices) {
698 mci = list_entry(item, struct mem_ctl_info, link);
699
700 if (mci->mc_idx >= idx) {
701 if (mci->mc_idx == idx)
702 return mci;
703
704 break;
705 }
706 }
707
708 return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711
712 /**
713 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714 * create sysfs entries associated with mci structure
715 * @mci: pointer to the mci structure to be added to the list
716 *
717 * Return:
718 * 0 Success
719 * !0 Failure
720 */
721
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725 int ret = -EINVAL;
726 edac_dbg(0, "\n");
727
728 if (mci->mc_idx >= EDAC_MAX_MCS) {
729 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730 return -ENODEV;
731 }
732
733 #ifdef CONFIG_EDAC_DEBUG
734 if (edac_debug_level >= 3)
735 edac_mc_dump_mci(mci);
736
737 if (edac_debug_level >= 4) {
738 int i;
739
740 for (i = 0; i < mci->nr_csrows; i++) {
741 struct csrow_info *csrow = mci->csrows[i];
742 u32 nr_pages = 0;
743 int j;
744
745 for (j = 0; j < csrow->nr_channels; j++)
746 nr_pages += csrow->channels[j]->dimm->nr_pages;
747 if (!nr_pages)
748 continue;
749 edac_mc_dump_csrow(csrow);
750 for (j = 0; j < csrow->nr_channels; j++)
751 if (csrow->channels[j]->dimm->nr_pages)
752 edac_mc_dump_channel(csrow->channels[j]);
753 }
754 for (i = 0; i < mci->tot_dimms; i++)
755 if (mci->dimms[i]->nr_pages)
756 edac_mc_dump_dimm(mci->dimms[i], i);
757 }
758 #endif
759 mutex_lock(&mem_ctls_mutex);
760
761 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762 ret = -EPERM;
763 goto fail0;
764 }
765
766 if (add_mc_to_global_list(mci))
767 goto fail0;
768
769 /* set load time so that error rate can be tracked */
770 mci->start_time = jiffies;
771
772 mci->bus = &mc_bus[mci->mc_idx];
773
774 if (edac_create_sysfs_mci_device(mci)) {
775 edac_mc_printk(mci, KERN_WARNING,
776 "failed to create sysfs device\n");
777 goto fail1;
778 }
779
780 /* If there IS a check routine, then we are running POLLED */
781 if (mci->edac_check != NULL) {
782 /* This instance is NOW RUNNING */
783 mci->op_state = OP_RUNNING_POLL;
784
785 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
786 } else {
787 mci->op_state = OP_RUNNING_INTERRUPT;
788 }
789
790 /* Report action taken */
791 edac_mc_printk(mci, KERN_INFO,
792 "Giving out device to module %s controller %s: DEV %s (%s)\n",
793 mci->mod_name, mci->ctl_name, mci->dev_name,
794 edac_op_state_to_string(mci->op_state));
795
796 edac_mc_owner = mci->mod_name;
797
798 mutex_unlock(&mem_ctls_mutex);
799 return 0;
800
801 fail1:
802 del_mc_from_global_list(mci);
803
804 fail0:
805 mutex_unlock(&mem_ctls_mutex);
806 return ret;
807 }
808 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
809
810 /**
811 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
812 * remove mci structure from global list
813 * @pdev: Pointer to 'struct device' representing mci structure to remove.
814 *
815 * Return pointer to removed mci structure, or NULL if device not found.
