drm/amdgpu: Initialize the variables in a straight-forward way
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33
34 /*
35 * GPUVM
36 * GPUVM is similar to the legacy gart on older asics, however
37 * rather than there being a single global gart table
38 * for the entire GPU, there are multiple VM page tables active
39 * at any given time. The VM page tables can contain a mix
40 * vram pages and system memory pages and system memory pages
41 * can be mapped as snooped (cached system pages) or unsnooped
42 * (uncached system pages).
43 * Each VM has an ID associated with it and there is a page table
44 * associated with each VMID. When execting a command buffer,
45 * the kernel tells the the ring what VMID to use for that command
46 * buffer. VMIDs are allocated dynamically as commands are submitted.
47 * The userspace drivers maintain their own address space and the kernel
48 * sets up their pages tables accordingly when they submit their
49 * command buffers and a VMID is assigned.
50 * Cayman/Trinity support up to 8 active VMs at any given time;
51 * SI supports 16.
52 */
53
54 /* Special value that no flush is necessary */
55 #define AMDGPU_VM_NO_FLUSH (~0ll)
56
57 /* Local structure. Encapsulate some VM table update parameters to reduce
58 * the number of function parameters
59 */
60 struct amdgpu_vm_update_params {
61 /* address where to copy page table entries from */
62 uint64_t src;
63 /* DMA addresses to use for mapping */
64 dma_addr_t *pages_addr;
65 /* indirect buffer to fill with commands */
66 struct amdgpu_ib *ib;
67 };
68
69 /**
70 * amdgpu_vm_num_pde - return the number of page directory entries
71 *
72 * @adev: amdgpu_device pointer
73 *
74 * Calculate the number of page directory entries.
75 */
76 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
77 {
78 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
79 }
80
81 /**
82 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
83 *
84 * @adev: amdgpu_device pointer
85 *
86 * Calculate the size of the page directory in bytes.
87 */
88 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
89 {
90 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
91 }
92
93 /**
94 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
95 *
96 * @vm: vm providing the BOs
97 * @validated: head of validation list
98 * @entry: entry to add
99 *
100 * Add the page directory to the list of BOs to
101 * validate for command submission.
102 */
103 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
104 struct list_head *validated,
105 struct amdgpu_bo_list_entry *entry)
106 {
107 entry->robj = vm->page_directory;
108 entry->priority = 0;
109 entry->tv.bo = &vm->page_directory->tbo;
110 entry->tv.shared = true;
111 entry->user_pages = NULL;
112 list_add(&entry->tv.head, validated);
113 }
114
115 /**
116 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
117 *
118 * @vm: vm providing the BOs
119 * @duplicates: head of duplicates list
120 *
121 * Add the page directory to the BO duplicates list
122 * for command submission.
123 */
124 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
125 {
126 unsigned i;
127
128 /* add the vm page table to the list */
129 for (i = 0; i <= vm->max_pde_used; ++i) {
130 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
131
132 if (!entry->robj)
133 continue;
134
135 list_add(&entry->tv.head, duplicates);
136 }
137
138 }
139
140 /**
141 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
142 *
143 * @adev: amdgpu device instance
144 * @vm: vm providing the BOs
145 *
146 * Move the PT BOs to the tail of the LRU.
147 */
148 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
149 struct amdgpu_vm *vm)
150 {
151 struct ttm_bo_global *glob = adev->mman.bdev.glob;
152 unsigned i;
153
154 spin_lock(&glob->lru_lock);
155 for (i = 0; i <= vm->max_pde_used; ++i) {
156 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
157
158 if (!entry->robj)
159 continue;
160
161 ttm_bo_move_to_lru_tail(&entry->robj->tbo);
162 }
163 spin_unlock(&glob->lru_lock);
164 }
165
166 /**
167 * amdgpu_vm_grab_id - allocate the next free VMID
168 *
169 * @vm: vm to allocate id for
170 * @ring: ring we want to submit job to
171 * @sync: sync object where we add dependencies
172 * @fence: fence protecting ID from reuse
173 *
174 * Allocate an id for the vm, adding fences to the sync obj as necessary.
175 */
176 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
177 struct amdgpu_sync *sync, struct fence *fence,
178 unsigned *vm_id, uint64_t *vm_pd_addr)
179 {
180 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
181 struct amdgpu_device *adev = ring->adev;
182 struct fence *updates = sync->last_vm_update;
183 struct amdgpu_vm_id *id, *idle;
184 struct fence **fences;
185 unsigned i;
186 int r = 0;
187
188 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
189 GFP_KERNEL);
190 if (!fences)
191 return -ENOMEM;
192
193 mutex_lock(&adev->vm_manager.lock);
194
195 /* Check if we have an idle VMID */
196 i = 0;
197 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
198 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
199 if (!fences[i])
200 break;
201 ++i;
202 }
203
204 /* If we can't find a idle VMID to use, wait till one becomes available */
205 if (&idle->list == &adev->vm_manager.ids_lru) {
206 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
207 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
208 struct fence_array *array;
209 unsigned j;
210
211 for (j = 0; j < i; ++j)
212 fence_get(fences[j]);
213
214 array = fence_array_create(i, fences, fence_context,
215 seqno, true);
216 if (!array) {
217 for (j = 0; j < i; ++j)
218 fence_put(fences[j]);
219 kfree(fences);
220 r = -ENOMEM;
221 goto error;
222 }
223
224
225 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
226 fence_put(&array->base);
227 if (r)
228 goto error;
229
230 mutex_unlock(&adev->vm_manager.lock);
231 return 0;
232
233 }
234 kfree(fences);
235
236 /* Check if we can use a VMID already assigned to this VM */
237 i = ring->idx;
238 do {
239 struct fence *flushed;
240 bool same_ring = ring->idx == i;
241
242 id = vm->ids[i++];
243 if (i == AMDGPU_MAX_RINGS)
244 i = 0;
245
246 /* Check all the prerequisites to using this VMID */
247 if (!id)
248 continue;
249
250 if (atomic64_read(&id->owner) != vm->client_id)
251 continue;
252
253 if (pd_addr != id->pd_gpu_addr)
254 continue;
255
256 if (!same_ring &&
257 (!id->last_flush || !fence_is_signaled(id->last_flush)))
258 continue;
259
260 flushed = id->flushed_updates;
261 if (updates &&
262 (!flushed || fence_is_later(updates, flushed)))
263 continue;
264
265 /* Good we can use this VMID. Remember this submission as
266 * user of the VMID.
