Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / firewire / fw-card.c
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/completion.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27
28 #include "fw-transaction.h"
29 #include "fw-topology.h"
30 #include "fw-device.h"
31
32 int fw_compute_block_crc(u32 *block)
33 {
34 __be32 be32_block[256];
35 int i, length;
36
37 length = (*block >> 16) & 0xff;
38 for (i = 0; i < length; i++)
39 be32_block[i] = cpu_to_be32(block[i + 1]);
40 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
41
42 return length;
43 }
44
45 static DEFINE_MUTEX(card_mutex);
46 static LIST_HEAD(card_list);
47
48 static LIST_HEAD(descriptor_list);
49 static int descriptor_count;
50
51 #define BIB_CRC(v) ((v) << 0)
52 #define BIB_CRC_LENGTH(v) ((v) << 16)
53 #define BIB_INFO_LENGTH(v) ((v) << 24)
54
55 #define BIB_LINK_SPEED(v) ((v) << 0)
56 #define BIB_GENERATION(v) ((v) << 4)
57 #define BIB_MAX_ROM(v) ((v) << 8)
58 #define BIB_MAX_RECEIVE(v) ((v) << 12)
59 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
60 #define BIB_PMC ((1) << 27)
61 #define BIB_BMC ((1) << 28)
62 #define BIB_ISC ((1) << 29)
63 #define BIB_CMC ((1) << 30)
64 #define BIB_IMC ((1) << 31)
65
66 static u32 *
67 generate_config_rom(struct fw_card *card, size_t *config_rom_length)
68 {
69 struct fw_descriptor *desc;
70 static u32 config_rom[256];
71 int i, j, length;
72
73 /*
74 * Initialize contents of config rom buffer. On the OHCI
75 * controller, block reads to the config rom accesses the host
76 * memory, but quadlet read access the hardware bus info block
77 * registers. That's just crack, but it means we should make
78 * sure the contents of bus info block in host memory matches
79 * the version stored in the OHCI registers.
80 */
81
82 memset(config_rom, 0, sizeof(config_rom));
83 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
84 config_rom[1] = 0x31333934;
85
86 config_rom[2] =
87 BIB_LINK_SPEED(card->link_speed) |
88 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
89 BIB_MAX_ROM(2) |
90 BIB_MAX_RECEIVE(card->max_receive) |
91 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
92 config_rom[3] = card->guid >> 32;
93 config_rom[4] = card->guid;
94
95 /* Generate root directory. */
96 i = 5;
97 config_rom[i++] = 0;
98 config_rom[i++] = 0x0c0083c0; /* node capabilities */
99 j = i + descriptor_count;
100
101 /* Generate root directory entries for descriptors. */
102 list_for_each_entry (desc, &descriptor_list, link) {
103 if (desc->immediate > 0)
104 config_rom[i++] = desc->immediate;
105 config_rom[i] = desc->key | (j - i);
106 i++;
107 j += desc->length;
108 }
109
110 /* Update root directory length. */
111 config_rom[5] = (i - 5 - 1) << 16;
112
113 /* End of root directory, now copy in descriptors. */
114 list_for_each_entry (desc, &descriptor_list, link) {
115 memcpy(&config_rom[i], desc->data, desc->length * 4);
116 i += desc->length;
117 }
118
119 /* Calculate CRCs for all blocks in the config rom. This
120 * assumes that CRC length and info length are identical for
121 * the bus info block, which is always the case for this
122 * implementation. */
123 for (i = 0; i < j; i += length + 1)
124 length = fw_compute_block_crc(config_rom + i);
125
126 *config_rom_length = j;
127
128 return config_rom;
129 }
130
131 static void
132 update_config_roms(void)
133 {
134 struct fw_card *card;
135 u32 *config_rom;
136 size_t length;
137
138 list_for_each_entry (card, &card_list, link) {
139 config_rom = generate_config_rom(card, &length);
140 card->driver->set_config_rom(card, config_rom, length);
141 }
142 }
143
144 int
145 fw_core_add_descriptor(struct fw_descriptor *desc)
146 {
147 size_t i;
148
149 /*
150 * Check descriptor is valid; the length of all blocks in the
151 * descriptor has to add up to exactly the length of the
152 * block.
