firewire: net: fix memory leaks
[deliverable/linux.git] / drivers / firewire / net.c
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
3 *
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5 *
6 * based on eth1394 by Ben Collins et al
7 */
8
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/highmem.h>
14 #include <linux/in.h>
15 #include <linux/ip.h>
16 #include <linux/jiffies.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/mutex.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28
29 #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2)
31
32 #define IEEE1394_BROADCAST_CHANNEL 31
33 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100 512
35 #define FWNET_NO_FIFO_ADDR (~0ULL)
36
37 #define IANA_SPECIFIER_ID 0x00005eU
38 #define RFC2734_SW_VERSION 0x000001U
39
40 #define IEEE1394_GASP_HDR_SIZE 8
41
42 #define RFC2374_UNFRAG_HDR_SIZE 4
43 #define RFC2374_FRAG_HDR_SIZE 8
44 #define RFC2374_FRAG_OVERHEAD 4
45
46 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
47 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
48 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
49 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
50
51 #define RFC2734_HW_ADDR_LEN 16
52
53 struct rfc2734_arp {
54 __be16 hw_type; /* 0x0018 */
55 __be16 proto_type; /* 0x0806 */
56 u8 hw_addr_len; /* 16 */
57 u8 ip_addr_len; /* 4 */
58 __be16 opcode; /* ARP Opcode */
59 /* Above is exactly the same format as struct arphdr */
60
61 __be64 s_uniq_id; /* Sender's 64bit EUI */
62 u8 max_rec; /* Sender's max packet size */
63 u8 sspd; /* Sender's max speed */
64 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
65 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
66 __be32 sip; /* Sender's IP Address */
67 __be32 tip; /* IP Address of requested hw addr */
68 } __attribute__((packed));
69
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN 8
72 #define FWNET_HLEN 10
73 struct fwnet_header {
74 u8 h_dest[FWNET_ALEN]; /* destination address */
75 __be16 h_proto; /* packet type ID field */
76 } __attribute__((packed));
77
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80 u32 w0;
81 u32 w1;
82 };
83
84 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
89
90 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
91 #define fwnet_set_hdr_ether_type(et) (et)
92 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo) (fgo)
94
95 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
96
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98 unsigned ether_type)
99 {
100 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101 | fwnet_set_hdr_ether_type(ether_type);
102 }
103
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105 unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108 | fwnet_set_hdr_dg_size(dg_size)
109 | fwnet_set_hdr_ether_type(ether_type);
110 hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116 hdr->w0 = fwnet_set_hdr_lf(lf)
117 | fwnet_set_hdr_dg_size(dg_size)
118 | fwnet_set_hdr_fg_off(fg_off);
119 hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124 struct list_head fi_link;
125 u16 offset;
126 u16 len;
127 };
128
129 struct fwnet_partial_datagram {
130 struct list_head pd_link;
131 struct list_head fi_list;
132 struct sk_buff *skb;
133 /* FIXME Why not use skb->data? */
134 char *pbuf;
135 u16 datagram_label;
136 u16 ether_type;
137 u16 datagram_size;
138 };
139
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142
143 struct fwnet_device {
144 struct list_head dev_link;
145 spinlock_t lock;
146 enum {
147 FWNET_BROADCAST_ERROR,
148 FWNET_BROADCAST_RUNNING,
149 FWNET_BROADCAST_STOPPED,
150 } broadcast_state;
151 struct fw_iso_context *broadcast_rcv_context;
152 struct fw_iso_buffer broadcast_rcv_buffer;
153 void **broadcast_rcv_buffer_ptrs;
154 unsigned broadcast_rcv_next_ptr;
155 unsigned num_broadcast_rcv_ptrs;
156 unsigned rcv_buffer_size;
157 /*
158 * This value is the maximum unfragmented datagram size that can be
159 * sent by the hardware. It already has the GASP overhead and the
160 * unfragmented datagram header overhead calculated into it.
161 */
162 unsigned broadcast_xmt_max_payload;
163 u16 broadcast_xmt_datagramlabel;
164
165 /*
166 * The CSR address that remote nodes must send datagrams to for us to
167 * receive them.
168 */
169 struct fw_address_handler handler;
170 u64 local_fifo;
171
172 /* List of packets to be sent */
173 struct list_head packet_list;
174 /*
175 * List of packets that were broadcasted. When we get an ISO interrupt
176 * one of them has been sent
177 */
178 struct list_head broadcasted_list;
179 /* List of packets that have been sent but not yet acked */
180 struct list_head sent_list;
181
182 struct list_head peer_list;
183 struct fw_card *card;
184 struct net_device *netdev;
185 };
186
187 struct fwnet_peer {
188 struct list_head peer_link;
189 struct fwnet_device *dev;
190 u64 guid;
191 u64 fifo;
192
193 /* guarded by dev->lock */
194 struct list_head pd_list; /* received partial datagrams */
195 unsigned pdg_size; /* pd_list size */
196
197 u16 datagram_label; /* outgoing datagram label */
198 unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 int node_id;
200 int generation;
201 unsigned speed;
202 };
203
204 /* This is our task struct. It's used for the packet complete callback. */
205 struct fwnet_packet_task {
206 /*
207 * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208 * or dev->sent_list depending on its current state.
209 */
210 struct list_head pt_link;
211 struct fw_transaction transaction;
212 struct rfc2734_header hdr;
213 struct sk_buff *skb;
214 struct fwnet_device *dev;
215
216 int outstanding_pkts;
217 unsigned max_payload;
218 u64 fifo_addr;
219 u16 dest_node;
220 u8 generation;
221 u8 speed;
222 };
223
224 /*
225 * saddr == NULL means use device source address.
226 * daddr == NULL means leave destination address (eg unresolved arp).
