Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-2.6
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <asm/dmi.h>
10
11 /*
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
15 */
16 static char dmi_empty_string[] = " ";
17
18 /*
19 * Catch too early calls to dmi_check_system():
20 */
21 static int dmi_initialized;
22
23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24 {
25 const u8 *bp = ((u8 *) dm) + dm->length;
26
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
32 }
33
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
37
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
41 }
42 }
43
44 return "";
45 }
46
47 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48 {
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
52
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
55
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63 return str;
64 }
65
66 /*
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
69 */
70 static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *, void *),
72 void *private_data)
73 {
74 u8 *data = buf;
75 int i = 0;
76
77 /*
78 * Stop when we see all the items the table claimed to have
79 * OR we run off the end of the table (also happens)
80 */
81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82 const struct dmi_header *dm = (const struct dmi_header *)data;
83
84 /*
85 * We want to know the total length (formatted area and
86 * strings) before decoding to make sure we won't run off the
87 * table in dmi_decode or dmi_string
88 */
89 data += dm->length;
90 while ((data - buf < len - 1) && (data[0] || data[1]))
91 data++;
92 if (data - buf < len - 1)
93 decode(dm, private_data);
94 data += 2;
95 i++;
96 }
97 }
98
99 static u32 dmi_base;
100 static u16 dmi_len;
101 static u16 dmi_num;
102
103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104 void *))
105 {
106 u8 *buf;
107
108 buf = dmi_ioremap(dmi_base, dmi_len);
109 if (buf == NULL)
110 return -1;
111
112 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114 dmi_iounmap(buf, dmi_len);
115 return 0;
116 }
117
118 static int __init dmi_checksum(const u8 *buf)
119 {
120 u8 sum = 0;
121 int a;
122
123 for (a = 0; a < 15; a++)
124 sum += buf[a];
125
126 return sum == 0;
127 }
128
129 static char *dmi_ident[DMI_STRING_MAX];
130 static LIST_HEAD(dmi_devices);
131 int dmi_available;
132
133 /*
134 * Save a DMI string
135 */
136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137 {
138 const char *d = (const char*) dm;
139 char *p;
140
141 if (dmi_ident[slot])
142 return;
143
144 p = dmi_string(dm, d[string]);
145 if (p == NULL)
146 return;
147
148 dmi_ident[slot] = p;
149 }
150
151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152 {
153 const u8 *d = (u8*) dm + index;
154 char *s;
155 int is_ff = 1, is_00 = 1, i;
156
157 if (dmi_ident[slot])
158 return;
159
160 for (i = 0; i < 16 && (is_ff || is_00); i++) {
161 if(d[i] != 0x00) is_ff = 0;
162 if(d[i] != 0xFF) is_00 = 0;
163 }
164
165 if (is_ff || is_00)
166 return;
167
168 s = dmi_alloc(16*2+4+1);
169 if (!s)
170 return;
171
172 sprintf(s, "%pUB", d);
173
174 dmi_ident[slot] = s;
175 }
176
177 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178 {
179 const u8 *d = (u8*) dm + index;
180 char *s;
181
182 if (dmi_ident[slot])
183 return;
184
185 s = dmi_alloc(4);
186 if (!s)
187 return;
188
189 sprintf(s, "%u", *d & 0x7F);
190 dmi_ident[slot] = s;
191 }
192
193 static void __init dmi_save_one_device(int type, const char *name)
194 {
195 struct dmi_device *dev;
196
197 /* No duplicate device */
198 if (dmi_find_device(type, name, NULL))
199 return;
200
201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202 if (!dev) {
203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204 return;
205 }
206
207 dev->type = type;
208 strcpy((char *)(dev + 1), name);
209 dev->name = (char *)(dev + 1);
210 dev->device_data = NULL;
211 list_add(&dev->list, &dmi_devices);
212 }
213
214 static void __init dmi_save_devices(const struct dmi_header *dm)
215 {
216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218 for (i = 0; i < count; i++) {
219 const char *d = (char *)(dm + 1) + (i * 2);
220
221 /* Skip disabled device */
222 if ((*d & 0x80) == 0)
223 continue;
224
225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226 }
227 }
228
229 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230 {
231 int i, count = *(u8 *)(dm + 1);
232 struct dmi_device *dev;
233
234 for (i = 1; i <= count; i++) {
235 char *devname = dmi_string(dm, i);
236
237 if (devname == dmi_empty_string)
238 continue;
239
240 dev = dmi_alloc(sizeof(*dev));
241 if (!dev) {
242 printk(KERN_ERR
