Merge branch 'audit' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47 {
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64 }
65
66 #ifdef CONFIG_EDAC_DEBUG
67
68 static void edac_mc_dump_channel(struct rank_info *chan)
69 {
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
74 }
75
76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
77 {
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
90 }
91
92 static void edac_mc_dump_csrow(struct csrow_info *csrow)
93 {
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
102 }
103
104 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
105 {
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
119 }
120
121 #endif /* CONFIG_EDAC_DEBUG */
122
123 /*
124 * keep those in sync with the enum mem_type
125 */
126 const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144 };
145 EXPORT_SYMBOL_GPL(edac_mem_types);
146
147 /**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
164 */
165 void *edac_align_ptr(void **p, unsigned size, int n_elems)
166 {
167 unsigned align, r;
168 void *ptr = *p;
169
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
191
192 r = (unsigned long)p % align;
193
194 if (r == 0)
195 return (char *)ptr;
196
197 *p += align - r;
198
199 return (void *)(((unsigned long)ptr) + align - r);
200 }
201
202 /**
203 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
204 * @mc_num: Memory controller number
205 * @n_layers: Number of MC hierarchy layers
206 * layers: Describes each layer as seen by the Memory Controller
207 * @size_pvt: size of private storage needed
208 *
209 *
210 * Everything is kmalloc'ed as one big chunk - more efficient.
211 * Only can be used if all structures have the same lifetime - otherwise
212 * you have to allocate and initialize your own structures.
213 *
214 * Use edac_mc_free() to free mc structures allocated by this function.
215 *
216 * NOTE: drivers handle multi-rank memories in different ways: in some
217 * drivers, one multi-rank memory stick is mapped as one entry, while, in
218 * others, a single multi-rank memory stick would be mapped into several
219 * entries. Currently, this function will allocate multiple struct dimm_info
220 * on such scenarios, as grouping the multiple ranks require drivers change.
221 *
222 * Returns:
223 * On failure: NULL
224 * On success: struct mem_ctl_info pointer
225 */
226 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
227 unsigned n_layers,
228 struct edac_mc_layer *layers,
229 unsigned sz_pvt)
230 {
231 struct mem_ctl_info *mci;
232 struct edac_mc_layer *layer;
233 struct csrow_info *csr;
234 struct rank_info *chan;
235 struct dimm_info *dimm;
236 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
237 unsigned pos[EDAC_MAX_LAYERS];
238 unsigned size, tot_dimms = 1, count = 1;
239 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
240 void *pvt, *p, *ptr = NULL;
241 int i, j, row, chn, n, len, off;
242 bool per_rank = false;
243
244 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
245 /*
246 * Calculate the total amount of dimms and csrows/cschannels while
247 * in the old API emulation mode
248 */
249 for (i = 0; i < n_layers; i++) {
250 tot_dimms *= layers[i].size;
251 if (layers[i].is_virt_csrow)
252 tot_csrows *= layers[i].size;
253 else
254 tot_channels *= layers[i].size;
255
256 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
257 per_rank = true;
258 }
259
260 /* Figure out the offsets of the various items from the start of an mc
261 * structure. We want the alignment of each item to be at least as
262 * stringent as what the compiler would provide if we could simply
263 * hardcode everything into a single struct.
264 */
265 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
266 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
267 for (i = 0; i < n_layers; i++) {
268 count *= layers[i].size;
269 edac_dbg(4, "errcount layer %d size %d\n", i, count);
270 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
271 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
272 tot_errcount += 2 * count;
273 }
274
275 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
276 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
277 size = ((unsigned long)pvt) + sz_pvt;
278
279 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
280 size,
281 tot_dimms,
282 per_rank ? "ranks" : "dimms",
283 tot_csrows * tot_channels);
284
285 mci = kzalloc(size, GFP_KERNEL);
286 if (mci == NULL)
287 return NULL;
288
289 /* Adjust pointers so they point within the memory we just allocated
290 * rather than an imaginary chunk of memory located at address 0.
