Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 /*
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
48 */
49 static void const *edac_mc_owner;
50
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
52
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 unsigned len)
55 {
56 struct mem_ctl_info *mci = dimm->mci;
57 int i, n, count = 0;
58 char *p = buf;
59
60 for (i = 0; i < mci->n_layers; i++) {
61 n = snprintf(p, len, "%s %d ",
62 edac_layer_name[mci->layers[i].type],
63 dimm->location[i]);
64 p += n;
65 len -= n;
66 count += n;
67 if (!len)
68 break;
69 }
70
71 return count;
72 }
73
74 #ifdef CONFIG_EDAC_DEBUG
75
76 static void edac_mc_dump_channel(struct rank_info *chan)
77 {
78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
79 edac_dbg(4, " channel = %p\n", chan);
80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
82 }
83
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85 {
86 char location[80];
87
88 edac_dimm_info_location(dimm, location, sizeof(location));
89
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm->mci->csbased ? "rank" : "dimm",
92 number, location, dimm->csrow, dimm->cschannel);
93 edac_dbg(4, " dimm = %p\n", dimm);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 }
99
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
101 {
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 edac_dbg(4, " csrow = %p\n", csrow);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
110 }
111
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113 {
114 edac_dbg(3, "\tmci = %p\n", mci);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci->nr_csrows, mci->csrows);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci->tot_dimms, mci->dimms);
123 edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci->mod_name, mci->ctl_name);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127 }
128
129 #endif /* CONFIG_EDAC_DEBUG */
130
131 /*
132 * keep those in sync with the enum mem_type
133 */
134 const char *edac_mem_types[] = {
135 "Empty csrow",
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
145 "Rambus DRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
149 "Rambus XDR",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
152 };
153 EXPORT_SYMBOL_GPL(edac_mem_types);
154
155 /**
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
161 *
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
164 *
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
169 *
170 * At return, the pointer 'p' will be incremented to be used on a next call
171 * to this function.
172 */
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
174 {
175 unsigned align, r;
176 void *ptr = *p;
177
178 *p += size * n_elems;
179
180 /*
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
188 */
189 if (size > sizeof(long))
190 align = sizeof(long long);
191 else if (size > sizeof(int))
192 align = sizeof(long);
193 else if (size > sizeof(short))
194 align = sizeof(int);
195 else if (size > sizeof(char))
196 align = sizeof(short);
197 else
198 return (char *)ptr;
199
200 r = (unsigned long)p % align;
201
202 if (r == 0)
203 return (char *)ptr;
204
205 *p += align - r;
206
207 return (void *)(((unsigned long)ptr) + align - r);
208 }
209
210 static void _edac_mc_free(struct mem_ctl_info *mci)
211 {
212 int i, chn, row;
213 struct csrow_info *csr;
214 const unsigned int tot_dimms = mci->tot_dimms;
215 const unsigned int tot_channels = mci->num_cschannel;
216 const unsigned int tot_csrows = mci->nr_csrows;
217
218 if (mci->dimms) {
219 for (i = 0; i < tot_dimms; i++)
220 kfree(mci->dimms[i]);
221 kfree(mci->dimms);
222 }
223 if (mci->csrows) {
224 for (row = 0; row < tot_csrows; row++) {
225 csr = mci->csrows[row];
226 if (csr) {
227 if (csr->channels) {
228 for (chn = 0; chn < tot_channels; chn++)
229 kfree(csr->channels[chn]);
230 kfree(csr->channels);
231 }
232 kfree(csr);
233 }
234 }
235 kfree(mci->csrows);
236 }
237 kfree(mci);
238 }
239
240 /**
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
246 *
247 *
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
251 *
252 * Use edac_mc_free() to free mc structures allocated by this function.