267 */
268 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
269 if (r)
270 goto error;
271
272 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
273 vm->ids[ring->idx] = id;
274
275 *vm_id = id - adev->vm_manager.ids;
276 *vm_pd_addr = AMDGPU_VM_NO_FLUSH;
277 trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
278
279 mutex_unlock(&adev->vm_manager.lock);
280 return 0;
281
282 } while (i != ring->idx);
283
284 /* Still no ID to use? Then use the idle one found earlier */
285 id = idle;
286
287 /* Remember this submission as user of the VMID */
288 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
289 if (r)
290 goto error;
291
292 fence_put(id->first);
293 id->first = fence_get(fence);
294
295 fence_put(id->last_flush);
296 id->last_flush = NULL;
297
298 fence_put(id->flushed_updates);
299 id->flushed_updates = fence_get(updates);
300
301 id->pd_gpu_addr = pd_addr;
302
303 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
304 atomic64_set(&id->owner, vm->client_id);
305 vm->ids[ring->idx] = id;
306
307 *vm_id = id - adev->vm_manager.ids;
308 *vm_pd_addr = pd_addr;
309 trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
310
311 error:
312 mutex_unlock(&adev->vm_manager.lock);
313 return r;
314 }
315
316 /**
317 * amdgpu_vm_flush - hardware flush the vm
318 *
319 * @ring: ring to use for flush
320 * @vm_id: vmid number to use
321 * @pd_addr: address of the page directory
322 *
323 * Emit a VM flush when it is necessary.
324 */
325 int amdgpu_vm_flush(struct amdgpu_ring *ring,
326 unsigned vm_id, uint64_t pd_addr,
327 uint32_t gds_base, uint32_t gds_size,
328 uint32_t gws_base, uint32_t gws_size,
329 uint32_t oa_base, uint32_t oa_size)
330 {
331 struct amdgpu_device *adev = ring->adev;
332 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
333 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
334 id->gds_base != gds_base ||
335 id->gds_size != gds_size ||
336 id->gws_base != gws_base ||
337 id->gws_size != gws_size ||
338 id->oa_base != oa_base ||
339 id->oa_size != oa_size);
340 int r;
341
342 if (ring->funcs->emit_pipeline_sync && (
343 pd_addr != AMDGPU_VM_NO_FLUSH || gds_switch_needed ||
344 ring->type == AMDGPU_RING_TYPE_COMPUTE))
345 amdgpu_ring_emit_pipeline_sync(ring);
346
347 if (ring->funcs->emit_vm_flush &&
348 pd_addr != AMDGPU_VM_NO_FLUSH) {
349 struct fence *fence;
350
351 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id);
352 amdgpu_ring_emit_vm_flush(ring, vm_id, pd_addr);
353
354 r = amdgpu_fence_emit(ring, &fence);
355 if (r)
356 return r;
357
358 mutex_lock(&adev->vm_manager.lock);
359 fence_put(id->last_flush);
360 id->last_flush = fence;
361 mutex_unlock(&adev->vm_manager.lock);
362 }
363
364 if (gds_switch_needed) {
365 id->gds_base = gds_base;
366 id->gds_size = gds_size;
367 id->gws_base = gws_base;
368 id->gws_size = gws_size;
369 id->oa_base = oa_base;
370 id->oa_size = oa_size;
371 amdgpu_ring_emit_gds_switch(ring, vm_id,
372 gds_base, gds_size,
373 gws_base, gws_size,
374 oa_base, oa_size);
375 }
376
377 return 0;
378 }
379
380 /**
381 * amdgpu_vm_reset_id - reset VMID to zero
382 *
383 * @adev: amdgpu device structure
384 * @vm_id: vmid number to use
385 *
386 * Reset saved GDW, GWS and OA to force switch on next flush.
387 */
388 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
389 {
390 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
391
392 id->gds_base = 0;
393 id->gds_size = 0;
394 id->gws_base = 0;
395 id->gws_size = 0;
396 id->oa_base = 0;
397 id->oa_size = 0;
398 }
399
400 /**
401 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
402 *
403 * @vm: requested vm
404 * @bo: requested buffer object
405 *
406 * Find @bo inside the requested vm.
407 * Search inside the @bos vm list for the requested vm
408 * Returns the found bo_va or NULL if none is found
409 *
410 * Object has to be reserved!
411 */
412 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
413 struct amdgpu_bo *bo)
414 {
415 struct amdgpu_bo_va *bo_va;
416
417 list_for_each_entry(bo_va, &bo->va, bo_list) {
418 if (bo_va->vm == vm) {
419 return bo_va;
420 }
421 }
422 return NULL;
423 }
424
425 /**
426 * amdgpu_vm_update_pages - helper to call the right asic function
427 *
428 * @adev: amdgpu_device pointer
429 * @vm_update_params: see amdgpu_vm_update_params definition
430 * @pe: addr of the page entry
431 * @addr: dst addr to write into pe
432 * @count: number of page entries to update
433 * @incr: increase next addr by incr bytes
434 * @flags: hw access flags
435 *
436 * Traces the parameters and calls the right asic functions
437 * to setup the page table using the DMA.
