Merge branch 'topic/snd-hrtimer' into to-push
[deliverable/linux.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55
56 /*
57 * So far only bridges from Oxford Semiconductor are known to support
58 * concurrent logins. Depending on firmware, four or two concurrent logins
59 * are possible on OXFW911 and newer Oxsemi bridges.
60 *
61 * Concurrent logins are useful together with cluster filesystems.
62 */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66 "(default = Y, use N for concurrent initiators)");
67
68 /*
69 * Flags for firmware oddities
70 *
71 * - 128kB max transfer
72 * Limit transfer size. Necessary for some old bridges.
73 *
74 * - 36 byte inquiry
75 * When scsi_mod probes the device, let the inquiry command look like that
76 * from MS Windows.
77 *
78 * - skip mode page 8
79 * Suppress sending of mode_sense for mode page 8 if the device pretends to
80 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 *
82 * - fix capacity
83 * Tell sd_mod to correct the last sector number reported by read_capacity.
84 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
85 * Don't use this with devices which don't have this bug.
86 *
87 * - delay inquiry
88 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 *
90 * - power condition
91 * Set the power condition field in the START STOP UNIT commands sent by
92 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93 * Some disks need this to spin down or to resume properly.
94 *
95 * - override internal blacklist
96 * Instead of adding to the built-in blacklist, use only the workarounds
97 * specified in the module load parameter.
98 * Useful if a blacklist entry interfered with a non-broken device.
99 */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
101 #define SBP2_WORKAROUND_INQUIRY_36 0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
105 #define SBP2_INQUIRY_DELAY 12
106 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
107 #define SBP2_WORKAROUND_OVERRIDE 0x100
108
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
114 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117 ", set power condition in start stop unit = "
118 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120 ", or a combination)");
121
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124
125 static const char sbp2_driver_name[] = "sbp2";
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
152 };
153
154 /*
155 * We create one struct sbp2_target per IEEE 1212 Unit Directory
156 * and one struct Scsi_Host per sbp2_target.
157 */
158 struct sbp2_target {
159 struct kref kref;
160 struct fw_unit *unit;
161 const char *bus_id;
162 struct list_head lu_list;
163
164 u64 management_agent_address;
165 u64 guid;
166 int directory_id;
167 int node_id;
168 int address_high;
169 unsigned int workarounds;
170 unsigned int mgt_orb_timeout;
171
172 int dont_block; /* counter for each logical unit */
173 int blocked; /* ditto */
174 };
175
176 /* Impossible login_id, to detect logout attempt before successful login */
177 #define INVALID_LOGIN_ID 0x10000
178
179 /*
180 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
181 * provided in the config rom. Most devices do provide a value, which
182 * we'll use for login management orbs, but with some sane limits.
183 */
184 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
185 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
186 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
187 #define SBP2_ORB_NULL 0x80000000
188 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
189 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
190
191 /*
192 * The default maximum s/g segment size of a FireWire controller is
193 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
194 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
195 */
196 #define SBP2_MAX_SEG_SIZE 0xfffc
197
198 /* Unit directory keys */
199 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
200 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
201 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
202 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
203
204 /* Management orb opcodes */
205 #define SBP2_LOGIN_REQUEST 0x0
206 #define SBP2_QUERY_LOGINS_REQUEST 0x1
207 #define SBP2_RECONNECT_REQUEST 0x3
208 #define SBP2_SET_PASSWORD_REQUEST 0x4
209 #define SBP2_LOGOUT_REQUEST 0x7
210 #define SBP2_ABORT_TASK_REQUEST 0xb
211 #define SBP2_ABORT_TASK_SET 0xc
212 #define SBP2_LOGICAL_UNIT_RESET 0xe
213 #define SBP2_TARGET_RESET_REQUEST 0xf
214
215 /* Offsets for command block agent registers */
216 #define SBP2_AGENT_STATE 0x00
217 #define SBP2_AGENT_RESET 0x04
218 #define SBP2_ORB_POINTER 0x08
219 #define SBP2_DOORBELL 0x10
220 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
221
222 /* Status write response codes */
223 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
224 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
225 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
226 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
227
228 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
229 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
230 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
231 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
232 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
233 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
234 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
235 #define STATUS_GET_DATA(v) ((v).data)
236
237 struct sbp2_status {
238 u32 status;
239 u32 orb_low;
240 u8 data[24];
241 };
242
243 struct sbp2_pointer {
244 __be32 high;
245 __be32 low;
246 };
247
248 struct sbp2_orb {
249 struct fw_transaction t;
250 struct kref kref;
251 dma_addr_t request_bus;
252 int rcode;
253 struct sbp2_pointer pointer;
254 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
255 struct list_head link;
256 };
257
258 #define MANAGEMENT_ORB_LUN(v) ((v))
259 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
260 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
261 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
262 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
263 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
264
265 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
266 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
267
268 struct sbp2_management_orb {
269 struct sbp2_orb base;
270 struct {
271 struct sbp2_pointer password;
272 struct sbp2_pointer response;
273 __be32 misc;
274 __be32 length;
275 struct sbp2_pointer status_fifo;
276 } request;
277 __be32 response[4];
278 dma_addr_t response_bus;
279 struct completion done;
280 struct sbp2_status status;
281 };
282
283 struct sbp2_login_response {
284 __be32 misc;
285 struct sbp2_pointer command_block_agent;
286 __be32 reconnect_hold;
287 };
288 #define COMMAND_ORB_DATA_SIZE(v) ((v))
289 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
290 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
291 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
292 #define COMMAND_ORB_SPEED(v) ((v) << 24)
293 #define COMMAND_ORB_DIRECTION ((1) << 27)
294 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
295 #define COMMAND_ORB_NOTIFY ((1) << 31)
296
297 struct sbp2_command_orb {
298 struct sbp2_orb base;
299 struct {
300 struct sbp2_pointer next;
301 struct sbp2_pointer data_descriptor;
302 __be32 misc;
303 u8 command_block[12];
304 } request;
305 struct scsi_cmnd *cmd;
306 scsi_done_fn_t done;
307 struct sbp2_logical_unit *lu;
308
309 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
310 dma_addr_t page_table_bus;
311 };
312
313 /*
314 * List of devices with known bugs.