253 *
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
259 *
260 * Returns:
261 * On failure: NULL
262 * On success: struct mem_ctl_info pointer
263 */
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 unsigned n_layers,
266 struct edac_mc_layer *layers,
267 unsigned sz_pvt)
268 {
269 struct mem_ctl_info *mci;
270 struct edac_mc_layer *layer;
271 struct csrow_info *csr;
272 struct rank_info *chan;
273 struct dimm_info *dimm;
274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 unsigned pos[EDAC_MAX_LAYERS];
276 unsigned size, tot_dimms = 1, count = 1;
277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 void *pvt, *p, *ptr = NULL;
279 int i, j, row, chn, n, len, off;
280 bool per_rank = false;
281
282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 /*
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
286 */
287 for (i = 0; i < n_layers; i++) {
288 tot_dimms *= layers[i].size;
289 if (layers[i].is_virt_csrow)
290 tot_csrows *= layers[i].size;
291 else
292 tot_channels *= layers[i].size;
293
294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 per_rank = true;
296 }
297
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
302 */
303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 for (i = 0; i < n_layers; i++) {
306 count *= layers[i].size;
307 edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 tot_errcount += 2 * count;
311 }
312
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 size = ((unsigned long)pvt) + sz_pvt;
316
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 size,
319 tot_dimms,
320 per_rank ? "ranks" : "dimms",
321 tot_csrows * tot_channels);
322
323 mci = kzalloc(size, GFP_KERNEL);
324 if (mci == NULL)
325 return NULL;
326
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
329 */
330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 for (i = 0; i < n_layers; i++) {
332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 }
335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336
337 /* setup index and various internal pointers */
338 mci->mc_idx = mc_num;
339 mci->tot_dimms = tot_dimms;
340 mci->pvt_info = pvt;
341 mci->n_layers = n_layers;
342 mci->layers = layer;
343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 mci->nr_csrows = tot_csrows;
345 mci->num_cschannel = tot_channels;
346 mci->csbased = per_rank;
347
348 /*
349 * Alocate and fill the csrow/channels structs
350 */
351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 if (!mci->csrows)
353 goto error;
354 for (row = 0; row < tot_csrows; row++) {
355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 if (!csr)
357 goto error;
358 mci->csrows[row] = csr;
359 csr->csrow_idx = row;
360 csr->mci = mci;
361 csr->nr_channels = tot_channels;
362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 GFP_KERNEL);
364 if (!csr->channels)
365 goto error;
366
367 for (chn = 0; chn < tot_channels; chn++) {
368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 if (!chan)
370 goto error;
371 csr->channels[chn] = chan;
372 chan->chan_idx = chn;
373 chan->csrow = csr;
374 }
375 }
376
377 /*
378 * Allocate and fill the dimm structs
379 */
380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 if (!mci->dimms)
382 goto error;
383
384 memset(&pos, 0, sizeof(pos));
385 row = 0;
386 chn = 0;
387 for (i = 0; i < tot_dimms; i++) {
388 chan = mci->csrows[row]->channels[chn];
389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 if (off < 0 || off >= tot_dimms) {
391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 goto error;
393 }
394
395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 if (!dimm)
397 goto error;
398 mci->dimms[off] = dimm;
399 dimm->mci = mci;
400
401 /*
402 * Copy DIMM location and initialize it.
403 */
404 len = sizeof(dimm->label);
405 p = dimm->label;
406 n = snprintf(p, len, "mc#%u", mc_num);
407 p += n;
408 len -= n;
409 for (j = 0; j < n_layers; j++) {
410 n = snprintf(p, len, "%s#%u",
411 edac_layer_name[layers[j].type],
412 pos[j]);
413 p += n;
414 len -= n;
415 dimm->location[j] = pos[j];
416
417 if (len <= 0)
418 break;
419 }
420
421 /* Link it to the csrows old API data */
422 chan->dimm = dimm;
423 dimm->csrow = row;
424 dimm->cschannel = chn;
425
