Merge branch 'for-2.6.36' of git://git.kernel.org/pub/scm/linux/kernel/git/lrg/asoc...
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <asm/dmi.h>
9
10 /*
11 * DMI stands for "Desktop Management Interface". It is part
12 * of and an antecedent to, SMBIOS, which stands for System
13 * Management BIOS. See further: http://www.dmtf.org/standards
14 */
15 static char dmi_empty_string[] = " ";
16
17 /*
18 * Catch too early calls to dmi_check_system():
19 */
20 static int dmi_initialized;
21
22 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
23 {
24 const u8 *bp = ((u8 *) dm) + dm->length;
25
26 if (s) {
27 s--;
28 while (s > 0 && *bp) {
29 bp += strlen(bp) + 1;
30 s--;
31 }
32
33 if (*bp != 0) {
34 size_t len = strlen(bp)+1;
35 size_t cmp_len = len > 8 ? 8 : len;
36
37 if (!memcmp(bp, dmi_empty_string, cmp_len))
38 return dmi_empty_string;
39 return bp;
40 }
41 }
42
43 return "";
44 }
45
46 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
47 {
48 const char *bp = dmi_string_nosave(dm, s);
49 char *str;
50 size_t len;
51
52 if (bp == dmi_empty_string)
53 return dmi_empty_string;
54
55 len = strlen(bp) + 1;
56 str = dmi_alloc(len);
57 if (str != NULL)
58 strcpy(str, bp);
59 else
60 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
61
62 return str;
63 }
64
65 /*
66 * We have to be cautious here. We have seen BIOSes with DMI pointers
67 * pointing to completely the wrong place for example
68 */
69 static void dmi_table(u8 *buf, int len, int num,
70 void (*decode)(const struct dmi_header *, void *),
71 void *private_data)
72 {
73 u8 *data = buf;
74 int i = 0;
75
76 /*
77 * Stop when we see all the items the table claimed to have
78 * OR we run off the end of the table (also happens)
79 */
80 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
81 const struct dmi_header *dm = (const struct dmi_header *)data;
82
83 /*
84 * We want to know the total length (formatted area and
85 * strings) before decoding to make sure we won't run off the
86 * table in dmi_decode or dmi_string
87 */
88 data += dm->length;
89 while ((data - buf < len - 1) && (data[0] || data[1]))
90 data++;
91 if (data - buf < len - 1)
92 decode(dm, private_data);
93 data += 2;
94 i++;
95 }
96 }
97
98 static u32 dmi_base;
99 static u16 dmi_len;
100 static u16 dmi_num;
101
102 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
103 void *))
104 {
105 u8 *buf;
106
107 buf = dmi_ioremap(dmi_base, dmi_len);
108 if (buf == NULL)
109 return -1;
110
111 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
112
113 dmi_iounmap(buf, dmi_len);
114 return 0;
115 }
116
117 static int __init dmi_checksum(const u8 *buf)
118 {
119 u8 sum = 0;
120 int a;
121
122 for (a = 0; a < 15; a++)
123 sum += buf[a];
124
125 return sum == 0;
126 }
127
128 static char *dmi_ident[DMI_STRING_MAX];
129 static LIST_HEAD(dmi_devices);
130 int dmi_available;
131
132 /*
133 * Save a DMI string
134 */
135 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
136 {
137 const char *d = (const char*) dm;
138 char *p;
139
140 if (dmi_ident[slot])
141 return;
142
143 p = dmi_string(dm, d[string]);
144 if (p == NULL)
145 return;
146
147 dmi_ident[slot] = p;
148 }
149
150 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
151 {
152 const u8 *d = (u8*) dm + index;
153 char *s;
154 int is_ff = 1, is_00 = 1, i;
155
156 if (dmi_ident[slot])
157 return;
158
159 for (i = 0; i < 16 && (is_ff || is_00); i++) {
160 if(d[i] != 0x00) is_ff = 0;
161 if(d[i] != 0xFF) is_00 = 0;
162 }
163
164 if (is_ff || is_00)
165 return;
166
167 s = dmi_alloc(16*2+4+1);
168 if (!s)
169 return;
170
171 sprintf(s, "%pUB", d);
172
173 dmi_ident[slot] = s;
174 }
175
176 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
177 {
178 const u8 *d = (u8*) dm + index;
179 char *s;
180
181 if (dmi_ident[slot])
182 return;
183
184 s = dmi_alloc(4);
185 if (!s)
186 return;
187
188 sprintf(s, "%u", *d & 0x7F);
189 dmi_ident[slot] = s;
190 }
191
192 static void __init dmi_save_one_device(int type, const char *name)
193 {
194 struct dmi_device *dev;
195
196 /* No duplicate device */
197 if (dmi_find_device(type, name, NULL))
198 return;
199
200 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
201 if (!dev) {
202 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
203 return;
204 }
205
206 dev->type = type;
207 strcpy((char *)(dev + 1), name);
208 dev->name = (char *)(dev + 1);
209 dev->device_data = NULL;
210 list_add(&dev->list, &dmi_devices);
211 }
212
213 static void __init dmi_save_devices(const struct dmi_header *dm)
214 {
215 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