315 *
316 * The firmware_revision field, masked with 0xffff00, is the best
317 * indicator for the type of bridge chip of a device. It yields a few
318 * false positives but this did not break correctly behaving devices
319 * so far. We use ~0 as a wildcard, since the 24 bit values we get
320 * from the config rom can never match that.
321 */
322 static const struct {
323 u32 firmware_revision;
324 u32 model;
325 unsigned int workarounds;
326 } sbp2_workarounds_table[] = {
327 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
328 .firmware_revision = 0x002800,
329 .model = 0x001010,
330 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
331 SBP2_WORKAROUND_MODE_SENSE_8 |
332 SBP2_WORKAROUND_POWER_CONDITION,
333 },
334 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x000000,
337 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
338 SBP2_WORKAROUND_POWER_CONDITION,
339 },
340 /* Initio bridges, actually only needed for some older ones */ {
341 .firmware_revision = 0x000200,
342 .model = ~0,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
344 },
345 /* PL-3507 bridge with Prolific firmware */ {
346 .firmware_revision = 0x012800,
347 .model = ~0,
348 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
349 },
350 /* Symbios bridge */ {
351 .firmware_revision = 0xa0b800,
352 .model = ~0,
353 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
354 },
355 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
356 .firmware_revision = 0x002600,
357 .model = ~0,
358 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
359 },
360
361 /*
362 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
363 * these iPods do not feature the read_capacity bug according
364 * to one report. Read_capacity behaviour as well as model_id
365 * could change due to Apple-supplied firmware updates though.
366 */
367
368 /* iPod 4th generation. */ {
369 .firmware_revision = 0x0a2700,
370 .model = 0x000021,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
372 },
373 /* iPod mini */ {
374 .firmware_revision = 0x0a2700,
375 .model = 0x000022,
376 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
377 },
378 /* iPod mini */ {
379 .firmware_revision = 0x0a2700,
380 .model = 0x000023,
381 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
382 },
383 /* iPod Photo */ {
384 .firmware_revision = 0x0a2700,
385 .model = 0x00007e,
386 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
387 }
388 };
389
390 static void
391 free_orb(struct kref *kref)
392 {
393 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
394
395 kfree(orb);
396 }
397
398 static void
399 sbp2_status_write(struct fw_card *card, struct fw_request *request,
400 int tcode, int destination, int source,
401 int generation, int speed,
402 unsigned long long offset,
403 void *payload, size_t length, void *callback_data)
404 {
405 struct sbp2_logical_unit *lu = callback_data;
406 struct sbp2_orb *orb;
407 struct sbp2_status status;
408 size_t header_size;
409 unsigned long flags;
410
411 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
412 length == 0 || length > sizeof(status)) {
413 fw_send_response(card, request, RCODE_TYPE_ERROR);
414 return;
415 }
416
417 header_size = min(length, 2 * sizeof(u32));
418 fw_memcpy_from_be32(&status, payload, header_size);
419 if (length > header_size)
420 memcpy(status.data, payload + 8, length - header_size);
421 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
422 fw_notify("non-orb related status write, not handled\n");
423 fw_send_response(card, request, RCODE_COMPLETE);
424 return;
425 }
426
427 /* Lookup the orb corresponding to this status write. */
428 spin_lock_irqsave(&card->lock, flags);
429 list_for_each_entry(orb, &lu->orb_list, link) {
430 if (STATUS_GET_ORB_HIGH(status) == 0 &&
431 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
432 orb->rcode = RCODE_COMPLETE;
433 list_del(&orb->link);
434 break;
435 }
436 }
437 spin_unlock_irqrestore(&card->lock, flags);
438
439 if (&orb->link != &lu->orb_list)
440 orb->callback(orb, &status);
441 else
442 fw_error("status write for unknown orb\n");
443
444 kref_put(&orb->kref, free_orb);
445
446 fw_send_response(card, request, RCODE_COMPLETE);
447 }
448
449 static void
450 complete_transaction(struct fw_card *card, int rcode,
451 void *payload, size_t length, void *data)
452 {
453 struct sbp2_orb *orb = data;
454 unsigned long flags;
455
456 /*
457 * This is a little tricky. We can get the status write for
458 * the orb before we get this callback. The status write
459 * handler above will assume the orb pointer transaction was
460 * successful and set the rcode to RCODE_COMPLETE for the orb.
461 * So this callback only sets the rcode if it hasn't already
462 * been set and only does the cleanup if the transaction
463 * failed and we didn't already get a status write.