227 */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 unsigned short type, const void *daddr,
230 const void *saddr, unsigned len)
231 {
232 struct fwnet_header *h;
233
234 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 put_unaligned_be16(type, &h->h_proto);
236
237 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 memset(h->h_dest, 0, net->addr_len);
239
240 return net->hard_header_len;
241 }
242
243 if (daddr) {
244 memcpy(h->h_dest, daddr, net->addr_len);
245
246 return net->hard_header_len;
247 }
248
249 return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 return arp_find((unsigned char *)&h->h_dest, skb);
258
259 fw_notify("%s: unable to resolve type %04x addresses\n",
260 skb->dev->name, be16_to_cpu(h->h_proto));
261 return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 struct hh_cache *hh)
266 {
267 struct net_device *net;
268 struct fwnet_header *h;
269
270 if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271 return -1;
272 net = neigh->dev;
273 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 h->h_proto = hh->hh_type;
275 memcpy(h->h_dest, neigh->ha, net->addr_len);
276 hh->hh_len = FWNET_HLEN;
277
278 return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 const struct net_device *net, const unsigned char *haddr)
284 {
285 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292 return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296 .create = fwnet_header_create,
297 .rebuild = fwnet_header_rebuild,
298 .cache = fwnet_header_cache,
299 .cache_update = fwnet_header_cache_update,
300 .parse = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 unsigned offset, unsigned len)
306 {
307 struct fwnet_fragment_info *fi;
308 unsigned end = offset + len;
309
310 list_for_each_entry(fi, &pd->fi_list, fi_link)
311 if (offset < fi->offset + fi->len && end > fi->offset)
312 return true;
313
314 return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 struct fwnet_fragment_info *fi, *fi2, *new;
322 struct list_head *list;
323
324 list = &pd->fi_list;
325 list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 if (fi->offset + fi->len == offset) {
327 /* The new fragment can be tacked on to the end */
328 /* Did the new fragment plug a hole? */
329 fi2 = list_entry(fi->fi_link.next,
330 struct fwnet_fragment_info, fi_link);
331 if (fi->offset + fi->len == fi2->offset) {
332 /* glue fragments together */
333 fi->len += len + fi2->len;
334 list_del(&fi2->fi_link);
335 kfree(fi2);
336 } else {
337 fi->len += len;
338 }
339
340 return fi;
341 }
342 if (offset + len == fi->offset) {
343 /* The new fragment can be tacked on to the beginning */
344 /* Did the new fragment plug a hole? */
345 fi2 = list_entry(fi->fi_link.prev,
346 struct fwnet_fragment_info, fi_link);
347 if (fi2->offset + fi2->len == fi->offset) {
348 /* glue fragments together */
349 fi2->len += fi->len + len;
350 list_del(&fi->fi_link);
351 kfree(fi);
352
353 return fi2;
354 }
355 fi->offset = offset;
356 fi->len += len;
357
358 return fi;
359 }
360 if (offset > fi->offset + fi->len) {
361 list = &fi->fi_link;
362 break;
363 }
364 if (offset + len < fi->offset) {
365 list = fi->fi_link.prev;
366 break;
367 }
368 }
369
370 new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 if (!new) {
372 fw_error("out of memory\n");
373 return NULL;
374 }
375
376 new->offset = offset;
377 new->len = len;
378 list_add(&new->fi_link, list);
379
380 return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 struct fwnet_partial_datagram *new;
388 struct fwnet_fragment_info *fi;
389
390 new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 if (!new)
392 goto fail;
393
394 INIT_LIST_HEAD(&new->fi_list);
395 fi = fwnet_frag_new(new, frag_off, frag_len);
396 if (fi == NULL)
397 goto fail_w_new;
398
399 new->datagram_label = datagram_label;
400 new->datagram_size = dg_size;
401 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 if (new->skb == NULL)
403 goto fail_w_fi;
404
405 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 new->pbuf = skb_put(new->skb, dg_size);
407 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 list_add_tail(&new->pd_link, &peer->pd_list);
409
410 return new;
411
412 fail_w_fi:
413 kfree(fi);
414 fail_w_new:
415 kfree(new);
416 fail:
417 fw_error("out of memory\n");
418
419 return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 u16 datagram_label)
424 {
425 struct fwnet_partial_datagram *pd;
426
427 list_for_each_entry(pd, &peer->pd_list, pd_link)
428 if (pd->datagram_label == datagram_label)
429 return pd;
430
431 return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 struct fwnet_fragment_info *fi, *n;
438
439 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 kfree(fi);
441
442 list_del(&old->pd_link);
443 dev_kfree_skb_any(old->skb);
444 kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 struct fwnet_partial_datagram *pd, void *frag_buf,
449 unsigned frag_off, unsigned frag_len)
450 {
451 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 return false;
453
454 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456 /*
457 * Move list entry to beginnig of list so that oldest partial
458 * datagrams percolate to the end of the list
459 */
460 list_move_tail(&pd->pd_link, &peer->pd_list);
461
462 return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 struct fwnet_fragment_info *fi;
468
469 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471 return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 u64 guid)
477 {
478 struct fwnet_peer *peer;
479
480 list_for_each_entry(peer, &dev->peer_list, peer_link)
481 if (peer->guid == guid)
482 return peer;
483
484 return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 int node_id, int generation)
490 {
491 struct fwnet_peer *peer;
492
493 list_for_each_entry(peer, &dev->peer_list, peer_link)
494 if (peer->node_id == node_id &&
495 peer->generation == generation)
496 return peer;
497
498 return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 max_rec = min(max_rec, speed + 8);
505 max_rec = min(max_rec, 0xbU); /* <= 4096 */
506 if (max_rec < 8) {
507 fw_notify("max_rec %x out of range\n", max_rec);
508 max_rec = 8;
509 }
510
511 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513
514
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516 struct sk_buff *skb, u16 source_node_id,
517 bool is_broadcast, u16 ether_type)
518 {
519 struct fwnet_device *dev;
520 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521 int status;
522 __be64 guid;
523
524 dev = netdev_priv(net);
525 /* Write metadata, and then pass to the receive level */
526 skb->dev = net;
527 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
528
529 /*
530 * Parse the encapsulation header. This actually does the job of
531 * converting to an ethernet frame header, as well as arp
532 * conversion if needed. ARP conversion is easier in this
533 * direction, since we are using ethernet as our backend.