291 */
292 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
293 for (i = 0; i < n_layers; i++) {
294 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
295 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
296 }
297 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
298
299 /* setup index and various internal pointers */
300 mci->mc_idx = mc_num;
301 mci->tot_dimms = tot_dimms;
302 mci->pvt_info = pvt;
303 mci->n_layers = n_layers;
304 mci->layers = layer;
305 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
306 mci->nr_csrows = tot_csrows;
307 mci->num_cschannel = tot_channels;
308 mci->mem_is_per_rank = per_rank;
309
310 /*
311 * Alocate and fill the csrow/channels structs
312 */
313 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
314 if (!mci->csrows)
315 goto error;
316 for (row = 0; row < tot_csrows; row++) {
317 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
318 if (!csr)
319 goto error;
320 mci->csrows[row] = csr;
321 csr->csrow_idx = row;
322 csr->mci = mci;
323 csr->nr_channels = tot_channels;
324 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
325 GFP_KERNEL);
326 if (!csr->channels)
327 goto error;
328
329 for (chn = 0; chn < tot_channels; chn++) {
330 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
331 if (!chan)
332 goto error;
333 csr->channels[chn] = chan;
334 chan->chan_idx = chn;
335 chan->csrow = csr;
336 }
337 }
338
339 /*
340 * Allocate and fill the dimm structs
341 */
342 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
343 if (!mci->dimms)
344 goto error;
345
346 memset(&pos, 0, sizeof(pos));
347 row = 0;
348 chn = 0;
349 for (i = 0; i < tot_dimms; i++) {
350 chan = mci->csrows[row]->channels[chn];
351 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
352 if (off < 0 || off >= tot_dimms) {
353 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
354 goto error;
355 }
356
357 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
358 if (!dimm)
359 goto error;
360 mci->dimms[off] = dimm;
361 dimm->mci = mci;
362
363 /*
364 * Copy DIMM location and initialize it.
365 */
366 len = sizeof(dimm->label);
367 p = dimm->label;
368 n = snprintf(p, len, "mc#%u", mc_num);
369 p += n;
370 len -= n;
371 for (j = 0; j < n_layers; j++) {
372 n = snprintf(p, len, "%s#%u",
373 edac_layer_name[layers[j].type],
374 pos[j]);
375 p += n;
376 len -= n;
377 dimm->location[j] = pos[j];
378
379 if (len <= 0)
380 break;
381 }
382
383 /* Link it to the csrows old API data */
384 chan->dimm = dimm;
385 dimm->csrow = row;
386 dimm->cschannel = chn;
387
388 /* Increment csrow location */
389 row++;
390 if (row == tot_csrows) {
391 row = 0;
392 chn++;
393 }
394
395 /* Increment dimm location */
396 for (j = n_layers - 1; j >= 0; j--) {
397 pos[j]++;
398 if (pos[j] < layers[j].size)
399 break;
400 pos[j] = 0;
401 }
402 }
403
404 mci->op_state = OP_ALLOC;
405
406 /* at this point, the root kobj is valid, and in order to
407 * 'free' the object, then the function:
408 * edac_mc_unregister_sysfs_main_kobj() must be called
409 * which will perform kobj unregistration and the actual free
410 * will occur during the kobject callback operation
411 */
412
413 return mci;
414
415 error:
416 if (mci->dimms) {
417 for (i = 0; i < tot_dimms; i++)
418 kfree(mci->dimms[i]);
419 kfree(mci->dimms);
420 }
421 if (mci->csrows) {
422 for (chn = 0; chn < tot_channels; chn++) {
423 csr = mci->csrows[chn];
424 if (csr) {
425 for (chn = 0; chn < tot_channels; chn++)
426 kfree(csr->channels[chn]);
427 kfree(csr);
428 }
429 kfree(mci->csrows[i]);
430 }
431 kfree(mci->csrows);
432 }
433 kfree(mci);
434
435 return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438
439 /**
440 * edac_mc_free
441 * 'Free' a previously allocated 'mci' structure
442 * @mci: pointer to a struct mem_ctl_info structure
443 */
444 void edac_mc_free(struct mem_ctl_info *mci)
445 {
446 edac_dbg(1, "\n");
447