464 */
465 spin_lock_irqsave(&card->lock, flags);
466
467 if (orb->rcode == -1)
468 orb->rcode = rcode;
469 if (orb->rcode != RCODE_COMPLETE) {
470 list_del(&orb->link);
471 spin_unlock_irqrestore(&card->lock, flags);
472 orb->callback(orb, NULL);
473 } else {
474 spin_unlock_irqrestore(&card->lock, flags);
475 }
476
477 kref_put(&orb->kref, free_orb);
478 }
479
480 static void
481 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
482 int node_id, int generation, u64 offset)
483 {
484 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
485 unsigned long flags;
486
487 orb->pointer.high = 0;
488 orb->pointer.low = cpu_to_be32(orb->request_bus);
489
490 spin_lock_irqsave(&device->card->lock, flags);
491 list_add_tail(&orb->link, &lu->orb_list);
492 spin_unlock_irqrestore(&device->card->lock, flags);
493
494 /* Take a ref for the orb list and for the transaction callback. */
495 kref_get(&orb->kref);
496 kref_get(&orb->kref);
497
498 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
499 node_id, generation, device->max_speed, offset,
500 &orb->pointer, sizeof(orb->pointer),
501 complete_transaction, orb);
502 }
503
504 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
505 {
506 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
507 struct sbp2_orb *orb, *next;
508 struct list_head list;
509 unsigned long flags;
510 int retval = -ENOENT;
511
512 INIT_LIST_HEAD(&list);
513 spin_lock_irqsave(&device->card->lock, flags);
514 list_splice_init(&lu->orb_list, &list);
515 spin_unlock_irqrestore(&device->card->lock, flags);
516
517 list_for_each_entry_safe(orb, next, &list, link) {
518 retval = 0;
519 if (fw_cancel_transaction(device->card, &orb->t) == 0)
520 continue;
521
522 orb->rcode = RCODE_CANCELLED;
523 orb->callback(orb, NULL);
524 }
525
526 return retval;
527 }
528
529 static void
530 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
531 {
532 struct sbp2_management_orb *orb =
533 container_of(base_orb, struct sbp2_management_orb, base);
534
535 if (status)
536 memcpy(&orb->status, status, sizeof(*status));
537 complete(&orb->done);
538 }
539
540 static int
541 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
542 int generation, int function, int lun_or_login_id,
543 void *response)
544 {
545 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
546 struct sbp2_management_orb *orb;
547 unsigned int timeout;
548 int retval = -ENOMEM;
549
550 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
551 return 0;
552
553 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
554 if (orb == NULL)
555 return -ENOMEM;
556
557 kref_init(&orb->base.kref);
558 orb->response_bus =
559 dma_map_single(device->card->device, &orb->response,
560 sizeof(orb->response), DMA_FROM_DEVICE);
561 if (dma_mapping_error(device->card->device, orb->response_bus))
562 goto fail_mapping_response;
563
564 orb->request.response.high = 0;
565 orb->request.response.low = cpu_to_be32(orb->response_bus);
566
567 orb->request.misc = cpu_to_be32(
568 MANAGEMENT_ORB_NOTIFY |
569 MANAGEMENT_ORB_FUNCTION(function) |
570 MANAGEMENT_ORB_LUN(lun_or_login_id));
571 orb->request.length = cpu_to_be32(
572 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
573
574 orb->request.status_fifo.high =
575 cpu_to_be32(lu->address_handler.offset >> 32);
576 orb->request.status_fifo.low =
577 cpu_to_be32(lu->address_handler.offset);
578
579 if (function == SBP2_LOGIN_REQUEST) {
580 /* Ask for 2^2 == 4 seconds reconnect grace period */
581 orb->request.misc |= cpu_to_be32(
582 MANAGEMENT_ORB_RECONNECT(2) |
583 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
584 timeout = lu->tgt->mgt_orb_timeout;
585 } else {
586 timeout = SBP2_ORB_TIMEOUT;
587 }
588
589 init_completion(&orb->done);
590 orb->base.callback = complete_management_orb;
591
592 orb->base.request_bus =
593 dma_map_single(device->card->device, &orb->request,
594 sizeof(orb->request), DMA_TO_DEVICE);
595 if (dma_mapping_error(device->card->device, orb->base.request_bus))
596 goto fail_mapping_request;
597
598 sbp2_send_orb(&orb->base, lu, node_id, generation,
599 lu->tgt->management_agent_address);
600
601 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
602
603 retval = -EIO;
604 if (sbp2_cancel_orbs(lu) == 0) {
605 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
606 lu->tgt->bus_id, orb->base.rcode);
607 goto out;
608 }
609
610 if (orb->base.rcode != RCODE_COMPLETE) {
611 fw_error("%s: management write failed, rcode 0x%02x\n",
612 lu->tgt->bus_id, orb->base.rcode);
613 goto out;
614 }
615
616 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
617 STATUS_GET_SBP_STATUS(orb->status) != 0) {
618 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
619 STATUS_GET_RESPONSE(orb->status),
620 STATUS_GET_SBP_STATUS(orb->status));
621 goto out;
622 }
623
624 retval = 0;
625 out:
626 dma_unmap_single(device->card->device, orb->base.request_bus,
627 sizeof(orb->request), DMA_TO_DEVICE);
628 fail_mapping_request:
629 dma_unmap_single(device->card->device, orb->response_bus,
630 sizeof(orb->response), DMA_FROM_DEVICE);
631 fail_mapping_response:
632 if (response)
633 memcpy(response, orb->response, sizeof(orb->response));
634 kref_put(&orb->base.kref, free_orb);
635
636 return retval;
637 }
638
639 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
640 {
641 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
642 __be32 d = 0;
643
644 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
645 lu->tgt->node_id, lu->generation, device->max_speed,
646 lu->command_block_agent_address + SBP2_AGENT_RESET,
647 &d, sizeof(d));
648 }
649
650 static void
651 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
652 void *payload, size_t length, void *data)
653 {
654 kfree(data);
655 }
656
657 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
658 {
659 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
660 struct fw_transaction *t;
661 static __be32 d;
662
663 t = kmalloc(sizeof(*t), GFP_ATOMIC);
664 if (t == NULL)
665 return;
666
667 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
668 lu->tgt->node_id, lu->generation, device->max_speed,
669 lu->command_block_agent_address + SBP2_AGENT_RESET,
670 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
671 }
672
673 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
674 {
675 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
676 unsigned long flags;
677
678 /* serialize with comparisons of lu->generation and card->generation */
679 spin_lock_irqsave(&card->lock, flags);
680 lu->generation = generation;
681 spin_unlock_irqrestore(&card->lock, flags);
682 }
683
684 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
685 {
686 /*
687 * We may access dont_block without taking card->lock here:
688 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
689 * are currently serialized against each other.
