Merge tag 'for-linus-4.4-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35 * Alter this version for the module when modifications are made
36 */
37 #define SBRIDGE_REVISION " Ver: 1.1.1 "
38 #define EDAC_MOD_STR "sbridge_edac"
39
40 /*
41 * Debug macros
42 */
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 */
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
70 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
71 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
72 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
73
74 static char *get_dram_attr(u32 reg)
75 {
76 switch(DRAM_ATTR(reg)) {
77 case 0:
78 return "DRAM";
79 case 1:
80 return "MMCFG";
81 case 2:
82 return "NXM";
83 default:
84 return "unknown";
85 }
86 }
87
88 static const u32 sbridge_interleave_list[] = {
89 0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92
93 static const u32 ibridge_interleave_list[] = {
94 0x64, 0x6c, 0x74, 0x7c, 0x84,
95 0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99
100 struct interleave_pkg {
101 unsigned char start;
102 unsigned char end;
103 };
104
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 { 0, 2 },
107 { 3, 5 },
108 { 8, 10 },
109 { 11, 13 },
110 { 16, 18 },
111 { 19, 21 },
112 { 24, 26 },
113 { 27, 29 },
114 };
115
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 { 0, 3 },
118 { 4, 7 },
119 { 8, 11 },
120 { 12, 15 },
121 { 16, 19 },
122 { 20, 23 },
123 { 24, 27 },
124 { 28, 31 },
125 };
126
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 int interleave)
129 {
130 return GET_BITFIELD(reg, table[interleave].start,
131 table[interleave].end);
132 }
133
134 /* Devices 12 Function 7 */
135
136 #define TOLM 0x80
137 #define TOHM 0x84
138 #define HASWELL_TOLM 0xd0
139 #define HASWELL_TOHM_0 0xd4
140 #define HASWELL_TOHM_1 0xd8
141
142 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144
145 /* Device 13 Function 6 */
146
147 #define SAD_TARGET 0xf0
148
149 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
150
151 #define SAD_CONTROL 0xf4
152
153 /* Device 14 function 0 */
154
155 static const u32 tad_dram_rule[] = {
156 0x40, 0x44, 0x48, 0x4c,
157 0x50, 0x54, 0x58, 0x5c,
158 0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
161
162 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
165 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
166 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
167 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
168 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
169
170 /* Device 15, function 0 */
171
172 #define MCMTR 0x7c
173
174 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
177
178 /* Device 15, function 1 */
179
180 #define RASENABLES 0xac
181 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
182
183 /* Device 15, functions 2-5 */
184
185 static const int mtr_regs[] = {
186 0x80, 0x84, 0x88,
187 };
188
189 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
194
195 static const u32 tad_ch_nilv_offset[] = {
196 0x90, 0x94, 0x98, 0x9c,
197 0xa0, 0xa4, 0xa8, 0xac,
198 0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
202
203 static const u32 rir_way_limit[] = {
204 0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207
208 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
210
211 #define MAX_RIR_WAY 8
212
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220
221 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
223
224 /* Device 16, functions 2-7 */
225
226 /*
227 * FIXME: Implement the error count reads directly
228 */
229
230 static const u32 correrrcnt[] = {
231 0x104, 0x108, 0x10c, 0x110,
232 };
233
234 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
238
239 static const u32 correrrthrsld[] = {
240 0x11c, 0x120, 0x124, 0x128,
241 };
242
243 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
245
246
247 /* Device 17, function 0 */
248
249 #define SB_RANK_CFG_A 0x0328
250
251 #define IB_RANK_CFG_A 0x0320
252
253 /*
254 * sbridge structs
255 */
256
257 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
258 #define MAX_DIMMS 3 /* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
260
261 enum type {
262 SANDY_BRIDGE,
263 IVY_BRIDGE,
264 HASWELL,
265 BROADWELL,
266 };
267
268 struct sbridge_pvt;
269 struct sbridge_info {
270 enum type type;
271 u32 mcmtr;
272 u32 rankcfgr;
273 u64 (*get_tolm)(struct sbridge_pvt *pvt);
274 u64 (*get_tohm)(struct sbridge_pvt *pvt);
275 u64 (*rir_limit)(u32 reg);
276 const u32 *dram_rule;
277 const u32 *interleave_list;
278 const struct interleave_pkg *interleave_pkg;
279 u8 max_sad;
280 u8 max_interleave;
281 u8 (*get_node_id)(struct sbridge_pvt *pvt);
282 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
283 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
284 struct pci_dev *pci_vtd;
285 };
286
287 struct sbridge_channel {
288 u32 ranks;
289 u32 dimms;
290 };
291
292 struct pci_id_descr {
293 int dev_id;
294 int optional;
295 };
296
297 struct pci_id_table {
298 const struct pci_id_descr *descr;
299 int n_devs;
300 };
301
302 struct sbridge_dev {
303 struct list_head list;
304 u8 bus, mc;
305 u8 node_id, source_id;
306 struct pci_dev **pdev;
307 int n_devs;
308 struct mem_ctl_info *mci;
309 };
310
311 struct sbridge_pvt {
312 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
313 struct pci_dev *pci_sad0, *pci_sad1;
314 struct pci_dev *pci_ha0, *pci_ha1;
315 struct pci_dev *pci_br0, *pci_br1;
316 struct pci_dev *pci_ha1_ta;
317 struct pci_dev *pci_tad[NUM_CHANNELS];
318
319 struct sbridge_dev *sbridge_dev;
320
321 struct sbridge_info info;
322 struct sbridge_channel channel[NUM_CHANNELS];
323
324 /* Memory type detection */
325 bool is_mirrored, is_lockstep, is_close_pg;
326
327 /* Fifo double buffers */
328 struct mce mce_entry[MCE_LOG_LEN];
329 struct mce mce_outentry[MCE_LOG_LEN];
330
331 /* Fifo in/out counters */
332 unsigned mce_in, mce_out;
333
334 /* Count indicator to show errors not got */
335 unsigned mce_overrun;
336
337 /* Memory description */
338 u64 tolm, tohm;
339 };
340
341 #define PCI_DESCR(device_id, opt) \
342 .dev_id = (device_id), \
343 .optional = opt
344
345 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
346 /* Processor Home Agent */
347 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
348
349 /* Memory controller */
350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
351 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
352 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
354 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
355 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
356 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
357
358 /* System Address Decoder */
359 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
360 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
361
362 /* Broadcast Registers */
363 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
364 };
365
366 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
367 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
368 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
369 {0,} /* 0 terminated list. */
370 };
371
372 /* This changes depending if 1HA or 2HA:
373 * 1HA:
374 * 0x0eb8 (17.0) is DDRIO0
375 * 2HA:
376 * 0x0ebc (17.4) is DDRIO0
377 */
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
380
381 /* pci ids */
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
399
400 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
401 /* Processor Home Agent */
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) },
403
404 /* Memory controller */
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) },
406 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) },
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) },
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) },
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) },
411
412 /* System Address Decoder */
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) },
414
415 /* Broadcast Registers */
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) },
417 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) },
418
419 /* Optional, mode 2HA */
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) },
421 #if 0
422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) },
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
424 #endif
425 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) },
426 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) },
427 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1) },
428 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1) },
429
430 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
431 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
432 };
433
434 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
435 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
436 {0,} /* 0 terminated list. */
437 };
438
439 /* Haswell support */
440 /* EN processor:
441 * - 1 IMC
442 * - 3 DDR3 channels, 2 DPC per channel
443 * EP processor:
444 * - 1 or 2 IMC
445 * - 4 DDR4 channels, 3 DPC per channel
446 * EP 4S processor:
447 * - 2 IMC
448 * - 4 DDR4 channels, 3 DPC per channel
449 * EX processor:
450 * - 2 IMC
451 * - each IMC interfaces with a SMI 2 channel
452 * - each SMI channel interfaces with a scalable memory buffer
453 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
454 */
455 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
456 #define HASWELL_HASYSDEFEATURE2 0x84
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
474 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
475 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
476 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
477 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
478 static const struct pci_id_descr pci_dev_descr_haswell[] = {
479 /* first item must be the HA */
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0) },
481
482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0) },
