Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 /*
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
48 */
49 static void const *edac_mc_owner;
50
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
52
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 unsigned len)
55 {
56 struct mem_ctl_info *mci = dimm->mci;
57 int i, n, count = 0;
58 char *p = buf;
59
60 for (i = 0; i < mci->n_layers; i++) {
61 n = snprintf(p, len, "%s %d ",
62 edac_layer_name[mci->layers[i].type],
63 dimm->location[i]);
64 p += n;
65 len -= n;
66 count += n;
67 if (!len)
68 break;
69 }
70
71 return count;
72 }
73
74 #ifdef CONFIG_EDAC_DEBUG
75
76 static void edac_mc_dump_channel(struct rank_info *chan)
77 {
78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
79 edac_dbg(4, " channel = %p\n", chan);
80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
82 }
83
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85 {
86 char location[80];
87
88 edac_dimm_info_location(dimm, location, sizeof(location));
89
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm->mci->csbased ? "rank" : "dimm",
92 number, location, dimm->csrow, dimm->cschannel);
93 edac_dbg(4, " dimm = %p\n", dimm);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 }
99
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
101 {
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 edac_dbg(4, " csrow = %p\n", csrow);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
110 }
111
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113 {
114 edac_dbg(3, "\tmci = %p\n", mci);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci->nr_csrows, mci->csrows);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci->tot_dimms, mci->dimms);
123 edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci->mod_name, mci->ctl_name);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127 }
128
129 #endif /* CONFIG_EDAC_DEBUG */
130
131 /*
132 * keep those in sync with the enum mem_type
133 */
134 const char *edac_mem_types[] = {
135 "Empty csrow",
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
145 "Rambus DRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
149 "Rambus XDR",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
152 };
153 EXPORT_SYMBOL_GPL(edac_mem_types);
154
155 /**
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
161 *
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
164 *
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
169 *
170 * At return, the pointer 'p' will be incremented to be used on a next call
171 * to this function.
172 */
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
174 {
175 unsigned align, r;
176 void *ptr = *p;
177
178 *p += size * n_elems;
179
180 /*
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
188 */
189 if (size > sizeof(long))
190 align = sizeof(long long);
191 else if (size > sizeof(int))
192 align = sizeof(long);
193 else if (size > sizeof(short))
194 align = sizeof(int);
195 else if (size > sizeof(char))
196 align = sizeof(short);
197 else
198 return (char *)ptr;
199
200 r = (unsigned long)p % align;
201
202 if (r == 0)
203 return (char *)ptr;
204
205 *p += align - r;
206
207 return (void *)(((unsigned long)ptr) + align - r);
208 }
209
210 static void _edac_mc_free(struct mem_ctl_info *mci)
211 {
212 int i, chn, row;
213 struct csrow_info *csr;
214 const unsigned int tot_dimms = mci->tot_dimms;
215 const unsigned int tot_channels = mci->num_cschannel;
216 const unsigned int tot_csrows = mci->nr_csrows;
217
218 if (mci->dimms) {
219 for (i = 0; i < tot_dimms; i++)
220 kfree(mci->dimms[i]);
221 kfree(mci->dimms);
222 }
223 if (mci->csrows) {
224 for (row = 0; row < tot_csrows; row++) {
225 csr = mci->csrows[row];
226 if (csr) {
227 if (csr->channels) {
228 for (chn = 0; chn < tot_channels; chn++)
229 kfree(csr->channels[chn]);
230 kfree(csr->channels);
231 }
232 kfree(csr);
233 }
234 }
235 kfree(mci->csrows);
236 }
237 kfree(mci);
238 }
239
240 /**
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
246 *
247 *
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
251 *
252 * Use edac_mc_free() to free mc structures allocated by this function.