426 /* Increment csrow location */
427 if (layers[0].is_virt_csrow) {
428 chn++;
429 if (chn == tot_channels) {
430 chn = 0;
431 row++;
432 }
433 } else {
434 row++;
435 if (row == tot_csrows) {
436 row = 0;
437 chn++;
438 }
439 }
440
441 /* Increment dimm location */
442 for (j = n_layers - 1; j >= 0; j--) {
443 pos[j]++;
444 if (pos[j] < layers[j].size)
445 break;
446 pos[j] = 0;
447 }
448 }
449
450 mci->op_state = OP_ALLOC;
451
452 return mci;
453
454 error:
455 _edac_mc_free(mci);
456
457 return NULL;
458 }
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
460
461 /**
462 * edac_mc_free
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
465 */
466 void edac_mc_free(struct mem_ctl_info *mci)
467 {
468 edac_dbg(1, "\n");
469
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
472 */
473 if (!device_is_registered(&mci->dev)) {
474 _edac_mc_free(mci);
475 return;
476 }
477
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci);
480 }
481 EXPORT_SYMBOL_GPL(edac_mc_free);
482
483
484 /**
485 * find_mci_by_dev
486 *
487 * scan list of controllers looking for the one that manages
488 * the 'dev' device
489 * @dev: pointer to a struct device related with the MCI
490 */
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492 {
493 struct mem_ctl_info *mci;
494 struct list_head *item;
495
496 edac_dbg(3, "\n");
497
498 list_for_each(item, &mc_devices) {
499 mci = list_entry(item, struct mem_ctl_info, link);
500
501 if (mci->pdev == dev)
502 return mci;
503 }
504
505 return NULL;
506 }
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
508
509 /*
510 * handler for EDAC to check if NMI type handler has asserted interrupt
511 */
512 static int edac_mc_assert_error_check_and_clear(void)
513 {
514 int old_state;
515
516 if (edac_op_state == EDAC_OPSTATE_POLL)
517 return 1;
518
519 old_state = edac_err_assert;
520 edac_err_assert = 0;
521
522 return old_state;
523 }
524
525 /*
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
528 */
529 static void edac_mc_workq_function(struct work_struct *work_req)
530 {
531 struct delayed_work *d_work = to_delayed_work(work_req);
532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533
534 mutex_lock(&mem_ctls_mutex);
535
536 /* if this control struct has movd to offline state, we are done */
537 if (mci->op_state == OP_OFFLINE) {
538 mutex_unlock(&mem_ctls_mutex);
539 return;
540 }
541
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 mci->edac_check(mci);
545
546 mutex_unlock(&mem_ctls_mutex);
547
548 /* Reschedule */
549 queue_delayed_work(edac_workqueue, &mci->work,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
551 }
552
553 /*
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
557 *
558 * locking model:
559 *
560 * called with the mem_ctls_mutex held
561 */
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
563 {
564 edac_dbg(0, "\n");
565
566 /* if this instance is not in the POLL state, then simply return */
567 if (mci->op_state != OP_RUNNING_POLL)
568 return;
569
570 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575 * edac_mc_workq_teardown
576 * stop the workq processing on this mci
577 *
578 * locking model:
579 *
580 * called WITHOUT lock held
581 */
582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584 int status;
585
586 if (mci->op_state != OP_RUNNING_POLL)
587 return;
588
589 status = cancel_delayed_work(&mci->work);
590 if (status == 0) {
591 edac_dbg(0, "not canceled, flush the queue\n");
592
593 /* workq instance might be running, wait for it */
594 flush_workqueue(edac_workqueue);
595 }
596 }
597
598 /*
599 * edac_mc_reset_delay_period(unsigned long value)
600 *
601 * user space has updated our poll period value, need to
602 * reset our workq delays
603 */
604 void edac_mc_reset_delay_period(int value)
605 {
606 struct mem_ctl_info *mci;
607 struct list_head *item;
608
609 mutex_lock(&mem_ctls_mutex);
610
611 list_for_each(item, &mc_devices) {
612 mci = list_entry(item, struct mem_ctl_info, link);
613
614 edac_mc_workq_setup(mci, (unsigned long) value);
615 }
616
617 mutex_unlock(&mem_ctls_mutex);
618 }
619
620
621
622 /* Return 0 on success, 1 on failure.
623 * Before calling this function, caller must
624 * assign a unique value to mci->mc_idx.