216
217 for (i = 0; i < count; i++) {
218 const char *d = (char *)(dm + 1) + (i * 2);
219
220 /* Skip disabled device */
221 if ((*d & 0x80) == 0)
222 continue;
223
224 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
225 }
226 }
227
228 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
229 {
230 int i, count = *(u8 *)(dm + 1);
231 struct dmi_device *dev;
232
233 for (i = 1; i <= count; i++) {
234 char *devname = dmi_string(dm, i);
235
236 if (devname == dmi_empty_string)
237 continue;
238
239 dev = dmi_alloc(sizeof(*dev));
240 if (!dev) {
241 printk(KERN_ERR
242 "dmi_save_oem_strings_devices: out of memory.\n");
243 break;
244 }
245
246 dev->type = DMI_DEV_TYPE_OEM_STRING;
247 dev->name = devname;
248 dev->device_data = NULL;
249
250 list_add(&dev->list, &dmi_devices);
251 }
252 }
253
254 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
255 {
256 struct dmi_device *dev;
257 void * data;
258
259 data = dmi_alloc(dm->length);
260 if (data == NULL) {
261 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
262 return;
263 }
264
265 memcpy(data, dm, dm->length);
266
267 dev = dmi_alloc(sizeof(*dev));
268 if (!dev) {
269 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
270 return;
271 }
272
273 dev->type = DMI_DEV_TYPE_IPMI;
274 dev->name = "IPMI controller";
275 dev->device_data = data;
276
277 list_add_tail(&dev->list, &dmi_devices);
278 }
279
280 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
281 {
282 const u8 *d = (u8*) dm + 5;
283
284 /* Skip disabled device */
285 if ((*d & 0x80) == 0)
286 return;
287
288 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
289 }
290
291 /*
292 * Process a DMI table entry. Right now all we care about are the BIOS
293 * and machine entries. For 2.5 we should pull the smbus controller info
294 * out of here.
295 */
296 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
297 {
298 switch(dm->type) {
299 case 0: /* BIOS Information */
300 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
301 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
302 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
303 break;
304 case 1: /* System Information */
305 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
306 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
307 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
308 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
309 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
310 break;
311 case 2: /* Base Board Information */
312 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
313 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
314 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
315 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
316 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
317 break;
318 case 3: /* Chassis Information */
319 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
320 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
321 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
322 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
323 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
324 break;
325 case 10: /* Onboard Devices Information */
326 dmi_save_devices(dm);
327 break;
328 case 11: /* OEM Strings */
329 dmi_save_oem_strings_devices(dm);
330 break;
331 case 38: /* IPMI Device Information */
332 dmi_save_ipmi_device(dm);
333 break;
334 case 41: /* Onboard Devices Extended Information */
335 dmi_save_extended_devices(dm);
336 }
337 }
338
339 static int __init dmi_present(const char __iomem *p)
340 {
341 u8 buf[15];
342
343 memcpy_fromio(buf, p, 15);
344 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
345 dmi_num = (buf[13] << 8) | buf[12];
346 dmi_len = (buf[7] << 8) | buf[6];
347 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
348 (buf[9] << 8) | buf[8];
349
350 /*
351 * DMI version 0.0 means that the real version is taken from
352 * the SMBIOS version, which we don't know at this point.
353 */
354 if (buf[14] != 0)
355 printk(KERN_INFO "DMI %d.%d present.\n",
356 buf[14] >> 4, buf[14] & 0xF);
357 else
358 printk(KERN_INFO "DMI present.\n");
359 if (dmi_walk_early(dmi_decode) == 0)
360 return 0;
361 }
362 return 1;
363 }
364
365 void __init dmi_scan_machine(void)
366 {
367 char __iomem *p, *q;
368 int rc;
369
370 if (efi_enabled) {
371 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
372 goto error;
373
374 /* This is called as a core_initcall() because it isn't
375 * needed during early boot. This also means we can
376 * iounmap the space when we're done with it.