534 */
535 /*
536 * If this is an ARP packet, convert it. First, we want to make
537 * use of some of the fields, since they tell us a little bit
538 * about the sending machine.
539 */
540 if (ether_type == ETH_P_ARP) {
541 struct rfc2734_arp *arp1394;
542 struct arphdr *arp;
543 unsigned char *arp_ptr;
544 u64 fifo_addr;
545 u64 peer_guid;
546 unsigned sspd;
547 u16 max_payload;
548 struct fwnet_peer *peer;
549 unsigned long flags;
550
551 arp1394 = (struct rfc2734_arp *)skb->data;
552 arp = (struct arphdr *)skb->data;
553 arp_ptr = (unsigned char *)(arp + 1);
554 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556 | get_unaligned_be32(&arp1394->fifo_lo);
557
558 sspd = arp1394->sspd;
559 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
560 if (sspd > SCODE_3200) {
561 fw_notify("sspd %x out of range\n", sspd);
562 sspd = SCODE_3200;
563 }
564 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565
566 spin_lock_irqsave(&dev->lock, flags);
567 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568 if (peer) {
569 peer->fifo = fifo_addr;
570
571 if (peer->speed > sspd)
572 peer->speed = sspd;
573 if (peer->max_payload > max_payload)
574 peer->max_payload = max_payload;
575 }
576 spin_unlock_irqrestore(&dev->lock, flags);
577
578 if (!peer) {
579 fw_notify("No peer for ARP packet from %016llx\n",
580 (unsigned long long)peer_guid);
581 goto no_peer;
582 }
583
584 /*
585 * Now that we're done with the 1394 specific stuff, we'll
586 * need to alter some of the data. Believe it or not, all
587 * that needs to be done is sender_IP_address needs to be
588 * moved, the destination hardware address get stuffed
589 * in and the hardware address length set to 8.
590 *
591 * IMPORTANT: The code below overwrites 1394 specific data
592 * needed above so keep the munging of the data for the
593 * higher level IP stack last.
594 */
595
596 arp->ar_hln = 8;
597 /* skip over sender unique id */
598 arp_ptr += arp->ar_hln;
599 /* move sender IP addr */
600 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601 /* skip over sender IP addr */
602 arp_ptr += arp->ar_pln;
603
604 if (arp->ar_op == htons(ARPOP_REQUEST))
605 memset(arp_ptr, 0, sizeof(u64));
606 else
607 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608 }
609
610 /* Now add the ethernet header. */
611 guid = cpu_to_be64(dev->card->guid);
612 if (dev_hard_header(skb, net, ether_type,
613 is_broadcast ? &broadcast_hw : &guid,
614 NULL, skb->len) >= 0) {
615 struct fwnet_header *eth;
616 u16 *rawp;
617 __be16 protocol;
618
619 skb_reset_mac_header(skb);
620 skb_pull(skb, sizeof(*eth));
621 eth = (struct fwnet_header *)skb_mac_header(skb);
622 if (*eth->h_dest & 1) {
623 if (memcmp(eth->h_dest, net->broadcast,
624 net->addr_len) == 0)
625 skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627 else
628 skb->pkt_type = PACKET_MULTICAST;
629 #endif
630 } else {
631 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632 skb->pkt_type = PACKET_OTHERHOST;
633 }
634 if (ntohs(eth->h_proto) >= 1536) {
635 protocol = eth->h_proto;
636 } else {
637 rawp = (u16 *)skb->data;
638 if (*rawp == 0xffff)
639 protocol = htons(ETH_P_802_3);
640 else
641 protocol = htons(ETH_P_802_2);
642 }
643 skb->protocol = protocol;
644 }
645 status = netif_rx(skb);
646 if (status == NET_RX_DROP) {
647 net->stats.rx_errors++;
648 net->stats.rx_dropped++;
649 } else {
650 net->stats.rx_packets++;
651 net->stats.rx_bytes += skb->len;
652 }
653 if (netif_queue_stopped(net))
654 netif_wake_queue(net);
655
656 return 0;
657
658 no_peer:
659 net->stats.rx_errors++;
660 net->stats.rx_dropped++;
661
662 dev_kfree_skb_any(skb);
663 if (netif_queue_stopped(net))
664 netif_wake_queue(net);
665
666 return -ENOENT;
667 }
668
669 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
670 int source_node_id, int generation,
671 bool is_broadcast)
672 {
673 struct sk_buff *skb;
674 struct net_device *net = dev->netdev;
675 struct rfc2734_header hdr;
676 unsigned lf;
677 unsigned long flags;
678 struct fwnet_peer *peer;
679 struct fwnet_partial_datagram *pd;
680 int fg_off;
681 int dg_size;
682 u16 datagram_label;
683 int retval;
684 u16 ether_type;
685
686 hdr.w0 = be32_to_cpu(buf[0]);
687 lf = fwnet_get_hdr_lf(&hdr);
688 if (lf == RFC2374_HDR_UNFRAG) {
689 /*
690 * An unfragmented datagram has been received by the ieee1394
691 * bus. Build an skbuff around it so we can pass it to the
692 * high level network layer.