625 *
626 * locking model:
627 *
628 * called with the mem_ctls_mutex lock held
629 */
630 static int add_mc_to_global_list(struct mem_ctl_info *mci)
631 {
632 struct list_head *item, *insert_before;
633 struct mem_ctl_info *p;
634
635 insert_before = &mc_devices;
636
637 p = find_mci_by_dev(mci->pdev);
638 if (unlikely(p != NULL))
639 goto fail0;
640
641 list_for_each(item, &mc_devices) {
642 p = list_entry(item, struct mem_ctl_info, link);
643
644 if (p->mc_idx >= mci->mc_idx) {
645 if (unlikely(p->mc_idx == mci->mc_idx))
646 goto fail1;
647
648 insert_before = item;
649 break;
650 }
651 }
652
653 list_add_tail_rcu(&mci->link, insert_before);
654 atomic_inc(&edac_handlers);
655 return 0;
656
657 fail0:
658 edac_printk(KERN_WARNING, EDAC_MC,
659 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
660 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
661 return 1;
662
663 fail1:
664 edac_printk(KERN_WARNING, EDAC_MC,
665 "bug in low-level driver: attempt to assign\n"
666 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
667 return 1;
668 }
669
670 static int del_mc_from_global_list(struct mem_ctl_info *mci)
671 {
672 int handlers = atomic_dec_return(&edac_handlers);
673 list_del_rcu(&mci->link);
674
675 /* these are for safe removal of devices from global list while
676 * NMI handlers may be traversing list
677 */
678 synchronize_rcu();
679 INIT_LIST_HEAD(&mci->link);
680
681 return handlers;
682 }
683
684 /**
685 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
686 *
687 * If found, return a pointer to the structure.
688 * Else return NULL.
689 *
690 * Caller must hold mem_ctls_mutex.
691 */
692 struct mem_ctl_info *edac_mc_find(int idx)
693 {
694 struct list_head *item;
695 struct mem_ctl_info *mci;
696
697 list_for_each(item, &mc_devices) {
698 mci = list_entry(item, struct mem_ctl_info, link);
699
700 if (mci->mc_idx >= idx) {
701 if (mci->mc_idx == idx)
702 return mci;
703
704 break;
705 }
706 }
707
708 return NULL;
709 }
710 EXPORT_SYMBOL(edac_mc_find);
711
712 /**
713 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
714 * create sysfs entries associated with mci structure
715 * @mci: pointer to the mci structure to be added to the list
716 *
717 * Return:
718 * 0 Success
719 * !0 Failure
720 */
721
722 /* FIXME - should a warning be printed if no error detection? correction? */
723 int edac_mc_add_mc(struct mem_ctl_info *mci)
724 {
725 int ret = -EINVAL;
726 edac_dbg(0, "\n");
727
728 if (mci->mc_idx >= EDAC_MAX_MCS) {
729 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
730 return -ENODEV;
731 }
732
733 #ifdef CONFIG_EDAC_DEBUG
734 if (edac_debug_level >= 3)
735 edac_mc_dump_mci(mci);
736
737 if (edac_debug_level >= 4) {
738 int i;
739
740 for (i = 0; i < mci->nr_csrows; i++) {
741 struct csrow_info *csrow = mci->csrows[i];
742 u32 nr_pages = 0;
743 int j;
744
745 for (j = 0; j < csrow->nr_channels; j++)
746 nr_pages += csrow->channels[j]->dimm->nr_pages;
747 if (!nr_pages)
748 continue;
749 edac_mc_dump_csrow(csrow);
750 for (j = 0; j < csrow->nr_channels; j++)
751 if (csrow->channels[j]->dimm->nr_pages)
752 edac_mc_dump_channel(csrow->channels[j]);
753 }
754 for (i = 0; i < mci->tot_dimms; i++)
755 if (mci->dimms[i]->nr_pages)
756 edac_mc_dump_dimm(mci->dimms[i], i);
757 }
758 #endif
759 mutex_lock(&mem_ctls_mutex);
760
761 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
762 ret = -EPERM;
763 goto fail0;
764 }
765
766 if (add_mc_to_global_list(mci))
767 goto fail0;
768
769 /* set load time so that error rate can be tracked */
770 mci->start_time = jiffies;
771
772 mci->bus = &mc_bus[mci->mc_idx];
773
774 if (edac_create_sysfs_mci_device(mci)) {
775 edac_mc_printk(mci, KERN_WARNING,
776 "failed to create sysfs device\n");
777 goto fail1;
778 }
779
780 /* If there IS a check routine, then we are running POLLED */
781 if (mci->edac_check != NULL) {
782 /* This instance is NOW RUNNING */
783 mci->op_state = OP_RUNNING_POLL;
784
785 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
786 } else {
787 mci->op_state = OP_RUNNING_INTERRUPT;
788 }
789
790 /* Report action taken */
791 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
792 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
793
794 edac_mc_owner = mci->mod_name;
795
796 mutex_unlock(&mem_ctls_mutex);
797 return 0;
798
799 fail1:
800 del_mc_from_global_list(mci);
801
802 fail0:
803 mutex_unlock(&mem_ctls_mutex);
804 return ret;
805 }
806 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
807
808 /**
809 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
810 * remove mci structure from global list
811 * @pdev: Pointer to 'struct device' representing mci structure to remove.