253 *
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
259 *
260 * Returns:
261 * On failure: NULL
262 * On success: struct mem_ctl_info pointer
263 */
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 unsigned n_layers,
266 struct edac_mc_layer *layers,
267 unsigned sz_pvt)
268 {
269 struct mem_ctl_info *mci;
270 struct edac_mc_layer *layer;
271 struct csrow_info *csr;
272 struct rank_info *chan;
273 struct dimm_info *dimm;
274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 unsigned pos[EDAC_MAX_LAYERS];
276 unsigned size, tot_dimms = 1, count = 1;
277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 void *pvt, *p, *ptr = NULL;
279 int i, j, row, chn, n, len, off;
280 bool per_rank = false;
281
282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 /*
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
286 */
287 for (i = 0; i < n_layers; i++) {
288 tot_dimms *= layers[i].size;
289 if (layers[i].is_virt_csrow)
290 tot_csrows *= layers[i].size;
291 else
292 tot_channels *= layers[i].size;
293
294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 per_rank = true;
296 }
297
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
302 */
303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 for (i = 0; i < n_layers; i++) {
306 count *= layers[i].size;
307 edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 tot_errcount += 2 * count;
311 }
312
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 size = ((unsigned long)pvt) + sz_pvt;
316
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 size,
319 tot_dimms,
320 per_rank ? "ranks" : "dimms",
321 tot_csrows * tot_channels);
322
323 mci = kzalloc(size, GFP_KERNEL);
324 if (mci == NULL)
325 return NULL;
326
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
329 */
330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 for (i = 0; i < n_layers; i++) {
332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 }
335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336
337 /* setup index and various internal pointers */
338 mci->mc_idx = mc_num;
339 mci->tot_dimms = tot_dimms;
340 mci->pvt_info = pvt;
341 mci->n_layers = n_layers;
342 mci->layers = layer;
343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 mci->nr_csrows = tot_csrows;
345 mci->num_cschannel = tot_channels;
346 mci->csbased = per_rank;
347
348 /*
349 * Alocate and fill the csrow/channels structs
350 */
351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 if (!mci->csrows)
353 goto error;
354 for (row = 0; row < tot_csrows; row++) {
355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 if (!csr)
357 goto error;
358 mci->csrows[row] = csr;
359 csr->csrow_idx = row;
360 csr->mci = mci;
361 csr->nr_channels = tot_channels;
362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 GFP_KERNEL);
364 if (!csr->channels)
365 goto error;
366
367 for (chn = 0; chn < tot_channels; chn++) {
368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 if (!chan)
370 goto error;
371 csr->channels[chn] = chan;
372 chan->chan_idx = chn;
373 chan->csrow = csr;
374 }
375 }
376
377 /*
378 * Allocate and fill the dimm structs
379 */
380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 if (!mci->dimms)
382 goto error;
383
384 memset(&pos, 0, sizeof(pos));
385 row = 0;
386 chn = 0;
387 for (i = 0; i < tot_dimms; i++) {
388 chan = mci->csrows[row]->channels[chn];
389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 if (off < 0 || off >= tot_dimms) {
391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 goto error;
393 }
394
395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 if (!dimm)
397 goto error;
398 mci->dimms[off] = dimm;
399 dimm->mci = mci;
400
401 /*
402 * Copy DIMM location and initialize it.
403 */
404 len = sizeof(dimm->label);
405 p = dimm->label;
406 n = snprintf(p, len, "mc#%u", mc_num);
407 p += n;
408 len -= n;
409 for (j = 0; j < n_layers; j++) {
410 n = snprintf(p, len, "%s#%u",
411 edac_layer_name[layers[j].type],
412 pos[j]);
413 p += n;
414 len -= n;
415 dimm->location[j] = pos[j];
416
417 if (len <= 0)
418 break;
419 }
420
421 /* Link it to the csrows old API data */
422 chan->dimm = dimm;
423 dimm->csrow = row;
424 dimm->cschannel = chn;
425
426 /* Increment csrow location */