153 */
154 i = 0;
155 while (i < desc->length)
156 i += (desc->data[i] >> 16) + 1;
157
158 if (i != desc->length)
159 return -EINVAL;
160
161 mutex_lock(&card_mutex);
162
163 list_add_tail(&desc->link, &descriptor_list);
164 descriptor_count++;
165 if (desc->immediate > 0)
166 descriptor_count++;
167 update_config_roms();
168
169 mutex_unlock(&card_mutex);
170
171 return 0;
172 }
173
174 void
175 fw_core_remove_descriptor(struct fw_descriptor *desc)
176 {
177 mutex_lock(&card_mutex);
178
179 list_del(&desc->link);
180 descriptor_count--;
181 if (desc->immediate > 0)
182 descriptor_count--;
183 update_config_roms();
184
185 mutex_unlock(&card_mutex);
186 }
187
188 static const char gap_count_table[] = {
189 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
190 };
191
192 void
193 fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
194 {
195 int scheduled;
196
197 fw_card_get(card);
198 scheduled = schedule_delayed_work(&card->work, delay);
199 if (!scheduled)
200 fw_card_put(card);
201 }
202
203 static void
204 fw_card_bm_work(struct work_struct *work)
205 {
206 struct fw_card *card = container_of(work, struct fw_card, work.work);
207 struct fw_device *root_device;
208 struct fw_node *root_node, *local_node;
209 unsigned long flags;
210 int root_id, new_root_id, irm_id, gap_count, generation, grace, rcode;
211 bool do_reset = false;
212 __be32 lock_data[2];
213
214 spin_lock_irqsave(&card->lock, flags);
215 local_node = card->local_node;
216 root_node = card->root_node;
217
218 if (local_node == NULL) {
219 spin_unlock_irqrestore(&card->lock, flags);
220 goto out_put_card;
221 }
222 fw_node_get(local_node);
223 fw_node_get(root_node);
224
225 generation = card->generation;
226 root_device = root_node->data;
227 if (root_device)
228 fw_device_get(root_device);
229 root_id = root_node->node_id;
230 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
231
232 if (card->bm_generation + 1 == generation ||
233 (card->bm_generation != generation && grace)) {
234 /*
235 * This first step is to figure out who is IRM and
236 * then try to become bus manager. If the IRM is not
237 * well defined (e.g. does not have an active link
238 * layer or does not responds to our lock request, we
239 * will have to do a little vigilante bus management.
240 * In that case, we do a goto into the gap count logic
241 * so that when we do the reset, we still optimize the
242 * gap count. That could well save a reset in the
243 * next generation.
244 */
245
246 irm_id = card->irm_node->node_id;
247 if (!card->irm_node->link_on) {
248 new_root_id = local_node->node_id;
249 fw_notify("IRM has link off, making local node (%02x) root.\n",
250 new_root_id);
251 goto pick_me;
252 }
253
254 lock_data[0] = cpu_to_be32(0x3f);
255 lock_data[1] = cpu_to_be32(local_node->node_id);
256
257 spin_unlock_irqrestore(&card->lock, flags);
258
259 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
260 irm_id, generation, SCODE_100,
261 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
262 lock_data, sizeof(lock_data));
263
264 if (rcode == RCODE_GENERATION)
265 /* Another bus reset, BM work has been rescheduled. */
266 goto out;
267
268 if (rcode == RCODE_COMPLETE &&
269 lock_data[0] != cpu_to_be32(0x3f))
270 /* Somebody else is BM, let them do the work. */
271 goto out;
272
273 spin_lock_irqsave(&card->lock, flags);
274
275 if (rcode != RCODE_COMPLETE) {
276 /*
277 * The lock request failed, maybe the IRM
278 * isn't really IRM capable after all. Let's
279 * do a bus reset and pick the local node as
280 * root, and thus, IRM.