438 */
439 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
440 struct amdgpu_vm_update_params
441 *vm_update_params,
442 uint64_t pe, uint64_t addr,
443 unsigned count, uint32_t incr,
444 uint32_t flags)
445 {
446 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
447
448 if (vm_update_params->src) {
449 amdgpu_vm_copy_pte(adev, vm_update_params->ib,
450 pe, (vm_update_params->src + (addr >> 12) * 8), count);
451
452 } else if (vm_update_params->pages_addr) {
453 amdgpu_vm_write_pte(adev, vm_update_params->ib,
454 vm_update_params->pages_addr,
455 pe, addr, count, incr, flags);
456
457 } else if (count < 3) {
458 amdgpu_vm_write_pte(adev, vm_update_params->ib, NULL, pe, addr,
459 count, incr, flags);
460
461 } else {
462 amdgpu_vm_set_pte_pde(adev, vm_update_params->ib, pe, addr,
463 count, incr, flags);
464 }
465 }
466
467 /**
468 * amdgpu_vm_clear_bo - initially clear the page dir/table
469 *
470 * @adev: amdgpu_device pointer
471 * @bo: bo to clear
472 *
473 * need to reserve bo first before calling it.
474 */
475 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
476 struct amdgpu_vm *vm,
477 struct amdgpu_bo *bo)
478 {
479 struct amdgpu_ring *ring;
480 struct fence *fence = NULL;
481 struct amdgpu_job *job;
482 struct amdgpu_vm_update_params vm_update_params;
483 unsigned entries;
484 uint64_t addr;
485 int r;
486
487 memset(&vm_update_params, 0, sizeof(vm_update_params));
488 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
489
490 r = reservation_object_reserve_shared(bo->tbo.resv);
491 if (r)
492 return r;
493
494 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
495 if (r)
496 goto error;
497
498 addr = amdgpu_bo_gpu_offset(bo);
499 entries = amdgpu_bo_size(bo) / 8;
500
501 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
502 if (r)
503 goto error;
504
505 vm_update_params.ib = &job->ibs[0];
506 amdgpu_vm_update_pages(adev, &vm_update_params, addr, 0, entries,
507 0, 0);
508 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
509
510 WARN_ON(job->ibs[0].length_dw > 64);
511 r = amdgpu_job_submit(job, ring, &vm->entity,
512 AMDGPU_FENCE_OWNER_VM, &fence);
513 if (r)
514 goto error_free;
515
516 amdgpu_bo_fence(bo, fence, true);
517 fence_put(fence);
518 return 0;
519
520 error_free:
521 amdgpu_job_free(job);
522
523 error:
524 return r;
525 }
526
527 /**
528 * amdgpu_vm_map_gart - Resolve gart mapping of addr
529 *
530 * @pages_addr: optional DMA address to use for lookup
531 * @addr: the unmapped addr
532 *
533 * Look up the physical address of the page that the pte resolves
534 * to and return the pointer for the page table entry.
535 */
536 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
537 {
538 uint64_t result;
539
540 if (pages_addr) {
541 /* page table offset */
542 result = pages_addr[addr >> PAGE_SHIFT];
543
544 /* in case cpu page size != gpu page size*/
545 result |= addr & (~PAGE_MASK);
546
547 } else {
548 /* No mapping required */
549 result = addr;
550 }
551
552 result &= 0xFFFFFFFFFFFFF000ULL;
553
554 return result;
555 }
556
557 /**
558 * amdgpu_vm_update_pdes - make sure that page directory is valid
559 *
560 * @adev: amdgpu_device pointer
561 * @vm: requested vm
562 * @start: start of GPU address range
563 * @end: end of GPU address range
564 *
565 * Allocates new page tables if necessary
566 * and updates the page directory.
567 * Returns 0 for success, error for failure.
568 */
569 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
570 struct amdgpu_vm *vm)
571 {
572 struct amdgpu_ring *ring;
573 struct amdgpu_bo *pd = vm->page_directory;
574 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
575 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
576 uint64_t last_pde = ~0, last_pt = ~0;
577 unsigned count = 0, pt_idx, ndw;
578 struct amdgpu_job *job;
579 struct amdgpu_vm_update_params vm_update_params;
580 struct fence *fence = NULL;
581
582 int r;
583
584 memset(&vm_update_params, 0, sizeof(vm_update_params));
585 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
586
587 /* padding, etc. */
588 ndw = 64;
589
590 /* assume the worst case */
591 ndw += vm->max_pde_used * 6;
592
593 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
594 if (r)
595 return r;
596
597 vm_update_params.ib = &job->ibs[0];
598
599 /* walk over the address space and update the page directory */
600 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
601 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
602 uint64_t pde, pt;
603
604 if (bo == NULL)
605 continue;
606
607 pt = amdgpu_bo_gpu_offset(bo);
608 if (vm->page_tables[pt_idx].addr == pt)
609 continue;
610 vm->page_tables[pt_idx].addr = pt;
611
612 pde = pd_addr + pt_idx * 8;
613 if (((last_pde + 8 * count) != pde) ||
614 ((last_pt + incr * count) != pt)) {
615
616 if (count) {
617 amdgpu_vm_update_pages(adev, &vm_update_params,
618 last_pde, last_pt,
619 count, incr,
620 AMDGPU_PTE_VALID);
621 }
622
623 count = 1;
624 last_pde = pde;
625 last_pt = pt;
626 } else {
627 ++count;
628 }
629 }
630
631 if (count)
632 amdgpu_vm_update_pages(adev, &vm_update_params,
633 last_pde, last_pt,
634 count, incr, AMDGPU_PTE_VALID);
635
636 if (vm_update_params.ib->length_dw != 0) {
637 amdgpu_ring_pad_ib(ring, vm_update_params.ib);
638 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
639 AMDGPU_FENCE_OWNER_VM);
640 WARN_ON(vm_update_params.ib->length_dw > ndw);
641 r = amdgpu_job_submit(job, ring, &vm->entity,
642 AMDGPU_FENCE_OWNER_VM, &fence);
643 if (r)
644 goto error_free;
645
646 amdgpu_bo_fence(pd, fence, true);
647 fence_put(vm->page_directory_fence);
648 vm->page_directory_fence = fence_get(fence);
649 fence_put(fence);
650
651 } else {
652 amdgpu_job_free(job);
653 }
654
655 return 0;
656
657 error_free:
658 amdgpu_job_free(job);
659 return r;
660 }
661
662 /**
663 * amdgpu_vm_frag_ptes - add fragment information to PTEs
664 *
665 * @adev: amdgpu_device pointer
666 * @vm_update_params: see amdgpu_vm_update_params definition
667 * @pe_start: first PTE to handle
668 * @pe_end: last PTE to handle
669 * @addr: addr those PTEs should point to
670 * @flags: hw mapping flags
671 */
672 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
673 struct amdgpu_vm_update_params
674 *vm_update_params,
675 uint64_t pe_start, uint64_t pe_end,
676 uint64_t addr, uint32_t flags)
677 {
678 /**
679 * The MC L1 TLB supports variable sized pages, based on a fragment
680 * field in the PTE. When this field is set to a non-zero value, page
681 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
682 * flags are considered valid for all PTEs within the fragment range
683 * and corresponding mappings are assumed to be physically contiguous.