690 * And a wrong result in sbp2_conditionally_block()'s access of
691 * dont_block is rather harmless, it simply misses its first chance.
692 */
693 --lu->tgt->dont_block;
694 }
695
696 /*
697 * Blocks lu->tgt if all of the following conditions are met:
698 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
699 * logical units have been finished (indicated by dont_block == 0).
700 * - lu->generation is stale.
701 *
702 * Note, scsi_block_requests() must be called while holding card->lock,
703 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
704 * unblock the target.
705 */
706 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
707 {
708 struct sbp2_target *tgt = lu->tgt;
709 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
710 struct Scsi_Host *shost =
711 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
712 unsigned long flags;
713
714 spin_lock_irqsave(&card->lock, flags);
715 if (!tgt->dont_block && !lu->blocked &&
716 lu->generation != card->generation) {
717 lu->blocked = true;
718 if (++tgt->blocked == 1)
719 scsi_block_requests(shost);
720 }
721 spin_unlock_irqrestore(&card->lock, flags);
722 }
723
724 /*
725 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
726 * Note, it is harmless to run scsi_unblock_requests() outside the
727 * card->lock protected section. On the other hand, running it inside
728 * the section might clash with shost->host_lock.
729 */
730 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
731 {
732 struct sbp2_target *tgt = lu->tgt;
733 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
734 struct Scsi_Host *shost =
735 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
736 unsigned long flags;
737 bool unblock = false;
738
739 spin_lock_irqsave(&card->lock, flags);
740 if (lu->blocked && lu->generation == card->generation) {
741 lu->blocked = false;
742 unblock = --tgt->blocked == 0;
743 }
744 spin_unlock_irqrestore(&card->lock, flags);
745
746 if (unblock)
747 scsi_unblock_requests(shost);
748 }
749
750 /*
751 * Prevents future blocking of tgt and unblocks it.
752 * Note, it is harmless to run scsi_unblock_requests() outside the
753 * card->lock protected section. On the other hand, running it inside
754 * the section might clash with shost->host_lock.
755 */
756 static void sbp2_unblock(struct sbp2_target *tgt)
757 {
758 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
759 struct Scsi_Host *shost =
760 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
761 unsigned long flags;
762
763 spin_lock_irqsave(&card->lock, flags);
764 ++tgt->dont_block;
765 spin_unlock_irqrestore(&card->lock, flags);
766
767 scsi_unblock_requests(shost);
768 }
769
770 static int sbp2_lun2int(u16 lun)
771 {
772 struct scsi_lun eight_bytes_lun;
773
774 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
775 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
776 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
777
778 return scsilun_to_int(&eight_bytes_lun);
779 }
780
781 static void sbp2_release_target(struct kref *kref)
782 {
783 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
784 struct sbp2_logical_unit *lu, *next;
785 struct Scsi_Host *shost =
786 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
787 struct scsi_device *sdev;
788 struct fw_device *device = fw_device(tgt->unit->device.parent);
789
790 /* prevent deadlocks */
791 sbp2_unblock(tgt);
792
793 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
794 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
795 if (sdev) {
796 scsi_remove_device(sdev);
797 scsi_device_put(sdev);
798 }
799 if (lu->login_id != INVALID_LOGIN_ID) {
800 int generation, node_id;
801 /*
802 * tgt->node_id may be obsolete here if we failed
803 * during initial login or after a bus reset where
804 * the topology changed.
805 */
806 generation = device->generation;
807 smp_rmb(); /* node_id vs. generation */
808 node_id = device->node_id;
809 sbp2_send_management_orb(lu, node_id, generation,
810 SBP2_LOGOUT_REQUEST,
811 lu->login_id, NULL);
812 }
813 fw_core_remove_address_handler(&lu->address_handler);
814 list_del(&lu->link);
815 kfree(lu);
816 }
817 scsi_remove_host(shost);
818 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
819
820 fw_unit_put(tgt->unit);
821 scsi_host_put(shost);
822 fw_device_put(device);
823 }
824
825 static struct workqueue_struct *sbp2_wq;
826
827 static void sbp2_target_put(struct sbp2_target *tgt)
828 {
829 kref_put(&tgt->kref, sbp2_release_target);
830 }
831
832 /*
833 * Always get the target's kref when scheduling work on one its units.
834 * Each workqueue job is responsible to call sbp2_target_put() upon return.
835 */
836 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
837 {
838 kref_get(&lu->tgt->kref);
839 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
840 sbp2_target_put(lu->tgt);
841 }
842
843 /*
844 * Write retransmit retry values into the BUSY_TIMEOUT register.
845 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
846 * default retry_limit value is 0 (i.e. never retry transmission). We write a
847 * saner value after logging into the device.
848 * - The dual-phase retry protocol is optional to implement, and if not
849 * supported, writes to the dual-phase portion of the register will be
850 * ignored. We try to write the original 1394-1995 default here.
851 * - In the case of devices that are also SBP-3-compliant, all writes are
852 * ignored, as the register is read-only, but contains single-phase retry of
853 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
854 * write attempt is safe and yields more consistent behavior for all devices.
855 *
856 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
857 * and section 6.4 of the SBP-3 spec for further details.