427 if (layers[0].is_virt_csrow) {
428 chn++;
429 if (chn == tot_channels) {
430 chn = 0;
431 row++;
432 }
433 } else {
434 row++;
435 if (row == tot_csrows) {
436 row = 0;
437 chn++;
438 }
439 }
440
441 /* Increment dimm location */
442 for (j = n_layers - 1; j >= 0; j--) {
443 pos[j]++;
444 if (pos[j] < layers[j].size)
445 break;
446 pos[j] = 0;
447 }
448 }
449
450 mci->op_state = OP_ALLOC;
451
452 return mci;
453
454 error:
455 _edac_mc_free(mci);
456
457 return NULL;
458 }
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
460
461 /**
462 * edac_mc_free
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
465 */
466 void edac_mc_free(struct mem_ctl_info *mci)
467 {
468 edac_dbg(1, "\n");
469
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
472 */
473 if (!device_is_registered(&mci->dev)) {
474 _edac_mc_free(mci);
475 return;
476 }
477
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci);
480 }
481 EXPORT_SYMBOL_GPL(edac_mc_free);
482
483
484 /**
485 * find_mci_by_dev
486 *
487 * scan list of controllers looking for the one that manages
488 * the 'dev' device
489 * @dev: pointer to a struct device related with the MCI
490 */
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 {
493 struct mem_ctl_info *mci;
494 struct list_head *item;
495
496 edac_dbg(3, "\n");
497
498 list_for_each(item, &mc_devices) {
499 mci = list_entry(item, struct mem_ctl_info, link);
500
501 if (mci->pdev == dev)
502 return mci;
503 }
504
505 return NULL;
506 }
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
508
509 /*
510 * handler for EDAC to check if NMI type handler has asserted interrupt
511 */
512 static int edac_mc_assert_error_check_and_clear(void)
513 {
514 int old_state;
515
516 if (edac_op_state == EDAC_OPSTATE_POLL)
517 return 1;
518
519 old_state = edac_err_assert;
520 edac_err_assert = 0;
521
522 return old_state;
523 }
524
525 /*
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
528 */
529 static void edac_mc_workq_function(struct work_struct *work_req)
530 {
531 struct delayed_work *d_work = to_delayed_work(work_req);
532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533
534 mutex_lock(&mem_ctls_mutex);
535
536 /* if this control struct has movd to offline state, we are done */
537 if (mci->op_state == OP_OFFLINE) {
538 mutex_unlock(&mem_ctls_mutex);
539 return;
540 }
541
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 mci->edac_check(mci);
545
546 mutex_unlock(&mem_ctls_mutex);
547
548 /* Reschedule */
549 queue_delayed_work(edac_workqueue, &mci->work,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
551 }
552
553 /*
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
557 *
558 * locking model:
559 *
560 * called with the mem_ctls_mutex held
561 */
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
563 bool init)
564 {
565 edac_dbg(0, "\n");
566
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci->op_state != OP_RUNNING_POLL)
569 return;
570
571 if (init)
572 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
573
574 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
575 }
576
577 /*
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
580 *
581 * locking model:
582 *
583 * called WITHOUT lock held
584 */
585 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
586 {
587 int status;
588
589 if (mci->op_state != OP_RUNNING_POLL)
590 return;
591
592 status = cancel_delayed_work(&mci->work);
593 if (status == 0) {
594 edac_dbg(0, "not canceled, flush the queue\n");
595
596 /* workq instance might be running, wait for it */
597 flush_workqueue(edac_workqueue);
598 }
599 }
600
601 /*
602 * edac_mc_reset_delay_period(unsigned long value)
603 *
604 * user space has updated our poll period value, need to
605 * reset our workq delays
606 */
607 void edac_mc_reset_delay_period(unsigned long value)
608 {
609 struct mem_ctl_info *mci;
610 struct list_head *item;
611
612 mutex_lock(&mem_ctls_mutex);
613
614 list_for_each(item, &mc_devices) {
615 mci = list_entry(item, struct mem_ctl_info, link);
616
617 edac_mc_workq_setup(mci, value, false);
618 }
619
620 mutex_unlock(&mem_ctls_mutex);
621 }
622
623
624
625 /* Return 0 on success, 1 on failure.
626 * Before calling this function, caller must
627 * assign a unique value to mci->mc_idx.