243 "dmi_save_oem_strings_devices: out of memory.\n");
244 break;
245 }
246
247 dev->type = DMI_DEV_TYPE_OEM_STRING;
248 dev->name = devname;
249 dev->device_data = NULL;
250
251 list_add(&dev->list, &dmi_devices);
252 }
253 }
254
255 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256 {
257 struct dmi_device *dev;
258 void * data;
259
260 data = dmi_alloc(dm->length);
261 if (data == NULL) {
262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263 return;
264 }
265
266 memcpy(data, dm, dm->length);
267
268 dev = dmi_alloc(sizeof(*dev));
269 if (!dev) {
270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271 return;
272 }
273
274 dev->type = DMI_DEV_TYPE_IPMI;
275 dev->name = "IPMI controller";
276 dev->device_data = data;
277
278 list_add_tail(&dev->list, &dmi_devices);
279 }
280
281 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282 int devfn, const char *name)
283 {
284 struct dmi_dev_onboard *onboard_dev;
285
286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287 if (!onboard_dev) {
288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289 return;
290 }
291 onboard_dev->instance = instance;
292 onboard_dev->segment = segment;
293 onboard_dev->bus = bus;
294 onboard_dev->devfn = devfn;
295
296 strcpy((char *)&onboard_dev[1], name);
297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298 onboard_dev->dev.name = (char *)&onboard_dev[1];
299 onboard_dev->dev.device_data = onboard_dev;
300
301 list_add(&onboard_dev->dev.list, &dmi_devices);
302 }
303
304 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305 {
306 const u8 *d = (u8*) dm + 5;
307
308 /* Skip disabled device */
309 if ((*d & 0x80) == 0)
310 return;
311
312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313 dmi_string_nosave(dm, *(d-1)));
314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315 }
316
317 /*
318 * Process a DMI table entry. Right now all we care about are the BIOS
319 * and machine entries. For 2.5 we should pull the smbus controller info
320 * out of here.
321 */
322 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323 {
324 switch(dm->type) {
325 case 0: /* BIOS Information */
326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329 break;
330 case 1: /* System Information */
331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336 break;
337 case 2: /* Base Board Information */
338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343 break;
344 case 3: /* Chassis Information */
345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350 break;
351 case 10: /* Onboard Devices Information */
352 dmi_save_devices(dm);
353 break;
354 case 11: /* OEM Strings */
355 dmi_save_oem_strings_devices(dm);
356 break;
357 case 38: /* IPMI Device Information */
358 dmi_save_ipmi_device(dm);
359 break;
360 case 41: /* Onboard Devices Extended Information */
361 dmi_save_extended_devices(dm);
362 }
363 }
364
365 static void __init print_filtered(const char *info)
366 {
367 const char *p;
368
369 if (!info)
370 return;
371
372 for (p = info; *p; p++)
373 if (isprint(*p))
374 printk(KERN_CONT "%c", *p);
375 else
376 printk(KERN_CONT "\\x%02x", *p & 0xff);
377 }
378
379 static void __init dmi_dump_ids(void)
380 {
381 printk(KERN_DEBUG "DMI: ");
382 print_filtered(dmi_get_system_info(DMI_BOARD_NAME));
383 printk(KERN_CONT "/");
384 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
385 printk(KERN_CONT ", BIOS ");
386 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
387 printk(KERN_CONT " ");
388 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
389 printk(KERN_CONT "\n");
390 }
391
392 static int __init dmi_present(const char __iomem *p)
393 {
394 u8 buf[15];
395
396 memcpy_fromio(buf, p, 15);
397 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
398 dmi_num = (buf[13] << 8) | buf[12];
399 dmi_len = (buf[7] << 8) | buf[6];
400 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
401 (buf[9] << 8) | buf[8];
402
403 /*
404 * DMI version 0.0 means that the real version is taken from
405 * the SMBIOS version, which we don't know at this point.
406 */
407 if (buf[14] != 0)
408 printk(KERN_INFO "DMI %d.%d present.\n",
409 buf[14] >> 4, buf[14] & 0xF);
410 else
411 printk(KERN_INFO "DMI present.\n");
412 if (dmi_walk_early(dmi_decode) == 0) {
413 dmi_dump_ids();
414 return 0;
415 }
416 }
417 return 1;
418 }
419
420 void __init dmi_scan_machine(void)
421 {
422 char __iomem *p, *q;
423 int rc;
424
425 if (efi_enabled) {
426 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
427 goto error;
428
429 /* This is called as a core_initcall() because it isn't
430 * needed during early boot. This also means we can
431 * iounmap the space when we're done with it.
