Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / firewire / net.c
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
3 *
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5 *
6 * based on eth1394 by Ben Collins et al
7 */
8
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
30
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
34
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39
40 #define IEEE1394_BROADCAST_CHANNEL 31
41 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100 512
43 #define FWNET_NO_FIFO_ADDR (~0ULL)
44
45 #define IANA_SPECIFIER_ID 0x00005eU
46 #define RFC2734_SW_VERSION 0x000001U
47
48 #define IEEE1394_GASP_HDR_SIZE 8
49
50 #define RFC2374_UNFRAG_HDR_SIZE 4
51 #define RFC2374_FRAG_HDR_SIZE 8
52 #define RFC2374_FRAG_OVERHEAD 4
53
54 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
55 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
56 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
57 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
58
59 #define RFC2734_HW_ADDR_LEN 16
60
61 struct rfc2734_arp {
62 __be16 hw_type; /* 0x0018 */
63 __be16 proto_type; /* 0x0806 */
64 u8 hw_addr_len; /* 16 */
65 u8 ip_addr_len; /* 4 */
66 __be16 opcode; /* ARP Opcode */
67 /* Above is exactly the same format as struct arphdr */
68
69 __be64 s_uniq_id; /* Sender's 64bit EUI */
70 u8 max_rec; /* Sender's max packet size */
71 u8 sspd; /* Sender's max speed */
72 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
73 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
74 __be32 sip; /* Sender's IP Address */
75 __be32 tip; /* IP Address of requested hw addr */
76 } __attribute__((packed));
77
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN 8
80 #define FWNET_HLEN 10
81 struct fwnet_header {
82 u8 h_dest[FWNET_ALEN]; /* destination address */
83 __be16 h_proto; /* packet type ID field */
84 } __attribute__((packed));
85
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88 u32 w0;
89 u32 w1;
90 };
91
92 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
97
98 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
99 #define fwnet_set_hdr_ether_type(et) (et)
100 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo) (fgo)
102
103 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
104
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106 unsigned ether_type)
107 {
108 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109 | fwnet_set_hdr_ether_type(ether_type);
110 }
111
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113 unsigned ether_type, unsigned dg_size, unsigned dgl)
114 {
115 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116 | fwnet_set_hdr_dg_size(dg_size)
117 | fwnet_set_hdr_ether_type(ether_type);
118 hdr->w1 = fwnet_set_hdr_dgl(dgl);
119 }
120
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 {
124 hdr->w0 = fwnet_set_hdr_lf(lf)
125 | fwnet_set_hdr_dg_size(dg_size)
126 | fwnet_set_hdr_fg_off(fg_off);
127 hdr->w1 = fwnet_set_hdr_dgl(dgl);
128 }
129
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132 struct list_head fi_link;
133 u16 offset;
134 u16 len;
135 };
136
137 struct fwnet_partial_datagram {
138 struct list_head pd_link;
139 struct list_head fi_list;
140 struct sk_buff *skb;
141 /* FIXME Why not use skb->data? */
142 char *pbuf;
143 u16 datagram_label;
144 u16 ether_type;
145 u16 datagram_size;
146 };
147
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
150
151 struct fwnet_device {
152 struct list_head dev_link;
153 spinlock_t lock;
154 enum {
155 FWNET_BROADCAST_ERROR,
156 FWNET_BROADCAST_RUNNING,
157 FWNET_BROADCAST_STOPPED,
158 } broadcast_state;
159 struct fw_iso_context *broadcast_rcv_context;
160 struct fw_iso_buffer broadcast_rcv_buffer;
161 void **broadcast_rcv_buffer_ptrs;
162 unsigned broadcast_rcv_next_ptr;
163 unsigned num_broadcast_rcv_ptrs;
164 unsigned rcv_buffer_size;
165 /*
166 * This value is the maximum unfragmented datagram size that can be
167 * sent by the hardware. It already has the GASP overhead and the
168 * unfragmented datagram header overhead calculated into it.
169 */
170 unsigned broadcast_xmt_max_payload;
171 u16 broadcast_xmt_datagramlabel;
172
173 /*
174 * The CSR address that remote nodes must send datagrams to for us to
175 * receive them.
176 */
177 struct fw_address_handler handler;
178 u64 local_fifo;
179
180 /* Number of tx datagrams that have been queued but not yet acked */
181 int queued_datagrams;
182
183 int peer_count;
184 struct list_head peer_list;
185 struct fw_card *card;
186 struct net_device *netdev;
187 };
188
189 struct fwnet_peer {
190 struct list_head peer_link;
191 struct fwnet_device *dev;
192 u64 guid;
193 u64 fifo;
194
195 /* guarded by dev->lock */
196 struct list_head pd_list; /* received partial datagrams */
197 unsigned pdg_size; /* pd_list size */
198
199 u16 datagram_label; /* outgoing datagram label */
200 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
201 int node_id;
202 int generation;
203 unsigned speed;
204 };
205
206 /* This is our task struct. It's used for the packet complete callback. */
207 struct fwnet_packet_task {
208 struct fw_transaction transaction;
209 struct rfc2734_header hdr;
210 struct sk_buff *skb;
211 struct fwnet_device *dev;
212
213 int outstanding_pkts;
214 u64 fifo_addr;
215 u16 dest_node;
216 u16 max_payload;
217 u8 generation;
218 u8 speed;
219 u8 enqueued;
220 };
221
222 /*
223 * saddr == NULL means use device source address.
224 * daddr == NULL means leave destination address (eg unresolved arp).