858 */
859 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
860 {
861 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
862 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
863
864 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
865 lu->tgt->node_id, lu->generation, device->max_speed,
866 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
867 &d, sizeof(d));
868 }
869
870 static void sbp2_reconnect(struct work_struct *work);
871
872 static void sbp2_login(struct work_struct *work)
873 {
874 struct sbp2_logical_unit *lu =
875 container_of(work, struct sbp2_logical_unit, work.work);
876 struct sbp2_target *tgt = lu->tgt;
877 struct fw_device *device = fw_device(tgt->unit->device.parent);
878 struct Scsi_Host *shost;
879 struct scsi_device *sdev;
880 struct sbp2_login_response response;
881 int generation, node_id, local_node_id;
882
883 if (fw_device_is_shutdown(device))
884 goto out;
885
886 generation = device->generation;
887 smp_rmb(); /* node_id must not be older than generation */
888 node_id = device->node_id;
889 local_node_id = device->card->node_id;
890
891 /* If this is a re-login attempt, log out, or we might be rejected. */
892 if (lu->has_sdev)
893 sbp2_send_management_orb(lu, device->node_id, generation,
894 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
895
896 if (sbp2_send_management_orb(lu, node_id, generation,
897 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
898 if (lu->retries++ < 5) {
899 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
900 } else {
901 fw_error("%s: failed to login to LUN %04x\n",
902 tgt->bus_id, lu->lun);
903 /* Let any waiting I/O fail from now on. */
904 sbp2_unblock(lu->tgt);
905 }
906 goto out;
907 }
908
909 tgt->node_id = node_id;
910 tgt->address_high = local_node_id << 16;
911 sbp2_set_generation(lu, generation);
912
913 lu->command_block_agent_address =
914 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
915 << 32) | be32_to_cpu(response.command_block_agent.low);
916 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
917
918 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
919 tgt->bus_id, lu->lun, lu->retries);
920
921 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
922 sbp2_set_busy_timeout(lu);
923
924 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
925 sbp2_agent_reset(lu);
926
927 /* This was a re-login. */
928 if (lu->has_sdev) {
929 sbp2_cancel_orbs(lu);
930 sbp2_conditionally_unblock(lu);
931 goto out;
932 }
933
934 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
935 ssleep(SBP2_INQUIRY_DELAY);
936
937 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
938 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
939 /*
940 * FIXME: We are unable to perform reconnects while in sbp2_login().
941 * Therefore __scsi_add_device() will get into trouble if a bus reset
942 * happens in parallel. It will either fail or leave us with an
943 * unusable sdev. As a workaround we check for this and retry the
944 * whole login and SCSI probing.
945 */
946
947 /* Reported error during __scsi_add_device() */
948 if (IS_ERR(sdev))
949 goto out_logout_login;
950
951 /* Unreported error during __scsi_add_device() */
952 smp_rmb(); /* get current card generation */
953 if (generation != device->card->generation) {
954 scsi_remove_device(sdev);
955 scsi_device_put(sdev);
956 goto out_logout_login;
957 }
958
959 /* No error during __scsi_add_device() */
960 lu->has_sdev = true;
961 scsi_device_put(sdev);
962 sbp2_allow_block(lu);
963 goto out;
964
965 out_logout_login:
966 smp_rmb(); /* generation may have changed */
967 generation = device->generation;
968 smp_rmb(); /* node_id must not be older than generation */
969
970 sbp2_send_management_orb(lu, device->node_id, generation,
971 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
972 /*
973 * If a bus reset happened, sbp2_update will have requeued
974 * lu->work already. Reset the work from reconnect to login.
975 */
976 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
977 out:
978 sbp2_target_put(tgt);
979 }
980
981 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
982 {
983 struct sbp2_logical_unit *lu;
984
985 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
986 if (!lu)
987 return -ENOMEM;
988
989 lu->address_handler.length = 0x100;
990 lu->address_handler.address_callback = sbp2_status_write;
991 lu->address_handler.callback_data = lu;
992
993 if (fw_core_add_address_handler(&lu->address_handler,
994 &fw_high_memory_region) < 0) {
995 kfree(lu);
996 return -ENOMEM;
997 }
998
999 lu->tgt = tgt;
1000 lu->lun = lun_entry & 0xffff;
1001 lu->login_id = INVALID_LOGIN_ID;
1002 lu->retries = 0;
1003 lu->has_sdev = false;
1004 lu->blocked = false;
1005 ++tgt->dont_block;
1006 INIT_LIST_HEAD(&lu->orb_list);
1007 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1008
1009 list_add_tail(&lu->link, &tgt->lu_list);
1010 return 0;
1011 }
1012
1013 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1014 {
1015 struct fw_csr_iterator ci;
1016 int key, value;
1017
1018 fw_csr_iterator_init(&ci, directory);
1019 while (fw_csr_iterator_next(&ci, &key, &value))
1020 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1021 sbp2_add_logical_unit(tgt, value) < 0)
1022 return -ENOMEM;
1023 return 0;
1024 }
1025
1026 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1027 u32 *model, u32 *firmware_revision)
1028 {
1029 struct fw_csr_iterator ci;
1030 int key, value;
1031 unsigned int timeout;
1032
1033 fw_csr_iterator_init(&ci, directory);
1034 while (fw_csr_iterator_next(&ci, &key, &value)) {
1035 switch (key) {
1036
1037 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1038 tgt->management_agent_address =
1039 CSR_REGISTER_BASE + 4 * value;
1040 break;
1041
1042 case CSR_DIRECTORY_ID:
1043 tgt->directory_id = value;
1044 break;
1045
1046 case CSR_MODEL:
1047 *model = value;
1048 break;
1049
1050 case SBP2_CSR_FIRMWARE_REVISION:
1051 *firmware_revision = value;
1052 break;
1053