684 *
685 * The L1 TLB can store a single PTE for the whole fragment,
686 * significantly increasing the space available for translation
687 * caching. This leads to large improvements in throughput when the
688 * TLB is under pressure.
689 *
690 * The L2 TLB distributes small and large fragments into two
691 * asymmetric partitions. The large fragment cache is significantly
692 * larger. Thus, we try to use large fragments wherever possible.
693 * Userspace can support this by aligning virtual base address and
694 * allocation size to the fragment size.
695 */
696
697 /* SI and newer are optimized for 64KB */
698 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
699 uint64_t frag_align = 0x80;
700
701 uint64_t frag_start = ALIGN(pe_start, frag_align);
702 uint64_t frag_end = pe_end & ~(frag_align - 1);
703
704 unsigned count;
705
706 /* Abort early if there isn't anything to do */
707 if (pe_start == pe_end)
708 return;
709
710 /* system pages are non continuously */
711 if (vm_update_params->src || vm_update_params->pages_addr ||
712 !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
713
714 count = (pe_end - pe_start) / 8;
715 amdgpu_vm_update_pages(adev, vm_update_params, pe_start,
716 addr, count, AMDGPU_GPU_PAGE_SIZE,
717 flags);
718 return;
719 }
720
721 /* handle the 4K area at the beginning */
722 if (pe_start != frag_start) {
723 count = (frag_start - pe_start) / 8;
724 amdgpu_vm_update_pages(adev, vm_update_params, pe_start, addr,
725 count, AMDGPU_GPU_PAGE_SIZE, flags);
726 addr += AMDGPU_GPU_PAGE_SIZE * count;
727 }
728
729 /* handle the area in the middle */
730 count = (frag_end - frag_start) / 8;
731 amdgpu_vm_update_pages(adev, vm_update_params, frag_start, addr, count,
732 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
733
734 /* handle the 4K area at the end */
735 if (frag_end != pe_end) {
736 addr += AMDGPU_GPU_PAGE_SIZE * count;
737 count = (pe_end - frag_end) / 8;
738 amdgpu_vm_update_pages(adev, vm_update_params, frag_end, addr,
739 count, AMDGPU_GPU_PAGE_SIZE, flags);
740 }
741 }
742
743 /**
744 * amdgpu_vm_update_ptes - make sure that page tables are valid
745 *
746 * @adev: amdgpu_device pointer
747 * @vm_update_params: see amdgpu_vm_update_params definition
748 * @vm: requested vm
749 * @start: start of GPU address range
750 * @end: end of GPU address range
751 * @dst: destination address to map to, the next dst inside the function
752 * @flags: mapping flags
753 *
754 * Update the page tables in the range @start - @end.
755 */
756 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
757 struct amdgpu_vm_update_params
758 *vm_update_params,
759 struct amdgpu_vm *vm,
760 uint64_t start, uint64_t end,
761 uint64_t dst, uint32_t flags)
762 {
763 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
764
765 uint64_t cur_pe_start, cur_pe_end, cur_dst;
766 uint64_t addr; /* next GPU address to be updated */
767 uint64_t pt_idx;
768 struct amdgpu_bo *pt;
769 unsigned nptes; /* next number of ptes to be updated */
770 uint64_t next_pe_start;
771
772 /* initialize the variables */
773 addr = start;
774 pt_idx = addr >> amdgpu_vm_block_size;
775 pt = vm->page_tables[pt_idx].entry.robj;
776
777 if ((addr & ~mask) == (end & ~mask))
778 nptes = end - addr;
779 else
780 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
781
782 cur_pe_start = amdgpu_bo_gpu_offset(pt);
783 cur_pe_start += (addr & mask) * 8;
784 cur_pe_end = cur_pe_start + 8 * nptes;
785 cur_dst = dst;
786
787 /* for next ptb*/
788 addr += nptes;
789 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
790
791 /* walk over the address space and update the page tables */
792 while (addr < end) {
793 pt_idx = addr >> amdgpu_vm_block_size;
794 pt = vm->page_tables[pt_idx].entry.robj;
795
796 if ((addr & ~mask) == (end & ~mask))
797 nptes = end - addr;
798 else
799 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
800
801 next_pe_start = amdgpu_bo_gpu_offset(pt);
802 next_pe_start += (addr & mask) * 8;
803
804 if (cur_pe_end == next_pe_start) {
805 /* The next ptb is consecutive to current ptb.
806 * Don't call amdgpu_vm_frag_ptes now.
807 * Will update two ptbs together in future.