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0) },
484
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1) },
486
487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0) },
489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1) },
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1) },
493
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1) },
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1) },
496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1) },
497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1) },
498
499 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1) },
500 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1) },
501 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1) },
502 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1) },
503 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1) },
504 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1) },
505 };
506
507 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
508 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
509 {0,} /* 0 terminated list. */
510 };
511
512 /*
513 * Broadwell support
514 *
515 * DE processor:
516 * - 1 IMC
517 * - 2 DDR3 channels, 2 DPC per channel
518 * EP processor:
519 * - 1 or 2 IMC
520 * - 4 DDR4 channels, 3 DPC per channel
521 * EP 4S processor:
522 * - 2 IMC
523 * - 4 DDR4 channels, 3 DPC per channel
524 * EX processor:
525 * - 2 IMC
526 * - each IMC interfaces with a SMI 2 channel
527 * - each SMI channel interfaces with a scalable memory buffer
528 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
529 */
530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
541 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
542 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
543 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
544 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
545 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
546 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
547 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
548
549 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
550 /* first item must be the HA */
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0) },
552
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0) },
555
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1) },
557
558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0) },
560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1) },
564
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1) },
566
567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1) },
569 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1) },
570 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1) },
571 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1) },
572 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1) },
573 };
574
575 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
576 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
577 {0,} /* 0 terminated list. */
578 };
579
580 /*
581 * pci_device_id table for which devices we are looking for
582 */
583 static const struct pci_device_id sbridge_pci_tbl[] = {
584 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
585 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
586 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
587 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
588 {0,} /* 0 terminated list. */
589 };
590
591
592 /****************************************************************************
593 Ancillary status routines
594 ****************************************************************************/
595
596 static inline int numrank(enum type type, u32 mtr)
597 {
598 int ranks = (1 << RANK_CNT_BITS(mtr));
599 int max = 4;
600
601 if (type == HASWELL || type == BROADWELL)
602 max = 8;
603
604 if (ranks > max) {
605 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
606 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
607 return -EINVAL;
608 }
609
610 return ranks;
611 }
612
613 static inline int numrow(u32 mtr)
614 {
615 int rows = (RANK_WIDTH_BITS(mtr) + 12);
616
617 if (rows < 13 || rows > 18) {
618 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
619 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
620 return -EINVAL;
621 }
622
623 return 1 << rows;
624 }
625
626 static inline int numcol(u32 mtr)
627 {
628 int cols = (COL_WIDTH_BITS(mtr) + 10);
629
630 if (cols > 12) {
631 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
632 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
633 return -EINVAL;
634 }
635
636 return 1 << cols;
637 }
638
639 static struct sbridge_dev *get_sbridge_dev(u8 bus)
640 {
641 struct sbridge_dev *sbridge_dev;
642
643 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
644 if (sbridge_dev->bus == bus)
645 return sbridge_dev;
646 }
647
648 return NULL;
649 }
650
651 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
652 const struct pci_id_table *table)
653 {
654 struct sbridge_dev *sbridge_dev;
655
656 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
657 if (!sbridge_dev)
658 return NULL;
659
660 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
661 GFP_KERNEL);
662 if (!sbridge_dev->pdev) {
663 kfree(sbridge_dev);
664 return NULL;
665 }
666
667 sbridge_dev->bus = bus;
668 sbridge_dev->n_devs = table->n_devs;
669 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
670
671 return sbridge_dev;
672 }
673
674 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
675 {
676 list_del(&sbridge_dev->list);
677 kfree(sbridge_dev->pdev);
678 kfree(sbridge_dev);
679 }
680
681 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
682 {
683 u32 reg;
684
685 /* Address range is 32:28 */
686 pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
687 return GET_TOLM(reg);
688 }
689
690 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
691 {
692 u32 reg;
693
694 pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
695 return GET_TOHM(reg);
696 }
697
698 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
699 {
700 u32 reg;
701
702 pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
703
704 return GET_TOLM(reg);
705 }
706
707 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
708 {
709 u32 reg;
710
711 pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
712
713 return GET_TOHM(reg);
714 }
715
716 static u64 rir_limit(u32 reg)
717 {
718 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
719 }
720
721 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
722 {
723 u32 reg;
724 enum mem_type mtype;
725
726 if (pvt->pci_ddrio) {
727 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
728 &reg);
729 if (GET_BITFIELD(reg, 11, 11))
730 /* FIXME: Can also be LRDIMM */
731 mtype = MEM_RDDR3;
732 else
733 mtype = MEM_DDR3;
734 } else
735 mtype = MEM_UNKNOWN;
736
737 return mtype;
738 }
739
740 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
741 {
742 u32 reg;
743 bool registered = false;
744 enum mem_type mtype = MEM_UNKNOWN;
745
746 if (!pvt->pci_ddrio)
747 goto out;
748
749 pci_read_config_dword(pvt->pci_ddrio,
750 HASWELL_DDRCRCLKCONTROLS, &reg);
751 /* Is_Rdimm */
752 if (GET_BITFIELD(reg, 16, 16))
753 registered = true;
754
755 pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
756 if (GET_BITFIELD(reg, 14, 14)) {
757 if (registered)
758 mtype = MEM_RDDR4;
759 else
760 mtype = MEM_DDR4;
761 } else {
762 if (registered)
763 mtype = MEM_RDDR3;
764 else
765 mtype = MEM_DDR3;
766 }
767
768 out:
769 return mtype;
770 }
771
772 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
773 {
774 /* there's no way to figure out */
775 return DEV_UNKNOWN;
776 }
777
778 static enum dev_type __ibridge_get_width(u32 mtr)
779 {
780 enum dev_type type;
781
782 switch (mtr) {
783 case 3:
784 type = DEV_UNKNOWN;
785 break;
786 case 2:
787 type = DEV_X16;
788 break;
789 case 1:
790 type = DEV_X8;
791 break;
792 case 0:
793 type = DEV_X4;
794 break;
795 }
796
797 return type;
798 }
799
800 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
801 {
802 /*
803 * ddr3_width on the documentation but also valid for DDR4 on
804 * Haswell
805 */
806 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
807 }
808
809 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
810 {
811 /* ddr3_width on the documentation but also valid for DDR4 */
812 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
813 }
814
815 static u8 get_node_id(struct sbridge_pvt *pvt)
816 {
817 u32 reg;
818 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
819 return GET_BITFIELD(reg, 0, 2);
820 }
821
822 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
823 {
824 u32 reg;
825
826 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
827 return GET_BITFIELD(reg, 0, 3);
828 }
829
830 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
831 {
832 u32 reg;
833
834 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
835 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
836 }
837
838 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
839 {
840 u64 rc;
841 u32 reg;
842
843 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
844 rc = GET_BITFIELD(reg, 26, 31);
845 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
846 rc = ((reg << 6) | rc) << 26;
847
848 return rc | 0x1ffffff;
849 }
850
851 static u64 haswell_rir_limit(u32 reg)
852 {
853 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
854 }
855
856 static inline u8 sad_pkg_socket(u8 pkg)
857 {
858 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
859 return ((pkg >> 3) << 2) | (pkg & 0x3);
860 }
861
862 static inline u8 sad_pkg_ha(u8 pkg)
863 {
864 return (pkg >> 2) & 0x1;
865 }
866
867 /****************************************************************************
868 Memory check routines
869 ****************************************************************************/
870 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
871 {
872 struct pci_dev *pdev = NULL;