225 */
226 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
227 unsigned short type, const void *daddr,
228 const void *saddr, unsigned len)
229 {
230 struct fwnet_header *h;
231
232 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
233 put_unaligned_be16(type, &h->h_proto);
234
235 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
236 memset(h->h_dest, 0, net->addr_len);
237
238 return net->hard_header_len;
239 }
240
241 if (daddr) {
242 memcpy(h->h_dest, daddr, net->addr_len);
243
244 return net->hard_header_len;
245 }
246
247 return -net->hard_header_len;
248 }
249
250 static int fwnet_header_rebuild(struct sk_buff *skb)
251 {
252 struct fwnet_header *h = (struct fwnet_header *)skb->data;
253
254 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
255 return arp_find((unsigned char *)&h->h_dest, skb);
256
257 fw_notify("%s: unable to resolve type %04x addresses\n",
258 skb->dev->name, be16_to_cpu(h->h_proto));
259 return 0;
260 }
261
262 static int fwnet_header_cache(const struct neighbour *neigh,
263 struct hh_cache *hh)
264 {
265 struct net_device *net;
266 struct fwnet_header *h;
267
268 if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
269 return -1;
270 net = neigh->dev;
271 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
272 h->h_proto = hh->hh_type;
273 memcpy(h->h_dest, neigh->ha, net->addr_len);
274 hh->hh_len = FWNET_HLEN;
275
276 return 0;
277 }
278
279 /* Called by Address Resolution module to notify changes in address. */
280 static void fwnet_header_cache_update(struct hh_cache *hh,
281 const struct net_device *net, const unsigned char *haddr)
282 {
283 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
284 }
285
286 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
287 {
288 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
289
290 return FWNET_ALEN;
291 }
292
293 static const struct header_ops fwnet_header_ops = {
294 .create = fwnet_header_create,
295 .rebuild = fwnet_header_rebuild,
296 .cache = fwnet_header_cache,
297 .cache_update = fwnet_header_cache_update,
298 .parse = fwnet_header_parse,
299 };
300
301 /* FIXME: is this correct for all cases? */
302 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
303 unsigned offset, unsigned len)
304 {
305 struct fwnet_fragment_info *fi;
306 unsigned end = offset + len;
307
308 list_for_each_entry(fi, &pd->fi_list, fi_link)
309 if (offset < fi->offset + fi->len && end > fi->offset)
310 return true;
311
312 return false;
313 }
314
315 /* Assumes that new fragment does not overlap any existing fragments */
316 static struct fwnet_fragment_info *fwnet_frag_new(
317 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
318 {
319 struct fwnet_fragment_info *fi, *fi2, *new;
320 struct list_head *list;
321
322 list = &pd->fi_list;
323 list_for_each_entry(fi, &pd->fi_list, fi_link) {
324 if (fi->offset + fi->len == offset) {
325 /* The new fragment can be tacked on to the end */
326 /* Did the new fragment plug a hole? */
327 fi2 = list_entry(fi->fi_link.next,
328 struct fwnet_fragment_info, fi_link);
329 if (fi->offset + fi->len == fi2->offset) {
330 /* glue fragments together */
331 fi->len += len + fi2->len;
332 list_del(&fi2->fi_link);
333 kfree(fi2);
334 } else {
335 fi->len += len;
336 }
337
338 return fi;
339 }
340 if (offset + len == fi->offset) {
341 /* The new fragment can be tacked on to the beginning */
342 /* Did the new fragment plug a hole? */
343 fi2 = list_entry(fi->fi_link.prev,
344 struct fwnet_fragment_info, fi_link);
345 if (fi2->offset + fi2->len == fi->offset) {
346 /* glue fragments together */
347 fi2->len += fi->len + len;
348 list_del(&fi->fi_link);
349 kfree(fi);
350
351 return fi2;
352 }
353 fi->offset = offset;
354 fi->len += len;
355
356 return fi;
357 }
358 if (offset > fi->offset + fi->len) {
359 list = &fi->fi_link;
360 break;
361 }
362 if (offset + len < fi->offset) {
363 list = fi->fi_link.prev;
364 break;
365 }
366 }
367
368 new = kmalloc(sizeof(*new), GFP_ATOMIC);
369 if (!new) {
370 fw_error("out of memory\n");
371 return NULL;
372 }
373
374 new->offset = offset;
375 new->len = len;
376 list_add(&new->fi_link, list);
377
378 return new;
379 }
380
381 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
382 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
383 void *frag_buf, unsigned frag_off, unsigned frag_len)
384 {
385 struct fwnet_partial_datagram *new;
386 struct fwnet_fragment_info *fi;
387
388 new = kmalloc(sizeof(*new), GFP_ATOMIC);
389 if (!new)
390 goto fail;
391
392 INIT_LIST_HEAD(&new->fi_list);
393 fi = fwnet_frag_new(new, frag_off, frag_len);
394 if (fi == NULL)
395 goto fail_w_new;
396
397 new->datagram_label = datagram_label;
398 new->datagram_size = dg_size;
399 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
400 if (new->skb == NULL)
401 goto fail_w_fi;
402
403 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
404 new->pbuf = skb_put(new->skb, dg_size);
405 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
406 list_add_tail(&new->pd_link, &peer->pd_list);
407
408 return new;
409
410 fail_w_fi:
411 kfree(fi);
412 fail_w_new:
413 kfree(new);
414 fail:
415 fw_error("out of memory\n");
416
417 return NULL;
418 }
419
420 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
421 u16 datagram_label)
422 {
423 struct fwnet_partial_datagram *pd;
424
425 list_for_each_entry(pd, &peer->pd_list, pd_link)
426 if (pd->datagram_label == datagram_label)
427 return pd;
428
429 return NULL;
430 }
431
432
433 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
434 {
435 struct fwnet_fragment_info *fi, *n;
436
437 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
438 kfree(fi);
439
440 list_del(&old->pd_link);
441 dev_kfree_skb_any(old->skb);
442 kfree(old);
443 }
444
445 static bool fwnet_pd_update(struct fwnet_peer *peer,
446 struct fwnet_partial_datagram *pd, void *frag_buf,
447 unsigned frag_off, unsigned frag_len)
448 {
449 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
450 return false;
451
452 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
453
454 /*
455 * Move list entry to beginnig of list so that oldest partial
456 * datagrams percolate to the end of the list
457 */
458 list_move_tail(&pd->pd_link, &peer->pd_list);
459
460 return true;
461 }
462
463 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
464 {
465 struct fwnet_fragment_info *fi;
466
467 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
468
469 return fi->len == pd->datagram_size;
470 }
471
472 /* caller must hold dev->lock */
473 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
474 u64 guid)
475 {
476 struct fwnet_peer *peer;
477
478 list_for_each_entry(peer, &dev->peer_list, peer_link)
479 if (peer->guid == guid)
480 return peer;
481
482 return NULL;
483 }
484
485 /* caller must hold dev->lock */
486 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
487 int node_id, int generation)
488 {
489 struct fwnet_peer *peer;
490
491 list_for_each_entry(peer, &dev->peer_list, peer_link)
492 if (peer->node_id == node_id &&
493 peer->generation == generation)
494 return peer;
495
496 return NULL;
497 }
498
499 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
500 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
501 {
502 max_rec = min(max_rec, speed + 8);
503 max_rec = min(max_rec, 0xbU); /* <= 4096 */
504 if (max_rec < 8) {
505 fw_notify("max_rec %x out of range\n", max_rec);
506 max_rec = 8;
507 }
508
509 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
510 }
511
512
513 static int fwnet_finish_incoming_packet(struct net_device *net,
514 struct sk_buff *skb, u16 source_node_id,
515 bool is_broadcast, u16 ether_type)
516 {
517 struct fwnet_device *dev;
518 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
519 int status;
520 __be64 guid;
521
522 dev = netdev_priv(net);
523 /* Write metadata, and then pass to the receive level */
524 skb->dev = net;
525 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
526
527 /*
528 * Parse the encapsulation header. This actually does the job of
529 * converting to an ethernet frame header, as well as arp
530 * conversion if needed. ARP conversion is easier in this
531 * direction, since we are using ethernet as our backend.