808 */
809 cur_pe_end += 8 * nptes;
810 } else {
811 amdgpu_vm_frag_ptes(adev, vm_update_params,
812 cur_pe_start, cur_pe_end,
813 cur_dst, flags);
814
815 cur_pe_start = next_pe_start;
816 cur_pe_end = next_pe_start + 8 * nptes;
817 cur_dst = dst;
818 }
819
820 /* for next ptb*/
821 addr += nptes;
822 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
823 }
824
825 amdgpu_vm_frag_ptes(adev, vm_update_params, cur_pe_start,
826 cur_pe_end, cur_dst, flags);
827 }
828
829 /**
830 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
831 *
832 * @adev: amdgpu_device pointer
833 * @src: address where to copy page table entries from
834 * @pages_addr: DMA addresses to use for mapping
835 * @vm: requested vm
836 * @start: start of mapped range
837 * @last: last mapped entry
838 * @flags: flags for the entries
839 * @addr: addr to set the area to
840 * @fence: optional resulting fence
841 *
842 * Fill in the page table entries between @start and @last.
843 * Returns 0 for success, -EINVAL for failure.
844 */
845 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
846 uint64_t src,
847 dma_addr_t *pages_addr,
848 struct amdgpu_vm *vm,
849 uint64_t start, uint64_t last,
850 uint32_t flags, uint64_t addr,
851 struct fence **fence)
852 {
853 struct amdgpu_ring *ring;
854 void *owner = AMDGPU_FENCE_OWNER_VM;
855 unsigned nptes, ncmds, ndw;
856 struct amdgpu_job *job;
857 struct amdgpu_vm_update_params vm_update_params;
858 struct fence *f = NULL;
859 int r;
860
861 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
862 memset(&vm_update_params, 0, sizeof(vm_update_params));
863 vm_update_params.src = src;
864 vm_update_params.pages_addr = pages_addr;
865
866 /* sync to everything on unmapping */
867 if (!(flags & AMDGPU_PTE_VALID))
868 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
869
870 nptes = last - start + 1;
871
872 /*
873 * reserve space for one command every (1 << BLOCK_SIZE)
874 * entries or 2k dwords (whatever is smaller)
875 */
876 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
877
878 /* padding, etc. */
879 ndw = 64;
880
881 if (vm_update_params.src) {
882 /* only copy commands needed */
883 ndw += ncmds * 7;
884
885 } else if (vm_update_params.pages_addr) {
886 /* header for write data commands */
887 ndw += ncmds * 4;
888
889 /* body of write data command */
890 ndw += nptes * 2;
891
892 } else {
893 /* set page commands needed */
894 ndw += ncmds * 10;
895
896 /* two extra commands for begin/end of fragment */
897 ndw += 2 * 10;
898 }
899
900 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
901 if (r)
902 return r;
903
904 vm_update_params.ib = &job->ibs[0];
905
906 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
907 owner);
908 if (r)
909 goto error_free;
910
911 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
912 if (r)
913 goto error_free;
914
915 amdgpu_vm_update_ptes(adev, &vm_update_params, vm, start,
916 last + 1, addr, flags);
917
918 amdgpu_ring_pad_ib(ring, vm_update_params.ib);
919 WARN_ON(vm_update_params.ib->length_dw > ndw);
920 r = amdgpu_job_submit(job, ring, &vm->entity,
921 AMDGPU_FENCE_OWNER_VM, &f);
922 if (r)
923 goto error_free;
924
925 amdgpu_bo_fence(vm->page_directory, f, true);
926 if (fence) {
927 fence_put(*fence);
928 *fence = fence_get(f);
929 }
930 fence_put(f);
931 return 0;
932
933 error_free:
934 amdgpu_job_free(job);
935 return r;
936 }
937
938 /**
939 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
940 *
941 * @adev: amdgpu_device pointer
942 * @gtt_flags: flags as they are used for GTT
943 * @pages_addr: DMA addresses to use for mapping
944 * @vm: requested vm
945 * @mapping: mapped range and flags to use for the update
946 * @addr: addr to set the area to
947 * @flags: HW flags for the mapping
948 * @fence: optional resulting fence
949 *
950 * Split the mapping into smaller chunks so that each update fits
951 * into a SDMA IB.
952 * Returns 0 for success, -EINVAL for failure.
953 */
954 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
955 uint32_t gtt_flags,
956 dma_addr_t *pages_addr,
957 struct amdgpu_vm *vm,
958 struct amdgpu_bo_va_mapping *mapping,
959 uint32_t flags, uint64_t addr,
960 struct fence **fence)
961 {
962 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
963
964 uint64_t src = 0, start = mapping->it.start;
965 int r;
966
967 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
968 * but in case of something, we filter the flags in first place
969 */
970 if (!(mapping->flags & AMDGPU_PTE_READABLE))
971 flags &= ~AMDGPU_PTE_READABLE;
972 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
973 flags &= ~AMDGPU_PTE_WRITEABLE;
974
975 trace_amdgpu_vm_bo_update(mapping);
976
977 if (pages_addr) {
978 if (flags == gtt_flags)
979 src = adev->gart.table_addr + (addr >> 12) * 8;
980 addr = 0;
981 }
982 addr += mapping->offset;
983
984 if (!pages_addr || src)
985 return amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm,
986 start, mapping->it.last,
987 flags, addr, fence);
988
989 while (start != mapping->it.last + 1) {
990 uint64_t last;
991
992 last = min((uint64_t)mapping->it.last, start + max_size - 1);
993 r = amdgpu_vm_bo_update_mapping(adev, src, pages_addr, vm,
994 start, last, flags, addr,
995 fence);
996 if (r)
997 return r;
998
999 start = last + 1;
1000 addr += max_size * AMDGPU_GPU_PAGE_SIZE;
1001 }
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1008 *
1009 * @adev: amdgpu_device pointer
1010 * @bo_va: requested BO and VM object
1011 * @mem: ttm mem
1012 *
1013 * Fill in the page table entries for @bo_va.
1014 * Returns 0 for success, -EINVAL for failure.
1015 *
1016 * Object have to be reserved and mutex must be locked!