377 */
378 p = dmi_ioremap(efi.smbios, 32);
379 if (p == NULL)
380 goto error;
381
382 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
383 dmi_iounmap(p, 32);
384 if (!rc) {
385 dmi_available = 1;
386 goto out;
387 }
388 }
389 else {
390 /*
391 * no iounmap() for that ioremap(); it would be a no-op, but
392 * it's so early in setup that sucker gets confused into doing
393 * what it shouldn't if we actually call it.
394 */
395 p = dmi_ioremap(0xF0000, 0x10000);
396 if (p == NULL)
397 goto error;
398
399 for (q = p; q < p + 0x10000; q += 16) {
400 rc = dmi_present(q);
401 if (!rc) {
402 dmi_available = 1;
403 dmi_iounmap(p, 0x10000);
404 goto out;
405 }
406 }
407 dmi_iounmap(p, 0x10000);
408 }
409 error:
410 printk(KERN_INFO "DMI not present or invalid.\n");
411 out:
412 dmi_initialized = 1;
413 }
414
415 /**
416 * dmi_matches - check if dmi_system_id structure matches system DMI data
417 * @dmi: pointer to the dmi_system_id structure to check
418 */
419 static bool dmi_matches(const struct dmi_system_id *dmi)
420 {
421 int i;
422
423 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
424
425 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
426 int s = dmi->matches[i].slot;
427 if (s == DMI_NONE)
428 break;
429 if (dmi_ident[s]
430 && strstr(dmi_ident[s], dmi->matches[i].substr))
431 continue;
432 /* No match */
433 return false;
434 }
435 return true;
436 }
437
438 /**
439 * dmi_is_end_of_table - check for end-of-table marker
440 * @dmi: pointer to the dmi_system_id structure to check
441 */
442 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
443 {
444 return dmi->matches[0].slot == DMI_NONE;
445 }
446
447 /**
448 * dmi_check_system - check system DMI data
449 * @list: array of dmi_system_id structures to match against
450 * All non-null elements of the list must match
451 * their slot's (field index's) data (i.e., each
452 * list string must be a substring of the specified
453 * DMI slot's string data) to be considered a
454 * successful match.
455 *
456 * Walk the blacklist table running matching functions until someone
457 * returns non zero or we hit the end. Callback function is called for
458 * each successful match. Returns the number of matches.
459 */
460 int dmi_check_system(const struct dmi_system_id *list)
461 {
462 int count = 0;
463 const struct dmi_system_id *d;
464
465 for (d = list; !dmi_is_end_of_table(d); d++)
466 if (dmi_matches(d)) {
467 count++;
468 if (d->callback && d->callback(d))
469 break;
470 }
471
472 return count;
473 }
474 EXPORT_SYMBOL(dmi_check_system);
475
476 /**
477 * dmi_first_match - find dmi_system_id structure matching system DMI data
478 * @list: array of dmi_system_id structures to match against
479 * All non-null elements of the list must match
480 * their slot's (field index's) data (i.e., each
481 * list string must be a substring of the specified
482 * DMI slot's string data) to be considered a
483 * successful match.
484 *
485 * Walk the blacklist table until the first match is found. Return the
486 * pointer to the matching entry or NULL if there's no match.
487 */
488 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
489 {
490 const struct dmi_system_id *d;
491
492 for (d = list; !dmi_is_end_of_table(d); d++)
493 if (dmi_matches(d))
494 return d;
495
496 return NULL;
497 }
498 EXPORT_SYMBOL(dmi_first_match);
499
500 /**
501 * dmi_get_system_info - return DMI data value
502 * @field: data index (see enum dmi_field)
503 *
504 * Returns one DMI data value, can be used to perform
505 * complex DMI data checks.
506 */
507 const char *dmi_get_system_info(int field)
508 {
509 return dmi_ident[field];
510 }
511 EXPORT_SYMBOL(dmi_get_system_info);
512
513 /**
514 * dmi_name_in_serial - Check if string is in the DMI product serial information
515 * @str: string to check for
516 */
517 int dmi_name_in_serial(const char *str)
518 {
519 int f = DMI_PRODUCT_SERIAL;
520 if (dmi_ident[f] && strstr(dmi_ident[f], str))
521 return 1;
522 return 0;
523 }
524
525 /**
526 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
527 * @str: Case sensitive Name
528 */
529 int dmi_name_in_vendors(const char *str)
530 {
531 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
532 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
533 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
534 int i;
535 for (i = 0; fields[i] != DMI_NONE; i++) {
536 int f = fields[i];
537 if (dmi_ident[f] && strstr(dmi_ident[f], str))
538 return 1;
539 }
540 return 0;
541 }
542 EXPORT_SYMBOL(dmi_name_in_vendors);
543
544 /**
545 * dmi_find_device - find onboard device by type/name
546 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
547 * @name: device name string or %NULL to match all
548 * @from: previous device found in search, or %NULL for new search.