812 *
813 * Return pointer to removed mci structure, or NULL if device not found.
814 */
815 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
816 {
817 struct mem_ctl_info *mci;
818
819 edac_dbg(0, "\n");
820
821 mutex_lock(&mem_ctls_mutex);
822
823 /* find the requested mci struct in the global list */
824 mci = find_mci_by_dev(dev);
825 if (mci == NULL) {
826 mutex_unlock(&mem_ctls_mutex);
827 return NULL;
828 }
829
830 if (!del_mc_from_global_list(mci))
831 edac_mc_owner = NULL;
832 mutex_unlock(&mem_ctls_mutex);
833
834 /* flush workq processes */
835 edac_mc_workq_teardown(mci);
836
837 /* marking MCI offline */
838 mci->op_state = OP_OFFLINE;
839
840 /* remove from sysfs */
841 edac_remove_sysfs_mci_device(mci);
842
843 edac_printk(KERN_INFO, EDAC_MC,
844 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
845 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
846
847 return mci;
848 }
849 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
850
851 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
852 u32 size)
853 {
854 struct page *pg;
855 void *virt_addr;
856 unsigned long flags = 0;
857
858 edac_dbg(3, "\n");
859
860 /* ECC error page was not in our memory. Ignore it. */
861 if (!pfn_valid(page))
862 return;
863
864 /* Find the actual page structure then map it and fix */
865 pg = pfn_to_page(page);
866
867 if (PageHighMem(pg))
868 local_irq_save(flags);
869
870 virt_addr = kmap_atomic(pg);
871
872 /* Perform architecture specific atomic scrub operation */
873 atomic_scrub(virt_addr + offset, size);
874
875 /* Unmap and complete */
876 kunmap_atomic(virt_addr);
877
878 if (PageHighMem(pg))
879 local_irq_restore(flags);
880 }
881
882 /* FIXME - should return -1 */
883 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
884 {
885 struct csrow_info **csrows = mci->csrows;
886 int row, i, j, n;
887
888 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
889 row = -1;
890
891 for (i = 0; i < mci->nr_csrows; i++) {
892 struct csrow_info *csrow = csrows[i];
893 n = 0;
894 for (j = 0; j < csrow->nr_channels; j++) {
895 struct dimm_info *dimm = csrow->channels[j]->dimm;
896 n += dimm->nr_pages;
897 }
898 if (n == 0)
899 continue;
900
901 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
902 mci->mc_idx,
903 csrow->first_page, page, csrow->last_page,
904 csrow->page_mask);
905
906 if ((page >= csrow->first_page) &&
907 (page <= csrow->last_page) &&
908 ((page & csrow->page_mask) ==
909 (csrow->first_page & csrow->page_mask))) {
910 row = i;
911 break;
912 }
913 }
914
915 if (row == -1)
916 edac_mc_printk(mci, KERN_ERR,
917 "could not look up page error address %lx\n",
918 (unsigned long)page);
919
920 return row;
921 }
922 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
923
924 const char *edac_layer_name[] = {
925 [EDAC_MC_LAYER_BRANCH] = "branch",
926 [EDAC_MC_LAYER_CHANNEL] = "channel",
927 [EDAC_MC_LAYER_SLOT] = "slot",
928 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
929 [EDAC_MC_LAYER_ALL_MEM] = "memory",
930 };
931 EXPORT_SYMBOL_GPL(edac_layer_name);
932
933 static void edac_inc_ce_error(struct mem_ctl_info *mci,
934 bool enable_per_layer_report,
935 const int pos[EDAC_MAX_LAYERS],
936 const u16 count)
937 {
938 int i, index = 0;
939
940 mci->ce_mc += count;
941
942 if (!enable_per_layer_report) {
943 mci->ce_noinfo_count += count;
944 return;
945 }
946
947 for (i = 0; i < mci->n_layers; i++) {
948 if (pos[i] < 0)
949 break;
950 index += pos[i];
951 mci->ce_per_layer[i][index] += count;
952
953 if (i < mci->n_layers - 1)
954 index *= mci->layers[i + 1].size;
955 }
956 }
957
958 static void edac_inc_ue_error(struct mem_ctl_info *mci,
959 bool enable_per_layer_report,