281 */
282 new_root_id = local_node->node_id;
283 fw_notify("BM lock failed, making local node (%02x) root.\n",
284 new_root_id);
285 goto pick_me;
286 }
287 } else if (card->bm_generation != generation) {
288 /*
289 * OK, we weren't BM in the last generation, and it's
290 * less than 100ms since last bus reset. Reschedule
291 * this task 100ms from now.
292 */
293 spin_unlock_irqrestore(&card->lock, flags);
294 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 10));
295 goto out;
296 }
297
298 /*
299 * We're bus manager for this generation, so next step is to
300 * make sure we have an active cycle master and do gap count
301 * optimization.
302 */
303 card->bm_generation = generation;
304
305 if (root_device == NULL) {
306 /*
307 * Either link_on is false, or we failed to read the
308 * config rom. In either case, pick another root.
309 */
310 new_root_id = local_node->node_id;
311 } else if (atomic_read(&root_device->state) != FW_DEVICE_RUNNING) {
312 /*
313 * If we haven't probed this device yet, bail out now
314 * and let's try again once that's done.
315 */
316 spin_unlock_irqrestore(&card->lock, flags);
317 goto out;
318 } else if (root_device->cmc) {
319 /*
320 * FIXME: I suppose we should set the cmstr bit in the
321 * STATE_CLEAR register of this node, as described in
322 * 1394-1995, 8.4.2.6. Also, send out a force root
323 * packet for this node.
324 */
325 new_root_id = root_id;
326 } else {
327 /*
328 * Current root has an active link layer and we
329 * successfully read the config rom, but it's not
330 * cycle master capable.
331 */
332 new_root_id = local_node->node_id;
333 }
334
335 pick_me:
336 /*
337 * Pick a gap count from 1394a table E-1. The table doesn't cover
338 * the typically much larger 1394b beta repeater delays though.
339 */
340 if (!card->beta_repeaters_present &&
341 root_node->max_hops < ARRAY_SIZE(gap_count_table))
342 gap_count = gap_count_table[root_node->max_hops];
343 else
344 gap_count = 63;
345
346 /*
347 * Finally, figure out if we should do a reset or not. If we have
348 * done less than 5 resets with the same physical topology and we
349 * have either a new root or a new gap count setting, let's do it.
350 */
351
352 if (card->bm_retries++ < 5 &&
353 (card->gap_count != gap_count || new_root_id != root_id))
354 do_reset = true;
355
356 spin_unlock_irqrestore(&card->lock, flags);
357
358 if (do_reset) {
359 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
360 card->index, new_root_id, gap_count);
361 fw_send_phy_config(card, new_root_id, generation, gap_count);
362 fw_core_initiate_bus_reset(card, 1);
363 }
364 out:
365 if (root_device)
366 fw_device_put(root_device);
367 fw_node_put(root_node);
368 fw_node_put(local_node);
369 out_put_card:
370 fw_card_put(card);
371 }
372
373 static void
374 flush_timer_callback(unsigned long data)
375 {
376 struct fw_card *card = (struct fw_card *)data;
377
378 fw_flush_transactions(card);
379 }
380
381 void
382 fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
383 struct device *device)
384 {
385 static atomic_t index = ATOMIC_INIT(-1);
386
387 card->index = atomic_inc_return(&index);
388 card->driver = driver;
389 card->device = device;
390 card->current_tlabel = 0;
391 card->tlabel_mask = 0;
392 card->color = 0;
393 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
394
395 kref_init(&card->kref);
396 init_completion(&card->done);
397 INIT_LIST_HEAD(&card->transaction_list);
398 spin_lock_init(&card->lock);
399 setup_timer(&card->flush_timer,
400 flush_timer_callback, (unsigned long)card);
401
402 card->local_node = NULL;
403
404 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
405 }
406 EXPORT_SYMBOL(fw_card_initialize);
407
408 int
409 fw_card_add(struct fw_card *card,
410 u32 max_receive, u32 link_speed, u64 guid)
411 {
412 u32 *config_rom;
413 size_t length;
414
415 card->max_receive = max_receive;
416 card->link_speed = link_speed;
417 card->guid = guid;
418
419 mutex_lock(&card_mutex);
420 config_rom = generate_config_rom(card, &length);
421 list_add_tail(&card->link, &card_list);
422 mutex_unlock(&card_mutex);
423
424 return card->driver->enable(card, config_rom, length);
425 }
426 EXPORT_SYMBOL(fw_card_add);
427
428
429 /*
430 * The next few functions implements a dummy driver that use once a
431 * card driver shuts down an fw_card. This allows the driver to
432 * cleanly unload, as all IO to the card will be handled by the dummy
433 * driver instead of calling into the (possibly) unloaded module. The
434 * dummy driver just fails all IO.