873
874 do {
875 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
876 if (pdev && pdev->bus->number == bus)
877 break;
878 } while (pdev);
879
880 return pdev;
881 }
882
883 /**
884 * check_if_ecc_is_active() - Checks if ECC is active
885 * @bus: Device bus
886 * @type: Memory controller type
887 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
888 * disabled
889 */
890 static int check_if_ecc_is_active(const u8 bus, enum type type)
891 {
892 struct pci_dev *pdev = NULL;
893 u32 mcmtr, id;
894
895 switch (type) {
896 case IVY_BRIDGE:
897 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
898 break;
899 case HASWELL:
900 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
901 break;
902 case SANDY_BRIDGE:
903 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
904 break;
905 case BROADWELL:
906 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
907 break;
908 default:
909 return -ENODEV;
910 }
911
912 pdev = get_pdev_same_bus(bus, id);
913 if (!pdev) {
914 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
915 "%04x:%04x! on bus %02d\n",
916 PCI_VENDOR_ID_INTEL, id, bus);
917 return -ENODEV;
918 }
919
920 pci_read_config_dword(pdev, MCMTR, &mcmtr);
921 if (!IS_ECC_ENABLED(mcmtr)) {
922 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
923 return -ENODEV;
924 }
925 return 0;
926 }
927
928 static int get_dimm_config(struct mem_ctl_info *mci)
929 {
930 struct sbridge_pvt *pvt = mci->pvt_info;
931 struct dimm_info *dimm;
932 unsigned i, j, banks, ranks, rows, cols, npages;
933 u64 size;
934 u32 reg;
935 enum edac_type mode;
936 enum mem_type mtype;
937
938 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
939 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
940 else
941 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
942
943 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
944
945 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
946 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
947 pvt->sbridge_dev->mc,
948 pvt->sbridge_dev->node_id,
949 pvt->sbridge_dev->source_id);
950
951 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
952 if (IS_MIRROR_ENABLED(reg)) {
953 edac_dbg(0, "Memory mirror is enabled\n");
954 pvt->is_mirrored = true;
955 } else {
956 edac_dbg(0, "Memory mirror is disabled\n");
957 pvt->is_mirrored = false;
958 }
959
960 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
961 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
962 edac_dbg(0, "Lockstep is enabled\n");
963 mode = EDAC_S8ECD8ED;
964 pvt->is_lockstep = true;
965 } else {
966 edac_dbg(0, "Lockstep is disabled\n");
967 mode = EDAC_S4ECD4ED;
968 pvt->is_lockstep = false;
969 }
970 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
971 edac_dbg(0, "address map is on closed page mode\n");
972 pvt->is_close_pg = true;
973 } else {
974 edac_dbg(0, "address map is on open page mode\n");
975 pvt->is_close_pg = false;
976 }
977
978 mtype = pvt->info.get_memory_type(pvt);
979 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
980 edac_dbg(0, "Memory is registered\n");
981 else if (mtype == MEM_UNKNOWN)
982 edac_dbg(0, "Cannot determine memory type\n");
983 else
984 edac_dbg(0, "Memory is unregistered\n");
985
986 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
987 banks = 16;
988 else
989 banks = 8;
990
991 for (i = 0; i < NUM_CHANNELS; i++) {
992 u32 mtr;
993
994 if (!pvt->pci_tad[i])
995 continue;
996 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
997 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
998 i, j, 0);
999 pci_read_config_dword(pvt->pci_tad[i],
1000 mtr_regs[j], &mtr);
1001 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
1002 if (IS_DIMM_PRESENT(mtr)) {
1003 pvt->channel[i].dimms++;
1004
1005 ranks = numrank(pvt->info.type, mtr);
1006 rows = numrow(mtr);
1007 cols = numcol(mtr);
1008
1009 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1010 npages = MiB_TO_PAGES(size);
1011
1012 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1013 pvt->sbridge_dev->mc, i/4, i%4, j,
1014 size, npages,
1015 banks, ranks, rows, cols);
1016
1017 dimm->nr_pages = npages;
1018 dimm->grain = 32;
1019 dimm->dtype = pvt->info.get_width(pvt, mtr);
1020 dimm->mtype = mtype;
1021 dimm->edac_mode = mode;
1022 snprintf(dimm->label, sizeof(dimm->label),
1023 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1024 pvt->sbridge_dev->source_id, i/4, i%4, j);
1025 }
1026 }
1027 }
1028
1029 return 0;
1030 }
1031
1032 static void get_memory_layout(const struct mem_ctl_info *mci)
1033 {
1034 struct sbridge_pvt *pvt = mci->pvt_info;
1035 int i, j, k, n_sads, n_tads, sad_interl;
1036 u32 reg;
1037 u64 limit, prv = 0;
1038 u64 tmp_mb;
1039 u32 gb, mb;
1040 u32 rir_way;
1041
1042 /*
1043 * Step 1) Get TOLM/TOHM ranges
1044 */
1045
1046 pvt->tolm = pvt->info.get_tolm(pvt);
1047 tmp_mb = (1 + pvt->tolm) >> 20;
1048
1049 gb = div_u64_rem(tmp_mb, 1024, &mb);
1050 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1051 gb, (mb*1000)/1024, (u64)pvt->tolm);
1052
1053 /* Address range is already 45:25 */
1054 pvt->tohm = pvt->info.get_tohm(pvt);
1055 tmp_mb = (1 + pvt->tohm) >> 20;
1056
1057 gb = div_u64_rem(tmp_mb, 1024, &mb);
1058 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1059 gb, (mb*1000)/1024, (u64)pvt->tohm);
1060
1061 /*
1062 * Step 2) Get SAD range and SAD Interleave list
1063 * TAD registers contain the interleave wayness. However, it
1064 * seems simpler to just discover it indirectly, with the
1065 * algorithm bellow.
1066 */
1067 prv = 0;
1068 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1069 /* SAD_LIMIT Address range is 45:26 */
1070 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1071 &reg);
1072 limit = SAD_LIMIT(reg);
1073
1074 if (!DRAM_RULE_ENABLE(reg))
1075 continue;
1076
1077 if (limit <= prv)
1078 break;
1079
1080 tmp_mb = (limit + 1) >> 20;
1081 gb = div_u64_rem(tmp_mb, 1024, &mb);
1082 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1083 n_sads,
1084 get_dram_attr(reg),
1085 gb, (mb*1000)/1024,
1086 ((u64)tmp_mb) << 20L,
1087 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1088 reg);
1089 prv = limit;
1090
1091 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1092 &reg);
1093 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1094 for (j = 0; j < 8; j++) {
1095 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1096 if (j > 0 && sad_interl == pkg)
1097 break;
1098
1099 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1100 n_sads, j, pkg);
1101 }
1102 }
1103
1104 /*
1105 * Step 3) Get TAD range
1106 */
1107 prv = 0;
1108 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1109 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1110 &reg);
1111 limit = TAD_LIMIT(reg);
1112 if (limit <= prv)
1113 break;
1114 tmp_mb = (limit + 1) >> 20;
1115
1116 gb = div_u64_rem(tmp_mb, 1024, &mb);
1117 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1118 n_tads, gb, (mb*1000)/1024,
1119 ((u64)tmp_mb) << 20L,
1120 (u32)TAD_SOCK(reg),
1121 (u32)TAD_CH(reg),
1122 (u32)TAD_TGT0(reg),
1123 (u32)TAD_TGT1(reg),
1124 (u32)TAD_TGT2(reg),
1125 (u32)TAD_TGT3(reg),
1126 reg);
1127 prv = limit;
1128 }
1129
1130 /*
1131 * Step 4) Get TAD offsets, per each channel
1132 */
1133 for (i = 0; i < NUM_CHANNELS; i++) {
1134 if (!pvt->channel[i].dimms)
1135 continue;
1136 for (j = 0; j < n_tads; j++) {
1137 pci_read_config_dword(pvt->pci_tad[i],
1138 tad_ch_nilv_offset[j],
1139 &reg);
1140 tmp_mb = TAD_OFFSET(reg) >> 20;
1141 gb = div_u64_rem(tmp_mb, 1024, &mb);
1142 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1143 i, j,
1144 gb, (mb*1000)/1024,
1145 ((u64)tmp_mb) << 20L,
1146 reg);
1147 }
1148 }
1149
1150 /*
1151 * Step 6) Get RIR Wayness/Limit, per each channel
1152 */
1153 for (i = 0; i < NUM_CHANNELS; i++) {
1154 if (!pvt->channel[i].dimms)
1155 continue;
1156 for (j = 0; j < MAX_RIR_RANGES; j++) {
1157 pci_read_config_dword(pvt->pci_tad[i],
1158 rir_way_limit[j],
1159 &reg);
1160
1161 if (!IS_RIR_VALID(reg))
1162 continue;
1163
1164 tmp_mb = pvt->info.rir_limit(reg) >> 20;
1165 rir_way = 1 << RIR_WAY(reg);
1166 gb = div_u64_rem(tmp_mb, 1024, &mb);
1167 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1168 i, j,
1169 gb, (mb*1000)/1024,
1170 ((u64)tmp_mb) << 20L,
1171 rir_way,
1172 reg);
1173
1174 for (k = 0; k < rir_way; k++) {
1175 pci_read_config_dword(pvt->pci_tad[i],
1176 rir_offset[j][k],
1177 &reg);
1178 tmp_mb = RIR_OFFSET(reg) << 6;
1179
1180 gb = div_u64_rem(tmp_mb, 1024, &mb);
1181 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1182 i, j, k,
1183 gb, (mb*1000)/1024,
1184 ((u64)tmp_mb) << 20L,
1185 (u32)RIR_RNK_TGT(reg),
1186 reg);
1187 }
1188 }
1189 }
1190 }
1191
1192 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1193 {
1194 struct sbridge_dev *sbridge_dev;
1195
1196 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1197 if (sbridge_dev->node_id == node_id)
1198 return sbridge_dev->mci;
1199 }
1200 return NULL;
1201 }
1202
1203 static int get_memory_error_data(struct mem_ctl_info *mci,
1204 u64 addr,
1205 u8 *socket, u8 *ha,
1206 long *channel_mask,
1207 u8 *rank,
1208 char **area_type, char *msg)
1209 {
1210 struct mem_ctl_info *new_mci;
1211 struct sbridge_pvt *pvt = mci->pvt_info;
1212 struct pci_dev *pci_ha;
1213 int n_rir, n_sads, n_tads, sad_way, sck_xch;
1214 int sad_interl, idx, base_ch;
1215 int interleave_mode, shiftup = 0;
1216 unsigned sad_interleave[pvt->info.max_interleave];
1217 u32 reg, dram_rule;
1218 u8 ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1219 u32 tad_offset;
1220 u32 rir_way;
1221 u32 mb, gb;
1222 u64 ch_addr, offset, limit = 0, prv = 0;
1223
1224
1225 /*
1226 * Step 0) Check if the address is at special memory ranges
1227 * The check bellow is probably enough to fill all cases where
1228 * the error is not inside a memory, except for the legacy
1229 * range (e. g. VGA addresses). It is unlikely, however, that the
1230 * memory controller would generate an error on that range.