816 */
817 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
818 {
819 struct mem_ctl_info *mci;
820
821 edac_dbg(0, "\n");
822
823 mutex_lock(&mem_ctls_mutex);
824
825 /* find the requested mci struct in the global list */
826 mci = find_mci_by_dev(dev);
827 if (mci == NULL) {
828 mutex_unlock(&mem_ctls_mutex);
829 return NULL;
830 }
831
832 if (!del_mc_from_global_list(mci))
833 edac_mc_owner = NULL;
834 mutex_unlock(&mem_ctls_mutex);
835
836 /* flush workq processes */
837 edac_mc_workq_teardown(mci);
838
839 /* marking MCI offline */
840 mci->op_state = OP_OFFLINE;
841
842 /* remove from sysfs */
843 edac_remove_sysfs_mci_device(mci);
844
845 edac_printk(KERN_INFO, EDAC_MC,
846 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
847 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
848
849 return mci;
850 }
851 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
852
853 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
854 u32 size)
855 {
856 struct page *pg;
857 void *virt_addr;
858 unsigned long flags = 0;
859
860 edac_dbg(3, "\n");
861
862 /* ECC error page was not in our memory. Ignore it. */
863 if (!pfn_valid(page))
864 return;
865
866 /* Find the actual page structure then map it and fix */
867 pg = pfn_to_page(page);
868
869 if (PageHighMem(pg))
870 local_irq_save(flags);
871
872 virt_addr = kmap_atomic(pg);
873
874 /* Perform architecture specific atomic scrub operation */
875 atomic_scrub(virt_addr + offset, size);
876
877 /* Unmap and complete */
878 kunmap_atomic(virt_addr);
879
880 if (PageHighMem(pg))
881 local_irq_restore(flags);
882 }
883
884 /* FIXME - should return -1 */
885 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
886 {
887 struct csrow_info **csrows = mci->csrows;
888 int row, i, j, n;
889
890 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
891 row = -1;
892
893 for (i = 0; i < mci->nr_csrows; i++) {
894 struct csrow_info *csrow = csrows[i];
895 n = 0;
896 for (j = 0; j < csrow->nr_channels; j++) {
897 struct dimm_info *dimm = csrow->channels[j]->dimm;
898 n += dimm->nr_pages;
899 }
900 if (n == 0)
901 continue;
902
903 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
904 mci->mc_idx,
905 csrow->first_page, page, csrow->last_page,
906 csrow->page_mask);
907
908 if ((page >= csrow->first_page) &&
909 (page <= csrow->last_page) &&
910 ((page & csrow->page_mask) ==
911 (csrow->first_page & csrow->page_mask))) {
912 row = i;
913 break;
914 }
915 }
916
917 if (row == -1)
918 edac_mc_printk(mci, KERN_ERR,
919 "could not look up page error address %lx\n",
920 (unsigned long)page);
921
922 return row;
923 }
924 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
925
926 const char *edac_layer_name[] = {
927 [EDAC_MC_LAYER_BRANCH] = "branch",
928 [EDAC_MC_LAYER_CHANNEL] = "channel",
929 [EDAC_MC_LAYER_SLOT] = "slot",
930 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
931 [EDAC_MC_LAYER_ALL_MEM] = "memory",
932 };
933 EXPORT_SYMBOL_GPL(edac_layer_name);
934
935 static void edac_inc_ce_error(struct mem_ctl_info *mci,
936 bool enable_per_layer_report,
937 const int pos[EDAC_MAX_LAYERS],
938 const u16 count)
939 {
940 int i, index = 0;
941
942 mci->ce_mc += count;
943
944 if (!enable_per_layer_report) {
945 mci->ce_noinfo_count += count;
946 return;
947 }
948
949 for (i = 0; i < mci->n_layers; i++) {
950 if (pos[i] < 0)
951 break;
952 index += pos[i];
953 mci->ce_per_layer[i][index] += count;
954
955 if (i < mci->n_layers - 1)
956 index *= mci->layers[i + 1].size;
957 }
958 }
959
960 static void edac_inc_ue_error(struct mem_ctl_info *mci,
961 bool enable_per_layer_report,
962 const int pos[EDAC_MAX_LAYERS],