693 */
694 ether_type = fwnet_get_hdr_ether_type(&hdr);
695 buf++;
696 len -= RFC2374_UNFRAG_HDR_SIZE;
697
698 skb = dev_alloc_skb(len + net->hard_header_len + 15);
699 if (unlikely(!skb)) {
700 fw_error("out of memory\n");
701 net->stats.rx_dropped++;
702
703 return -ENOMEM;
704 }
705 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
706 memcpy(skb_put(skb, len), buf, len);
707
708 return fwnet_finish_incoming_packet(net, skb, source_node_id,
709 is_broadcast, ether_type);
710 }
711 /* A datagram fragment has been received, now the fun begins. */
712 hdr.w1 = ntohl(buf[1]);
713 buf += 2;
714 len -= RFC2374_FRAG_HDR_SIZE;
715 if (lf == RFC2374_HDR_FIRSTFRAG) {
716 ether_type = fwnet_get_hdr_ether_type(&hdr);
717 fg_off = 0;
718 } else {
719 ether_type = 0;
720 fg_off = fwnet_get_hdr_fg_off(&hdr);
721 }
722 datagram_label = fwnet_get_hdr_dgl(&hdr);
723 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
724
725 spin_lock_irqsave(&dev->lock, flags);
726
727 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
728 if (!peer) {
729 retval = -ENOENT;
730 goto fail;
731 }
732
733 pd = fwnet_pd_find(peer, datagram_label);
734 if (pd == NULL) {
735 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
736 /* remove the oldest */
737 fwnet_pd_delete(list_first_entry(&peer->pd_list,
738 struct fwnet_partial_datagram, pd_link));
739 peer->pdg_size--;
740 }
741 pd = fwnet_pd_new(net, peer, datagram_label,
742 dg_size, buf, fg_off, len);
743 if (pd == NULL) {
744 retval = -ENOMEM;
745 goto fail;
746 }
747 peer->pdg_size++;
748 } else {
749 if (fwnet_frag_overlap(pd, fg_off, len) ||
750 pd->datagram_size != dg_size) {
751 /*
752 * Differing datagram sizes or overlapping fragments,
753 * discard old datagram and start a new one.
754 */
755 fwnet_pd_delete(pd);
756 pd = fwnet_pd_new(net, peer, datagram_label,
757 dg_size, buf, fg_off, len);
758 if (pd == NULL) {
759 peer->pdg_size--;
760 retval = -ENOMEM;
761 goto fail;
762 }
763 } else {
764 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
765 /*
766 * Couldn't save off fragment anyway
767 * so might as well obliterate the
768 * datagram now.
769 */
770 fwnet_pd_delete(pd);
771 peer->pdg_size--;
772 retval = -ENOMEM;
773 goto fail;
774 }
775 }
776 } /* new datagram or add to existing one */
777
778 if (lf == RFC2374_HDR_FIRSTFRAG)
779 pd->ether_type = ether_type;
780
781 if (fwnet_pd_is_complete(pd)) {
782 ether_type = pd->ether_type;
783 peer->pdg_size--;
784 skb = skb_get(pd->skb);
785 fwnet_pd_delete(pd);
786
787 spin_unlock_irqrestore(&dev->lock, flags);
788
789 return fwnet_finish_incoming_packet(net, skb, source_node_id,
790 false, ether_type);
791 }
792 /*
793 * Datagram is not complete, we're done for the
794 * moment.
795 */
796 spin_unlock_irqrestore(&dev->lock, flags);
797
798 return 0;
799 fail:
800 spin_unlock_irqrestore(&dev->lock, flags);
801
802 if (netif_queue_stopped(net))
803 netif_wake_queue(net);
804
805 return retval;
806 }
807
808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
809 int tcode, int destination, int source, int generation,
810 unsigned long long offset, void *payload, size_t length,
811 void *callback_data)
812 {
813 struct fwnet_device *dev = callback_data;
814 int rcode;
815
816 if (destination == IEEE1394_ALL_NODES) {
817 kfree(r);
818
819 return;
820 }
821
822 if (offset != dev->handler.offset)
823 rcode = RCODE_ADDRESS_ERROR;
824 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
825 rcode = RCODE_TYPE_ERROR;
826 else if (fwnet_incoming_packet(dev, payload, length,
827 source, generation, false) != 0) {
828 fw_error("Incoming packet failure\n");
829 rcode = RCODE_CONFLICT_ERROR;
830 } else
831 rcode = RCODE_COMPLETE;
832
833 fw_send_response(card, r, rcode);
834 }
835
836 static void fwnet_receive_broadcast(struct fw_iso_context *context,
837 u32 cycle, size_t header_length, void *header, void *data)
838 {
839 struct fwnet_device *dev;
840 struct fw_iso_packet packet;
841 struct fw_card *card;
842 __be16 *hdr_ptr;
843 __be32 *buf_ptr;
844 int retval;
845 u32 length;
846 u16 source_node_id;
847 u32 specifier_id;
848 u32 ver;
849 unsigned long offset;
850 unsigned long flags;
851
852 dev = data;
853 card = dev->card;
854 hdr_ptr = header;
855 length = be16_to_cpup(hdr_ptr);
856
857 spin_lock_irqsave(&dev->lock, flags);
858
859 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
860 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
861 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
862 dev->broadcast_rcv_next_ptr = 0;
863
864 spin_unlock_irqrestore(&dev->lock, flags);
865
866 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
867 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
868 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
869 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
870
871 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
872 buf_ptr += 2;
873 length -= IEEE1394_GASP_HDR_SIZE;
874 fwnet_incoming_packet(dev, buf_ptr, length,
875 source_node_id, -1, true);
876 }
877
878 packet.payload_length = dev->rcv_buffer_size;
879 packet.interrupt = 1;
880 packet.skip = 0;
881 packet.tag = 3;
882 packet.sy = 0;
883 packet.header_length = IEEE1394_GASP_HDR_SIZE;
884
885 spin_lock_irqsave(&dev->lock, flags);
886
887 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
888 &dev->broadcast_rcv_buffer, offset);
889
890 spin_unlock_irqrestore(&dev->lock, flags);
891
892 if (retval < 0)
893 fw_error("requeue failed\n");
894 }
895
896 static struct kmem_cache *fwnet_packet_task_cache;
897