1017 */
1018 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1019 struct amdgpu_bo_va *bo_va,
1020 struct ttm_mem_reg *mem)
1021 {
1022 struct amdgpu_vm *vm = bo_va->vm;
1023 struct amdgpu_bo_va_mapping *mapping;
1024 dma_addr_t *pages_addr = NULL;
1025 uint32_t gtt_flags, flags;
1026 uint64_t addr;
1027 int r;
1028
1029 if (mem) {
1030 struct ttm_dma_tt *ttm;
1031
1032 addr = (u64)mem->start << PAGE_SHIFT;
1033 switch (mem->mem_type) {
1034 case TTM_PL_TT:
1035 ttm = container_of(bo_va->bo->tbo.ttm, struct
1036 ttm_dma_tt, ttm);
1037 pages_addr = ttm->dma_address;
1038 break;
1039
1040 case TTM_PL_VRAM:
1041 addr += adev->vm_manager.vram_base_offset;
1042 break;
1043
1044 default:
1045 break;
1046 }
1047 } else {
1048 addr = 0;
1049 }
1050
1051 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1052 gtt_flags = (adev == bo_va->bo->adev) ? flags : 0;
1053
1054 spin_lock(&vm->status_lock);
1055 if (!list_empty(&bo_va->vm_status))
1056 list_splice_init(&bo_va->valids, &bo_va->invalids);
1057 spin_unlock(&vm->status_lock);
1058
1059 list_for_each_entry(mapping, &bo_va->invalids, list) {
1060 r = amdgpu_vm_bo_split_mapping(adev, gtt_flags, pages_addr, vm,
1061 mapping, flags, addr,
1062 &bo_va->last_pt_update);
1063 if (r)
1064 return r;
1065 }
1066
1067 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1068 list_for_each_entry(mapping, &bo_va->valids, list)
1069 trace_amdgpu_vm_bo_mapping(mapping);
1070
1071 list_for_each_entry(mapping, &bo_va->invalids, list)
1072 trace_amdgpu_vm_bo_mapping(mapping);
1073 }
1074
1075 spin_lock(&vm->status_lock);
1076 list_splice_init(&bo_va->invalids, &bo_va->valids);
1077 list_del_init(&bo_va->vm_status);
1078 if (!mem)
1079 list_add(&bo_va->vm_status, &vm->cleared);
1080 spin_unlock(&vm->status_lock);
1081
1082 return 0;
1083 }
1084
1085 /**
1086 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1087 *
1088 * @adev: amdgpu_device pointer
1089 * @vm: requested vm
1090 *
1091 * Make sure all freed BOs are cleared in the PT.
1092 * Returns 0 for success.
1093 *
1094 * PTs have to be reserved and mutex must be locked!
1095 */
1096 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1097 struct amdgpu_vm *vm)
1098 {
1099 struct amdgpu_bo_va_mapping *mapping;
1100 int r;
1101
1102 while (!list_empty(&vm->freed)) {
1103 mapping = list_first_entry(&vm->freed,
1104 struct amdgpu_bo_va_mapping, list);
1105 list_del(&mapping->list);
1106
1107 r = amdgpu_vm_bo_split_mapping(adev, 0, NULL, vm, mapping,
1108 0, 0, NULL);
1109 kfree(mapping);
1110 if (r)
1111 return r;
1112
1113 }
1114 return 0;
1115
1116 }
1117
1118 /**
1119 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1120 *
1121 * @adev: amdgpu_device pointer
1122 * @vm: requested vm
1123 *
1124 * Make sure all invalidated BOs are cleared in the PT.
1125 * Returns 0 for success.
1126 *
1127 * PTs have to be reserved and mutex must be locked!
1128 */
1129 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1130 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1131 {
1132 struct amdgpu_bo_va *bo_va = NULL;
1133 int r = 0;
1134
1135 spin_lock(&vm->status_lock);
1136 while (!list_empty(&vm->invalidated)) {
1137 bo_va = list_first_entry(&vm->invalidated,
1138 struct amdgpu_bo_va, vm_status);
1139 spin_unlock(&vm->status_lock);
1140
1141 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1142 if (r)
1143 return r;
1144
1145 spin_lock(&vm->status_lock);
1146 }
1147 spin_unlock(&vm->status_lock);
1148
1149 if (bo_va)
1150 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1151
1152 return r;
1153 }
1154
1155 /**
1156 * amdgpu_vm_bo_add - add a bo to a specific vm
1157 *
1158 * @adev: amdgpu_device pointer
1159 * @vm: requested vm
1160 * @bo: amdgpu buffer object
1161 *
1162 * Add @bo into the requested vm.
1163 * Add @bo to the list of bos associated with the vm
1164 * Returns newly added bo_va or NULL for failure
1165 *
1166 * Object has to be reserved!
1167 */
1168 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1169 struct amdgpu_vm *vm,
1170 struct amdgpu_bo *bo)
1171 {
1172 struct amdgpu_bo_va *bo_va;
1173
1174 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1175 if (bo_va == NULL) {
1176 return NULL;
1177 }
1178 bo_va->vm = vm;
1179 bo_va->bo = bo;
1180 bo_va->ref_count = 1;
1181 INIT_LIST_HEAD(&bo_va->bo_list);
1182 INIT_LIST_HEAD(&bo_va->valids);
1183 INIT_LIST_HEAD(&bo_va->invalids);
1184 INIT_LIST_HEAD(&bo_va->vm_status);
1185
1186 list_add_tail(&bo_va->bo_list, &bo->va);
1187
1188 return bo_va;
1189 }
1190
1191 /**
1192 * amdgpu_vm_bo_map - map bo inside a vm
1193 *
1194 * @adev: amdgpu_device pointer
1195 * @bo_va: bo_va to store the address
1196 * @saddr: where to map the BO
1197 * @offset: requested offset in the BO
1198 * @flags: attributes of pages (read/write/valid/etc.)