628 *
629 * locking model:
630 *
631 * called with the mem_ctls_mutex lock held
632 */
633 static int add_mc_to_global_list(struct mem_ctl_info *mci)
634 {
635 struct list_head *item, *insert_before;
636 struct mem_ctl_info *p;
637
638 insert_before = &mc_devices;
639
640 p = find_mci_by_dev(mci->pdev);
641 if (unlikely(p != NULL))
642 goto fail0;
643
644 list_for_each(item, &mc_devices) {
645 p = list_entry(item, struct mem_ctl_info, link);
646
647 if (p->mc_idx >= mci->mc_idx) {
648 if (unlikely(p->mc_idx == mci->mc_idx))
649 goto fail1;
650
651 insert_before = item;
652 break;
653 }
654 }
655
656 list_add_tail_rcu(&mci->link, insert_before);
657 atomic_inc(&edac_handlers);
658 return 0;
659
660 fail0:
661 edac_printk(KERN_WARNING, EDAC_MC,
662 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
663 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
664 return 1;
665
666 fail1:
667 edac_printk(KERN_WARNING, EDAC_MC,
668 "bug in low-level driver: attempt to assign\n"
669 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
670 return 1;
671 }
672
673 static int del_mc_from_global_list(struct mem_ctl_info *mci)
674 {
675 int handlers = atomic_dec_return(&edac_handlers);
676 list_del_rcu(&mci->link);
677
678 /* these are for safe removal of devices from global list while
679 * NMI handlers may be traversing list
680 */
681 synchronize_rcu();
682 INIT_LIST_HEAD(&mci->link);
683
684 return handlers;
685 }
686
687 /**
688 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
689 *
690 * If found, return a pointer to the structure.
691 * Else return NULL.
692 *
693 * Caller must hold mem_ctls_mutex.
694 */
695 struct mem_ctl_info *edac_mc_find(int idx)
696 {
697 struct list_head *item;
698 struct mem_ctl_info *mci;
699
700 list_for_each(item, &mc_devices) {
701 mci = list_entry(item, struct mem_ctl_info, link);
702
703 if (mci->mc_idx >= idx) {
704 if (mci->mc_idx == idx)
705 return mci;
706
707 break;
708 }
709 }
710
711 return NULL;
712 }
713 EXPORT_SYMBOL(edac_mc_find);
714
715 /**
716 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
717 * create sysfs entries associated with mci structure
718 * @mci: pointer to the mci structure to be added to the list
719 *
720 * Return:
721 * 0 Success
722 * !0 Failure
723 */
724
725 /* FIXME - should a warning be printed if no error detection? correction? */
726 int edac_mc_add_mc(struct mem_ctl_info *mci)
727 {
728 int ret = -EINVAL;
729 edac_dbg(0, "\n");
730
731 if (mci->mc_idx >= EDAC_MAX_MCS) {
732 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
733 return -ENODEV;
734 }
735
736 #ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level >= 3)
738 edac_mc_dump_mci(mci);
739
740 if (edac_debug_level >= 4) {
741 int i;
742
743 for (i = 0; i < mci->nr_csrows; i++) {
744 struct csrow_info *csrow = mci->csrows[i];
745 u32 nr_pages = 0;
746 int j;
747
748 for (j = 0; j < csrow->nr_channels; j++)
749 nr_pages += csrow->channels[j]->dimm->nr_pages;
750 if (!nr_pages)
751 continue;
752 edac_mc_dump_csrow(csrow);
753 for (j = 0; j < csrow->nr_channels; j++)
754 if (csrow->channels[j]->dimm->nr_pages)
755 edac_mc_dump_channel(csrow->channels[j]);
756 }
757 for (i = 0; i < mci->tot_dimms; i++)
758 if (mci->dimms[i]->nr_pages)
759 edac_mc_dump_dimm(mci->dimms[i], i);
760 }
761 #endif
762 mutex_lock(&mem_ctls_mutex);
763
764 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
765 ret = -EPERM;
766 goto fail0;
767 }
768
769 if (add_mc_to_global_list(mci))
770 goto fail0;
771
772 /* set load time so that error rate can be tracked */
773 mci->start_time = jiffies;
774
775 mci->bus = &mc_bus[mci->mc_idx];
776
777 if (edac_create_sysfs_mci_device(mci)) {
778 edac_mc_printk(mci, KERN_WARNING,
779 "failed to create sysfs device\n");
780 goto fail1;
781 }
782
783 /* If there IS a check routine, then we are running POLLED */
784 if (mci->edac_check != NULL) {
785 /* This instance is NOW RUNNING */
786 mci->op_state = OP_RUNNING_POLL;
787
788 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
789 } else {
790 mci->op_state = OP_RUNNING_INTERRUPT;
791 }
792
793 /* Report action taken */
794 edac_mc_printk(mci, KERN_INFO,
795 "Giving out device to module %s controller %s: DEV %s (%s)\n",
796 mci->mod_name, mci->ctl_name, mci->dev_name,
797 edac_op_state_to_string(mci->op_state));
798
799 edac_mc_owner = mci->mod_name;
800
801 mutex_unlock(&mem_ctls_mutex);
802 return 0;
803
804 fail1:
805 del_mc_from_global_list(mci);
806
807 fail0:
808 mutex_unlock(&mem_ctls_mutex);
809 return ret;
810 }
811 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
812
813 /**
814 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
815 * remove mci structure from global list
816 * @pdev: Pointer to 'struct device' representing mci structure to remove.