1054 case SBP2_CSR_UNIT_CHARACTERISTICS:
1055 /* the timeout value is stored in 500ms units */
1056 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1057 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1058 tgt->mgt_orb_timeout =
1059 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1060
1061 if (timeout > tgt->mgt_orb_timeout)
1062 fw_notify("%s: config rom contains %ds "
1063 "management ORB timeout, limiting "
1064 "to %ds\n", tgt->bus_id,
1065 timeout / 1000,
1066 tgt->mgt_orb_timeout / 1000);
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1070 if (sbp2_add_logical_unit(tgt, value) < 0)
1071 return -ENOMEM;
1072 break;
1073
1074 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1075 /* Adjust for the increment in the iterator */
1076 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1077 return -ENOMEM;
1078 break;
1079 }
1080 }
1081 return 0;
1082 }
1083
1084 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085 u32 firmware_revision)
1086 {
1087 int i;
1088 unsigned int w = sbp2_param_workarounds;
1089
1090 if (w)
1091 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1092 "if you need the workarounds parameter for %s\n",
1093 tgt->bus_id);
1094
1095 if (w & SBP2_WORKAROUND_OVERRIDE)
1096 goto out;
1097
1098 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099
1100 if (sbp2_workarounds_table[i].firmware_revision !=
1101 (firmware_revision & 0xffffff00))
1102 continue;
1103
1104 if (sbp2_workarounds_table[i].model != model &&
1105 sbp2_workarounds_table[i].model != ~0)
1106 continue;
1107
1108 w |= sbp2_workarounds_table[i].workarounds;
1109 break;
1110 }
1111 out:
1112 if (w)
1113 fw_notify("Workarounds for %s: 0x%x "
1114 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115 tgt->bus_id, w, firmware_revision, model);
1116 tgt->workarounds = w;
1117 }
1118
1119 static struct scsi_host_template scsi_driver_template;
1120
1121 static int sbp2_probe(struct device *dev)
1122 {
1123 struct fw_unit *unit = fw_unit(dev);
1124 struct fw_device *device = fw_device(unit->device.parent);
1125 struct sbp2_target *tgt;
1126 struct sbp2_logical_unit *lu;
1127 struct Scsi_Host *shost;
1128 u32 model, firmware_revision;
1129
1130 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1131 BUG_ON(dma_set_max_seg_size(device->card->device,
1132 SBP2_MAX_SEG_SIZE));
1133
1134 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135 if (shost == NULL)
1136 return -ENOMEM;
1137
1138 tgt = (struct sbp2_target *)shost->hostdata;
1139 unit->device.driver_data = tgt;
1140 tgt->unit = unit;
1141 kref_init(&tgt->kref);
1142 INIT_LIST_HEAD(&tgt->lu_list);
1143 tgt->bus_id = dev_name(&unit->device);
1144 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1145
1146 if (fw_device_enable_phys_dma(device) < 0)
1147 goto fail_shost_put;
1148
1149 if (scsi_add_host(shost, &unit->device) < 0)
1150 goto fail_shost_put;
1151
1152 fw_device_get(device);
1153 fw_unit_get(unit);
1154
1155 /* Initialize to values that won't match anything in our table. */
1156 firmware_revision = 0xff000000;
1157 model = 0xff000000;
1158
1159 /* implicit directory ID */
1160 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1161 + CSR_CONFIG_ROM) & 0xffffff;
1162
1163 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1164 &firmware_revision) < 0)
1165 goto fail_tgt_put;
1166
1167 sbp2_init_workarounds(tgt, model, firmware_revision);
1168
1169 /* Do the login in a workqueue so we can easily reschedule retries. */
1170 list_for_each_entry(lu, &tgt->lu_list, link)
1171 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1172 return 0;
1173
1174 fail_tgt_put:
1175 sbp2_target_put(tgt);
1176 return -ENOMEM;
1177
1178 fail_shost_put:
1179 scsi_host_put(shost);
1180 return -ENOMEM;
1181 }
1182
1183 static int sbp2_remove(struct device *dev)
1184 {
1185 struct fw_unit *unit = fw_unit(dev);
1186 struct sbp2_target *tgt = unit->device.driver_data;
1187
1188 sbp2_target_put(tgt);
1189 return 0;
1190 }
1191
1192 static void sbp2_reconnect(struct work_struct *work)
1193 {
1194 struct sbp2_logical_unit *lu =
1195 container_of(work, struct sbp2_logical_unit, work.work);
1196 struct sbp2_target *tgt = lu->tgt;
1197 struct fw_device *device = fw_device(tgt->unit->device.parent);
1198 int generation, node_id, local_node_id;
1199
1200 if (fw_device_is_shutdown(device))
1201 goto out;
1202
1203 generation = device->generation;
1204 smp_rmb(); /* node_id must not be older than generation */
1205 node_id = device->node_id;
1206 local_node_id = device->card->node_id;
1207
1208 if (sbp2_send_management_orb(lu, node_id, generation,
1209 SBP2_RECONNECT_REQUEST,
1210 lu->login_id, NULL) < 0) {
1211 /*
1212 * If reconnect was impossible even though we are in the
1213 * current generation, fall back and try to log in again.
1214 *
1215 * We could check for "Function rejected" status, but
1216 * looking at the bus generation as simpler and more general.
1217 */
1218 smp_rmb(); /* get current card generation */
1219 if (generation == device->card->generation ||
1220 lu->retries++ >= 5) {
1221 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1222 lu->retries = 0;
1223 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1224 }
1225 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1226 goto out;
1227 }
1228
1229 tgt->node_id = node_id;
1230 tgt->address_high = local_node_id << 16;
1231 sbp2_set_generation(lu, generation);
1232
1233 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1234 tgt->bus_id, lu->lun, lu->retries);
1235
1236 sbp2_agent_reset(lu);
1237 sbp2_cancel_orbs(lu);
1238 sbp2_conditionally_unblock(lu);
1239 out:
1240 sbp2_target_put(tgt);
1241 }
1242
1243 static void sbp2_update(struct fw_unit *unit)
1244 {
1245 struct sbp2_target *tgt = unit->device.driver_data;
1246 struct sbp2_logical_unit *lu;
1247
1248 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1249
1250 /*
1251 * Fw-core serializes sbp2_update() against sbp2_remove().
1252 * Iteration over tgt->lu_list is therefore safe here.