532 */
533 /*
534 * If this is an ARP packet, convert it. First, we want to make
535 * use of some of the fields, since they tell us a little bit
536 * about the sending machine.
537 */
538 if (ether_type == ETH_P_ARP) {
539 struct rfc2734_arp *arp1394;
540 struct arphdr *arp;
541 unsigned char *arp_ptr;
542 u64 fifo_addr;
543 u64 peer_guid;
544 unsigned sspd;
545 u16 max_payload;
546 struct fwnet_peer *peer;
547 unsigned long flags;
548
549 arp1394 = (struct rfc2734_arp *)skb->data;
550 arp = (struct arphdr *)skb->data;
551 arp_ptr = (unsigned char *)(arp + 1);
552 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
553 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
554 | get_unaligned_be32(&arp1394->fifo_lo);
555
556 sspd = arp1394->sspd;
557 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
558 if (sspd > SCODE_3200) {
559 fw_notify("sspd %x out of range\n", sspd);
560 sspd = SCODE_3200;
561 }
562 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
563
564 spin_lock_irqsave(&dev->lock, flags);
565 peer = fwnet_peer_find_by_guid(dev, peer_guid);
566 if (peer) {
567 peer->fifo = fifo_addr;
568
569 if (peer->speed > sspd)
570 peer->speed = sspd;
571 if (peer->max_payload > max_payload)
572 peer->max_payload = max_payload;
573 }
574 spin_unlock_irqrestore(&dev->lock, flags);
575
576 if (!peer) {
577 fw_notify("No peer for ARP packet from %016llx\n",
578 (unsigned long long)peer_guid);
579 goto no_peer;
580 }
581
582 /*
583 * Now that we're done with the 1394 specific stuff, we'll
584 * need to alter some of the data. Believe it or not, all
585 * that needs to be done is sender_IP_address needs to be
586 * moved, the destination hardware address get stuffed
587 * in and the hardware address length set to 8.
588 *
589 * IMPORTANT: The code below overwrites 1394 specific data
590 * needed above so keep the munging of the data for the
591 * higher level IP stack last.
592 */
593
594 arp->ar_hln = 8;
595 /* skip over sender unique id */
596 arp_ptr += arp->ar_hln;
597 /* move sender IP addr */
598 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
599 /* skip over sender IP addr */
600 arp_ptr += arp->ar_pln;
601
602 if (arp->ar_op == htons(ARPOP_REQUEST))
603 memset(arp_ptr, 0, sizeof(u64));
604 else
605 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
606 }
607
608 /* Now add the ethernet header. */
609 guid = cpu_to_be64(dev->card->guid);
610 if (dev_hard_header(skb, net, ether_type,
611 is_broadcast ? &broadcast_hw : &guid,
612 NULL, skb->len) >= 0) {
613 struct fwnet_header *eth;
614 u16 *rawp;
615 __be16 protocol;
616
617 skb_reset_mac_header(skb);
618 skb_pull(skb, sizeof(*eth));
619 eth = (struct fwnet_header *)skb_mac_header(skb);
620 if (*eth->h_dest & 1) {
621 if (memcmp(eth->h_dest, net->broadcast,
622 net->addr_len) == 0)
623 skb->pkt_type = PACKET_BROADCAST;
624 #if 0
625 else
626 skb->pkt_type = PACKET_MULTICAST;
627 #endif
628 } else {
629 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
630 skb->pkt_type = PACKET_OTHERHOST;
631 }
632 if (ntohs(eth->h_proto) >= 1536) {
633 protocol = eth->h_proto;
634 } else {
635 rawp = (u16 *)skb->data;
636 if (*rawp == 0xffff)
637 protocol = htons(ETH_P_802_3);
638 else
639 protocol = htons(ETH_P_802_2);
640 }
641 skb->protocol = protocol;
642 }
643 status = netif_rx(skb);
644 if (status == NET_RX_DROP) {
645 net->stats.rx_errors++;
646 net->stats.rx_dropped++;
647 } else {
648 net->stats.rx_packets++;
649 net->stats.rx_bytes += skb->len;
650 }
651
652 return 0;
653
654 no_peer:
655 net->stats.rx_errors++;
656 net->stats.rx_dropped++;
657
658 dev_kfree_skb_any(skb);
659
660 return -ENOENT;
661 }
662
663 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
664 int source_node_id, int generation,
665 bool is_broadcast)
666 {
667 struct sk_buff *skb;
668 struct net_device *net = dev->netdev;
669 struct rfc2734_header hdr;
670 unsigned lf;
671 unsigned long flags;
672 struct fwnet_peer *peer;
673 struct fwnet_partial_datagram *pd;
674 int fg_off;
675 int dg_size;
676 u16 datagram_label;
677 int retval;
678 u16 ether_type;
679
680 hdr.w0 = be32_to_cpu(buf[0]);
681 lf = fwnet_get_hdr_lf(&hdr);
682 if (lf == RFC2374_HDR_UNFRAG) {
683 /*
684 * An unfragmented datagram has been received by the ieee1394
685 * bus. Build an skbuff around it so we can pass it to the
686 * high level network layer.