448 /* the mci instance is freed here, when the sysfs object is dropped */
449 edac_unregister_sysfs(mci);
450 }
451 EXPORT_SYMBOL_GPL(edac_mc_free);
452
453
454 /**
455 * find_mci_by_dev
456 *
457 * scan list of controllers looking for the one that manages
458 * the 'dev' device
459 * @dev: pointer to a struct device related with the MCI
460 */
461 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
462 {
463 struct mem_ctl_info *mci;
464 struct list_head *item;
465
466 edac_dbg(3, "\n");
467
468 list_for_each(item, &mc_devices) {
469 mci = list_entry(item, struct mem_ctl_info, link);
470
471 if (mci->pdev == dev)
472 return mci;
473 }
474
475 return NULL;
476 }
477 EXPORT_SYMBOL_GPL(find_mci_by_dev);
478
479 /*
480 * handler for EDAC to check if NMI type handler has asserted interrupt
481 */
482 static int edac_mc_assert_error_check_and_clear(void)
483 {
484 int old_state;
485
486 if (edac_op_state == EDAC_OPSTATE_POLL)
487 return 1;
488
489 old_state = edac_err_assert;
490 edac_err_assert = 0;
491
492 return old_state;
493 }
494
495 /*
496 * edac_mc_workq_function
497 * performs the operation scheduled by a workq request
498 */
499 static void edac_mc_workq_function(struct work_struct *work_req)
500 {
501 struct delayed_work *d_work = to_delayed_work(work_req);
502 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
503
504 mutex_lock(&mem_ctls_mutex);
505
506 /* if this control struct has movd to offline state, we are done */
507 if (mci->op_state == OP_OFFLINE) {
508 mutex_unlock(&mem_ctls_mutex);
509 return;
510 }
511
512 /* Only poll controllers that are running polled and have a check */
513 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
514 mci->edac_check(mci);
515
516 mutex_unlock(&mem_ctls_mutex);
517
518 /* Reschedule */
519 queue_delayed_work(edac_workqueue, &mci->work,
520 msecs_to_jiffies(edac_mc_get_poll_msec()));
521 }
522
523 /*
524 * edac_mc_workq_setup
525 * initialize a workq item for this mci
526 * passing in the new delay period in msec
527 *
528 * locking model:
529 *
530 * called with the mem_ctls_mutex held
531 */
532 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
533 {
534 edac_dbg(0, "\n");
535
536 /* if this instance is not in the POLL state, then simply return */
537 if (mci->op_state != OP_RUNNING_POLL)
538 return;
539
540 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
541 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
542 }
543
544 /*
545 * edac_mc_workq_teardown
546 * stop the workq processing on this mci
547 *
548 * locking model:
549 *
550 * called WITHOUT lock held
551 */
552 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
553 {
554 int status;
555
556 if (mci->op_state != OP_RUNNING_POLL)
557 return;
558
559 status = cancel_delayed_work(&mci->work);
560 if (status == 0) {
561 edac_dbg(0, "not canceled, flush the queue\n");
562
563 /* workq instance might be running, wait for it */
564 flush_workqueue(edac_workqueue);
565 }
566 }
567
568 /*
569 * edac_mc_reset_delay_period(unsigned long value)
570 *
571 * user space has updated our poll period value, need to
572 * reset our workq delays
573 */
574 void edac_mc_reset_delay_period(int value)
575 {
576 struct mem_ctl_info *mci;
577 struct list_head *item;
578
579 mutex_lock(&mem_ctls_mutex);
580
581 /* scan the list and turn off all workq timers, doing so under lock
582 */
583 list_for_each(item, &mc_devices) {
584 mci = list_entry(item, struct mem_ctl_info, link);
585
586 if (mci->op_state == OP_RUNNING_POLL)
587 cancel_delayed_work(&mci->work);
588 }
589
590 mutex_unlock(&mem_ctls_mutex);
591
592
593 /* re-walk the list, and reset the poll delay */
594 mutex_lock(&mem_ctls_mutex);
595
596 list_for_each(item, &mc_devices) {
597 mci = list_entry(item, struct mem_ctl_info, link);
598
599 edac_mc_workq_setup(mci, (unsigned long) value);
600 }
601
602 mutex_unlock(&mem_ctls_mutex);
603 }
604
605
606
607 /* Return 0 on success, 1 on failure.