898 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
899 {
900 dev_kfree_skb_any(ptask->skb);
901 kmem_cache_free(fwnet_packet_task_cache, ptask);
902 }
903
904 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
905
906 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
907 {
908 struct fwnet_device *dev = ptask->dev;
909 struct sk_buff *skb = ptask->skb;
910 unsigned long flags;
911 bool free;
912
913 spin_lock_irqsave(&dev->lock, flags);
914
915 ptask->outstanding_pkts--;
916
917 /* Check whether we or the networking TX soft-IRQ is last user. */
918 free = (ptask->outstanding_pkts == 0 && !list_empty(&ptask->pt_link));
919 if (free)
920 list_del(&ptask->pt_link);
921
922 if (ptask->outstanding_pkts == 0) {
923 dev->netdev->stats.tx_packets++;
924 dev->netdev->stats.tx_bytes += skb->len;
925 }
926
927 spin_unlock_irqrestore(&dev->lock, flags);
928
929 if (ptask->outstanding_pkts > 0) {
930 u16 dg_size;
931 u16 fg_off;
932 u16 datagram_label;
933 u16 lf;
934
935 /* Update the ptask to point to the next fragment and send it */
936 lf = fwnet_get_hdr_lf(&ptask->hdr);
937 switch (lf) {
938 case RFC2374_HDR_LASTFRAG:
939 case RFC2374_HDR_UNFRAG:
940 default:
941 fw_error("Outstanding packet %x lf %x, header %x,%x\n",
942 ptask->outstanding_pkts, lf, ptask->hdr.w0,
943 ptask->hdr.w1);
944 BUG();
945
946 case RFC2374_HDR_FIRSTFRAG:
947 /* Set frag type here for future interior fragments */
948 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
950 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
951 break;
952
953 case RFC2374_HDR_INTFRAG:
954 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
955 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
956 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
957 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
958 break;
959 }
960
961 skb_pull(skb, ptask->max_payload);
962 if (ptask->outstanding_pkts > 1) {
963 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
964 dg_size, fg_off, datagram_label);
965 } else {
966 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
967 dg_size, fg_off, datagram_label);
968 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
969 }
970 fwnet_send_packet(ptask);
971 }
972
973 if (free)
974 fwnet_free_ptask(ptask);
975 }
976
977 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
978 {
979 struct fwnet_device *dev = ptask->dev;
980 unsigned long flags;
981 bool free;
982
983 spin_lock_irqsave(&dev->lock, flags);
984
985 /* One fragment failed; don't try to send remaining fragments. */
986 ptask->outstanding_pkts = 0;
987
988 /* Check whether we or the networking TX soft-IRQ is last user. */
989 free = !list_empty(&ptask->pt_link);
990 if (free)
991 list_del(&ptask->pt_link);
992
993 dev->netdev->stats.tx_dropped++;
994 dev->netdev->stats.tx_errors++;
995
996 spin_unlock_irqrestore(&dev->lock, flags);
997
998 if (free)
999 fwnet_free_ptask(ptask);
1000 }
1001
1002 static void fwnet_write_complete(struct fw_card *card, int rcode,
1003 void *payload, size_t length, void *data)
1004 {
1005 struct fwnet_packet_task *ptask;
1006
1007 ptask = data;
1008
1009 if (rcode == RCODE_COMPLETE) {
1010 fwnet_transmit_packet_done(ptask);
1011 } else {
1012 fw_error("fwnet_write_complete: failed: %x\n", rcode);
1013 fwnet_transmit_packet_failed(ptask);
1014 }
1015 }
1016
1017 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1018 {
1019 struct fwnet_device *dev;
1020 unsigned tx_len;
1021 struct rfc2734_header *bufhdr;
1022 unsigned long flags;
1023 bool free;
1024
1025 dev = ptask->dev;
1026 tx_len = ptask->max_payload;
1027 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1028 case RFC2374_HDR_UNFRAG:
1029 bufhdr = (struct rfc2734_header *)
1030 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1031 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1032 break;
1033
1034 case RFC2374_HDR_FIRSTFRAG:
1035 case RFC2374_HDR_INTFRAG:
1036 case RFC2374_HDR_LASTFRAG:
1037 bufhdr = (struct rfc2734_header *)
1038 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1039 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1040 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1041 break;
1042
1043 default:
1044 BUG();
1045 }
1046 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1047 u8 *p;
1048 int generation;
1049 int node_id;
1050
1051 /* ptask->generation may not have been set yet */
1052 generation = dev->card->generation;
1053 smp_rmb();
1054 node_id = dev->card->node_id;
1055
1056 p = skb_push(ptask->skb, 8);
1057 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1058 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1059 | RFC2734_SW_VERSION, &p[4]);
1060
1061 /* We should not transmit if broadcast_channel.valid == 0. */
1062 fw_send_request(dev->card, &ptask->transaction,
1063 TCODE_STREAM_DATA,
1064 fw_stream_packet_destination_id(3,
1065 IEEE1394_BROADCAST_CHANNEL, 0),
1066 generation, SCODE_100, 0ULL, ptask->skb->data,
1067 tx_len + 8, fwnet_write_complete, ptask);
1068
1069 spin_lock_irqsave(&dev->lock, flags);
1070
1071 /* If the AT tasklet already ran, we may be last user. */
1072 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1073 if (!free)
1074 list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1075
1076 spin_unlock_irqrestore(&dev->lock, flags);
1077
1078 goto out;
1079 }
1080
1081 fw_send_request(dev->card, &ptask->transaction,
1082 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1083 ptask->generation, ptask->speed, ptask->fifo_addr,
1084 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1085