549 *
550 * Iterates through the list of known onboard devices. If a device is
551 * found with a matching @vendor and @device, a pointer to its device
552 * structure is returned. Otherwise, %NULL is returned.
553 * A new search is initiated by passing %NULL as the @from argument.
554 * If @from is not %NULL, searches continue from next device.
555 */
556 const struct dmi_device * dmi_find_device(int type, const char *name,
557 const struct dmi_device *from)
558 {
559 const struct list_head *head = from ? &from->list : &dmi_devices;
560 struct list_head *d;
561
562 for(d = head->next; d != &dmi_devices; d = d->next) {
563 const struct dmi_device *dev =
564 list_entry(d, struct dmi_device, list);
565
566 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
567 ((name == NULL) || (strcmp(dev->name, name) == 0)))
568 return dev;
569 }
570
571 return NULL;
572 }
573 EXPORT_SYMBOL(dmi_find_device);
574
575 /**
576 * dmi_get_date - parse a DMI date
577 * @field: data index (see enum dmi_field)
578 * @yearp: optional out parameter for the year
579 * @monthp: optional out parameter for the month
580 * @dayp: optional out parameter for the day
581 *
582 * The date field is assumed to be in the form resembling
583 * [mm[/dd]]/yy[yy] and the result is stored in the out
584 * parameters any or all of which can be omitted.
585 *
586 * If the field doesn't exist, all out parameters are set to zero
587 * and false is returned. Otherwise, true is returned with any
588 * invalid part of date set to zero.
589 *
590 * On return, year, month and day are guaranteed to be in the
591 * range of [0,9999], [0,12] and [0,31] respectively.
592 */
593 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
594 {
595 int year = 0, month = 0, day = 0;
596 bool exists;
597 const char *s, *y;
598 char *e;
599
600 s = dmi_get_system_info(field);
601 exists = s;
602 if (!exists)
603 goto out;
604
605 /*
606 * Determine year first. We assume the date string resembles
607 * mm/dd/yy[yy] but the original code extracted only the year
608 * from the end. Keep the behavior in the spirit of no
609 * surprises.
610 */
611 y = strrchr(s, '/');
612 if (!y)
613 goto out;
614
615 y++;
616 year = simple_strtoul(y, &e, 10);
617 if (y != e && year < 100) { /* 2-digit year */
618 year += 1900;
619 if (year < 1996) /* no dates < spec 1.0 */
620 year += 100;
621 }
622 if (year > 9999) /* year should fit in %04d */
623 year = 0;
624
625 /* parse the mm and dd */
626 month = simple_strtoul(s, &e, 10);
627 if (s == e || *e != '/' || !month || month > 12) {
628 month = 0;
629 goto out;
630 }
631
632 s = e + 1;
633 day = simple_strtoul(s, &e, 10);
634 if (s == y || s == e || *e != '/' || day > 31)
635 day = 0;
636 out:
637 if (yearp)
638 *yearp = year;
639 if (monthp)
640 *monthp = month;
641 if (dayp)
642 *dayp = day;
643 return exists;
644 }
645 EXPORT_SYMBOL(dmi_get_date);
646
647 /**
648 * dmi_walk - Walk the DMI table and get called back for every record
649 * @decode: Callback function
650 * @private_data: Private data to be passed to the callback function
651 *
652 * Returns -1 when the DMI table can't be reached, 0 on success.
653 */
654 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
655 void *private_data)
656 {
657 u8 *buf;
658
659 if (!dmi_available)
660 return -1;
661
662 buf = ioremap(dmi_base, dmi_len);
663 if (buf == NULL)
664 return -1;
665
666 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
667
668 iounmap(buf);
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(dmi_walk);
672
673 /**
674 * dmi_match - compare a string to the dmi field (if exists)
675 * @f: DMI field identifier
676 * @str: string to compare the DMI field to
677 *
678 * Returns true if the requested field equals to the str (including NULL).
679 */
680 bool dmi_match(enum dmi_field f, const char *str)
681 {
682 const char *info = dmi_get_system_info(f);
683
684 if (info == NULL || str == NULL)
685 return info == str;
686
687 return !strcmp(info, str);
688 }
689 EXPORT_SYMBOL_GPL(dmi_match);
This page took 0.044339 seconds and 6 git commands to generate.