1199 *
1200 * Add a mapping of the BO at the specefied addr into the VM.
1201 * Returns 0 for success, error for failure.
1202 *
1203 * Object has to be reserved and unreserved outside!
1204 */
1205 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1206 struct amdgpu_bo_va *bo_va,
1207 uint64_t saddr, uint64_t offset,
1208 uint64_t size, uint32_t flags)
1209 {
1210 struct amdgpu_bo_va_mapping *mapping;
1211 struct amdgpu_vm *vm = bo_va->vm;
1212 struct interval_tree_node *it;
1213 unsigned last_pfn, pt_idx;
1214 uint64_t eaddr;
1215 int r;
1216
1217 /* validate the parameters */
1218 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1219 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1220 return -EINVAL;
1221
1222 /* make sure object fit at this offset */
1223 eaddr = saddr + size - 1;
1224 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1225 return -EINVAL;
1226
1227 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1228 if (last_pfn >= adev->vm_manager.max_pfn) {
1229 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1230 last_pfn, adev->vm_manager.max_pfn);
1231 return -EINVAL;
1232 }
1233
1234 saddr /= AMDGPU_GPU_PAGE_SIZE;
1235 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1236
1237 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1238 if (it) {
1239 struct amdgpu_bo_va_mapping *tmp;
1240 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1241 /* bo and tmp overlap, invalid addr */
1242 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1243 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1244 tmp->it.start, tmp->it.last + 1);
1245 r = -EINVAL;
1246 goto error;
1247 }
1248
1249 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1250 if (!mapping) {
1251 r = -ENOMEM;
1252 goto error;
1253 }
1254
1255 INIT_LIST_HEAD(&mapping->list);
1256 mapping->it.start = saddr;
1257 mapping->it.last = eaddr;
1258 mapping->offset = offset;
1259 mapping->flags = flags;
1260
1261 list_add(&mapping->list, &bo_va->invalids);
1262 interval_tree_insert(&mapping->it, &vm->va);
1263
1264 /* Make sure the page tables are allocated */
1265 saddr >>= amdgpu_vm_block_size;
1266 eaddr >>= amdgpu_vm_block_size;
1267
1268 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1269
1270 if (eaddr > vm->max_pde_used)
1271 vm->max_pde_used = eaddr;
1272
1273 /* walk over the address space and allocate the page tables */
1274 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1275 struct reservation_object *resv = vm->page_directory->tbo.resv;
1276 struct amdgpu_bo_list_entry *entry;
1277 struct amdgpu_bo *pt;
1278
1279 entry = &vm->page_tables[pt_idx].entry;
1280 if (entry->robj)
1281 continue;
1282
1283 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1284 AMDGPU_GPU_PAGE_SIZE, true,
1285 AMDGPU_GEM_DOMAIN_VRAM,
1286 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1287 NULL, resv, &pt);
1288 if (r)
1289 goto error_free;
1290
1291 /* Keep a reference to the page table to avoid freeing
1292 * them up in the wrong order.
1293 */
1294 pt->parent = amdgpu_bo_ref(vm->page_directory);
1295
1296 r = amdgpu_vm_clear_bo(adev, vm, pt);
1297 if (r) {
1298 amdgpu_bo_unref(&pt);
1299 goto error_free;
1300 }
1301
1302 entry->robj = pt;
1303 entry->priority = 0;
1304 entry->tv.bo = &entry->robj->tbo;
1305 entry->tv.shared = true;
1306 entry->user_pages = NULL;
1307 vm->page_tables[pt_idx].addr = 0;
1308 }
1309
1310 return 0;
1311
1312 error_free:
1313 list_del(&mapping->list);
1314 interval_tree_remove(&mapping->it, &vm->va);
1315 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1316 kfree(mapping);
1317
1318 error:
1319 return r;
1320 }
1321
1322 /**
1323 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1324 *
1325 * @adev: amdgpu_device pointer
1326 * @bo_va: bo_va to remove the address from
1327 * @saddr: where to the BO is mapped
1328 *
1329 * Remove a mapping of the BO at the specefied addr from the VM.
1330 * Returns 0 for success, error for failure.
1331 *
1332 * Object has to be reserved and unreserved outside!
1333 */
1334 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1335 struct amdgpu_bo_va *bo_va,
1336 uint64_t saddr)
1337 {
1338 struct amdgpu_bo_va_mapping *mapping;
1339 struct amdgpu_vm *vm = bo_va->vm;
1340 bool valid = true;
1341
1342 saddr /= AMDGPU_GPU_PAGE_SIZE;
1343
1344 list_for_each_entry(mapping, &bo_va->valids, list) {
1345 if (mapping->it.start == saddr)
1346 break;
1347 }
1348
1349 if (&mapping->list == &bo_va->valids) {
1350 valid = false;
1351
1352 list_for_each_entry(mapping, &bo_va->invalids, list) {
1353 if (mapping->it.start == saddr)
1354 break;
1355 }
1356
1357 if (&mapping->list == &bo_va->invalids)
1358 return -ENOENT;
1359 }
1360
1361 list_del(&mapping->list);
1362 interval_tree_remove(&mapping->it, &vm->va);
1363 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1364
1365 if (valid)
1366 list_add(&mapping->list, &vm->freed);
1367 else
1368 kfree(mapping);
1369
1370 return 0;
1371 }
1372
1373 /**
1374 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1375 *
1376 * @adev: amdgpu_device pointer
1377 * @bo_va: requested bo_va
1378 *
1379 * Remove @bo_va->bo from the requested vm.
1380 *
1381 * Object have to be reserved!