432 */
433 p = dmi_ioremap(efi.smbios, 32);
434 if (p == NULL)
435 goto error;
436
437 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
438 dmi_iounmap(p, 32);
439 if (!rc) {
440 dmi_available = 1;
441 goto out;
442 }
443 }
444 else {
445 /*
446 * no iounmap() for that ioremap(); it would be a no-op, but
447 * it's so early in setup that sucker gets confused into doing
448 * what it shouldn't if we actually call it.
449 */
450 p = dmi_ioremap(0xF0000, 0x10000);
451 if (p == NULL)
452 goto error;
453
454 for (q = p; q < p + 0x10000; q += 16) {
455 rc = dmi_present(q);
456 if (!rc) {
457 dmi_available = 1;
458 dmi_iounmap(p, 0x10000);
459 goto out;
460 }
461 }
462 dmi_iounmap(p, 0x10000);
463 }
464 error:
465 printk(KERN_INFO "DMI not present or invalid.\n");
466 out:
467 dmi_initialized = 1;
468 }
469
470 /**
471 * dmi_matches - check if dmi_system_id structure matches system DMI data
472 * @dmi: pointer to the dmi_system_id structure to check
473 */
474 static bool dmi_matches(const struct dmi_system_id *dmi)
475 {
476 int i;
477
478 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
479
480 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
481 int s = dmi->matches[i].slot;
482 if (s == DMI_NONE)
483 break;
484 if (dmi_ident[s]
485 && strstr(dmi_ident[s], dmi->matches[i].substr))
486 continue;
487 /* No match */
488 return false;
489 }
490 return true;
491 }
492
493 /**
494 * dmi_is_end_of_table - check for end-of-table marker
495 * @dmi: pointer to the dmi_system_id structure to check
496 */
497 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
498 {
499 return dmi->matches[0].slot == DMI_NONE;
500 }
501
502 /**
503 * dmi_check_system - check system DMI data
504 * @list: array of dmi_system_id structures to match against
505 * All non-null elements of the list must match
506 * their slot's (field index's) data (i.e., each
507 * list string must be a substring of the specified
508 * DMI slot's string data) to be considered a
509 * successful match.
510 *
511 * Walk the blacklist table running matching functions until someone
512 * returns non zero or we hit the end. Callback function is called for
513 * each successful match. Returns the number of matches.
514 */
515 int dmi_check_system(const struct dmi_system_id *list)
516 {
517 int count = 0;
518 const struct dmi_system_id *d;
519
520 for (d = list; !dmi_is_end_of_table(d); d++)
521 if (dmi_matches(d)) {
522 count++;
523 if (d->callback && d->callback(d))
524 break;
525 }
526
527 return count;
528 }
529 EXPORT_SYMBOL(dmi_check_system);
530
531 /**
532 * dmi_first_match - find dmi_system_id structure matching system DMI data
533 * @list: array of dmi_system_id structures to match against
534 * All non-null elements of the list must match
535 * their slot's (field index's) data (i.e., each
536 * list string must be a substring of the specified
537 * DMI slot's string data) to be considered a
538 * successful match.
539 *
540 * Walk the blacklist table until the first match is found. Return the
541 * pointer to the matching entry or NULL if there's no match.
542 */
543 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
544 {
545 const struct dmi_system_id *d;
546
547 for (d = list; !dmi_is_end_of_table(d); d++)
548 if (dmi_matches(d))
549 return d;
550
551 return NULL;
552 }
553 EXPORT_SYMBOL(dmi_first_match);
554
555 /**
556 * dmi_get_system_info - return DMI data value
557 * @field: data index (see enum dmi_field)
558 *
559 * Returns one DMI data value, can be used to perform
560 * complex DMI data checks.
561 */
562 const char *dmi_get_system_info(int field)
563 {
564 return dmi_ident[field];
565 }
566 EXPORT_SYMBOL(dmi_get_system_info);
567
568 /**
569 * dmi_name_in_serial - Check if string is in the DMI product serial information
570 * @str: string to check for
571 */
572 int dmi_name_in_serial(const char *str)
573 {
574 int f = DMI_PRODUCT_SERIAL;
575 if (dmi_ident[f] && strstr(dmi_ident[f], str))
576 return 1;
577 return 0;
578 }
579
580 /**
581 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
582 * @str: Case sensitive Name
583 */
584 int dmi_name_in_vendors(const char *str)
585 {
586 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
587 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
588 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
589 int i;
590 for (i = 0; fields[i] != DMI_NONE; i++) {
591 int f = fields[i];
592 if (dmi_ident[f] && strstr(dmi_ident[f], str))
593 return 1;
594 }
595 return 0;
596 }
597 EXPORT_SYMBOL(dmi_name_in_vendors);
598
599 /**
600 * dmi_find_device - find onboard device by type/name
601 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
602 * @name: device name string or %NULL to match all
603 * @from: previous device found in search, or %NULL for new search.