1231 */
1232 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1233 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1234 return -EINVAL;
1235 }
1236 if (addr >= (u64)pvt->tohm) {
1237 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1238 return -EINVAL;
1239 }
1240
1241 /*
1242 * Step 1) Get socket
1243 */
1244 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1245 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1246 &reg);
1247
1248 if (!DRAM_RULE_ENABLE(reg))
1249 continue;
1250
1251 limit = SAD_LIMIT(reg);
1252 if (limit <= prv) {
1253 sprintf(msg, "Can't discover the memory socket");
1254 return -EINVAL;
1255 }
1256 if (addr <= limit)
1257 break;
1258 prv = limit;
1259 }
1260 if (n_sads == pvt->info.max_sad) {
1261 sprintf(msg, "Can't discover the memory socket");
1262 return -EINVAL;
1263 }
1264 dram_rule = reg;
1265 *area_type = get_dram_attr(dram_rule);
1266 interleave_mode = INTERLEAVE_MODE(dram_rule);
1267
1268 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1269 &reg);
1270
1271 if (pvt->info.type == SANDY_BRIDGE) {
1272 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1273 for (sad_way = 0; sad_way < 8; sad_way++) {
1274 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1275 if (sad_way > 0 && sad_interl == pkg)
1276 break;
1277 sad_interleave[sad_way] = pkg;
1278 edac_dbg(0, "SAD interleave #%d: %d\n",
1279 sad_way, sad_interleave[sad_way]);
1280 }
1281 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1282 pvt->sbridge_dev->mc,
1283 n_sads,
1284 addr,
1285 limit,
1286 sad_way + 7,
1287 !interleave_mode ? "" : "XOR[18:16]");
1288 if (interleave_mode)
1289 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1290 else
1291 idx = (addr >> 6) & 7;
1292 switch (sad_way) {
1293 case 1:
1294 idx = 0;
1295 break;
1296 case 2:
1297 idx = idx & 1;
1298 break;
1299 case 4:
1300 idx = idx & 3;
1301 break;
1302 case 8:
1303 break;
1304 default:
1305 sprintf(msg, "Can't discover socket interleave");
1306 return -EINVAL;
1307 }
1308 *socket = sad_interleave[idx];
1309 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1310 idx, sad_way, *socket);
1311 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1312 int bits, a7mode = A7MODE(dram_rule);
1313
1314 if (a7mode) {
1315 /* A7 mode swaps P9 with P6 */
1316 bits = GET_BITFIELD(addr, 7, 8) << 1;
1317 bits |= GET_BITFIELD(addr, 9, 9);
1318 } else
1319 bits = GET_BITFIELD(addr, 6, 8);
1320
1321 if (interleave_mode == 0) {
1322 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1323 idx = GET_BITFIELD(addr, 16, 18);
1324 idx ^= bits;
1325 } else
1326 idx = bits;
1327
1328 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1329 *socket = sad_pkg_socket(pkg);
1330 sad_ha = sad_pkg_ha(pkg);
1331 if (sad_ha)
1332 ch_add = 4;
1333
1334 if (a7mode) {
1335 /* MCChanShiftUpEnable */
1336 pci_read_config_dword(pvt->pci_ha0,
1337 HASWELL_HASYSDEFEATURE2, &reg);
1338 shiftup = GET_BITFIELD(reg, 22, 22);
1339 }
1340
1341 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1342 idx, *socket, sad_ha, shiftup);
1343 } else {
1344 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1345 idx = (addr >> 6) & 7;
1346 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1347 *socket = sad_pkg_socket(pkg);
1348 sad_ha = sad_pkg_ha(pkg);
1349 if (sad_ha)
1350 ch_add = 4;
1351 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1352 idx, *socket, sad_ha);
1353 }
1354
1355 *ha = sad_ha;
1356
1357 /*
1358 * Move to the proper node structure, in order to access the
1359 * right PCI registers
1360 */
1361 new_mci = get_mci_for_node_id(*socket);
1362 if (!new_mci) {
1363 sprintf(msg, "Struct for socket #%u wasn't initialized",
1364 *socket);
1365 return -EINVAL;
1366 }
1367 mci = new_mci;
1368 pvt = mci->pvt_info;
1369
1370 /*
1371 * Step 2) Get memory channel
1372 */
1373 prv = 0;
1374 if (pvt->info.type == SANDY_BRIDGE)
1375 pci_ha = pvt->pci_ha0;
1376 else {
1377 if (sad_ha)
1378 pci_ha = pvt->pci_ha1;
1379 else
1380 pci_ha = pvt->pci_ha0;
1381 }
1382 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1383 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1384 limit = TAD_LIMIT(reg);
1385 if (limit <= prv) {
1386 sprintf(msg, "Can't discover the memory channel");
1387 return -EINVAL;
1388 }
1389 if (addr <= limit)
1390 break;
1391 prv = limit;
1392 }
1393 if (n_tads == MAX_TAD) {
1394 sprintf(msg, "Can't discover the memory channel");
1395 return -EINVAL;
1396 }
1397
1398 ch_way = TAD_CH(reg) + 1;
1399 sck_way = TAD_SOCK(reg) + 1;
1400
1401 if (ch_way == 3)
1402 idx = addr >> 6;
1403 else
1404 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1405 idx = idx % ch_way;
1406
1407 /*
1408 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1409 */
1410 switch (idx) {
1411 case 0:
1412 base_ch = TAD_TGT0(reg);
1413 break;
1414 case 1:
1415 base_ch = TAD_TGT1(reg);
1416 break;
1417 case 2:
1418 base_ch = TAD_TGT2(reg);
1419 break;
1420 case 3:
1421 base_ch = TAD_TGT3(reg);
1422 break;
1423 default:
1424 sprintf(msg, "Can't discover the TAD target");
1425 return -EINVAL;
1426 }
1427 *channel_mask = 1 << base_ch;
1428
1429 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1430 tad_ch_nilv_offset[n_tads],
1431 &tad_offset);
1432
1433 if (pvt->is_mirrored) {
1434 *channel_mask |= 1 << ((base_ch + 2) % 4);
1435 switch(ch_way) {
1436 case 2:
1437 case 4:
1438 sck_xch = 1 << sck_way * (ch_way >> 1);
1439 break;
1440 default:
1441 sprintf(msg, "Invalid mirror set. Can't decode addr");
1442 return -EINVAL;
1443 }
1444 } else
1445 sck_xch = (1 << sck_way) * ch_way;
1446
1447 if (pvt->is_lockstep)
1448 *channel_mask |= 1 << ((base_ch + 1) % 4);
1449
1450 offset = TAD_OFFSET(tad_offset);
1451
1452 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1453 n_tads,
1454 addr,
1455 limit,
1456 (u32)TAD_SOCK(reg),
1457 ch_way,
1458 offset,
1459 idx,
1460 base_ch,
1461 *channel_mask);
1462
1463 /* Calculate channel address */
1464 /* Remove the TAD offset */
1465
1466 if (offset > addr) {
1467 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1468 offset, addr);
1469 return -EINVAL;
1470 }
1471 addr -= offset;
1472 /* Store the low bits [0:6] of the addr */
1473 ch_addr = addr & 0x7f;
1474 /* Remove socket wayness and remove 6 bits */
1475 addr >>= 6;
1476 addr = div_u64(addr, sck_xch);
1477 #if 0
1478 /* Divide by channel way */
1479 addr = addr / ch_way;
1480 #endif
1481 /* Recover the last 6 bits */
1482 ch_addr |= addr << 6;
1483
1484 /*
1485 * Step 3) Decode rank
1486 */
1487 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1488 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1489 rir_way_limit[n_rir],
1490 &reg);
1491
1492 if (!IS_RIR_VALID(reg))
1493 continue;
1494
1495 limit = pvt->info.rir_limit(reg);
1496 gb = div_u64_rem(limit >> 20, 1024, &mb);
1497 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1498 n_rir,
1499 gb, (mb*1000)/1024,
1500 limit,
1501 1 << RIR_WAY(reg));
1502 if (ch_addr <= limit)
1503 break;
1504 }
1505 if (n_rir == MAX_RIR_RANGES) {
1506 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1507 ch_addr);
1508 return -EINVAL;
1509 }
1510 rir_way = RIR_WAY(reg);
1511
1512 if (pvt->is_close_pg)
1513 idx = (ch_addr >> 6);
1514 else
1515 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1516 idx %= 1 << rir_way;
1517
1518 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1519 rir_offset[n_rir][idx],
1520 &reg);
1521 *rank = RIR_RNK_TGT(reg);
1522
1523 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1524 n_rir,
1525 ch_addr,
1526 limit,
1527 rir_way,
1528 idx);
1529
1530 return 0;
1531 }
1532
1533 /****************************************************************************
1534 Device initialization routines: put/get, init/exit
1535 ****************************************************************************/
1536
1537 /*
1538 * sbridge_put_all_devices 'put' all the devices that we have
1539 * reserved via 'get'
1540 */
1541 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1542 {
1543 int i;
1544
1545 edac_dbg(0, "\n");
1546 for (i = 0; i < sbridge_dev->n_devs; i++) {
1547 struct pci_dev *pdev = sbridge_dev->pdev[i];
1548 if (!pdev)
1549 continue;
1550 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1551 pdev->bus->number,
1552 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1553 pci_dev_put(pdev);
1554 }
1555 }
1556
1557 static void sbridge_put_all_devices(void)
1558 {
1559 struct sbridge_dev *sbridge_dev, *tmp;
1560
1561 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1562 sbridge_put_devices(sbridge_dev);
1563 free_sbridge_dev(sbridge_dev);
1564 }
1565 }
1566
1567 static int sbridge_get_onedevice(struct pci_dev **prev,
1568 u8 *num_mc,