1382 */
1383 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1384 struct amdgpu_bo_va *bo_va)
1385 {
1386 struct amdgpu_bo_va_mapping *mapping, *next;
1387 struct amdgpu_vm *vm = bo_va->vm;
1388
1389 list_del(&bo_va->bo_list);
1390
1391 spin_lock(&vm->status_lock);
1392 list_del(&bo_va->vm_status);
1393 spin_unlock(&vm->status_lock);
1394
1395 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1396 list_del(&mapping->list);
1397 interval_tree_remove(&mapping->it, &vm->va);
1398 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1399 list_add(&mapping->list, &vm->freed);
1400 }
1401 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1402 list_del(&mapping->list);
1403 interval_tree_remove(&mapping->it, &vm->va);
1404 kfree(mapping);
1405 }
1406
1407 fence_put(bo_va->last_pt_update);
1408 kfree(bo_va);
1409 }
1410
1411 /**
1412 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1413 *
1414 * @adev: amdgpu_device pointer
1415 * @vm: requested vm
1416 * @bo: amdgpu buffer object
1417 *
1418 * Mark @bo as invalid.
1419 */
1420 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1421 struct amdgpu_bo *bo)
1422 {
1423 struct amdgpu_bo_va *bo_va;
1424
1425 list_for_each_entry(bo_va, &bo->va, bo_list) {
1426 spin_lock(&bo_va->vm->status_lock);
1427 if (list_empty(&bo_va->vm_status))
1428 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1429 spin_unlock(&bo_va->vm->status_lock);
1430 }
1431 }
1432
1433 /**
1434 * amdgpu_vm_init - initialize a vm instance
1435 *
1436 * @adev: amdgpu_device pointer
1437 * @vm: requested vm
1438 *
1439 * Init @vm fields.
1440 */
1441 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1442 {
1443 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1444 AMDGPU_VM_PTE_COUNT * 8);
1445 unsigned pd_size, pd_entries;
1446 unsigned ring_instance;
1447 struct amdgpu_ring *ring;
1448 struct amd_sched_rq *rq;
1449 int i, r;
1450
1451 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1452 vm->ids[i] = NULL;
1453 vm->va = RB_ROOT;
1454 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1455 spin_lock_init(&vm->status_lock);
1456 INIT_LIST_HEAD(&vm->invalidated);
1457 INIT_LIST_HEAD(&vm->cleared);
1458 INIT_LIST_HEAD(&vm->freed);
1459
1460 pd_size = amdgpu_vm_directory_size(adev);
1461 pd_entries = amdgpu_vm_num_pdes(adev);
1462
1463 /* allocate page table array */
1464 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1465 if (vm->page_tables == NULL) {
1466 DRM_ERROR("Cannot allocate memory for page table array\n");
1467 return -ENOMEM;
1468 }
1469
1470 /* create scheduler entity for page table updates */
1471
1472 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1473 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1474 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1475 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1476 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1477 rq, amdgpu_sched_jobs);
1478 if (r)
1479 return r;
1480
1481 vm->page_directory_fence = NULL;
1482
1483 r = amdgpu_bo_create(adev, pd_size, align, true,
1484 AMDGPU_GEM_DOMAIN_VRAM,
1485 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1486 NULL, NULL, &vm->page_directory);
1487 if (r)
1488 goto error_free_sched_entity;
1489
1490 r = amdgpu_bo_reserve(vm->page_directory, false);
1491 if (r)
1492 goto error_free_page_directory;
1493
1494 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1495 amdgpu_bo_unreserve(vm->page_directory);
1496 if (r)
1497 goto error_free_page_directory;
1498
1499 return 0;
1500
1501 error_free_page_directory:
1502 amdgpu_bo_unref(&vm->page_directory);
1503 vm->page_directory = NULL;
1504
1505 error_free_sched_entity:
1506 amd_sched_entity_fini(&ring->sched, &vm->entity);
1507
1508 return r;
1509 }
1510
1511 /**
1512 * amdgpu_vm_fini - tear down a vm instance
1513 *
1514 * @adev: amdgpu_device pointer
1515 * @vm: requested vm
1516 *
1517 * Tear down @vm.
1518 * Unbind the VM and remove all bos from the vm bo list
1519 */
1520 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1521 {
1522 struct amdgpu_bo_va_mapping *mapping, *tmp;
1523 int i;
1524
1525 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1526
1527 if (!RB_EMPTY_ROOT(&vm->va)) {
1528 dev_err(adev->dev, "still active bo inside vm\n");
1529 }
1530 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1531 list_del(&mapping->list);
1532 interval_tree_remove(&mapping->it, &vm->va);
1533 kfree(mapping);
1534 }
1535 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1536 list_del(&mapping->list);
1537 kfree(mapping);
1538 }
1539
1540 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1541 amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1542 drm_free_large(vm->page_tables);
1543
1544 amdgpu_bo_unref(&vm->page_directory);
1545 fence_put(vm->page_directory_fence);
1546 }
1547
1548 /**
1549 * amdgpu_vm_manager_init - init the VM manager
1550 *
1551 * @adev: amdgpu_device pointer
1552 *
1553 * Initialize the VM manager structures
1554 */
1555 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1556 {
1557 unsigned i;
1558
1559 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1560
1561 /* skip over VMID 0, since it is the system VM */
1562 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1563 amdgpu_vm_reset_id(adev, i);
1564 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1565 list_add_tail(&adev->vm_manager.ids[i].list,
1566 &adev->vm_manager.ids_lru);
1567 }
1568
1569 adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS);
1570 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1571 adev->vm_manager.seqno[i] = 0;
1572
1573 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1574 atomic64_set(&adev->vm_manager.client_counter, 0);
1575 }
1576
1577 /**
1578 * amdgpu_vm_manager_fini - cleanup VM manager
1579 *
1580 * @adev: amdgpu_device pointer
1581 *
1582 * Cleanup the VM manager and free resources.
1583 */
1584 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1585 {
1586 unsigned i;
1587
1588 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1589 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1590
1591 fence_put(adev->vm_manager.ids[i].first);
1592 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1593 fence_put(id->flushed_updates);
1594 }
1595 }
This page took 0.066232 seconds and 6 git commands to generate.