963 const u16 count)
964 {
965 int i, index = 0;
966
967 mci->ue_mc += count;
968
969 if (!enable_per_layer_report) {
970 mci->ce_noinfo_count += count;
971 return;
972 }
973
974 for (i = 0; i < mci->n_layers; i++) {
975 if (pos[i] < 0)
976 break;
977 index += pos[i];
978 mci->ue_per_layer[i][index] += count;
979
980 if (i < mci->n_layers - 1)
981 index *= mci->layers[i + 1].size;
982 }
983 }
984
985 static void edac_ce_error(struct mem_ctl_info *mci,
986 const u16 error_count,
987 const int pos[EDAC_MAX_LAYERS],
988 const char *msg,
989 const char *location,
990 const char *label,
991 const char *detail,
992 const char *other_detail,
993 const bool enable_per_layer_report,
994 const unsigned long page_frame_number,
995 const unsigned long offset_in_page,
996 long grain)
997 {
998 unsigned long remapped_page;
999 char *msg_aux = "";
1000
1001 if (*msg)
1002 msg_aux = " ";
1003
1004 if (edac_mc_get_log_ce()) {
1005 if (other_detail && *other_detail)
1006 edac_mc_printk(mci, KERN_WARNING,
1007 "%d CE %s%son %s (%s %s - %s)\n",
1008 error_count, msg, msg_aux, label,
1009 location, detail, other_detail);
1010 else
1011 edac_mc_printk(mci, KERN_WARNING,
1012 "%d CE %s%son %s (%s %s)\n",
1013 error_count, msg, msg_aux, label,
1014 location, detail);
1015 }
1016 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1017
1018 if (mci->scrub_mode == SCRUB_SW_SRC) {
1019 /*
1020 * Some memory controllers (called MCs below) can remap
1021 * memory so that it is still available at a different
1022 * address when PCI devices map into memory.
1023 * MC's that can't do this, lose the memory where PCI
1024 * devices are mapped. This mapping is MC-dependent
1025 * and so we call back into the MC driver for it to
1026 * map the MC page to a physical (CPU) page which can
1027 * then be mapped to a virtual page - which can then
1028 * be scrubbed.
1029 */
1030 remapped_page = mci->ctl_page_to_phys ?
1031 mci->ctl_page_to_phys(mci, page_frame_number) :
1032 page_frame_number;
1033
1034 edac_mc_scrub_block(remapped_page,
1035 offset_in_page, grain);
1036 }
1037 }
1038
1039 static void edac_ue_error(struct mem_ctl_info *mci,
1040 const u16 error_count,
1041 const int pos[EDAC_MAX_LAYERS],
1042 const char *msg,
1043 const char *location,
1044 const char *label,
1045 const char *detail,
1046 const char *other_detail,
1047 const bool enable_per_layer_report)
1048 {
1049 char *msg_aux = "";
1050
1051 if (*msg)
1052 msg_aux = " ";
1053
1054 if (edac_mc_get_log_ue()) {
1055 if (other_detail && *other_detail)
1056 edac_mc_printk(mci, KERN_WARNING,
1057 "%d UE %s%son %s (%s %s - %s)\n",
1058 error_count, msg, msg_aux, label,
1059 location, detail, other_detail);
1060 else
1061 edac_mc_printk(mci, KERN_WARNING,
1062 "%d UE %s%son %s (%s %s)\n",
1063 error_count, msg, msg_aux, label,
1064 location, detail);
1065 }
1066
1067 if (edac_mc_get_panic_on_ue()) {
1068 if (other_detail && *other_detail)
1069 panic("UE %s%son %s (%s%s - %s)\n",
1070 msg, msg_aux, label, location, detail, other_detail);
1071 else
1072 panic("UE %s%son %s (%s%s)\n",
1073 msg, msg_aux, label, location, detail);
1074 }
1075
1076 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1077 }
1078
1079 /**
1080 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1081 * anything to discover the error location
1082 *
1083 * @type: severity of the error (CE/UE/Fatal)
1084 * @mci: a struct mem_ctl_info pointer
1085 * @e: error description
1086 *
1087 * This raw function is used internally by edac_mc_handle_error(). It should
1088 * only be called directly when the hardware error come directly from BIOS,
1089 * like in the case of APEI GHES driver.