604 *
605 * Iterates through the list of known onboard devices. If a device is
606 * found with a matching @vendor and @device, a pointer to its device
607 * structure is returned. Otherwise, %NULL is returned.
608 * A new search is initiated by passing %NULL as the @from argument.
609 * If @from is not %NULL, searches continue from next device.
610 */
611 const struct dmi_device * dmi_find_device(int type, const char *name,
612 const struct dmi_device *from)
613 {
614 const struct list_head *head = from ? &from->list : &dmi_devices;
615 struct list_head *d;
616
617 for(d = head->next; d != &dmi_devices; d = d->next) {
618 const struct dmi_device *dev =
619 list_entry(d, struct dmi_device, list);
620
621 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
622 ((name == NULL) || (strcmp(dev->name, name) == 0)))
623 return dev;
624 }
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(dmi_find_device);
629
630 /**
631 * dmi_get_date - parse a DMI date
632 * @field: data index (see enum dmi_field)
633 * @yearp: optional out parameter for the year
634 * @monthp: optional out parameter for the month
635 * @dayp: optional out parameter for the day
636 *
637 * The date field is assumed to be in the form resembling
638 * [mm[/dd]]/yy[yy] and the result is stored in the out
639 * parameters any or all of which can be omitted.
640 *
641 * If the field doesn't exist, all out parameters are set to zero
642 * and false is returned. Otherwise, true is returned with any
643 * invalid part of date set to zero.
644 *
645 * On return, year, month and day are guaranteed to be in the
646 * range of [0,9999], [0,12] and [0,31] respectively.
647 */
648 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
649 {
650 int year = 0, month = 0, day = 0;
651 bool exists;
652 const char *s, *y;
653 char *e;
654
655 s = dmi_get_system_info(field);
656 exists = s;
657 if (!exists)
658 goto out;
659
660 /*
661 * Determine year first. We assume the date string resembles
662 * mm/dd/yy[yy] but the original code extracted only the year
663 * from the end. Keep the behavior in the spirit of no
664 * surprises.
665 */
666 y = strrchr(s, '/');
667 if (!y)
668 goto out;
669
670 y++;
671 year = simple_strtoul(y, &e, 10);
672 if (y != e && year < 100) { /* 2-digit year */
673 year += 1900;
674 if (year < 1996) /* no dates < spec 1.0 */
675 year += 100;
676 }
677 if (year > 9999) /* year should fit in %04d */
678 year = 0;
679
680 /* parse the mm and dd */
681 month = simple_strtoul(s, &e, 10);
682 if (s == e || *e != '/' || !month || month > 12) {
683 month = 0;
684 goto out;
685 }
686
687 s = e + 1;
688 day = simple_strtoul(s, &e, 10);
689 if (s == y || s == e || *e != '/' || day > 31)
690 day = 0;
691 out:
692 if (yearp)
693 *yearp = year;
694 if (monthp)
695 *monthp = month;
696 if (dayp)
697 *dayp = day;
698 return exists;
699 }
700 EXPORT_SYMBOL(dmi_get_date);
701
702 /**
703 * dmi_walk - Walk the DMI table and get called back for every record
704 * @decode: Callback function
705 * @private_data: Private data to be passed to the callback function
706 *
707 * Returns -1 when the DMI table can't be reached, 0 on success.
708 */
709 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
710 void *private_data)
711 {
712 u8 *buf;
713
714 if (!dmi_available)
715 return -1;
716
717 buf = ioremap(dmi_base, dmi_len);
718 if (buf == NULL)
719 return -1;
720
721 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
722
723 iounmap(buf);
724 return 0;
725 }
726 EXPORT_SYMBOL_GPL(dmi_walk);
727
728 /**
729 * dmi_match - compare a string to the dmi field (if exists)
730 * @f: DMI field identifier
731 * @str: string to compare the DMI field to
732 *
733 * Returns true if the requested field equals to the str (including NULL).
734 */
735 bool dmi_match(enum dmi_field f, const char *str)
736 {
737 const char *info = dmi_get_system_info(f);
738
739 if (info == NULL || str == NULL)
740 return info == str;
741
742 return !strcmp(info, str);
743 }
744 EXPORT_SYMBOL_GPL(dmi_match);
This page took 0.044413 seconds and 5 git commands to generate.