Merge tag 'topic/drm-misc-2016-08-12' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include "linux/delay.h"
26
27 #include "hwmgr.h"
28 #include "fiji_smumgr.h"
29 #include "atombios.h"
30 #include "hardwaremanager.h"
31 #include "ppatomctrl.h"
32 #include "atombios.h"
33 #include "cgs_common.h"
34 #include "fiji_dyn_defaults.h"
35 #include "fiji_powertune.h"
36 #include "smu73.h"
37 #include "smu/smu_7_1_3_d.h"
38 #include "smu/smu_7_1_3_sh_mask.h"
39 #include "gmc/gmc_8_1_d.h"
40 #include "gmc/gmc_8_1_sh_mask.h"
41 #include "bif/bif_5_0_d.h"
42 #include "bif/bif_5_0_sh_mask.h"
43 #include "dce/dce_10_0_d.h"
44 #include "dce/dce_10_0_sh_mask.h"
45 #include "pppcielanes.h"
46 #include "fiji_hwmgr.h"
47 #include "tonga_processpptables.h"
48 #include "tonga_pptable.h"
49 #include "pp_debug.h"
50 #include "pp_acpi.h"
51 #include "amd_pcie_helpers.h"
52 #include "cgs_linux.h"
53 #include "ppinterrupt.h"
54
55 #include "fiji_clockpowergating.h"
56 #include "fiji_thermal.h"
57
58 #define VOLTAGE_SCALE 4
59 #define SMC_RAM_END 0x40000
60 #define VDDC_VDDCI_DELTA 300
61
62 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
63 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
64 #define MC_SEQ_MISC0_GDDR5_VALUE 5
65
66 #define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
67 #define MC_CG_ARB_FREQ_F1 0x0b
68 #define MC_CG_ARB_FREQ_F2 0x0c
69 #define MC_CG_ARB_FREQ_F3 0x0d
70
71 /* From smc_reg.h */
72 #define SMC_CG_IND_START 0xc0030000
73 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
74
75 #define VOLTAGE_SCALE 4
76 #define VOLTAGE_VID_OFFSET_SCALE1 625
77 #define VOLTAGE_VID_OFFSET_SCALE2 100
78
79 #define VDDC_VDDCI_DELTA 300
80
81 #define ixSWRST_COMMAND_1 0x1400103
82 #define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
83
84 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
85 enum DPM_EVENT_SRC {
86 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
87 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
88 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
89 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
90 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
91 };
92
93
94 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
95 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
96 */
97 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] =
98 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
99
100 /* [FF, SS] type, [] 4 voltage ranges, and
101 * [Floor Freq, Boundary Freq, VID min , VID max]
102 */
103 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
104 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
105 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
106
107 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
108 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
109 */
110 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] =
111 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
112
113 static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
114
115 struct fiji_power_state *cast_phw_fiji_power_state(
116 struct pp_hw_power_state *hw_ps)
117 {
118 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
119 "Invalid Powerstate Type!",
120 return NULL;);
121
122 return (struct fiji_power_state *)hw_ps;
123 }
124
125 const struct fiji_power_state *cast_const_phw_fiji_power_state(
126 const struct pp_hw_power_state *hw_ps)
127 {
128 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
129 "Invalid Powerstate Type!",
130 return NULL;);
131
132 return (const struct fiji_power_state *)hw_ps;
133 }
134
135 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
136 {
137 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
138 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
139 ? true : false;
140 }
141
142 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
143 {
144 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
145 struct fiji_ulv_parm *ulv = &data->ulv;
146
147 ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
148 data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
149 data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
150 data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
151 data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
152 data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
153 data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
154 data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
155 data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
156
157 data->static_screen_threshold_unit =
158 PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
159 data->static_screen_threshold =
160 PPFIJI_STATICSCREENTHRESHOLD_DFLT;
161
162 /* Unset ABM cap as it moved to DAL.