687 */
688 ether_type = fwnet_get_hdr_ether_type(&hdr);
689 buf++;
690 len -= RFC2374_UNFRAG_HDR_SIZE;
691
692 skb = dev_alloc_skb(len + net->hard_header_len + 15);
693 if (unlikely(!skb)) {
694 fw_error("out of memory\n");
695 net->stats.rx_dropped++;
696
697 return -ENOMEM;
698 }
699 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
700 memcpy(skb_put(skb, len), buf, len);
701
702 return fwnet_finish_incoming_packet(net, skb, source_node_id,
703 is_broadcast, ether_type);
704 }
705 /* A datagram fragment has been received, now the fun begins. */
706 hdr.w1 = ntohl(buf[1]);
707 buf += 2;
708 len -= RFC2374_FRAG_HDR_SIZE;
709 if (lf == RFC2374_HDR_FIRSTFRAG) {
710 ether_type = fwnet_get_hdr_ether_type(&hdr);
711 fg_off = 0;
712 } else {
713 ether_type = 0;
714 fg_off = fwnet_get_hdr_fg_off(&hdr);
715 }
716 datagram_label = fwnet_get_hdr_dgl(&hdr);
717 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
718
719 spin_lock_irqsave(&dev->lock, flags);
720
721 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
722 if (!peer) {
723 retval = -ENOENT;
724 goto fail;
725 }
726
727 pd = fwnet_pd_find(peer, datagram_label);
728 if (pd == NULL) {
729 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
730 /* remove the oldest */
731 fwnet_pd_delete(list_first_entry(&peer->pd_list,
732 struct fwnet_partial_datagram, pd_link));
733 peer->pdg_size--;
734 }
735 pd = fwnet_pd_new(net, peer, datagram_label,
736 dg_size, buf, fg_off, len);
737 if (pd == NULL) {
738 retval = -ENOMEM;
739 goto fail;
740 }
741 peer->pdg_size++;
742 } else {
743 if (fwnet_frag_overlap(pd, fg_off, len) ||
744 pd->datagram_size != dg_size) {
745 /*
746 * Differing datagram sizes or overlapping fragments,
747 * discard old datagram and start a new one.
748 */
749 fwnet_pd_delete(pd);
750 pd = fwnet_pd_new(net, peer, datagram_label,
751 dg_size, buf, fg_off, len);
752 if (pd == NULL) {
753 peer->pdg_size--;
754 retval = -ENOMEM;
755 goto fail;
756 }
757 } else {
758 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
759 /*
760 * Couldn't save off fragment anyway
761 * so might as well obliterate the
762 * datagram now.
763 */
764 fwnet_pd_delete(pd);
765 peer->pdg_size--;
766 retval = -ENOMEM;
767 goto fail;
768 }
769 }
770 } /* new datagram or add to existing one */
771
772 if (lf == RFC2374_HDR_FIRSTFRAG)
773 pd->ether_type = ether_type;
774
775 if (fwnet_pd_is_complete(pd)) {
776 ether_type = pd->ether_type;
777 peer->pdg_size--;
778 skb = skb_get(pd->skb);
779 fwnet_pd_delete(pd);
780
781 spin_unlock_irqrestore(&dev->lock, flags);
782
783 return fwnet_finish_incoming_packet(net, skb, source_node_id,
784 false, ether_type);
785 }
786 /*
787 * Datagram is not complete, we're done for the
788 * moment.
789 */
790 retval = 0;
791 fail:
792 spin_unlock_irqrestore(&dev->lock, flags);
793
794 return retval;
795 }
796
797 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
798 int tcode, int destination, int source, int generation,
799 unsigned long long offset, void *payload, size_t length,
800 void *callback_data)
801 {
802 struct fwnet_device *dev = callback_data;
803 int rcode;
804
805 if (destination == IEEE1394_ALL_NODES) {
806 kfree(r);
807
808 return;
809 }
810
811 if (offset != dev->handler.offset)
812 rcode = RCODE_ADDRESS_ERROR;
813 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
814 rcode = RCODE_TYPE_ERROR;
815 else if (fwnet_incoming_packet(dev, payload, length,
816 source, generation, false) != 0) {
817 fw_error("Incoming packet failure\n");
818 rcode = RCODE_CONFLICT_ERROR;
819 } else
820 rcode = RCODE_COMPLETE;
821
822 fw_send_response(card, r, rcode);
823 }
824
825 static void fwnet_receive_broadcast(struct fw_iso_context *context,
826 u32 cycle, size_t header_length, void *header, void *data)
827 {
828 struct fwnet_device *dev;
829 struct fw_iso_packet packet;
830 struct fw_card *card;
831 __be16 *hdr_ptr;
832 __be32 *buf_ptr;
833 int retval;
834 u32 length;
835 u16 source_node_id;
836 u32 specifier_id;
837 u32 ver;
838 unsigned long offset;
839 unsigned long flags;
840
841 dev = data;
842 card = dev->card;
843 hdr_ptr = header;
844 length = be16_to_cpup(hdr_ptr);
845
846 spin_lock_irqsave(&dev->lock, flags);
847
848 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
849 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
850 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
851 dev->broadcast_rcv_next_ptr = 0;
852
853 spin_unlock_irqrestore(&dev->lock, flags);
854
855 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
856 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
857 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
858 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
859
860 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
861 buf_ptr += 2;
862 length -= IEEE1394_GASP_HDR_SIZE;
863 fwnet_incoming_packet(dev, buf_ptr, length,
864 source_node_id, -1, true);
865 }
866
867 packet.payload_length = dev->rcv_buffer_size;
868 packet.interrupt = 1;
869 packet.skip = 0;
870 packet.tag = 3;
871 packet.sy = 0;
872 packet.header_length = IEEE1394_GASP_HDR_SIZE;
873
874 spin_lock_irqsave(&dev->lock, flags);
875
876 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
877 &dev->broadcast_rcv_buffer, offset);
878
879 spin_unlock_irqrestore(&dev->lock, flags);
880
881 if (retval < 0)
882 fw_error("requeue failed\n");
883 }
884
885 static struct kmem_cache *fwnet_packet_task_cache;
886
887 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
888 {
889 dev_kfree_skb_any(ptask->skb);
890 kmem_cache_free(fwnet_packet_task_cache, ptask);
891 }
892
893 /* Caller must hold dev->lock. */
894 static void dec_queued_datagrams(struct fwnet_device *dev)
895 {
896 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
897 netif_wake_queue(dev->netdev);
898 }
899