1090 */
1091 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1092 struct mem_ctl_info *mci,
1093 struct edac_raw_error_desc *e)
1094 {
1095 char detail[80];
1096 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1097
1098 /* Memory type dependent details about the error */
1099 if (type == HW_EVENT_ERR_CORRECTED) {
1100 snprintf(detail, sizeof(detail),
1101 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1102 e->page_frame_number, e->offset_in_page,
1103 e->grain, e->syndrome);
1104 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105 detail, e->other_detail, e->enable_per_layer_report,
1106 e->page_frame_number, e->offset_in_page, e->grain);
1107 } else {
1108 snprintf(detail, sizeof(detail),
1109 "page:0x%lx offset:0x%lx grain:%ld",
1110 e->page_frame_number, e->offset_in_page, e->grain);
1111
1112 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1113 detail, e->other_detail, e->enable_per_layer_report);
1114 }
1115
1116
1117 }
1118 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1119
1120 /**
1121 * edac_mc_handle_error - reports a memory event to userspace
1122 *
1123 * @type: severity of the error (CE/UE/Fatal)
1124 * @mci: a struct mem_ctl_info pointer
1125 * @error_count: Number of errors of the same type
1126 * @page_frame_number: mem page where the error occurred
1127 * @offset_in_page: offset of the error inside the page
1128 * @syndrome: ECC syndrome
1129 * @top_layer: Memory layer[0] position
1130 * @mid_layer: Memory layer[1] position
1131 * @low_layer: Memory layer[2] position
1132 * @msg: Message meaningful to the end users that
1133 * explains the event
1134 * @other_detail: Technical details about the event that
1135 * may help hardware manufacturers and
1136 * EDAC developers to analyse the event
1137 */
1138 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1139 struct mem_ctl_info *mci,
1140 const u16 error_count,
1141 const unsigned long page_frame_number,
1142 const unsigned long offset_in_page,
1143 const unsigned long syndrome,
1144 const int top_layer,
1145 const int mid_layer,
1146 const int low_layer,
1147 const char *msg,
1148 const char *other_detail)
1149 {
1150 char *p;
1151 int row = -1, chan = -1;
1152 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1153 int i, n_labels = 0;
1154 u8 grain_bits;
1155 struct edac_raw_error_desc *e = &mci->error_desc;
1156
1157 edac_dbg(3, "MC%d\n", mci->mc_idx);
1158
1159 /* Fills the error report buffer */
1160 memset(e, 0, sizeof (*e));
1161 e->error_count = error_count;
1162 e->top_layer = top_layer;
1163 e->mid_layer = mid_layer;
1164 e->low_layer = low_layer;
1165 e->page_frame_number = page_frame_number;
1166 e->offset_in_page = offset_in_page;
1167 e->syndrome = syndrome;
1168 e->msg = msg;
1169 e->other_detail = other_detail;
1170
1171 /*
1172 * Check if the event report is consistent and if the memory
1173 * location is known. If it is known, enable_per_layer_report will be
1174 * true, the DIMM(s) label info will be filled and the per-layer
1175 * error counters will be incremented.
1176 */
1177 for (i = 0; i < mci->n_layers; i++) {
1178 if (pos[i] >= (int)mci->layers[i].size) {
1179
1180 edac_mc_printk(mci, KERN_ERR,
1181 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1182 edac_layer_name[mci->layers[i].type],
1183 pos[i], mci->layers[i].size);
1184 /*
1185 * Instead of just returning it, let's use what's
1186 * known about the error. The increment routines and
1187 * the DIMM filter logic will do the right thing by
1188 * pointing the likely damaged DIMMs.