608 * Before calling this function, caller must
609 * assign a unique value to mci->mc_idx.
610 *
611 * locking model:
612 *
613 * called with the mem_ctls_mutex lock held
614 */
615 static int add_mc_to_global_list(struct mem_ctl_info *mci)
616 {
617 struct list_head *item, *insert_before;
618 struct mem_ctl_info *p;
619
620 insert_before = &mc_devices;
621
622 p = find_mci_by_dev(mci->pdev);
623 if (unlikely(p != NULL))
624 goto fail0;
625
626 list_for_each(item, &mc_devices) {
627 p = list_entry(item, struct mem_ctl_info, link);
628
629 if (p->mc_idx >= mci->mc_idx) {
630 if (unlikely(p->mc_idx == mci->mc_idx))
631 goto fail1;
632
633 insert_before = item;
634 break;
635 }
636 }
637
638 list_add_tail_rcu(&mci->link, insert_before);
639 atomic_inc(&edac_handlers);
640 return 0;
641
642 fail0:
643 edac_printk(KERN_WARNING, EDAC_MC,
644 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
645 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
646 return 1;
647
648 fail1:
649 edac_printk(KERN_WARNING, EDAC_MC,
650 "bug in low-level driver: attempt to assign\n"
651 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
652 return 1;
653 }
654
655 static void del_mc_from_global_list(struct mem_ctl_info *mci)
656 {
657 atomic_dec(&edac_handlers);
658 list_del_rcu(&mci->link);
659
660 /* these are for safe removal of devices from global list while
661 * NMI handlers may be traversing list
662 */
663 synchronize_rcu();
664 INIT_LIST_HEAD(&mci->link);
665 }
666
667 /**
668 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
669 *
670 * If found, return a pointer to the structure.
671 * Else return NULL.
672 *
673 * Caller must hold mem_ctls_mutex.
674 */
675 struct mem_ctl_info *edac_mc_find(int idx)
676 {
677 struct list_head *item;
678 struct mem_ctl_info *mci;
679
680 list_for_each(item, &mc_devices) {
681 mci = list_entry(item, struct mem_ctl_info, link);
682
683 if (mci->mc_idx >= idx) {
684 if (mci->mc_idx == idx)
685 return mci;
686
687 break;
688 }
689 }
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(edac_mc_find);
694
695 /**
696 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
697 * create sysfs entries associated with mci structure
698 * @mci: pointer to the mci structure to be added to the list
699 *
700 * Return:
701 * 0 Success
702 * !0 Failure
703 */
704
705 /* FIXME - should a warning be printed if no error detection? correction? */
706 int edac_mc_add_mc(struct mem_ctl_info *mci)
707 {
708 edac_dbg(0, "\n");
709
710 #ifdef CONFIG_EDAC_DEBUG
711 if (edac_debug_level >= 3)
712 edac_mc_dump_mci(mci);
713
714 if (edac_debug_level >= 4) {
715 int i;
716
717 for (i = 0; i < mci->nr_csrows; i++) {
718 struct csrow_info *csrow = mci->csrows[i];
719 u32 nr_pages = 0;
720 int j;
721
722 for (j = 0; j < csrow->nr_channels; j++)
723 nr_pages += csrow->channels[j]->dimm->nr_pages;
724 if (!nr_pages)
725 continue;
726 edac_mc_dump_csrow(csrow);
727 for (j = 0; j < csrow->nr_channels; j++)
728 if (csrow->channels[j]->dimm->nr_pages)
729 edac_mc_dump_channel(csrow->channels[j]);
730 }
731 for (i = 0; i < mci->tot_dimms; i++)
732 if (mci->dimms[i]->nr_pages)
733 edac_mc_dump_dimm(mci->dimms[i], i);
734 }
735 #endif
736 mutex_lock(&mem_ctls_mutex);
737
738 if (add_mc_to_global_list(mci))
739 goto fail0;
740