1086 spin_lock_irqsave(&dev->lock, flags);
1087
1088 /* If the AT tasklet already ran, we may be last user. */
1089 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1090 if (!free)
1091 list_add_tail(&ptask->pt_link, &dev->sent_list);
1092
1093 spin_unlock_irqrestore(&dev->lock, flags);
1094
1095 dev->netdev->trans_start = jiffies;
1096 out:
1097 if (free)
1098 fwnet_free_ptask(ptask);
1099
1100 return 0;
1101 }
1102
1103 static int fwnet_broadcast_start(struct fwnet_device *dev)
1104 {
1105 struct fw_iso_context *context;
1106 int retval;
1107 unsigned num_packets;
1108 unsigned max_receive;
1109 struct fw_iso_packet packet;
1110 unsigned long offset;
1111 unsigned u;
1112
1113 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1114 /* outside OHCI posted write area? */
1115 static const struct fw_address_region region = {
1116 .start = 0xffff00000000ULL,
1117 .end = CSR_REGISTER_BASE,
1118 };
1119
1120 dev->handler.length = 4096;
1121 dev->handler.address_callback = fwnet_receive_packet;
1122 dev->handler.callback_data = dev;
1123
1124 retval = fw_core_add_address_handler(&dev->handler, &region);
1125 if (retval < 0)
1126 goto failed_initial;
1127
1128 dev->local_fifo = dev->handler.offset;
1129 }
1130
1131 max_receive = 1U << (dev->card->max_receive + 1);
1132 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1133
1134 if (!dev->broadcast_rcv_context) {
1135 void **ptrptr;
1136
1137 context = fw_iso_context_create(dev->card,
1138 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1139 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1140 if (IS_ERR(context)) {
1141 retval = PTR_ERR(context);
1142 goto failed_context_create;
1143 }
1144
1145 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1146 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1147 if (retval < 0)
1148 goto failed_buffer_init;
1149
1150 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1151 if (!ptrptr) {
1152 retval = -ENOMEM;
1153 goto failed_ptrs_alloc;
1154 }
1155
1156 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1157 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1158 void *ptr;
1159 unsigned v;
1160
1161 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1162 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1163 *ptrptr++ = (void *)
1164 ((char *)ptr + v * max_receive);
1165 }
1166 dev->broadcast_rcv_context = context;
1167 } else {
1168 context = dev->broadcast_rcv_context;
1169 }
1170
1171 packet.payload_length = max_receive;
1172 packet.interrupt = 1;
1173 packet.skip = 0;
1174 packet.tag = 3;
1175 packet.sy = 0;
1176 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1177 offset = 0;
1178
1179 for (u = 0; u < num_packets; u++) {
1180 retval = fw_iso_context_queue(context, &packet,
1181 &dev->broadcast_rcv_buffer, offset);
1182 if (retval < 0)
1183 goto failed_rcv_queue;
1184
1185 offset += max_receive;
1186 }
1187 dev->num_broadcast_rcv_ptrs = num_packets;
1188 dev->rcv_buffer_size = max_receive;
1189 dev->broadcast_rcv_next_ptr = 0U;
1190 retval = fw_iso_context_start(context, -1, 0,
1191 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1192 if (retval < 0)
1193 goto failed_rcv_queue;
1194
1195 /* FIXME: adjust it according to the min. speed of all known peers? */
1196 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1197 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1198 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1199
1200 return 0;
1201
1202 failed_rcv_queue:
1203 kfree(dev->broadcast_rcv_buffer_ptrs);
1204 dev->broadcast_rcv_buffer_ptrs = NULL;
1205 failed_ptrs_alloc:
1206 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1207 failed_buffer_init:
1208 fw_iso_context_destroy(context);
1209 dev->broadcast_rcv_context = NULL;
1210 failed_context_create:
1211 fw_core_remove_address_handler(&dev->handler);
1212 failed_initial:
1213 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1214
1215 return retval;
1216 }
1217
1218 /* ifup */
1219 static int fwnet_open(struct net_device *net)
1220 {
1221 struct fwnet_device *dev = netdev_priv(net);
1222 int ret;
1223
1224 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1225 ret = fwnet_broadcast_start(dev);
1226 if (ret)
1227 return ret;
1228 }
1229 netif_start_queue(net);
1230
1231 return 0;
1232 }
1233
1234 /* ifdown */
1235 static int fwnet_stop(struct net_device *net)
1236 {
1237 netif_stop_queue(net);
1238
1239 /* Deallocate iso context for use by other applications? */
1240
1241 return 0;
1242 }
1243
1244 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1245 {
1246 struct fwnet_header hdr_buf;
1247 struct fwnet_device *dev = netdev_priv(net);
1248 __be16 proto;
1249 u16 dest_node;
1250 unsigned max_payload;
1251 u16 dg_size;
1252 u16 *datagram_label_ptr;
1253 struct fwnet_packet_task *ptask;
1254 struct fwnet_peer *peer;
1255 unsigned long flags;
1256
1257 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1258 if (ptask == NULL)
1259 goto fail;
1260
1261 skb = skb_share_check(skb, GFP_ATOMIC);
1262 if (!skb)
1263 goto fail;
1264
1265 /*
1266 * Make a copy of the driver-specific header.
1267 * We might need to rebuild the header on tx failure.
1268 */
1269 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1270 skb_pull(skb, sizeof(hdr_buf));
1271
1272 proto = hdr_buf.h_proto;
1273 dg_size = skb->len;
1274
1275 /* serialize access to peer, including peer->datagram_label */
1276 spin_lock_irqsave(&dev->lock, flags);
1277
1278 /*
1279 * Set the transmission type for the packet. ARP packets and IP
1280 * broadcast packets are sent via GASP.