163 * Add PHM_PlatformCaps_NonABMSupportInPPLib
164 * for re-direct ABM related request to DAL
165 */
166 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
167 PHM_PlatformCaps_ABM);
168 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
169 PHM_PlatformCaps_NonABMSupportInPPLib);
170
171 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
172 PHM_PlatformCaps_DynamicACTiming);
173
174 fiji_initialize_power_tune_defaults(hwmgr);
175
176 data->mclk_stutter_mode_threshold = 60000;
177 data->pcie_gen_performance.max = PP_PCIEGen1;
178 data->pcie_gen_performance.min = PP_PCIEGen3;
179 data->pcie_gen_power_saving.max = PP_PCIEGen1;
180 data->pcie_gen_power_saving.min = PP_PCIEGen3;
181 data->pcie_lane_performance.max = 0;
182 data->pcie_lane_performance.min = 16;
183 data->pcie_lane_power_saving.max = 0;
184 data->pcie_lane_power_saving.min = 16;
185
186 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
187 PHM_PlatformCaps_DynamicUVDState);
188 }
189
190 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
191 phm_ppt_v1_voltage_lookup_table *lookup_table,
192 uint16_t virtual_voltage_id, int32_t *sclk)
193 {
194 uint8_t entryId;
195 uint8_t voltageId;
196 struct phm_ppt_v1_information *table_info =
197 (struct phm_ppt_v1_information *)(hwmgr->pptable);
198
199 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
200
201 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
202 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
203 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
204 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
205 break;
206 }
207
208 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
209 "Can't find requested voltage id in vdd_dep_on_sclk table!",
210 return -EINVAL;
211 );
212
213 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
214
215 return 0;
216 }
217
218 /**
219 * Get Leakage VDDC based on leakage ID.
220 *
221 * @param hwmgr the address of the powerplay hardware manager.
222 * @return always 0
223 */
224 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
225 {
226 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
227 uint16_t vv_id;
228 uint16_t vddc = 0;
229 uint16_t evv_default = 1150;
230 uint16_t i, j;
231 uint32_t sclk = 0;
232 struct phm_ppt_v1_information *table_info =
233 (struct phm_ppt_v1_information *)hwmgr->pptable;
234 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
235 table_info->vdd_dep_on_sclk;
236 int result;
237
238 for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
239 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
240 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
241 table_info->vddc_lookup_table, vv_id, &sclk)) {
242 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
243 PHM_PlatformCaps_ClockStretcher)) {
244 for (j = 1; j < sclk_table->count; j++) {
245 if (sclk_table->entries[j].clk == sclk &&
246 sclk_table->entries[j].cks_enable == 0) {
247 sclk += 5000;
248 break;
249 }
250 }
251 }
252
253 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
254 PHM_PlatformCaps_EnableDriverEVV))
255 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
256 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
257 else
258 result = -EINVAL;
259
260 if (result)
261 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
262 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
263
264 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
265 PP_ASSERT_WITH_CODE((vddc < 2000),
266 "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
267
268 if (result)
269 /* 1.15V is the default safe value for Fiji */
270 vddc = evv_default;
271
272 /* the voltage should not be zero nor equal to leakage ID */
273 if (vddc != 0 && vddc != vv_id) {
274 data->vddc_leakage.actual_voltage
275 [data->vddc_leakage.count] = vddc;
276 data->vddc_leakage.leakage_id
277 [data->vddc_leakage.count] = vv_id;
278 data->vddc_leakage.count++;
279 }
280 }
281 }
282 return 0;
283 }
284
285 /**
286 * Change virtual leakage voltage to actual value.
287 *
288 * @param hwmgr the address of the powerplay hardware manager.
289 * @param pointer to changing voltage
290 * @param pointer to leakage table
291 */
292 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
293 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
294 {
295 uint32_t index;
296
297 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
298 for (index = 0; index < leakage_table->count; index++) {
299 /* if this voltage matches a leakage voltage ID */
300 /* patch with actual leakage voltage */
301 if (leakage_table->leakage_id[index] == *voltage) {
302 *voltage = leakage_table->actual_voltage[index];
303 break;
304 }
305 }
306
307 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
308 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
309 }
310
311 /**
312 * Patch voltage lookup table by EVV leakages.