741 /* set load time so that error rate can be tracked */
742 mci->start_time = jiffies;
743
744 if (edac_create_sysfs_mci_device(mci)) {
745 edac_mc_printk(mci, KERN_WARNING,
746 "failed to create sysfs device\n");
747 goto fail1;
748 }
749
750 /* If there IS a check routine, then we are running POLLED */
751 if (mci->edac_check != NULL) {
752 /* This instance is NOW RUNNING */
753 mci->op_state = OP_RUNNING_POLL;
754
755 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
756 } else {
757 mci->op_state = OP_RUNNING_INTERRUPT;
758 }
759
760 /* Report action taken */
761 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
762 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
763
764 mutex_unlock(&mem_ctls_mutex);
765 return 0;
766
767 fail1:
768 del_mc_from_global_list(mci);
769
770 fail0:
771 mutex_unlock(&mem_ctls_mutex);
772 return 1;
773 }
774 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
775
776 /**
777 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
778 * remove mci structure from global list
779 * @pdev: Pointer to 'struct device' representing mci structure to remove.
780 *
781 * Return pointer to removed mci structure, or NULL if device not found.
782 */
783 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
784 {
785 struct mem_ctl_info *mci;
786
787 edac_dbg(0, "\n");
788
789 mutex_lock(&mem_ctls_mutex);
790
791 /* find the requested mci struct in the global list */
792 mci = find_mci_by_dev(dev);
793 if (mci == NULL) {
794 mutex_unlock(&mem_ctls_mutex);
795 return NULL;
796 }
797
798 del_mc_from_global_list(mci);
799 mutex_unlock(&mem_ctls_mutex);
800
801 /* flush workq processes */
802 edac_mc_workq_teardown(mci);
803
804 /* marking MCI offline */
805 mci->op_state = OP_OFFLINE;
806
807 /* remove from sysfs */
808 edac_remove_sysfs_mci_device(mci);
809
810 edac_printk(KERN_INFO, EDAC_MC,
811 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
812 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
813
814 return mci;
815 }
816 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
817
818 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
819 u32 size)
820 {
821 struct page *pg;
822 void *virt_addr;
823 unsigned long flags = 0;
824
825 edac_dbg(3, "\n");
826
827 /* ECC error page was not in our memory. Ignore it. */
828 if (!pfn_valid(page))
829 return;
830
831 /* Find the actual page structure then map it and fix */
832 pg = pfn_to_page(page);
833
834 if (PageHighMem(pg))
835 local_irq_save(flags);
836
837 virt_addr = kmap_atomic(pg);
838
839 /* Perform architecture specific atomic scrub operation */
840 atomic_scrub(virt_addr + offset, size);
841
842 /* Unmap and complete */
843 kunmap_atomic(virt_addr);
844
845 if (PageHighMem(pg))
846 local_irq_restore(flags);
847 }
848
849 /* FIXME - should return -1 */
850 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
851 {
852 struct csrow_info **csrows = mci->csrows;
853 int row, i, j, n;
854
855 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
856 row = -1;
857
858 for (i = 0; i < mci->nr_csrows; i++) {
859 struct csrow_info *csrow = csrows[i];
860 n = 0;
861 for (j = 0; j < csrow->nr_channels; j++) {
862 struct dimm_info *dimm = csrow->channels[j]->dimm;
863 n += dimm->nr_pages;
864 }
865 if (n == 0)
866 continue;
867