817 *
818 * Return pointer to removed mci structure, or NULL if device not found.
819 */
820 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
821 {
822 struct mem_ctl_info *mci;
823
824 edac_dbg(0, "\n");
825
826 mutex_lock(&mem_ctls_mutex);
827
828 /* find the requested mci struct in the global list */
829 mci = find_mci_by_dev(dev);
830 if (mci == NULL) {
831 mutex_unlock(&mem_ctls_mutex);
832 return NULL;
833 }
834
835 if (!del_mc_from_global_list(mci))
836 edac_mc_owner = NULL;
837 mutex_unlock(&mem_ctls_mutex);
838
839 /* flush workq processes */
840 edac_mc_workq_teardown(mci);
841
842 /* marking MCI offline */
843 mci->op_state = OP_OFFLINE;
844
845 /* remove from sysfs */
846 edac_remove_sysfs_mci_device(mci);
847
848 edac_printk(KERN_INFO, EDAC_MC,
849 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
850 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
851
852 return mci;
853 }
854 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
855
856 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
857 u32 size)
858 {
859 struct page *pg;
860 void *virt_addr;
861 unsigned long flags = 0;
862
863 edac_dbg(3, "\n");
864
865 /* ECC error page was not in our memory. Ignore it. */
866 if (!pfn_valid(page))
867 return;
868
869 /* Find the actual page structure then map it and fix */
870 pg = pfn_to_page(page);
871
872 if (PageHighMem(pg))
873 local_irq_save(flags);
874
875 virt_addr = kmap_atomic(pg);
876
877 /* Perform architecture specific atomic scrub operation */
878 atomic_scrub(virt_addr + offset, size);
879
880 /* Unmap and complete */
881 kunmap_atomic(virt_addr);
882
883 if (PageHighMem(pg))
884 local_irq_restore(flags);
885 }
886
887 /* FIXME - should return -1 */
888 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
889 {
890 struct csrow_info **csrows = mci->csrows;
891 int row, i, j, n;
892
893 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
894 row = -1;
895
896 for (i = 0; i < mci->nr_csrows; i++) {
897 struct csrow_info *csrow = csrows[i];
898 n = 0;
899 for (j = 0; j < csrow->nr_channels; j++) {
900 struct dimm_info *dimm = csrow->channels[j]->dimm;
901 n += dimm->nr_pages;
902 }
903 if (n == 0)
904 continue;
905
906 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
907 mci->mc_idx,
908 csrow->first_page, page, csrow->last_page,
909 csrow->page_mask);
910
911 if ((page >= csrow->first_page) &&
912 (page <= csrow->last_page) &&
913 ((page & csrow->page_mask) ==
914 (csrow->first_page & csrow->page_mask))) {
915 row = i;
916 break;
917 }
918 }
919
920 if (row == -1)
921 edac_mc_printk(mci, KERN_ERR,
922 "could not look up page error address %lx\n",
923 (unsigned long)page);
924
925 return row;
926 }
927 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
928
929 const char *edac_layer_name[] = {
930 [EDAC_MC_LAYER_BRANCH] = "branch",
931 [EDAC_MC_LAYER_CHANNEL] = "channel",
932 [EDAC_MC_LAYER_SLOT] = "slot",
933 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
934 [EDAC_MC_LAYER_ALL_MEM] = "memory",
935 };
936 EXPORT_SYMBOL_GPL(edac_layer_name);
937
938 static void edac_inc_ce_error(struct mem_ctl_info *mci,
939 bool enable_per_layer_report,
940 const int pos[EDAC_MAX_LAYERS],
941 const u16 count)
942 {
943 int i, index = 0;
944
945 mci->ce_mc += count;
946
947 if (!enable_per_layer_report) {
948 mci->ce_noinfo_count += count;
949 return;
950 }
951
952 for (i = 0; i < mci->n_layers; i++) {
953 if (pos[i] < 0)
954 break;
955 index += pos[i];
956 mci->ce_per_layer[i][index] += count;
957
958 if (i < mci->n_layers - 1)
959 index *= mci->layers[i + 1].size;
960 }
961 }
962
963 static void edac_inc_ue_error(struct mem_ctl_info *mci,
964 bool enable_per_layer_report,