313 *
314 * @param hwmgr the address of the powerplay hardware manager.
315 * @param pointer to voltage lookup table
316 * @param pointer to leakage table
317 * @return always 0
318 */
319 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
320 phm_ppt_v1_voltage_lookup_table *lookup_table,
321 struct fiji_leakage_voltage *leakage_table)
322 {
323 uint32_t i;
324
325 for (i = 0; i < lookup_table->count; i++)
326 fiji_patch_with_vdd_leakage(hwmgr,
327 &lookup_table->entries[i].us_vdd, leakage_table);
328
329 return 0;
330 }
331
332 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
333 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
334 uint16_t *vddc)
335 {
336 struct phm_ppt_v1_information *table_info =
337 (struct phm_ppt_v1_information *)(hwmgr->pptable);
338 fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
339 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
340 table_info->max_clock_voltage_on_dc.vddc;
341 return 0;
342 }
343
344 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
345 struct pp_hwmgr *hwmgr)
346 {
347 uint8_t entryId;
348 uint8_t voltageId;
349 struct phm_ppt_v1_information *table_info =
350 (struct phm_ppt_v1_information *)(hwmgr->pptable);
351
352 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
353 table_info->vdd_dep_on_sclk;
354 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
355 table_info->vdd_dep_on_mclk;
356 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
357 table_info->mm_dep_table;
358
359 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
360 voltageId = sclk_table->entries[entryId].vddInd;
361 sclk_table->entries[entryId].vddc =
362 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
363 }
364
365 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
366 voltageId = mclk_table->entries[entryId].vddInd;
367 mclk_table->entries[entryId].vddc =
368 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
369 }
370
371 for (entryId = 0; entryId < mm_table->count; ++entryId) {
372 voltageId = mm_table->entries[entryId].vddcInd;
373 mm_table->entries[entryId].vddc =
374 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
375 }
376
377 return 0;
378
379 }
380
381 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
382 {
383 /* Need to determine if we need calculated voltage. */
384 return 0;
385 }
386
387 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
388 {
389 /* Need to determine if we need calculated voltage from mm table. */
390 return 0;
391 }
392
393 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
394 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
395 {
396 uint32_t table_size, i, j;
397 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
398 table_size = lookup_table->count;
399
400 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
401 "Lookup table is empty", return -EINVAL);
402
403 /* Sorting voltages */
404 for (i = 0; i < table_size - 1; i++) {
405 for (j = i + 1; j > 0; j--) {
406 if (lookup_table->entries[j].us_vdd <
407 lookup_table->entries[j - 1].us_vdd) {
408 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
409 lookup_table->entries[j - 1] = lookup_table->entries[j];
410 lookup_table->entries[j] = tmp_voltage_lookup_record;
411 }
412 }
413 }
414
415 return 0;
416 }
417
418 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
419 {
420 int result = 0;
421 int tmp_result;
422 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
423 struct phm_ppt_v1_information *table_info =
424 (struct phm_ppt_v1_information *)(hwmgr->pptable);
425
426 tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
427 table_info->vddc_lookup_table, &(data->vddc_leakage));
428 if (tmp_result)
429 result = tmp_result;
430
431 tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
432 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
433 if (tmp_result)
434 result = tmp_result;
435
436 tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
437 if (tmp_result)
438 result = tmp_result;
439
440 tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
441 if (tmp_result)
442 result = tmp_result;
443
444 tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
445 if (tmp_result)
446 result = tmp_result;
447
448 tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
449 if(tmp_result)
450 result = tmp_result;
451
452 return result;
453 }
454
455 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
456 {
457 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
458 struct phm_ppt_v1_information *table_info =
459 (struct phm_ppt_v1_information *)(hwmgr->pptable);
460
461 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
462 table_info->vdd_dep_on_sclk;
463 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
464 table_info->vdd_dep_on_mclk;
465
466 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
467 "VDD dependency on SCLK table is missing. \
468 This table is mandatory", return -EINVAL);
469 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
470 "VDD dependency on SCLK table has to have is missing. \
471 This table is mandatory", return -EINVAL);
472
473 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
474 "VDD dependency on MCLK table is missing. \
475 This table is mandatory", return -EINVAL);