960 const int pos[EDAC_MAX_LAYERS],
961 const u16 count)
962 {
963 int i, index = 0;
964
965 mci->ue_mc += count;
966
967 if (!enable_per_layer_report) {
968 mci->ce_noinfo_count += count;
969 return;
970 }
971
972 for (i = 0; i < mci->n_layers; i++) {
973 if (pos[i] < 0)
974 break;
975 index += pos[i];
976 mci->ue_per_layer[i][index] += count;
977
978 if (i < mci->n_layers - 1)
979 index *= mci->layers[i + 1].size;
980 }
981 }
982
983 static void edac_ce_error(struct mem_ctl_info *mci,
984 const u16 error_count,
985 const int pos[EDAC_MAX_LAYERS],
986 const char *msg,
987 const char *location,
988 const char *label,
989 const char *detail,
990 const char *other_detail,
991 const bool enable_per_layer_report,
992 const unsigned long page_frame_number,
993 const unsigned long offset_in_page,
994 long grain)
995 {
996 unsigned long remapped_page;
997 char *msg_aux = "";
998
999 if (*msg)
1000 msg_aux = " ";
1001
1002 if (edac_mc_get_log_ce()) {
1003 if (other_detail && *other_detail)
1004 edac_mc_printk(mci, KERN_WARNING,
1005 "%d CE %s%son %s (%s %s - %s)\n",
1006 error_count, msg, msg_aux, label,
1007 location, detail, other_detail);
1008 else
1009 edac_mc_printk(mci, KERN_WARNING,
1010 "%d CE %s%son %s (%s %s)\n",
1011 error_count, msg, msg_aux, label,
1012 location, detail);
1013 }
1014 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1015
1016 if (mci->scrub_mode & SCRUB_SW_SRC) {
1017 /*
1018 * Some memory controllers (called MCs below) can remap
1019 * memory so that it is still available at a different
1020 * address when PCI devices map into memory.
1021 * MC's that can't do this, lose the memory where PCI
1022 * devices are mapped. This mapping is MC-dependent
1023 * and so we call back into the MC driver for it to
1024 * map the MC page to a physical (CPU) page which can
1025 * then be mapped to a virtual page - which can then
1026 * be scrubbed.
1027 */
1028 remapped_page = mci->ctl_page_to_phys ?
1029 mci->ctl_page_to_phys(mci, page_frame_number) :
1030 page_frame_number;
1031
1032 edac_mc_scrub_block(remapped_page,
1033 offset_in_page, grain);
1034 }
1035 }
1036
1037 static void edac_ue_error(struct mem_ctl_info *mci,
1038 const u16 error_count,
1039 const int pos[EDAC_MAX_LAYERS],
1040 const char *msg,
1041 const char *location,
1042 const char *label,
1043 const char *detail,
1044 const char *other_detail,
1045 const bool enable_per_layer_report)
1046 {
1047 char *msg_aux = "";
1048
1049 if (*msg)
1050 msg_aux = " ";
1051
1052 if (edac_mc_get_log_ue()) {
1053 if (other_detail && *other_detail)
1054 edac_mc_printk(mci, KERN_WARNING,
1055 "%d UE %s%son %s (%s %s - %s)\n",
1056 error_count, msg, msg_aux, label,
1057 location, detail, other_detail);
1058 else
1059 edac_mc_printk(mci, KERN_WARNING,
1060 "%d UE %s%son %s (%s %s)\n",
1061 error_count, msg, msg_aux, label,
1062 location, detail);
1063 }
1064
1065 if (edac_mc_get_panic_on_ue()) {
1066 if (other_detail && *other_detail)
1067 panic("UE %s%son %s (%s%s - %s)\n",
1068 msg, msg_aux, label, location, detail, other_detail);
1069 else
1070 panic("UE %s%son %s (%s%s)\n",
1071 msg, msg_aux, label, location, detail);
1072 }
1073
1074 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1075 }
1076
1077 /**
1078 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1079 * anything to discover the error location
1080 *
1081 * @type: severity of the error (CE/UE/Fatal)
1082 * @mci: a struct mem_ctl_info pointer
1083 * @e: error description
1084 *
1085 * This raw function is used internally by edac_mc_handle_error(). It should
1086 * only be called directly when the hardware error come directly from BIOS,
1087 * like in the case of APEI GHES driver.