965 const int pos[EDAC_MAX_LAYERS],
966 const u16 count)
967 {
968 int i, index = 0;
969
970 mci->ue_mc += count;
971
972 if (!enable_per_layer_report) {
973 mci->ce_noinfo_count += count;
974 return;
975 }
976
977 for (i = 0; i < mci->n_layers; i++) {
978 if (pos[i] < 0)
979 break;
980 index += pos[i];
981 mci->ue_per_layer[i][index] += count;
982
983 if (i < mci->n_layers - 1)
984 index *= mci->layers[i + 1].size;
985 }
986 }
987
988 static void edac_ce_error(struct mem_ctl_info *mci,
989 const u16 error_count,
990 const int pos[EDAC_MAX_LAYERS],
991 const char *msg,
992 const char *location,
993 const char *label,
994 const char *detail,
995 const char *other_detail,
996 const bool enable_per_layer_report,
997 const unsigned long page_frame_number,
998 const unsigned long offset_in_page,
999 long grain)
1000 {
1001 unsigned long remapped_page;
1002 char *msg_aux = "";
1003
1004 if (*msg)
1005 msg_aux = " ";
1006
1007 if (edac_mc_get_log_ce()) {
1008 if (other_detail && *other_detail)
1009 edac_mc_printk(mci, KERN_WARNING,
1010 "%d CE %s%son %s (%s %s - %s)\n",
1011 error_count, msg, msg_aux, label,
1012 location, detail, other_detail);
1013 else
1014 edac_mc_printk(mci, KERN_WARNING,
1015 "%d CE %s%son %s (%s %s)\n",
1016 error_count, msg, msg_aux, label,
1017 location, detail);
1018 }
1019 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1020
1021 if (mci->scrub_mode == SCRUB_SW_SRC) {
1022 /*
1023 * Some memory controllers (called MCs below) can remap
1024 * memory so that it is still available at a different
1025 * address when PCI devices map into memory.
1026 * MC's that can't do this, lose the memory where PCI
1027 * devices are mapped. This mapping is MC-dependent
1028 * and so we call back into the MC driver for it to
1029 * map the MC page to a physical (CPU) page which can
1030 * then be mapped to a virtual page - which can then
1031 * be scrubbed.
1032 */
1033 remapped_page = mci->ctl_page_to_phys ?
1034 mci->ctl_page_to_phys(mci, page_frame_number) :
1035 page_frame_number;
1036
1037 edac_mc_scrub_block(remapped_page,
1038 offset_in_page, grain);
1039 }
1040 }
1041
1042 static void edac_ue_error(struct mem_ctl_info *mci,
1043 const u16 error_count,
1044 const int pos[EDAC_MAX_LAYERS],
1045 const char *msg,
1046 const char *location,
1047 const char *label,
1048 const char *detail,
1049 const char *other_detail,
1050 const bool enable_per_layer_report)
1051 {
1052 char *msg_aux = "";
1053
1054 if (*msg)
1055 msg_aux = " ";
1056
1057 if (edac_mc_get_log_ue()) {
1058 if (other_detail && *other_detail)
1059 edac_mc_printk(mci, KERN_WARNING,
1060 "%d UE %s%son %s (%s %s - %s)\n",
1061 error_count, msg, msg_aux, label,
1062 location, detail, other_detail);
1063 else
1064 edac_mc_printk(mci, KERN_WARNING,
1065 "%d UE %s%son %s (%s %s)\n",
1066 error_count, msg, msg_aux, label,
1067 location, detail);
1068 }
1069
1070 if (edac_mc_get_panic_on_ue()) {
1071 if (other_detail && *other_detail)
1072 panic("UE %s%son %s (%s%s - %s)\n",
1073 msg, msg_aux, label, location, detail, other_detail);
1074 else
1075 panic("UE %s%son %s (%s%s)\n",
1076 msg, msg_aux, label, location, detail);
1077 }
1078
1079 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1080 }
1081
1082 /**
1083 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1084 * anything to discover the error location
1085 *
1086 * @type: severity of the error (CE/UE/Fatal)
1087 * @mci: a struct mem_ctl_info pointer
1088 * @e: error description
1089 *
1090 * This raw function is used internally by edac_mc_handle_error(). It should
1091 * only be called directly when the hardware error come directly from BIOS,
1092 * like in the case of APEI GHES driver.