1253 */
1254 list_for_each_entry(lu, &tgt->lu_list, link) {
1255 sbp2_conditionally_block(lu);
1256 lu->retries = 0;
1257 sbp2_queue_work(lu, 0);
1258 }
1259 }
1260
1261 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1262 #define SBP2_SW_VERSION_ENTRY 0x00010483
1263
1264 static const struct fw_device_id sbp2_id_table[] = {
1265 {
1266 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1267 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1268 .version = SBP2_SW_VERSION_ENTRY,
1269 },
1270 { }
1271 };
1272
1273 static struct fw_driver sbp2_driver = {
1274 .driver = {
1275 .owner = THIS_MODULE,
1276 .name = sbp2_driver_name,
1277 .bus = &fw_bus_type,
1278 .probe = sbp2_probe,
1279 .remove = sbp2_remove,
1280 },
1281 .update = sbp2_update,
1282 .id_table = sbp2_id_table,
1283 };
1284
1285 static unsigned int
1286 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1287 {
1288 int sam_status;
1289
1290 sense_data[0] = 0x70;
1291 sense_data[1] = 0x0;
1292 sense_data[2] = sbp2_status[1];
1293 sense_data[3] = sbp2_status[4];
1294 sense_data[4] = sbp2_status[5];
1295 sense_data[5] = sbp2_status[6];
1296 sense_data[6] = sbp2_status[7];
1297 sense_data[7] = 10;
1298 sense_data[8] = sbp2_status[8];
1299 sense_data[9] = sbp2_status[9];
1300 sense_data[10] = sbp2_status[10];
1301 sense_data[11] = sbp2_status[11];
1302 sense_data[12] = sbp2_status[2];
1303 sense_data[13] = sbp2_status[3];
1304 sense_data[14] = sbp2_status[12];
1305 sense_data[15] = sbp2_status[13];
1306
1307 sam_status = sbp2_status[0] & 0x3f;
1308
1309 switch (sam_status) {
1310 case SAM_STAT_GOOD:
1311 case SAM_STAT_CHECK_CONDITION:
1312 case SAM_STAT_CONDITION_MET:
1313 case SAM_STAT_BUSY:
1314 case SAM_STAT_RESERVATION_CONFLICT:
1315 case SAM_STAT_COMMAND_TERMINATED:
1316 return DID_OK << 16 | sam_status;
1317
1318 default:
1319 return DID_ERROR << 16;
1320 }
1321 }
1322
1323 static void
1324 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1325 {
1326 struct sbp2_command_orb *orb =
1327 container_of(base_orb, struct sbp2_command_orb, base);
1328 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1329 int result;
1330
1331 if (status != NULL) {
1332 if (STATUS_GET_DEAD(*status))
1333 sbp2_agent_reset_no_wait(orb->lu);
1334
1335 switch (STATUS_GET_RESPONSE(*status)) {
1336 case SBP2_STATUS_REQUEST_COMPLETE:
1337 result = DID_OK << 16;
1338 break;
1339 case SBP2_STATUS_TRANSPORT_FAILURE:
1340 result = DID_BUS_BUSY << 16;
1341 break;
1342 case SBP2_STATUS_ILLEGAL_REQUEST:
1343 case SBP2_STATUS_VENDOR_DEPENDENT:
1344 default:
1345 result = DID_ERROR << 16;
1346 break;
1347 }
1348
1349 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1350 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1351 orb->cmd->sense_buffer);
1352 } else {
1353 /*
1354 * If the orb completes with status == NULL, something
1355 * went wrong, typically a bus reset happened mid-orb
1356 * or when sending the write (less likely).
1357 */
1358 result = DID_BUS_BUSY << 16;
1359 sbp2_conditionally_block(orb->lu);
1360 }
1361
1362 dma_unmap_single(device->card->device, orb->base.request_bus,
1363 sizeof(orb->request), DMA_TO_DEVICE);
1364
1365 if (scsi_sg_count(orb->cmd) > 0)
1366 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1367 scsi_sg_count(orb->cmd),
1368 orb->cmd->sc_data_direction);
1369
1370 if (orb->page_table_bus != 0)
1371 dma_unmap_single(device->card->device, orb->page_table_bus,
1372 sizeof(orb->page_table), DMA_TO_DEVICE);
1373
1374 orb->cmd->result = result;
1375 orb->done(orb->cmd);
1376 }
1377
1378 static int
1379 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1380 struct sbp2_logical_unit *lu)
1381 {
1382 struct scatterlist *sg = scsi_sglist(orb->cmd);
1383 int i, n;
1384
1385 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1386 orb->cmd->sc_data_direction);
1387 if (n == 0)
1388 goto fail;
1389
1390 /*
1391 * Handle the special case where there is only one element in
1392 * the scatter list by converting it to an immediate block
1393 * request. This is also a workaround for broken devices such
1394 * as the second generation iPod which doesn't support page
1395 * tables.
1396 */
1397 if (n == 1) {
1398 orb->request.data_descriptor.high =
1399 cpu_to_be32(lu->tgt->address_high);
1400 orb->request.data_descriptor.low =
1401 cpu_to_be32(sg_dma_address(sg));
1402 orb->request.misc |=
1403 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1404 return 0;
1405 }
1406
1407 for_each_sg(sg, sg, n, i) {
1408 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1409 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1410 }
1411
1412 orb->page_table_bus =
1413 dma_map_single(device->card->device, orb->page_table,
1414 sizeof(orb->page_table), DMA_TO_DEVICE);
1415 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1416 goto fail_page_table;
1417
1418 /*
1419 * The data_descriptor pointer is the one case where we need
1420 * to fill in the node ID part of the address. All other
1421 * pointers assume that the data referenced reside on the
1422 * initiator (i.e. us), but data_descriptor can refer to data
1423 * on other nodes so we need to put our ID in descriptor.high.
1424 */
1425 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1426 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1427 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1428 COMMAND_ORB_DATA_SIZE(n));
1429
1430 return 0;
1431
1432 fail_page_table:
1433 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1434 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1435 fail:
1436 return -ENOMEM;
1437 }
1438
1439 /* SCSI stack integration */
1440
1441 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1442 {
1443 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1444 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1445 struct sbp2_command_orb *orb;
1446 unsigned int max_payload;
1447 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1448
1449 /*
1450 * Bidirectional commands are not yet implemented, and unknown
1451 * transfer direction not handled.