1088 */
1089 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1090 struct mem_ctl_info *mci,
1091 struct edac_raw_error_desc *e)
1092 {
1093 char detail[80];
1094 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1095
1096 /* Memory type dependent details about the error */
1097 if (type == HW_EVENT_ERR_CORRECTED) {
1098 snprintf(detail, sizeof(detail),
1099 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1100 e->page_frame_number, e->offset_in_page,
1101 e->grain, e->syndrome);
1102 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1103 detail, e->other_detail, e->enable_per_layer_report,
1104 e->page_frame_number, e->offset_in_page, e->grain);
1105 } else {
1106 snprintf(detail, sizeof(detail),
1107 "page:0x%lx offset:0x%lx grain:%ld",
1108 e->page_frame_number, e->offset_in_page, e->grain);
1109
1110 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1111 detail, e->other_detail, e->enable_per_layer_report);
1112 }
1113
1114
1115 }
1116 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1117
1118 /**
1119 * edac_mc_handle_error - reports a memory event to userspace
1120 *
1121 * @type: severity of the error (CE/UE/Fatal)
1122 * @mci: a struct mem_ctl_info pointer
1123 * @error_count: Number of errors of the same type
1124 * @page_frame_number: mem page where the error occurred
1125 * @offset_in_page: offset of the error inside the page
1126 * @syndrome: ECC syndrome
1127 * @top_layer: Memory layer[0] position
1128 * @mid_layer: Memory layer[1] position
1129 * @low_layer: Memory layer[2] position
1130 * @msg: Message meaningful to the end users that
1131 * explains the event
1132 * @other_detail: Technical details about the event that
1133 * may help hardware manufacturers and
1134 * EDAC developers to analyse the event
1135 */
1136 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1137 struct mem_ctl_info *mci,
1138 const u16 error_count,
1139 const unsigned long page_frame_number,
1140 const unsigned long offset_in_page,
1141 const unsigned long syndrome,
1142 const int top_layer,
1143 const int mid_layer,
1144 const int low_layer,
1145 const char *msg,
1146 const char *other_detail)
1147 {
1148 char *p;
1149 int row = -1, chan = -1;
1150 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1151 int i, n_labels = 0;
1152 u8 grain_bits;
1153 struct edac_raw_error_desc *e = &mci->error_desc;
1154
1155 edac_dbg(3, "MC%d\n", mci->mc_idx);
1156
1157 /* Fills the error report buffer */
1158 memset(e, 0, sizeof (*e));
1159 e->error_count = error_count;
1160 e->top_layer = top_layer;
1161 e->mid_layer = mid_layer;
1162 e->low_layer = low_layer;
1163 e->page_frame_number = page_frame_number;
1164 e->offset_in_page = offset_in_page;
1165 e->syndrome = syndrome;
1166 e->msg = msg;
1167 e->other_detail = other_detail;
1168
1169 /*
1170 * Check if the event report is consistent and if the memory
1171 * location is known. If it is known, enable_per_layer_report will be
1172 * true, the DIMM(s) label info will be filled and the per-layer
1173 * error counters will be incremented.
1174 */
1175 for (i = 0; i < mci->n_layers; i++) {
1176 if (pos[i] >= (int)mci->layers[i].size) {
1177
1178 edac_mc_printk(mci, KERN_ERR,
1179 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1180 edac_layer_name[mci->layers[i].type],
1181 pos[i], mci->layers[i].size);
1182 /*
1183 * Instead of just returning it, let's use what's
1184 * known about the error. The increment routines and
1185 * the DIMM filter logic will do the right thing by
1186 * pointing the likely damaged DIMMs.