1093 */
1094 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1095 struct mem_ctl_info *mci,
1096 struct edac_raw_error_desc *e)
1097 {
1098 char detail[80];
1099 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1100
1101 /* Memory type dependent details about the error */
1102 if (type == HW_EVENT_ERR_CORRECTED) {
1103 snprintf(detail, sizeof(detail),
1104 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1105 e->page_frame_number, e->offset_in_page,
1106 e->grain, e->syndrome);
1107 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1108 detail, e->other_detail, e->enable_per_layer_report,
1109 e->page_frame_number, e->offset_in_page, e->grain);
1110 } else {
1111 snprintf(detail, sizeof(detail),
1112 "page:0x%lx offset:0x%lx grain:%ld",
1113 e->page_frame_number, e->offset_in_page, e->grain);
1114
1115 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1116 detail, e->other_detail, e->enable_per_layer_report);
1117 }
1118
1119
1120 }
1121 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1122
1123 /**
1124 * edac_mc_handle_error - reports a memory event to userspace
1125 *
1126 * @type: severity of the error (CE/UE/Fatal)
1127 * @mci: a struct mem_ctl_info pointer
1128 * @error_count: Number of errors of the same type
1129 * @page_frame_number: mem page where the error occurred
1130 * @offset_in_page: offset of the error inside the page
1131 * @syndrome: ECC syndrome
1132 * @top_layer: Memory layer[0] position
1133 * @mid_layer: Memory layer[1] position
1134 * @low_layer: Memory layer[2] position
1135 * @msg: Message meaningful to the end users that
1136 * explains the event
1137 * @other_detail: Technical details about the event that
1138 * may help hardware manufacturers and
1139 * EDAC developers to analyse the event
1140 */
1141 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1142 struct mem_ctl_info *mci,
1143 const u16 error_count,
1144 const unsigned long page_frame_number,
1145 const unsigned long offset_in_page,
1146 const unsigned long syndrome,
1147 const int top_layer,
1148 const int mid_layer,
1149 const int low_layer,
1150 const char *msg,
1151 const char *other_detail)
1152 {
1153 char *p;
1154 int row = -1, chan = -1;
1155 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1156 int i, n_labels = 0;
1157 u8 grain_bits;
1158 struct edac_raw_error_desc *e = &mci->error_desc;
1159
1160 edac_dbg(3, "MC%d\n", mci->mc_idx);
1161
1162 /* Fills the error report buffer */
1163 memset(e, 0, sizeof (*e));
1164 e->error_count = error_count;
1165 e->top_layer = top_layer;
1166 e->mid_layer = mid_layer;
1167 e->low_layer = low_layer;
1168 e->page_frame_number = page_frame_number;
1169 e->offset_in_page = offset_in_page;
1170 e->syndrome = syndrome;
1171 e->msg = msg;
1172 e->other_detail = other_detail;
1173
1174 /*
1175 * Check if the event report is consistent and if the memory
1176 * location is known. If it is known, enable_per_layer_report will be
1177 * true, the DIMM(s) label info will be filled and the per-layer
1178 * error counters will be incremented.