900 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
901
902 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
903 {
904 struct fwnet_device *dev = ptask->dev;
905 struct sk_buff *skb = ptask->skb;
906 unsigned long flags;
907 bool free;
908
909 spin_lock_irqsave(&dev->lock, flags);
910
911 ptask->outstanding_pkts--;
912
913 /* Check whether we or the networking TX soft-IRQ is last user. */
914 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
915 if (free)
916 dec_queued_datagrams(dev);
917
918 if (ptask->outstanding_pkts == 0) {
919 dev->netdev->stats.tx_packets++;
920 dev->netdev->stats.tx_bytes += skb->len;
921 }
922
923 spin_unlock_irqrestore(&dev->lock, flags);
924
925 if (ptask->outstanding_pkts > 0) {
926 u16 dg_size;
927 u16 fg_off;
928 u16 datagram_label;
929 u16 lf;
930
931 /* Update the ptask to point to the next fragment and send it */
932 lf = fwnet_get_hdr_lf(&ptask->hdr);
933 switch (lf) {
934 case RFC2374_HDR_LASTFRAG:
935 case RFC2374_HDR_UNFRAG:
936 default:
937 fw_error("Outstanding packet %x lf %x, header %x,%x\n",
938 ptask->outstanding_pkts, lf, ptask->hdr.w0,
939 ptask->hdr.w1);
940 BUG();
941
942 case RFC2374_HDR_FIRSTFRAG:
943 /* Set frag type here for future interior fragments */
944 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
945 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
946 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
947 break;
948
949 case RFC2374_HDR_INTFRAG:
950 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
952 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
953 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
954 break;
955 }
956
957 skb_pull(skb, ptask->max_payload);
958 if (ptask->outstanding_pkts > 1) {
959 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
960 dg_size, fg_off, datagram_label);
961 } else {
962 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
963 dg_size, fg_off, datagram_label);
964 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
965 }
966 fwnet_send_packet(ptask);
967 }
968
969 if (free)
970 fwnet_free_ptask(ptask);
971 }
972
973 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
974 {
975 struct fwnet_device *dev = ptask->dev;
976 unsigned long flags;
977 bool free;
978
979 spin_lock_irqsave(&dev->lock, flags);
980
981 /* One fragment failed; don't try to send remaining fragments. */
982 ptask->outstanding_pkts = 0;
983
984 /* Check whether we or the networking TX soft-IRQ is last user. */
985 free = ptask->enqueued;
986 if (free)
987 dec_queued_datagrams(dev);
988
989 dev->netdev->stats.tx_dropped++;
990 dev->netdev->stats.tx_errors++;
991
992 spin_unlock_irqrestore(&dev->lock, flags);
993
994 if (free)
995 fwnet_free_ptask(ptask);
996 }
997
998 static void fwnet_write_complete(struct fw_card *card, int rcode,
999 void *payload, size_t length, void *data)
1000 {
1001 struct fwnet_packet_task *ptask = data;
1002 static unsigned long j;
1003 static int last_rcode, errors_skipped;
1004
1005 if (rcode == RCODE_COMPLETE) {
1006 fwnet_transmit_packet_done(ptask);
1007 } else {
1008 fwnet_transmit_packet_failed(ptask);
1009
1010 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
1011 fw_error("fwnet_write_complete: "
1012 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1013
1014 errors_skipped = 0;
1015 last_rcode = rcode;
1016 } else
1017 errors_skipped++;
1018 }
1019 }
1020
1021 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1022 {
1023 struct fwnet_device *dev;
1024 unsigned tx_len;
1025 struct rfc2734_header *bufhdr;
1026 unsigned long flags;
1027 bool free;
1028
1029 dev = ptask->dev;
1030 tx_len = ptask->max_payload;
1031 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1032 case RFC2374_HDR_UNFRAG:
1033 bufhdr = (struct rfc2734_header *)
1034 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1035 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1036 break;
1037
1038 case RFC2374_HDR_FIRSTFRAG:
1039 case RFC2374_HDR_INTFRAG:
1040 case RFC2374_HDR_LASTFRAG:
1041 bufhdr = (struct rfc2734_header *)
1042 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1043 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1044 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1045 break;
1046
1047 default:
1048 BUG();
1049 }
1050 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1051 u8 *p;
1052 int generation;
1053 int node_id;
1054
1055 /* ptask->generation may not have been set yet */
1056 generation = dev->card->generation;
1057 smp_rmb();
1058 node_id = dev->card->node_id;
1059
1060 p = skb_push(ptask->skb, 8);
1061 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1062 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1063 | RFC2734_SW_VERSION, &p[4]);
1064
1065 /* We should not transmit if broadcast_channel.valid == 0. */
1066 fw_send_request(dev->card, &ptask->transaction,
1067 TCODE_STREAM_DATA,
1068 fw_stream_packet_destination_id(3,
1069 IEEE1394_BROADCAST_CHANNEL, 0),
1070 generation, SCODE_100, 0ULL, ptask->skb->data,
1071 tx_len + 8, fwnet_write_complete, ptask);
1072
1073 spin_lock_irqsave(&dev->lock, flags);
1074
1075 /* If the AT tasklet already ran, we may be last user. */
1076 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1077 if (!free)
1078 ptask->enqueued = true;
1079 else
1080 dec_queued_datagrams(dev);
1081
1082 spin_unlock_irqrestore(&dev->lock, flags);
1083
1084 goto out;
1085 }
1086
1087 fw_send_request(dev->card, &ptask->transaction,
1088 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1089 ptask->generation, ptask->speed, ptask->fifo_addr,
1090 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1091
1092 spin_lock_irqsave(&dev->lock, flags);
1093
1094 /* If the AT tasklet already ran, we may be last user. */
1095 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1096 if (!free)