1187 */
1188 pos[i] = -1;
1189 }
1190 if (pos[i] >= 0)
1191 e->enable_per_layer_report = true;
1192 }
1193
1194 /*
1195 * Get the dimm label/grain that applies to the match criteria.
1196 * As the error algorithm may not be able to point to just one memory
1197 * stick, the logic here will get all possible labels that could
1198 * pottentially be affected by the error.
1199 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1200 * to have only the MC channel and the MC dimm (also called "branch")
1201 * but the channel is not known, as the memory is arranged in pairs,
1202 * where each memory belongs to a separate channel within the same
1203 * branch.
1204 */
1205 p = e->label;
1206 *p = '\0';
1207
1208 for (i = 0; i < mci->tot_dimms; i++) {
1209 struct dimm_info *dimm = mci->dimms[i];
1210
1211 if (top_layer >= 0 && top_layer != dimm->location[0])
1212 continue;
1213 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1214 continue;
1215 if (low_layer >= 0 && low_layer != dimm->location[2])
1216 continue;
1217
1218 /* get the max grain, over the error match range */
1219 if (dimm->grain > e->grain)
1220 e->grain = dimm->grain;
1221
1222 /*
1223 * If the error is memory-controller wide, there's no need to
1224 * seek for the affected DIMMs because the whole
1225 * channel/memory controller/... may be affected.
1226 * Also, don't show errors for empty DIMM slots.
1227 */
1228 if (e->enable_per_layer_report && dimm->nr_pages) {
1229 if (n_labels >= EDAC_MAX_LABELS) {
1230 e->enable_per_layer_report = false;
1231 break;
1232 }
1233 n_labels++;
1234 if (p != e->label) {
1235 strcpy(p, OTHER_LABEL);
1236 p += strlen(OTHER_LABEL);
1237 }
1238 strcpy(p, dimm->label);
1239 p += strlen(p);
1240 *p = '\0';
1241
1242 /*
1243 * get csrow/channel of the DIMM, in order to allow
1244 * incrementing the compat API counters
1245 */
1246 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1247 mci->csbased ? "rank" : "dimm",
1248 dimm->csrow, dimm->cschannel);
1249 if (row == -1)
1250 row = dimm->csrow;
1251 else if (row >= 0 && row != dimm->csrow)
1252 row = -2;
1253
1254 if (chan == -1)
1255 chan = dimm->cschannel;
1256 else if (chan >= 0 && chan != dimm->cschannel)
1257 chan = -2;
1258 }
1259 }
1260
1261 if (!e->enable_per_layer_report) {
1262 strcpy(e->label, "any memory");
1263 } else {
1264 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1265 if (p == e->label)
1266 strcpy(e->label, "unknown memory");
1267 if (type == HW_EVENT_ERR_CORRECTED) {
1268 if (row >= 0) {
1269 mci->csrows[row]->ce_count += error_count;
1270 if (chan >= 0)
1271 mci->csrows[row]->channels[chan]->ce_count += error_count;
1272 }
1273 } else
1274 if (row >= 0)
1275 mci->csrows[row]->ue_count += error_count;
1276 }
1277
1278 /* Fill the RAM location data */
1279 p = e->location;
1280
1281 for (i = 0; i < mci->n_layers; i++) {
1282 if (pos[i] < 0)
1283 continue;
1284
1285 p += sprintf(p, "%s:%d ",
1286 edac_layer_name[mci->layers[i].type],
1287 pos[i]);
1288 }
1289 if (p > e->location)
1290 *(p - 1) = '\0';
1291
1292 /* Report the error via the trace interface */
1293 grain_bits = fls_long(e->grain) + 1;
1294 trace_mc_event(type, e->msg, e->label, e->error_count,
1295 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1296 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1297 grain_bits, e->syndrome, e->other_detail);
1298
1299 edac_raw_mc_handle_error(type, mci, e);
1300 }
1301 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.080697 seconds and 5 git commands to generate.