476 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
477 "VDD dependency on MCLK table has to have is missing. \
478 This table is mandatory", return -EINVAL);
479
480 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
481 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
482 entries[allowed_sclk_vdd_table->count - 1].vddc;
483
484 table_info->max_clock_voltage_on_ac.sclk =
485 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
486 table_info->max_clock_voltage_on_ac.mclk =
487 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
488 table_info->max_clock_voltage_on_ac.vddc =
489 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
490 table_info->max_clock_voltage_on_ac.vddci =
491 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
492
493 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
494 table_info->max_clock_voltage_on_ac.sclk;
495 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
496 table_info->max_clock_voltage_on_ac.mclk;
497 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
498 table_info->max_clock_voltage_on_ac.vddc;
499 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
500 table_info->max_clock_voltage_on_ac.vddci;
501
502 return 0;
503 }
504
505 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
506 {
507 uint32_t speedCntl = 0;
508
509 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
510 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
511 ixPCIE_LC_SPEED_CNTL);
512 return((uint16_t)PHM_GET_FIELD(speedCntl,
513 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
514 }
515
516 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
517 {
518 uint32_t link_width;
519
520 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
521 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
522 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
523
524 PP_ASSERT_WITH_CODE((7 >= link_width),
525 "Invalid PCIe lane width!", return 0);
526
527 return decode_pcie_lane_width(link_width);
528 }
529
530 /** Patch the Boot State to match VBIOS boot clocks and voltage.
531 *
532 * @param hwmgr Pointer to the hardware manager.
533 * @param pPowerState The address of the PowerState instance being created.
534 *
535 */
536 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
537 struct pp_hw_power_state *hw_ps)
538 {
539 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
540 struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
541 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
542 uint16_t size;
543 uint8_t frev, crev;
544 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
545
546 /* First retrieve the Boot clocks and VDDC from the firmware info table.
547 * We assume here that fw_info is unchanged if this call fails.
548 */
549 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
550 hwmgr->device, index,
551 &size, &frev, &crev);
552 if (!fw_info)
553 /* During a test, there is no firmware info table. */
554 return 0;
555
556 /* Patch the state. */
557 data->vbios_boot_state.sclk_bootup_value =
558 le32_to_cpu(fw_info->ulDefaultEngineClock);
559 data->vbios_boot_state.mclk_bootup_value =
560 le32_to_cpu(fw_info->ulDefaultMemoryClock);
561 data->vbios_boot_state.mvdd_bootup_value =
562 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
563 data->vbios_boot_state.vddc_bootup_value =
564 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
565 data->vbios_boot_state.vddci_bootup_value =
566 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
567 data->vbios_boot_state.pcie_gen_bootup_value =
568 fiji_get_current_pcie_speed(hwmgr);
569 data->vbios_boot_state.pcie_lane_bootup_value =
570 (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
571
572 /* set boot power state */
573 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
574 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
575 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
576 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
577
578 return 0;
579 }
580
581 static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
582 {
583 return phm_hwmgr_backend_fini(hwmgr);
584 }
585
586 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
587 {
588 struct fiji_hwmgr *data;
589 uint32_t i;
590 struct phm_ppt_v1_information *table_info =
591 (struct phm_ppt_v1_information *)(hwmgr->pptable);
592 bool stay_in_boot;
593 int result;
594
595 data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
596 if (data == NULL)
597 return -ENOMEM;
598
599 hwmgr->backend = data;
600
601 data->dll_default_on = false;
602 data->sram_end = SMC_RAM_END;
603
604 for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
605 data->activity_target[i] = FIJI_AT_DFLT;
606
607 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
608
609 data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
610 data->mclk_dpm0_activity_target = 0xa;
611
612 data->sclk_dpm_key_disabled = 0;
613 data->mclk_dpm_key_disabled = 0;
614 data->pcie_dpm_key_disabled = 0;
615
616 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
617 PHM_PlatformCaps_UnTabledHardwareInterface);
618 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
619 PHM_PlatformCaps_TablelessHardwareInterface);
620