1097 ptask->enqueued = true;
1098 else
1099 dec_queued_datagrams(dev);
1100
1101 spin_unlock_irqrestore(&dev->lock, flags);
1102
1103 dev->netdev->trans_start = jiffies;
1104 out:
1105 if (free)
1106 fwnet_free_ptask(ptask);
1107
1108 return 0;
1109 }
1110
1111 static int fwnet_broadcast_start(struct fwnet_device *dev)
1112 {
1113 struct fw_iso_context *context;
1114 int retval;
1115 unsigned num_packets;
1116 unsigned max_receive;
1117 struct fw_iso_packet packet;
1118 unsigned long offset;
1119 unsigned u;
1120
1121 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1122 /* outside OHCI posted write area? */
1123 static const struct fw_address_region region = {
1124 .start = 0xffff00000000ULL,
1125 .end = CSR_REGISTER_BASE,
1126 };
1127
1128 dev->handler.length = 4096;
1129 dev->handler.address_callback = fwnet_receive_packet;
1130 dev->handler.callback_data = dev;
1131
1132 retval = fw_core_add_address_handler(&dev->handler, &region);
1133 if (retval < 0)
1134 goto failed_initial;
1135
1136 dev->local_fifo = dev->handler.offset;
1137 }
1138
1139 max_receive = 1U << (dev->card->max_receive + 1);
1140 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1141
1142 if (!dev->broadcast_rcv_context) {
1143 void **ptrptr;
1144
1145 context = fw_iso_context_create(dev->card,
1146 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1147 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1148 if (IS_ERR(context)) {
1149 retval = PTR_ERR(context);
1150 goto failed_context_create;
1151 }
1152
1153 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1154 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1155 if (retval < 0)
1156 goto failed_buffer_init;
1157
1158 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1159 if (!ptrptr) {
1160 retval = -ENOMEM;
1161 goto failed_ptrs_alloc;
1162 }
1163
1164 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1165 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1166 void *ptr;
1167 unsigned v;
1168
1169 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1170 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1171 *ptrptr++ = (void *)
1172 ((char *)ptr + v * max_receive);
1173 }
1174 dev->broadcast_rcv_context = context;
1175 } else {
1176 context = dev->broadcast_rcv_context;
1177 }
1178
1179 packet.payload_length = max_receive;
1180 packet.interrupt = 1;
1181 packet.skip = 0;
1182 packet.tag = 3;
1183 packet.sy = 0;
1184 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1185 offset = 0;
1186
1187 for (u = 0; u < num_packets; u++) {
1188 retval = fw_iso_context_queue(context, &packet,
1189 &dev->broadcast_rcv_buffer, offset);
1190 if (retval < 0)
1191 goto failed_rcv_queue;
1192
1193 offset += max_receive;
1194 }
1195 dev->num_broadcast_rcv_ptrs = num_packets;
1196 dev->rcv_buffer_size = max_receive;
1197 dev->broadcast_rcv_next_ptr = 0U;
1198 retval = fw_iso_context_start(context, -1, 0,
1199 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1200 if (retval < 0)
1201 goto failed_rcv_queue;
1202
1203 /* FIXME: adjust it according to the min. speed of all known peers? */
1204 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1205 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1206 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1207
1208 return 0;
1209
1210 failed_rcv_queue:
1211 kfree(dev->broadcast_rcv_buffer_ptrs);
1212 dev->broadcast_rcv_buffer_ptrs = NULL;
1213 failed_ptrs_alloc:
1214 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1215 failed_buffer_init:
1216 fw_iso_context_destroy(context);
1217 dev->broadcast_rcv_context = NULL;
1218 failed_context_create:
1219 fw_core_remove_address_handler(&dev->handler);
1220 failed_initial:
1221 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1222
1223 return retval;
1224 }
1225
1226 static void set_carrier_state(struct fwnet_device *dev)
1227 {
1228 if (dev->peer_count > 1)
1229 netif_carrier_on(dev->netdev);
1230 else
1231 netif_carrier_off(dev->netdev);
1232 }
1233
1234 /* ifup */
1235 static int fwnet_open(struct net_device *net)
1236 {
1237 struct fwnet_device *dev = netdev_priv(net);
1238 int ret;
1239
1240 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1241 ret = fwnet_broadcast_start(dev);
1242 if (ret)
1243 return ret;
1244 }
1245 netif_start_queue(net);
1246
1247 spin_lock_irq(&dev->lock);
1248 set_carrier_state(dev);
1249 spin_unlock_irq(&dev->lock);
1250
1251 return 0;
1252 }
1253
1254 /* ifdown */
1255 static int fwnet_stop(struct net_device *net)
1256 {
1257 netif_stop_queue(net);
1258
1259 /* Deallocate iso context for use by other applications? */
1260
1261 return 0;
1262 }
1263
1264 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1265 {
1266 struct fwnet_header hdr_buf;
1267 struct fwnet_device *dev = netdev_priv(net);
1268 __be16 proto;
1269 u16 dest_node;
1270 unsigned max_payload;
1271 u16 dg_size;
1272 u16 *datagram_label_ptr;
1273 struct fwnet_packet_task *ptask;
1274 struct fwnet_peer *peer;
1275 unsigned long flags;
1276
1277 spin_lock_irqsave(&dev->lock, flags);
1278
1279 /* Can this happen? */
1280 if (netif_queue_stopped(dev->netdev)) {
1281 spin_unlock_irqrestore(&dev->lock, flags);
1282
1283 return NETDEV_TX_BUSY;
1284 }
1285
1286 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1287 if (ptask == NULL)
1288 goto fail;
1289
1290 skb = skb_share_check(skb, GFP_ATOMIC);
1291 if (!skb)
1292 goto fail;
1293
1294 /*
1295 * Make a copy of the driver-specific header.
1296 * We might need to rebuild the header on tx failure.
1297 */
1298 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1299 skb_pull(skb, sizeof(hdr_buf));
1300
1301 proto = hdr_buf.h_proto;
1302 dg_size = skb->len;
1303
1304 /*
1305 * Set the transmission type for the packet. ARP packets and IP
1306 * broadcast packets are sent via GASP.