868 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
869 mci->mc_idx,
870 csrow->first_page, page, csrow->last_page,
871 csrow->page_mask);
872
873 if ((page >= csrow->first_page) &&
874 (page <= csrow->last_page) &&
875 ((page & csrow->page_mask) ==
876 (csrow->first_page & csrow->page_mask))) {
877 row = i;
878 break;
879 }
880 }
881
882 if (row == -1)
883 edac_mc_printk(mci, KERN_ERR,
884 "could not look up page error address %lx\n",
885 (unsigned long)page);
886
887 return row;
888 }
889 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
890
891 const char *edac_layer_name[] = {
892 [EDAC_MC_LAYER_BRANCH] = "branch",
893 [EDAC_MC_LAYER_CHANNEL] = "channel",
894 [EDAC_MC_LAYER_SLOT] = "slot",
895 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
896 };
897 EXPORT_SYMBOL_GPL(edac_layer_name);
898
899 static void edac_inc_ce_error(struct mem_ctl_info *mci,
900 bool enable_per_layer_report,
901 const int pos[EDAC_MAX_LAYERS],
902 const u16 count)
903 {
904 int i, index = 0;
905
906 mci->ce_mc += count;
907
908 if (!enable_per_layer_report) {
909 mci->ce_noinfo_count += count;
910 return;
911 }
912
913 for (i = 0; i < mci->n_layers; i++) {
914 if (pos[i] < 0)
915 break;
916 index += pos[i];
917 mci->ce_per_layer[i][index] += count;
918
919 if (i < mci->n_layers - 1)
920 index *= mci->layers[i + 1].size;
921 }
922 }
923
924 static void edac_inc_ue_error(struct mem_ctl_info *mci,
925 bool enable_per_layer_report,
926 const int pos[EDAC_MAX_LAYERS],
927 const u16 count)
928 {
929 int i, index = 0;
930
931 mci->ue_mc += count;
932
933 if (!enable_per_layer_report) {
934 mci->ce_noinfo_count += count;
935 return;
936 }
937
938 for (i = 0; i < mci->n_layers; i++) {
939 if (pos[i] < 0)
940 break;
941 index += pos[i];
942 mci->ue_per_layer[i][index] += count;
943
944 if (i < mci->n_layers - 1)
945 index *= mci->layers[i + 1].size;
946 }
947 }
948
949 static void edac_ce_error(struct mem_ctl_info *mci,
950 const u16 error_count,
951 const int pos[EDAC_MAX_LAYERS],
952 const char *msg,
953 const char *location,
954 const char *label,
955 const char *detail,
956 const char *other_detail,
957 const bool enable_per_layer_report,
958 const unsigned long page_frame_number,
959 const unsigned long offset_in_page,
960 long grain)
961 {
962 unsigned long remapped_page;
963
964 if (edac_mc_get_log_ce()) {
965 if (other_detail && *other_detail)
966 edac_mc_printk(mci, KERN_WARNING,
967 "%d CE %s on %s (%s %s - %s)\n",
968 error_count,
969 msg, label, location,
970 detail, other_detail);
971 else
972 edac_mc_printk(mci, KERN_WARNING,
973 "%d CE %s on %s (%s %s)\n",
974 error_count,
975 msg, label, location,
976 detail);
977 }
978 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
979
980 if (mci->scrub_mode & SCRUB_SW_SRC) {
981 /*
982 * Some memory controllers (called MCs below) can remap
983 * memory so that it is still available at a different
984 * address when PCI devices map into memory.
985 * MC's that can't do this, lose the memory where PCI
986 * devices are mapped. This mapping is MC-dependent
987 * and so we call back into the MC driver for it to
988 * map the MC page to a physical (CPU) page which can
989 * then be mapped to a virtual page - which can then
990 * be scrubbed.
991 */
992 remapped_page = mci->ctl_page_to_phys ?