1179 */
1180 for (i = 0; i < mci->n_layers; i++) {
1181 if (pos[i] >= (int)mci->layers[i].size) {
1182
1183 edac_mc_printk(mci, KERN_ERR,
1184 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1185 edac_layer_name[mci->layers[i].type],
1186 pos[i], mci->layers[i].size);
1187 /*
1188 * Instead of just returning it, let's use what's
1189 * known about the error. The increment routines and
1190 * the DIMM filter logic will do the right thing by
1191 * pointing the likely damaged DIMMs.
1192 */
1193 pos[i] = -1;
1194 }
1195 if (pos[i] >= 0)
1196 e->enable_per_layer_report = true;
1197 }
1198
1199 /*
1200 * Get the dimm label/grain that applies to the match criteria.
1201 * As the error algorithm may not be able to point to just one memory
1202 * stick, the logic here will get all possible labels that could
1203 * pottentially be affected by the error.
1204 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1205 * to have only the MC channel and the MC dimm (also called "branch")
1206 * but the channel is not known, as the memory is arranged in pairs,
1207 * where each memory belongs to a separate channel within the same
1208 * branch.
1209 */
1210 p = e->label;
1211 *p = '\0';
1212
1213 for (i = 0; i < mci->tot_dimms; i++) {
1214 struct dimm_info *dimm = mci->dimms[i];
1215
1216 if (top_layer >= 0 && top_layer != dimm->location[0])
1217 continue;
1218 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1219 continue;
1220 if (low_layer >= 0 && low_layer != dimm->location[2])
1221 continue;
1222
1223 /* get the max grain, over the error match range */
1224 if (dimm->grain > e->grain)
1225 e->grain = dimm->grain;
1226
1227 /*
1228 * If the error is memory-controller wide, there's no need to
1229 * seek for the affected DIMMs because the whole
1230 * channel/memory controller/... may be affected.
1231 * Also, don't show errors for empty DIMM slots.
1232 */
1233 if (e->enable_per_layer_report && dimm->nr_pages) {
1234 if (n_labels >= EDAC_MAX_LABELS) {
1235 e->enable_per_layer_report = false;
1236 break;
1237 }
1238 n_labels++;
1239 if (p != e->label) {
1240 strcpy(p, OTHER_LABEL);
1241 p += strlen(OTHER_LABEL);
1242 }
1243 strcpy(p, dimm->label);
1244 p += strlen(p);
1245 *p = '\0';
1246
1247 /*
1248 * get csrow/channel of the DIMM, in order to allow
1249 * incrementing the compat API counters
1250 */
1251 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1252 mci->csbased ? "rank" : "dimm",
1253 dimm->csrow, dimm->cschannel);
1254 if (row == -1)
1255 row = dimm->csrow;
1256 else if (row >= 0 && row != dimm->csrow)
1257 row = -2;
1258
1259 if (chan == -1)
1260 chan = dimm->cschannel;
1261 else if (chan >= 0 && chan != dimm->cschannel)
1262 chan = -2;
1263 }
1264 }
1265
1266 if (!e->enable_per_layer_report) {
1267 strcpy(e->label, "any memory");
1268 } else {
1269 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1270 if (p == e->label)
1271 strcpy(e->label, "unknown memory");
1272 if (type == HW_EVENT_ERR_CORRECTED) {
1273 if (row >= 0) {
1274 mci->csrows[row]->ce_count += error_count;
1275 if (chan >= 0)
1276 mci->csrows[row]->channels[chan]->ce_count += error_count;
1277 }
1278 } else
1279 if (row >= 0)
1280 mci->csrows[row]->ue_count += error_count;
1281 }
1282
1283 /* Fill the RAM location data */
1284 p = e->location;
1285
1286 for (i = 0; i < mci->n_layers; i++) {
1287 if (pos[i] < 0)
1288 continue;
1289
1290 p += sprintf(p, "%s:%d ",
1291 edac_layer_name[mci->layers[i].type],
1292 pos[i]);
1293 }
1294 if (p > e->location)
1295 *(p - 1) = '\0';
1296
1297 /* Report the error via the trace interface */
1298 grain_bits = fls_long(e->grain) + 1;
1299 trace_mc_event(type, e->msg, e->label, e->error_count,
1300 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1301 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1302 grain_bits, e->syndrome, e->other_detail);
1303
1304 edac_raw_mc_handle_error(type, mci, e);
1305 }
1306 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.058771 seconds and 5 git commands to generate.