1569 const struct pci_id_table *table,
1570 const unsigned devno)
1571 {
1572 struct sbridge_dev *sbridge_dev;
1573 const struct pci_id_descr *dev_descr = &table->descr[devno];
1574 struct pci_dev *pdev = NULL;
1575 u8 bus = 0;
1576
1577 sbridge_printk(KERN_DEBUG,
1578 "Seeking for: PCI ID %04x:%04x\n",
1579 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1580
1581 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1582 dev_descr->dev_id, *prev);
1583
1584 if (!pdev) {
1585 if (*prev) {
1586 *prev = pdev;
1587 return 0;
1588 }
1589
1590 if (dev_descr->optional)
1591 return 0;
1592
1593 /* if the HA wasn't found */
1594 if (devno == 0)
1595 return -ENODEV;
1596
1597 sbridge_printk(KERN_INFO,
1598 "Device not found: %04x:%04x\n",
1599 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1600
1601 /* End of list, leave */
1602 return -ENODEV;
1603 }
1604 bus = pdev->bus->number;
1605
1606 sbridge_dev = get_sbridge_dev(bus);
1607 if (!sbridge_dev) {
1608 sbridge_dev = alloc_sbridge_dev(bus, table);
1609 if (!sbridge_dev) {
1610 pci_dev_put(pdev);
1611 return -ENOMEM;
1612 }
1613 (*num_mc)++;
1614 }
1615
1616 if (sbridge_dev->pdev[devno]) {
1617 sbridge_printk(KERN_ERR,
1618 "Duplicated device for %04x:%04x\n",
1619 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1620 pci_dev_put(pdev);
1621 return -ENODEV;
1622 }
1623
1624 sbridge_dev->pdev[devno] = pdev;
1625
1626 /* Be sure that the device is enabled */
1627 if (unlikely(pci_enable_device(pdev) < 0)) {
1628 sbridge_printk(KERN_ERR,
1629 "Couldn't enable %04x:%04x\n",
1630 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1631 return -ENODEV;
1632 }
1633
1634 edac_dbg(0, "Detected %04x:%04x\n",
1635 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1636
1637 /*
1638 * As stated on drivers/pci/search.c, the reference count for
1639 * @from is always decremented if it is not %NULL. So, as we need
1640 * to get all devices up to null, we need to do a get for the device
1641 */
1642 pci_dev_get(pdev);
1643
1644 *prev = pdev;
1645
1646 return 0;
1647 }
1648
1649 /*
1650 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1651 * devices we want to reference for this driver.
1652 * @num_mc: pointer to the memory controllers count, to be incremented in case
1653 * of success.
1654 * @table: model specific table
1655 *
1656 * returns 0 in case of success or error code
1657 */
1658 static int sbridge_get_all_devices(u8 *num_mc,
1659 const struct pci_id_table *table)
1660 {
1661 int i, rc;
1662 struct pci_dev *pdev = NULL;
1663
1664 while (table && table->descr) {
1665 for (i = 0; i < table->n_devs; i++) {
1666 pdev = NULL;
1667 do {
1668 rc = sbridge_get_onedevice(&pdev, num_mc,
1669 table, i);
1670 if (rc < 0) {
1671 if (i == 0) {
1672 i = table->n_devs;
1673 break;
1674 }
1675 sbridge_put_all_devices();
1676 return -ENODEV;
1677 }
1678 } while (pdev);
1679 }
1680 table++;
1681 }
1682
1683 return 0;
1684 }
1685
1686 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1687 struct sbridge_dev *sbridge_dev)
1688 {
1689 struct sbridge_pvt *pvt = mci->pvt_info;
1690 struct pci_dev *pdev;
1691 u8 saw_chan_mask = 0;
1692 int i;
1693
1694 for (i = 0; i < sbridge_dev->n_devs; i++) {
1695 pdev = sbridge_dev->pdev[i];
1696 if (!pdev)
1697 continue;
1698
1699 switch (pdev->device) {
1700 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1701 pvt->pci_sad0 = pdev;
1702 break;
1703 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1704 pvt->pci_sad1 = pdev;
1705 break;
1706 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1707 pvt->pci_br0 = pdev;
1708 break;
1709 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1710 pvt->pci_ha0 = pdev;
1711 break;
1712 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1713 pvt->pci_ta = pdev;
1714 break;
1715 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1716 pvt->pci_ras = pdev;
1717 break;
1718 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1719 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1720 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1721 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1722 {
1723 int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1724 pvt->pci_tad[id] = pdev;
1725 saw_chan_mask |= 1 << id;
1726 }
1727 break;
1728 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1729 pvt->pci_ddrio = pdev;
1730 break;
1731 default:
1732 goto error;
1733 }
1734
1735 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1736 pdev->vendor, pdev->device,
1737 sbridge_dev->bus,
1738 pdev);
1739 }
1740
1741 /* Check if everything were registered */
1742 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1743 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
1744 goto enodev;
1745
1746 if (saw_chan_mask != 0x0f)
1747 goto enodev;
1748 return 0;
1749
1750 enodev:
1751 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1752 return -ENODEV;
1753
1754 error:
1755 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1756 PCI_VENDOR_ID_INTEL, pdev->device);
1757 return -EINVAL;
1758 }
1759
1760 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1761 struct sbridge_dev *sbridge_dev)
1762 {
1763 struct sbridge_pvt *pvt = mci->pvt_info;
1764 struct pci_dev *pdev;
1765 u8 saw_chan_mask = 0;
1766 int i;
1767
1768 for (i = 0; i < sbridge_dev->n_devs; i++) {
1769 pdev = sbridge_dev->pdev[i];
1770 if (!pdev)
1771 continue;
1772
1773 switch (pdev->device) {
1774 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1775 pvt->pci_ha0 = pdev;
1776 break;
1777 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1778 pvt->pci_ta = pdev;
1779 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1780 pvt->pci_ras = pdev;
1781 break;
1782 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1783 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1784 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1785 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1786 {
1787 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1788 pvt->pci_tad[id] = pdev;
1789 saw_chan_mask |= 1 << id;
1790 }
1791 break;
1792 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1793 pvt->pci_ddrio = pdev;
1794 break;
1795 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1796 pvt->pci_ddrio = pdev;
1797 break;
1798 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1799 pvt->pci_sad0 = pdev;
1800 break;
1801 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1802 pvt->pci_br0 = pdev;
1803 break;
1804 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1805 pvt->pci_br1 = pdev;
1806 break;
1807 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1808 pvt->pci_ha1 = pdev;
1809 break;
1810 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1811 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1812 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
1813 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
1814 {
1815 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
1816 pvt->pci_tad[id] = pdev;
1817 saw_chan_mask |= 1 << id;
1818 }
1819 break;
1820 default:
1821 goto error;
1822 }
1823
1824 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1825 sbridge_dev->bus,
1826 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1827 pdev);
1828 }
1829
1830 /* Check if everything were registered */
1831 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1832 !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
1833 !pvt->pci_ta)
1834 goto enodev;
1835
1836 if (saw_chan_mask != 0x0f && /* -EN */
1837 saw_chan_mask != 0x33 && /* -EP */
1838 saw_chan_mask != 0xff) /* -EX */
1839 goto enodev;
1840 return 0;
1841
1842 enodev:
1843 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1844 return -ENODEV;
1845
1846 error:
1847 sbridge_printk(KERN_ERR,
1848 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1849 pdev->device);
1850 return -EINVAL;
1851 }
1852
1853 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1854 struct sbridge_dev *sbridge_dev)
1855 {
1856 struct sbridge_pvt *pvt = mci->pvt_info;
1857 struct pci_dev *pdev;
1858 u8 saw_chan_mask = 0;
1859 int i;
1860
1861 /* there's only one device per system; not tied to any bus */
1862 if (pvt->info.pci_vtd == NULL)
1863 /* result will be checked later */
1864 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1865 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1866 NULL);
1867
1868 for (i = 0; i < sbridge_dev->n_devs; i++) {
1869 pdev = sbridge_dev->pdev[i];
1870 if (!pdev)
1871 continue;
1872
1873 switch (pdev->device) {
1874 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1875 pvt->pci_sad0 = pdev;
1876 break;
1877 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1878 pvt->pci_sad1 = pdev;