993 mci->ctl_page_to_phys(mci, page_frame_number) :
994 page_frame_number;
995
996 edac_mc_scrub_block(remapped_page,
997 offset_in_page, grain);
998 }
999 }
1000
1001 static void edac_ue_error(struct mem_ctl_info *mci,
1002 const u16 error_count,
1003 const int pos[EDAC_MAX_LAYERS],
1004 const char *msg,
1005 const char *location,
1006 const char *label,
1007 const char *detail,
1008 const char *other_detail,
1009 const bool enable_per_layer_report)
1010 {
1011 if (edac_mc_get_log_ue()) {
1012 if (other_detail && *other_detail)
1013 edac_mc_printk(mci, KERN_WARNING,
1014 "%d UE %s on %s (%s %s - %s)\n",
1015 error_count,
1016 msg, label, location, detail,
1017 other_detail);
1018 else
1019 edac_mc_printk(mci, KERN_WARNING,
1020 "%d UE %s on %s (%s %s)\n",
1021 error_count,
1022 msg, label, location, detail);
1023 }
1024
1025 if (edac_mc_get_panic_on_ue()) {
1026 if (other_detail && *other_detail)
1027 panic("UE %s on %s (%s%s - %s)\n",
1028 msg, label, location, detail, other_detail);
1029 else
1030 panic("UE %s on %s (%s%s)\n",
1031 msg, label, location, detail);
1032 }
1033
1034 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1035 }
1036
1037 #define OTHER_LABEL " or "
1038
1039 /**
1040 * edac_mc_handle_error - reports a memory event to userspace
1041 *
1042 * @type: severity of the error (CE/UE/Fatal)
1043 * @mci: a struct mem_ctl_info pointer
1044 * @error_count: Number of errors of the same type
1045 * @page_frame_number: mem page where the error occurred
1046 * @offset_in_page: offset of the error inside the page
1047 * @syndrome: ECC syndrome
1048 * @top_layer: Memory layer[0] position
1049 * @mid_layer: Memory layer[1] position
1050 * @low_layer: Memory layer[2] position
1051 * @msg: Message meaningful to the end users that
1052 * explains the event
1053 * @other_detail: Technical details about the event that
1054 * may help hardware manufacturers and
1055 * EDAC developers to analyse the event
1056 */
1057 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1058 struct mem_ctl_info *mci,
1059 const u16 error_count,
1060 const unsigned long page_frame_number,
1061 const unsigned long offset_in_page,
1062 const unsigned long syndrome,
1063 const int top_layer,
1064 const int mid_layer,
1065 const int low_layer,
1066 const char *msg,
1067 const char *other_detail)
1068 {
1069 /* FIXME: too much for stack: move it to some pre-alocated area */
1070 char detail[80], location[80];
1071 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1072 char *p;
1073 int row = -1, chan = -1;
1074 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1075 int i;
1076 long grain;
1077 bool enable_per_layer_report = false;
1078 u8 grain_bits;
1079
1080 edac_dbg(3, "MC%d\n", mci->mc_idx);
1081
1082 /*
1083 * Check if the event report is consistent and if the memory
1084 * location is known. If it is known, enable_per_layer_report will be
1085 * true, the DIMM(s) label info will be filled and the per-layer
1086 * error counters will be incremented.
1087 */
1088 for (i = 0; i < mci->n_layers; i++) {
1089 if (pos[i] >= (int)mci->layers[i].size) {
1090 if (type == HW_EVENT_ERR_CORRECTED)
1091 p = "CE";
1092 else
1093 p = "UE";
1094
1095 edac_mc_printk(mci, KERN_ERR,
1096 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1097 edac_layer_name[mci->layers[i].type],
1098 pos[i], mci->layers[i].size);
1099 /*
1100 * Instead of just returning it, let's use what's
1101 * known about the error. The increment routines and
1102 * the DIMM filter logic will do the right thing by
1103 * pointing the likely damaged DIMMs.
1104 */
1105 pos[i] = -1;
1106 }
1107 if (pos[i] >= 0)
1108 enable_per_layer_report = true;
1109 }
1110
1111 /*
1112 * Get the dimm label/grain that applies to the match criteria.
1113 * As the error algorithm may not be able to point to just one memory
1114 * stick, the logic here will get all possible labels that could
1115 * pottentially be affected by the error.