1281 */
1282 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1283 || proto == htons(ETH_P_ARP)
1284 || (proto == htons(ETH_P_IP)
1285 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1286 max_payload = dev->broadcast_xmt_max_payload;
1287 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1288
1289 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1290 ptask->generation = 0;
1291 ptask->dest_node = IEEE1394_ALL_NODES;
1292 ptask->speed = SCODE_100;
1293 } else {
1294 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1295 u8 generation;
1296
1297 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1298 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1299 goto fail_unlock;
1300
1301 generation = peer->generation;
1302 dest_node = peer->node_id;
1303 max_payload = peer->max_payload;
1304 datagram_label_ptr = &peer->datagram_label;
1305
1306 ptask->fifo_addr = peer->fifo;
1307 ptask->generation = generation;
1308 ptask->dest_node = dest_node;
1309 ptask->speed = peer->speed;
1310 }
1311
1312 /* If this is an ARP packet, convert it */
1313 if (proto == htons(ETH_P_ARP)) {
1314 struct arphdr *arp = (struct arphdr *)skb->data;
1315 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1316 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1317 __be32 ipaddr;
1318
1319 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1320
1321 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1322 arp1394->max_rec = dev->card->max_receive;
1323 arp1394->sspd = dev->card->link_speed;
1324
1325 put_unaligned_be16(dev->local_fifo >> 32,
1326 &arp1394->fifo_hi);
1327 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1328 &arp1394->fifo_lo);
1329 put_unaligned(ipaddr, &arp1394->sip);
1330 }
1331
1332 ptask->hdr.w0 = 0;
1333 ptask->hdr.w1 = 0;
1334 ptask->skb = skb;
1335 ptask->dev = dev;
1336
1337 /* Does it all fit in one packet? */
1338 if (dg_size <= max_payload) {
1339 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1340 ptask->outstanding_pkts = 1;
1341 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1342 } else {
1343 u16 datagram_label;
1344
1345 max_payload -= RFC2374_FRAG_OVERHEAD;
1346 datagram_label = (*datagram_label_ptr)++;
1347 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1348 datagram_label);
1349 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1350 max_payload += RFC2374_FRAG_HDR_SIZE;
1351 }
1352
1353 spin_unlock_irqrestore(&dev->lock, flags);
1354
1355 ptask->max_payload = max_payload;
1356 INIT_LIST_HEAD(&ptask->pt_link);
1357
1358 fwnet_send_packet(ptask);
1359
1360 return NETDEV_TX_OK;
1361
1362 fail_unlock:
1363 spin_unlock_irqrestore(&dev->lock, flags);
1364 fail:
1365 if (ptask)
1366 kmem_cache_free(fwnet_packet_task_cache, ptask);
1367
1368 if (skb != NULL)
1369 dev_kfree_skb(skb);
1370
1371 net->stats.tx_dropped++;
1372 net->stats.tx_errors++;
1373
1374 /*
1375 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1376 * causes serious problems" here, allegedly. Before that patch,
1377 * -ERRNO was returned which is not appropriate under Linux 2.6.
1378 * Perhaps more needs to be done? Stop the queue in serious
1379 * conditions and restart it elsewhere?
1380 */
1381 return NETDEV_TX_OK;
1382 }
1383
1384 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1385 {
1386 if (new_mtu < 68)
1387 return -EINVAL;
1388
1389 net->mtu = new_mtu;
1390 return 0;
1391 }
1392
1393 static const struct net_device_ops fwnet_netdev_ops = {
1394 .ndo_open = fwnet_open,
1395 .ndo_stop = fwnet_stop,
1396 .ndo_start_xmit = fwnet_tx,
1397 .ndo_change_mtu = fwnet_change_mtu,
1398 };
1399
1400 static void fwnet_init_dev(struct net_device *net)
1401 {
1402 net->header_ops = &fwnet_header_ops;
1403 net->netdev_ops = &fwnet_netdev_ops;
1404 net->watchdog_timeo = 2 * HZ;
1405 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1406 net->features = NETIF_F_HIGHDMA;
1407 net->addr_len = FWNET_ALEN;
1408 net->hard_header_len = FWNET_HLEN;
1409 net->type = ARPHRD_IEEE1394;
1410 net->tx_queue_len = 10;
1411 }
1412
1413 /* caller must hold fwnet_device_mutex */
1414 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1415 {
1416 struct fwnet_device *dev;
1417
1418 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1419 if (dev->card == card)
1420 return dev;
1421
1422 return NULL;
1423 }
1424
1425 static int fwnet_add_peer(struct fwnet_device *dev,
1426 struct fw_unit *unit, struct fw_device *device)
1427 {
1428 struct fwnet_peer *peer;
1429
1430 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1431 if (!peer)
1432 return -ENOMEM;
1433
1434 dev_set_drvdata(&unit->device, peer);
1435
1436 peer->dev = dev;
1437 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1438 peer->fifo = FWNET_NO_FIFO_ADDR;
1439 INIT_LIST_HEAD(&peer->pd_list);
1440 peer->pdg_size = 0;
1441 peer->datagram_label = 0;
1442 peer->speed = device->max_speed;
1443 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1444
1445 peer->generation = device->generation;
1446 smp_rmb();
1447 peer->node_id = device->node_id;
1448
1449 spin_lock_irq(&dev->lock);
1450 list_add_tail(&peer->peer_link, &dev->peer_list);
1451 spin_unlock_irq(&dev->lock);
1452
1453 return 0;
1454 }
1455
1456 static int fwnet_probe(struct device *_dev)
1457 {
1458 struct fw_unit *unit = fw_unit(_dev);
1459 struct fw_device *device = fw_parent_device(unit);
1460 struct fw_card *card = device->card;
1461 struct net_device *net;
1462 bool allocated_netdev = false;
1463 struct fwnet_device *dev;
1464 unsigned max_mtu;
1465 int ret;
1466
1467 mutex_lock(&fwnet_device_mutex);
1468
1469 dev = fwnet_dev_find(card);
1470 if (dev) {
1471 net = dev->netdev;
1472 goto have_dev;
1473 }
1474
1475 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1476 if (net == NULL) {
1477 ret = -ENOMEM;
1478 goto out;
1479 }
1480
1481 allocated_netdev = true;
1482 SET_NETDEV_DEV(net, card->device);
1483 dev = netdev_priv(net);
1484
1485 spin_lock_init(&dev->lock);
1486 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1487 dev->broadcast_rcv_context = NULL;
1488 dev->broadcast_xmt_max_payload = 0;
1489 dev->broadcast_xmt_datagramlabel = 0;
1490