1879 break;
1880 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1881 pvt->pci_ha0 = pdev;
1882 break;
1883 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1884 pvt->pci_ta = pdev;
1885 break;
1886 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1887 pvt->pci_ras = pdev;
1888 break;
1889 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1890 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1891 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1892 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1893 {
1894 int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
1895
1896 pvt->pci_tad[id] = pdev;
1897 saw_chan_mask |= 1 << id;
1898 }
1899 break;
1900 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1901 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1902 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
1903 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
1904 {
1905 int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
1906
1907 pvt->pci_tad[id] = pdev;
1908 saw_chan_mask |= 1 << id;
1909 }
1910 break;
1911 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1912 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
1913 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
1914 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
1915 if (!pvt->pci_ddrio)
1916 pvt->pci_ddrio = pdev;
1917 break;
1918 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1919 pvt->pci_ha1 = pdev;
1920 break;
1921 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1922 pvt->pci_ha1_ta = pdev;
1923 break;
1924 default:
1925 break;
1926 }
1927
1928 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1929 sbridge_dev->bus,
1930 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1931 pdev);
1932 }
1933
1934 /* Check if everything were registered */
1935 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1936 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
1937 goto enodev;
1938
1939 if (saw_chan_mask != 0x0f && /* -EN */
1940 saw_chan_mask != 0x33 && /* -EP */
1941 saw_chan_mask != 0xff) /* -EX */
1942 goto enodev;
1943 return 0;
1944
1945 enodev:
1946 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1947 return -ENODEV;
1948 }
1949
1950 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1951 struct sbridge_dev *sbridge_dev)
1952 {
1953 struct sbridge_pvt *pvt = mci->pvt_info;
1954 struct pci_dev *pdev;
1955 u8 saw_chan_mask = 0;
1956 int i;
1957
1958 /* there's only one device per system; not tied to any bus */
1959 if (pvt->info.pci_vtd == NULL)
1960 /* result will be checked later */
1961 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1962 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1963 NULL);
1964
1965 for (i = 0; i < sbridge_dev->n_devs; i++) {
1966 pdev = sbridge_dev->pdev[i];
1967 if (!pdev)
1968 continue;
1969
1970 switch (pdev->device) {
1971 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1972 pvt->pci_sad0 = pdev;
1973 break;
1974 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1975 pvt->pci_sad1 = pdev;
1976 break;
1977 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1978 pvt->pci_ha0 = pdev;
1979 break;
1980 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1981 pvt->pci_ta = pdev;
1982 break;
1983 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1984 pvt->pci_ras = pdev;
1985 break;
1986 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1987 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1988 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1989 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1990 {
1991 int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
1992 pvt->pci_tad[id] = pdev;
1993 saw_chan_mask |= 1 << id;
1994 }
1995 break;
1996 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
1997 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
1998 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
1999 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2000 {
2001 int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2002 pvt->pci_tad[id] = pdev;
2003 saw_chan_mask |= 1 << id;
2004 }
2005 break;
2006 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2007 pvt->pci_ddrio = pdev;
2008 break;
2009 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2010 pvt->pci_ha1 = pdev;
2011 break;
2012 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2013 pvt->pci_ha1_ta = pdev;
2014 break;
2015 default:
2016 break;
2017 }
2018
2019 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2020 sbridge_dev->bus,
2021 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2022 pdev);
2023 }
2024
2025 /* Check if everything were registered */
2026 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2027 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2028 goto enodev;
2029
2030 if (saw_chan_mask != 0x0f && /* -EN */
2031 saw_chan_mask != 0x33 && /* -EP */
2032 saw_chan_mask != 0xff) /* -EX */
2033 goto enodev;
2034 return 0;
2035
2036 enodev:
2037 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2038 return -ENODEV;
2039 }
2040
2041 /****************************************************************************
2042 Error check routines
2043 ****************************************************************************/
2044
2045 /*
2046 * While Sandy Bridge has error count registers, SMI BIOS read values from
2047 * and resets the counters. So, they are not reliable for the OS to read
2048 * from them. So, we have no option but to just trust on whatever MCE is
2049 * telling us about the errors.
2050 */
2051 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2052 const struct mce *m)
2053 {
2054 struct mem_ctl_info *new_mci;
2055 struct sbridge_pvt *pvt = mci->pvt_info;
2056 enum hw_event_mc_err_type tp_event;
2057 char *type, *optype, msg[256];
2058 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2059 bool overflow = GET_BITFIELD(m->status, 62, 62);
2060 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2061 bool recoverable;
2062 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2063 u32 mscod = GET_BITFIELD(m->status, 16, 31);
2064 u32 errcode = GET_BITFIELD(m->status, 0, 15);
2065 u32 channel = GET_BITFIELD(m->status, 0, 3);
2066 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2067 long channel_mask, first_channel;
2068 u8 rank, socket, ha;
2069 int rc, dimm;
2070 char *area_type = NULL;
2071
2072 if (pvt->info.type != SANDY_BRIDGE)
2073 recoverable = true;
2074 else
2075 recoverable = GET_BITFIELD(m->status, 56, 56);
2076
2077 if (uncorrected_error) {
2078 if (ripv) {
2079 type = "FATAL";
2080 tp_event = HW_EVENT_ERR_FATAL;
2081 } else {
2082 type = "NON_FATAL";
2083 tp_event = HW_EVENT_ERR_UNCORRECTED;
2084 }
2085 } else {
2086 type = "CORRECTED";
2087 tp_event = HW_EVENT_ERR_CORRECTED;
2088 }
2089
2090 /*
2091 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2092 * memory errors should fit in this mask:
2093 * 000f 0000 1mmm cccc (binary)
2094 * where:
2095 * f = Correction Report Filtering Bit. If 1, subsequent errors
2096 * won't be shown
2097 * mmm = error type
2098 * cccc = channel
2099 * If the mask doesn't match, report an error to the parsing logic
2100 */
2101 if (! ((errcode & 0xef80) == 0x80)) {
2102 optype = "Can't parse: it is not a mem";
2103 } else {
2104 switch (optypenum) {
2105 case 0:
2106 optype = "generic undef request error";
2107 break;
2108 case 1:
2109 optype = "memory read error";
2110 break;
2111 case 2:
2112 optype = "memory write error";
2113 break;
2114 case 3:
2115 optype = "addr/cmd error";
2116 break;
2117 case 4:
2118 optype = "memory scrubbing error";
2119 break;
2120 default:
2121 optype = "reserved";
2122 break;
2123 }
2124 }
2125
2126 /* Only decode errors with an valid address (ADDRV) */
2127 if (!GET_BITFIELD(m->status, 58, 58))
2128 return;
2129
2130 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2131 &channel_mask, &rank, &area_type, msg);
2132 if (rc < 0)
2133 goto err_parsing;
2134 new_mci = get_mci_for_node_id(socket);
2135 if (!new_mci) {
2136 strcpy(msg, "Error: socket got corrupted!");
2137 goto err_parsing;
2138 }
2139 mci = new_mci;
2140 pvt = mci->pvt_info;
2141
2142 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2143
2144 if (rank < 4)
2145 dimm = 0;
2146 else if (rank < 8)
2147 dimm = 1;
2148 else
2149 dimm = 2;
2150
2151
2152 /*
2153 * FIXME: On some memory configurations (mirror, lockstep), the
2154 * Memory Controller can't point the error to a single DIMM. The
2155 * EDAC core should be handling the channel mask, in order to point
2156 * to the group of dimm's where the error may be happening.