1116 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1117 * to have only the MC channel and the MC dimm (also called "branch")
1118 * but the channel is not known, as the memory is arranged in pairs,
1119 * where each memory belongs to a separate channel within the same
1120 * branch.
1121 */
1122 grain = 0;
1123 p = label;
1124 *p = '\0';
1125 for (i = 0; i < mci->tot_dimms; i++) {
1126 struct dimm_info *dimm = mci->dimms[i];
1127
1128 if (top_layer >= 0 && top_layer != dimm->location[0])
1129 continue;
1130 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1131 continue;
1132 if (low_layer >= 0 && low_layer != dimm->location[2])
1133 continue;
1134
1135 /* get the max grain, over the error match range */
1136 if (dimm->grain > grain)
1137 grain = dimm->grain;
1138
1139 /*
1140 * If the error is memory-controller wide, there's no need to
1141 * seek for the affected DIMMs because the whole
1142 * channel/memory controller/... may be affected.
1143 * Also, don't show errors for empty DIMM slots.
1144 */
1145 if (enable_per_layer_report && dimm->nr_pages) {
1146 if (p != label) {
1147 strcpy(p, OTHER_LABEL);
1148 p += strlen(OTHER_LABEL);
1149 }
1150 strcpy(p, dimm->label);
1151 p += strlen(p);
1152 *p = '\0';
1153
1154 /*
1155 * get csrow/channel of the DIMM, in order to allow
1156 * incrementing the compat API counters
1157 */
1158 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1159 mci->mem_is_per_rank ? "rank" : "dimm",
1160 dimm->csrow, dimm->cschannel);
1161 if (row == -1)
1162 row = dimm->csrow;
1163 else if (row >= 0 && row != dimm->csrow)
1164 row = -2;
1165
1166 if (chan == -1)
1167 chan = dimm->cschannel;
1168 else if (chan >= 0 && chan != dimm->cschannel)
1169 chan = -2;
1170 }
1171 }
1172
1173 if (!enable_per_layer_report) {
1174 strcpy(label, "any memory");
1175 } else {
1176 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1177 if (p == label)
1178 strcpy(label, "unknown memory");
1179 if (type == HW_EVENT_ERR_CORRECTED) {
1180 if (row >= 0) {
1181 mci->csrows[row]->ce_count += error_count;
1182 if (chan >= 0)
1183 mci->csrows[row]->channels[chan]->ce_count += error_count;
1184 }
1185 } else
1186 if (row >= 0)
1187 mci->csrows[row]->ue_count += error_count;
1188 }
1189
1190 /* Fill the RAM location data */
1191 p = location;
1192 for (i = 0; i < mci->n_layers; i++) {
1193 if (pos[i] < 0)
1194 continue;
1195
1196 p += sprintf(p, "%s:%d ",
1197 edac_layer_name[mci->layers[i].type],
1198 pos[i]);
1199 }
1200 if (p > location)
1201 *(p - 1) = '\0';
1202
1203 /* Report the error via the trace interface */
1204
1205 grain_bits = fls_long(grain) + 1;
1206 trace_mc_event(type, msg, label, error_count,
1207 mci->mc_idx, top_layer, mid_layer, low_layer,
1208 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1209 grain_bits, syndrome, other_detail);
1210
1211 /* Memory type dependent details about the error */
1212 if (type == HW_EVENT_ERR_CORRECTED) {
1213 snprintf(detail, sizeof(detail),
1214 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1215 page_frame_number, offset_in_page,
1216 grain, syndrome);
1217 edac_ce_error(mci, error_count, pos, msg, location, label,
1218 detail, other_detail, enable_per_layer_report,
1219 page_frame_number, offset_in_page, grain);
1220 } else {
1221 snprintf(detail, sizeof(detail),
1222 "page:0x%lx offset:0x%lx grain:%ld",
1223 page_frame_number, offset_in_page, grain);
1224
1225 edac_ue_error(mci, error_count, pos, msg, location, label,
1226 detail, other_detail, enable_per_layer_report);
1227 }
1228 }
1229 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.057119 seconds and 5 git commands to generate.