1189 */
1190 pos[i] = -1;
1191 }
1192 if (pos[i] >= 0)
1193 e->enable_per_layer_report = true;
1194 }
1195
1196 /*
1197 * Get the dimm label/grain that applies to the match criteria.
1198 * As the error algorithm may not be able to point to just one memory
1199 * stick, the logic here will get all possible labels that could
1200 * pottentially be affected by the error.
1201 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1202 * to have only the MC channel and the MC dimm (also called "branch")
1203 * but the channel is not known, as the memory is arranged in pairs,
1204 * where each memory belongs to a separate channel within the same
1205 * branch.
1206 */
1207 p = e->label;
1208 *p = '\0';
1209
1210 for (i = 0; i < mci->tot_dimms; i++) {
1211 struct dimm_info *dimm = mci->dimms[i];
1212
1213 if (top_layer >= 0 && top_layer != dimm->location[0])
1214 continue;
1215 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1216 continue;
1217 if (low_layer >= 0 && low_layer != dimm->location[2])
1218 continue;
1219
1220 /* get the max grain, over the error match range */
1221 if (dimm->grain > e->grain)
1222 e->grain = dimm->grain;
1223
1224 /*
1225 * If the error is memory-controller wide, there's no need to
1226 * seek for the affected DIMMs because the whole
1227 * channel/memory controller/... may be affected.
1228 * Also, don't show errors for empty DIMM slots.
1229 */
1230 if (e->enable_per_layer_report && dimm->nr_pages) {
1231 if (n_labels >= EDAC_MAX_LABELS) {
1232 e->enable_per_layer_report = false;
1233 break;
1234 }
1235 n_labels++;
1236 if (p != e->label) {
1237 strcpy(p, OTHER_LABEL);
1238 p += strlen(OTHER_LABEL);
1239 }
1240 strcpy(p, dimm->label);
1241 p += strlen(p);
1242 *p = '\0';
1243
1244 /*
1245 * get csrow/channel of the DIMM, in order to allow
1246 * incrementing the compat API counters
1247 */
1248 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1249 mci->csbased ? "rank" : "dimm",
1250 dimm->csrow, dimm->cschannel);
1251 if (row == -1)
1252 row = dimm->csrow;
1253 else if (row >= 0 && row != dimm->csrow)
1254 row = -2;
1255
1256 if (chan == -1)
1257 chan = dimm->cschannel;
1258 else if (chan >= 0 && chan != dimm->cschannel)
1259 chan = -2;
1260 }
1261 }
1262
1263 if (!e->enable_per_layer_report) {
1264 strcpy(e->label, "any memory");
1265 } else {
1266 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1267 if (p == e->label)
1268 strcpy(e->label, "unknown memory");
1269 if (type == HW_EVENT_ERR_CORRECTED) {
1270 if (row >= 0) {
1271 mci->csrows[row]->ce_count += error_count;
1272 if (chan >= 0)
1273 mci->csrows[row]->channels[chan]->ce_count += error_count;
1274 }
1275 } else
1276 if (row >= 0)
1277 mci->csrows[row]->ue_count += error_count;
1278 }
1279
1280 /* Fill the RAM location data */
1281 p = e->location;
1282
1283 for (i = 0; i < mci->n_layers; i++) {
1284 if (pos[i] < 0)
1285 continue;
1286
1287 p += sprintf(p, "%s:%d ",
1288 edac_layer_name[mci->layers[i].type],
1289 pos[i]);
1290 }
1291 if (p > e->location)
1292 *(p - 1) = '\0';
1293
1294 /* Report the error via the trace interface */
1295 grain_bits = fls_long(e->grain) + 1;
1296 trace_mc_event(type, e->msg, e->label, e->error_count,
1297 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1298 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1299 grain_bits, e->syndrome, e->other_detail);
1300
1301 edac_raw_mc_handle_error(type, mci, e);
1302 }
1303 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.05875 seconds and 5 git commands to generate.