2157 */
2158 if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2159 channel = first_channel;
2160
2161 snprintf(msg, sizeof(msg),
2162 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2163 overflow ? " OVERFLOW" : "",
2164 (uncorrected_error && recoverable) ? " recoverable" : "",
2165 area_type,
2166 mscod, errcode,
2167 socket, ha,
2168 channel_mask,
2169 rank);
2170
2171 edac_dbg(0, "%s\n", msg);
2172
2173 /* FIXME: need support for channel mask */
2174
2175 if (channel == CHANNEL_UNSPECIFIED)
2176 channel = -1;
2177
2178 /* Call the helper to output message */
2179 edac_mc_handle_error(tp_event, mci, core_err_cnt,
2180 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2181 4*ha+channel, dimm, -1,
2182 optype, msg);
2183 return;
2184 err_parsing:
2185 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2186 -1, -1, -1,
2187 msg, "");
2188
2189 }
2190
2191 /*
2192 * sbridge_check_error Retrieve and process errors reported by the
2193 * hardware. Called by the Core module.
2194 */
2195 static void sbridge_check_error(struct mem_ctl_info *mci)
2196 {
2197 struct sbridge_pvt *pvt = mci->pvt_info;
2198 int i;
2199 unsigned count = 0;
2200 struct mce *m;
2201
2202 /*
2203 * MCE first step: Copy all mce errors into a temporary buffer
2204 * We use a double buffering here, to reduce the risk of
2205 * loosing an error.
2206 */
2207 smp_rmb();
2208 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2209 % MCE_LOG_LEN;
2210 if (!count)
2211 return;
2212
2213 m = pvt->mce_outentry;
2214 if (pvt->mce_in + count > MCE_LOG_LEN) {
2215 unsigned l = MCE_LOG_LEN - pvt->mce_in;
2216
2217 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2218 smp_wmb();
2219 pvt->mce_in = 0;
2220 count -= l;
2221 m += l;
2222 }
2223 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2224 smp_wmb();
2225 pvt->mce_in += count;
2226
2227 smp_rmb();
2228 if (pvt->mce_overrun) {
2229 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2230 pvt->mce_overrun);
2231 smp_wmb();
2232 pvt->mce_overrun = 0;
2233 }
2234
2235 /*
2236 * MCE second step: parse errors and display
2237 */
2238 for (i = 0; i < count; i++)
2239 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2240 }
2241
2242 /*
2243 * sbridge_mce_check_error Replicates mcelog routine to get errors
2244 * This routine simply queues mcelog errors, and
2245 * return. The error itself should be handled later
2246 * by sbridge_check_error.
2247 * WARNING: As this routine should be called at NMI time, extra care should
2248 * be taken to avoid deadlocks, and to be as fast as possible.
2249 */
2250 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2251 void *data)
2252 {
2253 struct mce *mce = (struct mce *)data;
2254 struct mem_ctl_info *mci;
2255 struct sbridge_pvt *pvt;
2256 char *type;
2257
2258 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2259 return NOTIFY_DONE;
2260
2261 mci = get_mci_for_node_id(mce->socketid);
2262 if (!mci)
2263 return NOTIFY_BAD;
2264 pvt = mci->pvt_info;
2265
2266 /*
2267 * Just let mcelog handle it if the error is
2268 * outside the memory controller. A memory error
2269 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2270 * bit 12 has an special meaning.
2271 */
2272 if ((mce->status & 0xefff) >> 7 != 1)
2273 return NOTIFY_DONE;
2274
2275 if (mce->mcgstatus & MCG_STATUS_MCIP)
2276 type = "Exception";
2277 else
2278 type = "Event";
2279
2280 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2281
2282 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2283 "Bank %d: %016Lx\n", mce->extcpu, type,
2284 mce->mcgstatus, mce->bank, mce->status);
2285 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2286 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2287 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2288
2289 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2290 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2291 mce->time, mce->socketid, mce->apicid);
2292
2293 smp_rmb();
2294 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2295 smp_wmb();
2296 pvt->mce_overrun++;
2297 return NOTIFY_DONE;
2298 }
2299
2300 /* Copy memory error at the ringbuffer */
2301 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2302 smp_wmb();
2303 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2304
2305 /* Handle fatal errors immediately */
2306 if (mce->mcgstatus & 1)
2307 sbridge_check_error(mci);
2308
2309 /* Advice mcelog that the error were handled */
2310 return NOTIFY_STOP;
2311 }
2312
2313 static struct notifier_block sbridge_mce_dec = {
2314 .notifier_call = sbridge_mce_check_error,
2315 };
2316
2317 /****************************************************************************
2318 EDAC register/unregister logic
2319 ****************************************************************************/
2320
2321 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2322 {
2323 struct mem_ctl_info *mci = sbridge_dev->mci;
2324 struct sbridge_pvt *pvt;
2325
2326 if (unlikely(!mci || !mci->pvt_info)) {
2327 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2328
2329 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2330 return;
2331 }
2332
2333 pvt = mci->pvt_info;
2334
2335 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2336 mci, &sbridge_dev->pdev[0]->dev);
2337
2338 /* Remove MC sysfs nodes */
2339 edac_mc_del_mc(mci->pdev);
2340
2341 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2342 kfree(mci->ctl_name);
2343 edac_mc_free(mci);
2344 sbridge_dev->mci = NULL;
2345 }
2346
2347 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2348 {
2349 struct mem_ctl_info *mci;
2350 struct edac_mc_layer layers[2];
2351 struct sbridge_pvt *pvt;
2352 struct pci_dev *pdev = sbridge_dev->pdev[0];
2353 int rc;
2354
2355 /* Check the number of active and not disabled channels */
2356 rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2357 if (unlikely(rc < 0))
2358 return rc;
2359
2360 /* allocate a new MC control structure */
2361 layers[0].type = EDAC_MC_LAYER_CHANNEL;
2362 layers[0].size = NUM_CHANNELS;
2363 layers[0].is_virt_csrow = false;
2364 layers[1].type = EDAC_MC_LAYER_SLOT;
2365 layers[1].size = MAX_DIMMS;
2366 layers[1].is_virt_csrow = true;
2367 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2368 sizeof(*pvt));
2369
2370 if (unlikely(!mci))
2371 return -ENOMEM;
2372
2373 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2374 mci, &pdev->dev);
2375
2376 pvt = mci->pvt_info;
2377 memset(pvt, 0, sizeof(*pvt));
2378
2379 /* Associate sbridge_dev and mci for future usage */
2380 pvt->sbridge_dev = sbridge_dev;
2381 sbridge_dev->mci = mci;
2382
2383 mci->mtype_cap = MEM_FLAG_DDR3;
2384 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2385 mci->edac_cap = EDAC_FLAG_NONE;
2386 mci->mod_name = "sbridge_edac.c";
2387 mci->mod_ver = SBRIDGE_REVISION;
2388 mci->dev_name = pci_name(pdev);
2389 mci->ctl_page_to_phys = NULL;
2390
2391 /* Set the function pointer to an actual operation function */
2392 mci->edac_check = sbridge_check_error;
2393
2394 pvt->info.type = type;
2395 switch (type) {
2396 case IVY_BRIDGE:
2397 pvt->info.rankcfgr = IB_RANK_CFG_A;
2398 pvt->info.get_tolm = ibridge_get_tolm;
2399 pvt->info.get_tohm = ibridge_get_tohm;
2400 pvt->info.dram_rule = ibridge_dram_rule;
2401 pvt->info.get_memory_type = get_memory_type;
2402 pvt->info.get_node_id = get_node_id;
2403 pvt->info.rir_limit = rir_limit;
2404 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2405 pvt->info.interleave_list = ibridge_interleave_list;
2406 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2407 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2408 pvt->info.get_width = ibridge_get_width;
2409 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2410
2411 /* Store pci devices at mci for faster access */
2412 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2413 if (unlikely(rc < 0))
2414 goto fail0;
2415 break;