1307 */
1308 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1309 || proto == htons(ETH_P_ARP)
1310 || (proto == htons(ETH_P_IP)
1311 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1312 max_payload = dev->broadcast_xmt_max_payload;
1313 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1314
1315 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1316 ptask->generation = 0;
1317 ptask->dest_node = IEEE1394_ALL_NODES;
1318 ptask->speed = SCODE_100;
1319 } else {
1320 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1321 u8 generation;
1322
1323 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1324 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1325 goto fail;
1326
1327 generation = peer->generation;
1328 dest_node = peer->node_id;
1329 max_payload = peer->max_payload;
1330 datagram_label_ptr = &peer->datagram_label;
1331
1332 ptask->fifo_addr = peer->fifo;
1333 ptask->generation = generation;
1334 ptask->dest_node = dest_node;
1335 ptask->speed = peer->speed;
1336 }
1337
1338 /* If this is an ARP packet, convert it */
1339 if (proto == htons(ETH_P_ARP)) {
1340 struct arphdr *arp = (struct arphdr *)skb->data;
1341 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1343 __be32 ipaddr;
1344
1345 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1346
1347 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1348 arp1394->max_rec = dev->card->max_receive;
1349 arp1394->sspd = dev->card->link_speed;
1350
1351 put_unaligned_be16(dev->local_fifo >> 32,
1352 &arp1394->fifo_hi);
1353 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1354 &arp1394->fifo_lo);
1355 put_unaligned(ipaddr, &arp1394->sip);
1356 }
1357
1358 ptask->hdr.w0 = 0;
1359 ptask->hdr.w1 = 0;
1360 ptask->skb = skb;
1361 ptask->dev = dev;
1362
1363 /* Does it all fit in one packet? */
1364 if (dg_size <= max_payload) {
1365 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1366 ptask->outstanding_pkts = 1;
1367 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1368 } else {
1369 u16 datagram_label;
1370
1371 max_payload -= RFC2374_FRAG_OVERHEAD;
1372 datagram_label = (*datagram_label_ptr)++;
1373 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1374 datagram_label);
1375 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1376 max_payload += RFC2374_FRAG_HDR_SIZE;
1377 }
1378
1379 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1380 netif_stop_queue(dev->netdev);
1381
1382 spin_unlock_irqrestore(&dev->lock, flags);
1383
1384 ptask->max_payload = max_payload;
1385 ptask->enqueued = 0;
1386
1387 fwnet_send_packet(ptask);
1388
1389 return NETDEV_TX_OK;
1390
1391 fail:
1392 spin_unlock_irqrestore(&dev->lock, flags);
1393
1394 if (ptask)
1395 kmem_cache_free(fwnet_packet_task_cache, ptask);
1396
1397 if (skb != NULL)
1398 dev_kfree_skb(skb);
1399
1400 net->stats.tx_dropped++;
1401 net->stats.tx_errors++;
1402
1403 /*
1404 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1405 * causes serious problems" here, allegedly. Before that patch,
1406 * -ERRNO was returned which is not appropriate under Linux 2.6.
1407 * Perhaps more needs to be done? Stop the queue in serious
1408 * conditions and restart it elsewhere?
1409 */
1410 return NETDEV_TX_OK;
1411 }
1412
1413 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1414 {
1415 if (new_mtu < 68)
1416 return -EINVAL;
1417
1418 net->mtu = new_mtu;
1419 return 0;
1420 }
1421
1422 static const struct ethtool_ops fwnet_ethtool_ops = {
1423 .get_link = ethtool_op_get_link,
1424 };
1425
1426 static const struct net_device_ops fwnet_netdev_ops = {
1427 .ndo_open = fwnet_open,
1428 .ndo_stop = fwnet_stop,
1429 .ndo_start_xmit = fwnet_tx,
1430 .ndo_change_mtu = fwnet_change_mtu,
1431 };
1432
1433 static void fwnet_init_dev(struct net_device *net)
1434 {
1435 net->header_ops = &fwnet_header_ops;
1436 net->netdev_ops = &fwnet_netdev_ops;
1437 net->watchdog_timeo = 2 * HZ;
1438 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1439 net->features = NETIF_F_HIGHDMA;
1440 net->addr_len = FWNET_ALEN;
1441 net->hard_header_len = FWNET_HLEN;
1442 net->type = ARPHRD_IEEE1394;
1443 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1444 net->ethtool_ops = &fwnet_ethtool_ops;
1445 }
1446
1447 /* caller must hold fwnet_device_mutex */
1448 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1449 {
1450 struct fwnet_device *dev;
1451
1452 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1453 if (dev->card == card)
1454 return dev;
1455
1456 return NULL;
1457 }
1458
1459 static int fwnet_add_peer(struct fwnet_device *dev,
1460 struct fw_unit *unit, struct fw_device *device)
1461 {
1462 struct fwnet_peer *peer;
1463
1464 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1465 if (!peer)
1466 return -ENOMEM;
1467
1468 dev_set_drvdata(&unit->device, peer);
1469
1470 peer->dev = dev;
1471 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1472 peer->fifo = FWNET_NO_FIFO_ADDR;
1473 INIT_LIST_HEAD(&peer->pd_list);
1474 peer->pdg_size = 0;
1475 peer->datagram_label = 0;
1476 peer->speed = device->max_speed;
1477 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1478
1479 peer->generation = device->generation;
1480 smp_rmb();
1481 peer->node_id = device->node_id;
1482
1483 spin_lock_irq(&dev->lock);
1484 list_add_tail(&peer->peer_link, &dev->peer_list);
1485 dev->peer_count++;
1486 set_carrier_state(dev);
1487 spin_unlock_irq(&dev->lock);
1488
1489 return 0;
1490 }
1491
1492 static int fwnet_probe(struct device *_dev)
1493 {
1494 struct fw_unit *unit = fw_unit(_dev);
1495 struct fw_device *device = fw_parent_device(unit);
1496 struct fw_card *card = device->card;
1497 struct net_device *net;
1498 bool allocated_netdev = false;
1499 struct fwnet_device *dev;
1500 unsigned max_mtu;
1501 int ret;
1502
1503 mutex_lock(&fwnet_device_mutex);
1504
1505 dev = fwnet_dev_find(card);
1506 if (dev) {
1507 net = dev->netdev;
1508 goto have_dev;
1509 }
1510
1511 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1512 if (net == NULL) {