1491 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1492
1493 INIT_LIST_HEAD(&dev->packet_list);
1494 INIT_LIST_HEAD(&dev->broadcasted_list);
1495 INIT_LIST_HEAD(&dev->sent_list);
1496 INIT_LIST_HEAD(&dev->peer_list);
1497
1498 dev->card = card;
1499 dev->netdev = net;
1500
1501 /*
1502 * Use the RFC 2734 default 1500 octets or the maximum payload
1503 * as initial MTU
1504 */
1505 max_mtu = (1 << (card->max_receive + 1))
1506 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1507 net->mtu = min(1500U, max_mtu);
1508
1509 /* Set our hardware address while we're at it */
1510 put_unaligned_be64(card->guid, net->dev_addr);
1511 put_unaligned_be64(~0ULL, net->broadcast);
1512 ret = register_netdev(net);
1513 if (ret) {
1514 fw_error("Cannot register the driver\n");
1515 goto out;
1516 }
1517
1518 list_add_tail(&dev->dev_link, &fwnet_device_list);
1519 fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1520 net->name, (unsigned long long)card->guid);
1521 have_dev:
1522 ret = fwnet_add_peer(dev, unit, device);
1523 if (ret && allocated_netdev) {
1524 unregister_netdev(net);
1525 list_del(&dev->dev_link);
1526 }
1527 out:
1528 if (ret && allocated_netdev)
1529 free_netdev(net);
1530
1531 mutex_unlock(&fwnet_device_mutex);
1532
1533 return ret;
1534 }
1535
1536 static void fwnet_remove_peer(struct fwnet_peer *peer)
1537 {
1538 struct fwnet_partial_datagram *pd, *pd_next;
1539
1540 spin_lock_irq(&peer->dev->lock);
1541 list_del(&peer->peer_link);
1542 spin_unlock_irq(&peer->dev->lock);
1543
1544 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1545 fwnet_pd_delete(pd);
1546
1547 kfree(peer);
1548 }
1549
1550 static int fwnet_remove(struct device *_dev)
1551 {
1552 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1553 struct fwnet_device *dev = peer->dev;
1554 struct net_device *net;
1555 struct fwnet_packet_task *ptask, *pt_next;
1556
1557 mutex_lock(&fwnet_device_mutex);
1558
1559 fwnet_remove_peer(peer);
1560
1561 if (list_empty(&dev->peer_list)) {
1562 net = dev->netdev;
1563 unregister_netdev(net);
1564
1565 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1566 fw_core_remove_address_handler(&dev->handler);
1567 if (dev->broadcast_rcv_context) {
1568 fw_iso_context_stop(dev->broadcast_rcv_context);
1569 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1570 dev->card);
1571 fw_iso_context_destroy(dev->broadcast_rcv_context);
1572 }
1573 list_for_each_entry_safe(ptask, pt_next,
1574 &dev->packet_list, pt_link) {
1575 dev_kfree_skb_any(ptask->skb);
1576 kmem_cache_free(fwnet_packet_task_cache, ptask);
1577 }
1578 list_for_each_entry_safe(ptask, pt_next,
1579 &dev->broadcasted_list, pt_link) {
1580 dev_kfree_skb_any(ptask->skb);
1581 kmem_cache_free(fwnet_packet_task_cache, ptask);
1582 }
1583 list_for_each_entry_safe(ptask, pt_next,
1584 &dev->sent_list, pt_link) {
1585 dev_kfree_skb_any(ptask->skb);
1586 kmem_cache_free(fwnet_packet_task_cache, ptask);
1587 }
1588 list_del(&dev->dev_link);
1589
1590 free_netdev(net);
1591 }
1592
1593 mutex_unlock(&fwnet_device_mutex);
1594
1595 return 0;
1596 }
1597
1598 /*
1599 * FIXME abort partially sent fragmented datagrams,
1600 * discard partially received fragmented datagrams
1601 */
1602 static void fwnet_update(struct fw_unit *unit)
1603 {
1604 struct fw_device *device = fw_parent_device(unit);
1605 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1606 int generation;
1607
1608 generation = device->generation;
1609
1610 spin_lock_irq(&peer->dev->lock);
1611 peer->node_id = device->node_id;
1612 peer->generation = generation;
1613 spin_unlock_irq(&peer->dev->lock);
1614 }
1615
1616 static const struct ieee1394_device_id fwnet_id_table[] = {
1617 {
1618 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1619 IEEE1394_MATCH_VERSION,
1620 .specifier_id = IANA_SPECIFIER_ID,
1621 .version = RFC2734_SW_VERSION,
1622 },
1623 { }
1624 };
1625
1626 static struct fw_driver fwnet_driver = {
1627 .driver = {
1628 .owner = THIS_MODULE,
1629 .name = "net",
1630 .bus = &fw_bus_type,
1631 .probe = fwnet_probe,
1632 .remove = fwnet_remove,
1633 },
1634 .update = fwnet_update,
1635 .id_table = fwnet_id_table,
1636 };
1637
1638 static const u32 rfc2374_unit_directory_data[] = {
1639 0x00040000, /* directory_length */
1640 0x1200005e, /* unit_specifier_id: IANA */
1641 0x81000003, /* textual descriptor offset */
1642 0x13000001, /* unit_sw_version: RFC 2734 */
1643 0x81000005, /* textual descriptor offset */
1644 0x00030000, /* descriptor_length */
1645 0x00000000, /* text */
1646 0x00000000, /* minimal ASCII, en */
1647 0x49414e41, /* I A N A */
1648 0x00030000, /* descriptor_length */
1649 0x00000000, /* text */
1650 0x00000000, /* minimal ASCII, en */
1651 0x49507634, /* I P v 4 */
1652 };
1653
1654 static struct fw_descriptor rfc2374_unit_directory = {
1655 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1656 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1657 .data = rfc2374_unit_directory_data
1658 };
1659
1660 static int __init fwnet_init(void)
1661 {
1662 int err;
1663
1664 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1665 if (err)
1666 return err;
1667
1668 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1669 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1670 if (!fwnet_packet_task_cache) {
1671 err = -ENOMEM;
1672 goto out;
1673 }
1674
1675 err = driver_register(&fwnet_driver.driver);
1676 if (!err)
1677 return 0;
1678
1679 kmem_cache_destroy(fwnet_packet_task_cache);
1680 out:
1681 fw_core_remove_descriptor(&rfc2374_unit_directory);
1682
1683 return err;
1684 }
1685 module_init(fwnet_init);
1686
1687 static void __exit fwnet_cleanup(void)
1688 {
1689 driver_unregister(&fwnet_driver.driver);
1690 kmem_cache_destroy(fwnet_packet_task_cache);
1691 fw_core_remove_descriptor(&rfc2374_unit_directory);
1692 }
1693 module_exit(fwnet_cleanup);
1694
1695 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1696 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1697 MODULE_LICENSE("GPL");
1698 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
This page took 0.379498 seconds and 5 git commands to generate.