2416 case SANDY_BRIDGE:
2417 pvt->info.rankcfgr = SB_RANK_CFG_A;
2418 pvt->info.get_tolm = sbridge_get_tolm;
2419 pvt->info.get_tohm = sbridge_get_tohm;
2420 pvt->info.dram_rule = sbridge_dram_rule;
2421 pvt->info.get_memory_type = get_memory_type;
2422 pvt->info.get_node_id = get_node_id;
2423 pvt->info.rir_limit = rir_limit;
2424 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2425 pvt->info.interleave_list = sbridge_interleave_list;
2426 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2427 pvt->info.interleave_pkg = sbridge_interleave_pkg;
2428 pvt->info.get_width = sbridge_get_width;
2429 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2430
2431 /* Store pci devices at mci for faster access */
2432 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2433 if (unlikely(rc < 0))
2434 goto fail0;
2435 break;
2436 case HASWELL:
2437 /* rankcfgr isn't used */
2438 pvt->info.get_tolm = haswell_get_tolm;
2439 pvt->info.get_tohm = haswell_get_tohm;
2440 pvt->info.dram_rule = ibridge_dram_rule;
2441 pvt->info.get_memory_type = haswell_get_memory_type;
2442 pvt->info.get_node_id = haswell_get_node_id;
2443 pvt->info.rir_limit = haswell_rir_limit;
2444 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2445 pvt->info.interleave_list = ibridge_interleave_list;
2446 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2447 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2448 pvt->info.get_width = ibridge_get_width;
2449 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2450
2451 /* Store pci devices at mci for faster access */
2452 rc = haswell_mci_bind_devs(mci, sbridge_dev);
2453 if (unlikely(rc < 0))
2454 goto fail0;
2455 break;
2456 case BROADWELL:
2457 /* rankcfgr isn't used */
2458 pvt->info.get_tolm = haswell_get_tolm;
2459 pvt->info.get_tohm = haswell_get_tohm;
2460 pvt->info.dram_rule = ibridge_dram_rule;
2461 pvt->info.get_memory_type = haswell_get_memory_type;
2462 pvt->info.get_node_id = haswell_get_node_id;
2463 pvt->info.rir_limit = haswell_rir_limit;
2464 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2465 pvt->info.interleave_list = ibridge_interleave_list;
2466 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2467 pvt->info.interleave_pkg = ibridge_interleave_pkg;
2468 pvt->info.get_width = broadwell_get_width;
2469 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2470
2471 /* Store pci devices at mci for faster access */
2472 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2473 if (unlikely(rc < 0))
2474 goto fail0;
2475 break;
2476 }
2477
2478 /* Get dimm basic config and the memory layout */
2479 get_dimm_config(mci);
2480 get_memory_layout(mci);
2481
2482 /* record ptr to the generic device */
2483 mci->pdev = &pdev->dev;
2484
2485 /* add this new MC control structure to EDAC's list of MCs */
2486 if (unlikely(edac_mc_add_mc(mci))) {
2487 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2488 rc = -EINVAL;
2489 goto fail0;
2490 }
2491
2492 return 0;
2493
2494 fail0:
2495 kfree(mci->ctl_name);
2496 edac_mc_free(mci);
2497 sbridge_dev->mci = NULL;
2498 return rc;
2499 }
2500
2501 /*
2502 * sbridge_probe Probe for ONE instance of device to see if it is
2503 * present.
2504 * return:
2505 * 0 for FOUND a device
2506 * < 0 for error code
2507 */
2508
2509 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2510 {
2511 int rc = -ENODEV;
2512 u8 mc, num_mc = 0;
2513 struct sbridge_dev *sbridge_dev;
2514 enum type type = SANDY_BRIDGE;
2515
2516 /* get the pci devices we want to reserve for our use */
2517 mutex_lock(&sbridge_edac_lock);
2518
2519 /*
2520 * All memory controllers are allocated at the first pass.
2521 */
2522 if (unlikely(probed >= 1)) {
2523 mutex_unlock(&sbridge_edac_lock);
2524 return -ENODEV;
2525 }
2526 probed++;
2527
2528 switch (pdev->device) {
2529 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2530 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2531 type = IVY_BRIDGE;
2532 break;
2533 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2534 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2535 type = SANDY_BRIDGE;
2536 break;
2537 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2538 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2539 type = HASWELL;
2540 break;
2541 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2542 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2543 type = BROADWELL;
2544 break;
2545 }
2546 if (unlikely(rc < 0)) {
2547 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2548 goto fail0;
2549 }
2550
2551 mc = 0;
2552
2553 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2554 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2555 mc, mc + 1, num_mc);
2556
2557 sbridge_dev->mc = mc++;
2558 rc = sbridge_register_mci(sbridge_dev, type);
2559 if (unlikely(rc < 0))
2560 goto fail1;
2561 }
2562
2563 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2564
2565 mutex_unlock(&sbridge_edac_lock);
2566 return 0;
2567
2568 fail1:
2569 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2570 sbridge_unregister_mci(sbridge_dev);
2571
2572 sbridge_put_all_devices();
2573 fail0:
2574 mutex_unlock(&sbridge_edac_lock);
2575 return rc;
2576 }
2577
2578 /*
2579 * sbridge_remove destructor for one instance of device
2580 *
2581 */
2582 static void sbridge_remove(struct pci_dev *pdev)
2583 {
2584 struct sbridge_dev *sbridge_dev;
2585
2586 edac_dbg(0, "\n");
2587
2588 /*
2589 * we have a trouble here: pdev value for removal will be wrong, since
2590 * it will point to the X58 register used to detect that the machine
2591 * is a Nehalem or upper design. However, due to the way several PCI
2592 * devices are grouped together to provide MC functionality, we need
2593 * to use a different method for releasing the devices
2594 */
2595
2596 mutex_lock(&sbridge_edac_lock);
2597
2598 if (unlikely(!probed)) {
2599 mutex_unlock(&sbridge_edac_lock);
2600 return;
2601 }
2602
2603 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2604 sbridge_unregister_mci(sbridge_dev);
2605
2606 /* Release PCI resources */
2607 sbridge_put_all_devices();
2608
2609 probed--;
2610
2611 mutex_unlock(&sbridge_edac_lock);
2612 }
2613
2614 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2615
2616 /*
2617 * sbridge_driver pci_driver structure for this module
2618 *
2619 */
2620 static struct pci_driver sbridge_driver = {
2621 .name = "sbridge_edac",
2622 .probe = sbridge_probe,
2623 .remove = sbridge_remove,
2624 .id_table = sbridge_pci_tbl,
2625 };
2626
2627 /*
2628 * sbridge_init Module entry function
2629 * Try to initialize this module for its devices
2630 */
2631 static int __init sbridge_init(void)
2632 {
2633 int pci_rc;
2634
2635 edac_dbg(2, "\n");
2636
2637 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2638 opstate_init();
2639
2640 pci_rc = pci_register_driver(&sbridge_driver);
2641 if (pci_rc >= 0) {
2642 mce_register_decode_chain(&sbridge_mce_dec);
2643 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2644 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2645 return 0;
2646 }
2647
2648 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2649 pci_rc);
2650
2651 return pci_rc;
2652 }
2653
2654 /*
2655 * sbridge_exit() Module exit function
2656 * Unregister the driver
2657 */
2658 static void __exit sbridge_exit(void)
2659 {
2660 edac_dbg(2, "\n");
2661 pci_unregister_driver(&sbridge_driver);
2662 mce_unregister_decode_chain(&sbridge_mce_dec);
2663 }
2664
2665 module_init(sbridge_init);
2666 module_exit(sbridge_exit);
2667
2668 module_param(edac_op_state, int, 0444);
2669 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2670
2671 MODULE_LICENSE("GPL");
2672 MODULE_AUTHOR("Mauro Carvalho Chehab");
2673 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2674 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2675 SBRIDGE_REVISION);
This page took 0.086475 seconds and 5 git commands to generate.