1513 ret = -ENOMEM;
1514 goto out;
1515 }
1516
1517 allocated_netdev = true;
1518 SET_NETDEV_DEV(net, card->device);
1519 dev = netdev_priv(net);
1520
1521 spin_lock_init(&dev->lock);
1522 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1523 dev->broadcast_rcv_context = NULL;
1524 dev->broadcast_xmt_max_payload = 0;
1525 dev->broadcast_xmt_datagramlabel = 0;
1526 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1527 dev->queued_datagrams = 0;
1528 INIT_LIST_HEAD(&dev->peer_list);
1529 dev->card = card;
1530 dev->netdev = net;
1531
1532 /*
1533 * Use the RFC 2734 default 1500 octets or the maximum payload
1534 * as initial MTU
1535 */
1536 max_mtu = (1 << (card->max_receive + 1))
1537 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1538 net->mtu = min(1500U, max_mtu);
1539
1540 /* Set our hardware address while we're at it */
1541 put_unaligned_be64(card->guid, net->dev_addr);
1542 put_unaligned_be64(~0ULL, net->broadcast);
1543 ret = register_netdev(net);
1544 if (ret) {
1545 fw_error("Cannot register the driver\n");
1546 goto out;
1547 }
1548
1549 list_add_tail(&dev->dev_link, &fwnet_device_list);
1550 fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1551 net->name, (unsigned long long)card->guid);
1552 have_dev:
1553 ret = fwnet_add_peer(dev, unit, device);
1554 if (ret && allocated_netdev) {
1555 unregister_netdev(net);
1556 list_del(&dev->dev_link);
1557 }
1558 out:
1559 if (ret && allocated_netdev)
1560 free_netdev(net);
1561
1562 mutex_unlock(&fwnet_device_mutex);
1563
1564 return ret;
1565 }
1566
1567 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1568 {
1569 struct fwnet_partial_datagram *pd, *pd_next;
1570
1571 spin_lock_irq(&dev->lock);
1572 list_del(&peer->peer_link);
1573 dev->peer_count--;
1574 set_carrier_state(dev);
1575 spin_unlock_irq(&dev->lock);
1576
1577 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1578 fwnet_pd_delete(pd);
1579
1580 kfree(peer);
1581 }
1582
1583 static int fwnet_remove(struct device *_dev)
1584 {
1585 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1586 struct fwnet_device *dev = peer->dev;
1587 struct net_device *net;
1588 int i;
1589
1590 mutex_lock(&fwnet_device_mutex);
1591
1592 fwnet_remove_peer(peer, dev);
1593
1594 if (list_empty(&dev->peer_list)) {
1595 net = dev->netdev;
1596 unregister_netdev(net);
1597
1598 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1599 fw_core_remove_address_handler(&dev->handler);
1600 if (dev->broadcast_rcv_context) {
1601 fw_iso_context_stop(dev->broadcast_rcv_context);
1602 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1603 dev->card);
1604 fw_iso_context_destroy(dev->broadcast_rcv_context);
1605 }
1606 for (i = 0; dev->queued_datagrams && i < 5; i++)
1607 ssleep(1);
1608 WARN_ON(dev->queued_datagrams);
1609 list_del(&dev->dev_link);
1610
1611 free_netdev(net);
1612 }
1613
1614 mutex_unlock(&fwnet_device_mutex);
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * FIXME abort partially sent fragmented datagrams,
1621 * discard partially received fragmented datagrams
1622 */
1623 static void fwnet_update(struct fw_unit *unit)
1624 {
1625 struct fw_device *device = fw_parent_device(unit);
1626 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1627 int generation;
1628
1629 generation = device->generation;
1630
1631 spin_lock_irq(&peer->dev->lock);
1632 peer->node_id = device->node_id;
1633 peer->generation = generation;
1634 spin_unlock_irq(&peer->dev->lock);
1635 }
1636
1637 static const struct ieee1394_device_id fwnet_id_table[] = {
1638 {
1639 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1640 IEEE1394_MATCH_VERSION,
1641 .specifier_id = IANA_SPECIFIER_ID,
1642 .version = RFC2734_SW_VERSION,
1643 },
1644 { }
1645 };
1646
1647 static struct fw_driver fwnet_driver = {
1648 .driver = {
1649 .owner = THIS_MODULE,
1650 .name = "net",
1651 .bus = &fw_bus_type,
1652 .probe = fwnet_probe,
1653 .remove = fwnet_remove,
1654 },
1655 .update = fwnet_update,
1656 .id_table = fwnet_id_table,
1657 };
1658
1659 static const u32 rfc2374_unit_directory_data[] = {
1660 0x00040000, /* directory_length */
1661 0x1200005e, /* unit_specifier_id: IANA */
1662 0x81000003, /* textual descriptor offset */
1663 0x13000001, /* unit_sw_version: RFC 2734 */
1664 0x81000005, /* textual descriptor offset */
1665 0x00030000, /* descriptor_length */
1666 0x00000000, /* text */
1667 0x00000000, /* minimal ASCII, en */
1668 0x49414e41, /* I A N A */
1669 0x00030000, /* descriptor_length */
1670 0x00000000, /* text */
1671 0x00000000, /* minimal ASCII, en */
1672 0x49507634, /* I P v 4 */
1673 };
1674
1675 static struct fw_descriptor rfc2374_unit_directory = {
1676 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1677 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1678 .data = rfc2374_unit_directory_data
1679 };
1680
1681 static int __init fwnet_init(void)
1682 {
1683 int err;
1684
1685 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1686 if (err)
1687 return err;
1688
1689 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691 if (!fwnet_packet_task_cache) {
1692 err = -ENOMEM;
1693 goto out;
1694 }
1695
1696 err = driver_register(&fwnet_driver.driver);
1697 if (!err)
1698 return 0;
1699
1700 kmem_cache_destroy(fwnet_packet_task_cache);
1701 out:
1702 fw_core_remove_descriptor(&rfc2374_unit_directory);
1703
1704 return err;
1705 }
1706 module_init(fwnet_init);
1707
1708 static void __exit fwnet_cleanup(void)
1709 {
1710 driver_unregister(&fwnet_driver.driver);
1711 kmem_cache_destroy(fwnet_packet_task_cache);
1712 fw_core_remove_descriptor(&rfc2374_unit_directory);
1713 }
1714 module_exit(fwnet_cleanup);
1715
1716 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1717 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1718 MODULE_LICENSE("GPL");
1719 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
This page took 0.065854 seconds and 6 git commands to generate.