1452 */
1453 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1454 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1455 cmd->result = DID_ERROR << 16;
1456 done(cmd);
1457 return 0;
1458 }
1459
1460 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1461 if (orb == NULL) {
1462 fw_notify("failed to alloc orb\n");
1463 return SCSI_MLQUEUE_HOST_BUSY;
1464 }
1465
1466 /* Initialize rcode to something not RCODE_COMPLETE. */
1467 orb->base.rcode = -1;
1468 kref_init(&orb->base.kref);
1469
1470 orb->lu = lu;
1471 orb->done = done;
1472 orb->cmd = cmd;
1473
1474 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1475 /*
1476 * At speed 100 we can do 512 bytes per packet, at speed 200,
1477 * 1024 bytes per packet etc. The SBP-2 max_payload field
1478 * specifies the max payload size as 2 ^ (max_payload + 2), so
1479 * if we set this to max_speed + 7, we get the right value.
1480 */
1481 max_payload = min(device->max_speed + 7,
1482 device->card->max_receive - 1);
1483 orb->request.misc = cpu_to_be32(
1484 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1485 COMMAND_ORB_SPEED(device->max_speed) |
1486 COMMAND_ORB_NOTIFY);
1487
1488 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1489 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1490
1491 generation = device->generation;
1492 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1493
1494 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1495 goto out;
1496
1497 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1498
1499 orb->base.callback = complete_command_orb;
1500 orb->base.request_bus =
1501 dma_map_single(device->card->device, &orb->request,
1502 sizeof(orb->request), DMA_TO_DEVICE);
1503 if (dma_mapping_error(device->card->device, orb->base.request_bus))
1504 goto out;
1505
1506 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1507 lu->command_block_agent_address + SBP2_ORB_POINTER);
1508 retval = 0;
1509 out:
1510 kref_put(&orb->base.kref, free_orb);
1511 return retval;
1512 }
1513
1514 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1515 {
1516 struct sbp2_logical_unit *lu = sdev->hostdata;
1517
1518 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1519 if (!lu)
1520 return -ENOSYS;
1521
1522 sdev->allow_restart = 1;
1523
1524 /* SBP-2 requires quadlet alignment of the data buffers. */
1525 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1526
1527 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1528 sdev->inquiry_len = 36;
1529
1530 return 0;
1531 }
1532
1533 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1534 {
1535 struct sbp2_logical_unit *lu = sdev->hostdata;
1536
1537 sdev->use_10_for_rw = 1;
1538
1539 if (sbp2_param_exclusive_login)
1540 sdev->manage_start_stop = 1;
1541
1542 if (sdev->type == TYPE_ROM)
1543 sdev->use_10_for_ms = 1;
1544
1545 if (sdev->type == TYPE_DISK &&
1546 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1547 sdev->skip_ms_page_8 = 1;
1548
1549 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1550 sdev->fix_capacity = 1;
1551
1552 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1553 sdev->start_stop_pwr_cond = 1;
1554
1555 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1556 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1557
1558 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Called by scsi stack when something has really gone wrong. Usually
1565 * called when a command has timed-out for some reason.
1566 */
1567 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1568 {
1569 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1570
1571 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1572 sbp2_agent_reset(lu);
1573 sbp2_cancel_orbs(lu);
1574
1575 return SUCCESS;
1576 }
1577
1578 /*
1579 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1580 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1581 *
1582 * This is the concatenation of target port identifier and logical unit
1583 * identifier as per SAM-2...SAM-4 annex A.
1584 */
1585 static ssize_t
1586 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1587 char *buf)
1588 {
1589 struct scsi_device *sdev = to_scsi_device(dev);
1590 struct sbp2_logical_unit *lu;
1591
1592 if (!sdev)
1593 return 0;
1594
1595 lu = sdev->hostdata;
1596
1597 return sprintf(buf, "%016llx:%06x:%04x\n",
1598 (unsigned long long)lu->tgt->guid,
1599 lu->tgt->directory_id, lu->lun);
1600 }
1601
1602 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1603
1604 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1605 &dev_attr_ieee1394_id,
1606 NULL
1607 };
1608
1609 static struct scsi_host_template scsi_driver_template = {
1610 .module = THIS_MODULE,
1611 .name = "SBP-2 IEEE-1394",
1612 .proc_name = sbp2_driver_name,
1613 .queuecommand = sbp2_scsi_queuecommand,
1614 .slave_alloc = sbp2_scsi_slave_alloc,
1615 .slave_configure = sbp2_scsi_slave_configure,
1616 .eh_abort_handler = sbp2_scsi_abort,
1617 .this_id = -1,
1618 .sg_tablesize = SG_ALL,
1619 .use_clustering = ENABLE_CLUSTERING,
1620 .cmd_per_lun = 1,
1621 .can_queue = 1,
1622 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1623 };
1624
1625 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1626 MODULE_DESCRIPTION("SCSI over IEEE1394");
1627 MODULE_LICENSE("GPL");
1628 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1629
1630 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1631 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1632 MODULE_ALIAS("sbp2");
1633 #endif
1634
1635 static int __init sbp2_init(void)
1636 {
1637 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1638 if (!sbp2_wq)
1639 return -ENOMEM;
1640
1641 return driver_register(&sbp2_driver.driver);
1642 }
1643
1644 static void __exit sbp2_cleanup(void)
1645 {
1646 driver_unregister(&sbp2_driver.driver);
1647 destroy_workqueue(sbp2_wq);
1648 }
1649
1650 module_init(sbp2_init);
1651 module_exit(sbp2_cleanup);
This page took 0.096226 seconds and 5 git commands to generate.