435 */
436
437 static int
438 dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
439 {
440 BUG();
441 return -1;
442 }
443
444 static int
445 dummy_update_phy_reg(struct fw_card *card, int address,
446 int clear_bits, int set_bits)
447 {
448 return -ENODEV;
449 }
450
451 static int
452 dummy_set_config_rom(struct fw_card *card,
453 u32 *config_rom, size_t length)
454 {
455 /*
456 * We take the card out of card_list before setting the dummy
457 * driver, so this should never get called.
458 */
459 BUG();
460 return -1;
461 }
462
463 static void
464 dummy_send_request(struct fw_card *card, struct fw_packet *packet)
465 {
466 packet->callback(packet, card, -ENODEV);
467 }
468
469 static void
470 dummy_send_response(struct fw_card *card, struct fw_packet *packet)
471 {
472 packet->callback(packet, card, -ENODEV);
473 }
474
475 static int
476 dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
477 {
478 return -ENOENT;
479 }
480
481 static int
482 dummy_enable_phys_dma(struct fw_card *card,
483 int node_id, int generation)
484 {
485 return -ENODEV;
486 }
487
488 static struct fw_card_driver dummy_driver = {
489 .enable = dummy_enable,
490 .update_phy_reg = dummy_update_phy_reg,
491 .set_config_rom = dummy_set_config_rom,
492 .send_request = dummy_send_request,
493 .cancel_packet = dummy_cancel_packet,
494 .send_response = dummy_send_response,
495 .enable_phys_dma = dummy_enable_phys_dma,
496 };
497
498 void
499 fw_card_release(struct kref *kref)
500 {
501 struct fw_card *card = container_of(kref, struct fw_card, kref);
502
503 complete(&card->done);
504 }
505
506 void
507 fw_core_remove_card(struct fw_card *card)
508 {
509 card->driver->update_phy_reg(card, 4,
510 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
511 fw_core_initiate_bus_reset(card, 1);
512
513 mutex_lock(&card_mutex);
514 list_del(&card->link);
515 mutex_unlock(&card_mutex);
516
517 /* Set up the dummy driver. */
518 card->driver = &dummy_driver;
519
520 fw_destroy_nodes(card);
521
522 /* Wait for all users, especially device workqueue jobs, to finish. */
523 fw_card_put(card);
524 wait_for_completion(&card->done);
525
526 WARN_ON(!list_empty(&card->transaction_list));
527 del_timer_sync(&card->flush_timer);
528 }
529 EXPORT_SYMBOL(fw_core_remove_card);
530
531 int
532 fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
533 {
534 int reg = short_reset ? 5 : 1;
535 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
536
537 return card->driver->update_phy_reg(card, reg, 0, bit);
538 }
539 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
This page took 0.054487 seconds and 5 git commands to generate.