621 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
622 PHM_PlatformCaps_SclkDeepSleep);
623
624 data->gpio_debug = 0;
625
626 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
627 PHM_PlatformCaps_DynamicPatchPowerState);
628
629 /* need to set voltage control types before EVV patching */
630 data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
631 data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
632 data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
633
634 data->force_pcie_gen = PP_PCIEGenInvalid;
635
636 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
637 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
638 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
639
640 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
641 PHM_PlatformCaps_EnableMVDDControl))
642 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
643 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
644 data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
645
646 if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
647 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
648 PHM_PlatformCaps_EnableMVDDControl);
649
650 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
651 PHM_PlatformCaps_ControlVDDCI)) {
652 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
653 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
654 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
655 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
656 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
657 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
658 }
659
660 if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
661 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
662 PHM_PlatformCaps_ControlVDDCI);
663
664 if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
665 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
666 PHM_PlatformCaps_ClockStretcher);
667
668 fiji_init_dpm_defaults(hwmgr);
669
670 /* Get leakage voltage based on leakage ID. */
671 fiji_get_evv_voltages(hwmgr);
672
673 /* Patch our voltage dependency table with actual leakage voltage
674 * We need to perform leakage translation before it's used by other functions
675 */
676 fiji_complete_dependency_tables(hwmgr);
677
678 /* Parse pptable data read from VBIOS */
679 fiji_set_private_data_based_on_pptable(hwmgr);
680
681 /* ULV Support */
682 data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
683
684 /* Initalize Dynamic State Adjustment Rule Settings */
685 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
686
687 if (!result) {
688 data->uvd_enabled = false;
689 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
690 PHM_PlatformCaps_EnableSMU7ThermalManagement);
691 data->vddc_phase_shed_control = false;
692 }
693
694 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
695 PHM_PlatformCaps_StayInBootState);
696
697 if (0 == result) {
698 struct cgs_system_info sys_info = {0};
699
700 data->is_tlu_enabled = false;
701 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
702 FIJI_MAX_HARDWARE_POWERLEVELS;
703 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
704 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
705
706 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
707 PHM_PlatformCaps_FanSpeedInTableIsRPM);
708
709 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
710 hwmgr->thermal_controller.
711 advanceFanControlParameters.ucFanControlMode) {
712 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
713 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
714 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
715 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
716 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
717 table_info->cac_dtp_table->usOperatingTempMinLimit;
718 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
719 table_info->cac_dtp_table->usOperatingTempMaxLimit;
720 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
721 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
722 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
723 table_info->cac_dtp_table->usOperatingTempStep;
724 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
725 table_info->cac_dtp_table->usTargetOperatingTemp;
726
727 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
728 PHM_PlatformCaps_ODFuzzyFanControlSupport);
729 }
730
731 sys_info.size = sizeof(struct cgs_system_info);
732 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
733 result = cgs_query_system_info(hwmgr->device, &sys_info);
734 if (result)
735 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
736 else
737 data->pcie_gen_cap = (uint32_t)sys_info.value;
738 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
739 data->pcie_spc_cap = 20;
740 sys_info.size = sizeof(struct cgs_system_info);
741 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
742 result = cgs_query_system_info(hwmgr->device, &sys_info);
743 if (result)
744 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
745 else
746 data->pcie_lane_cap = (uint32_t)sys_info.value;
747 } else {
748 /* Ignore return value in here, we are cleaning up a mess. */
749 fiji_hwmgr_backend_fini(hwmgr);
750 }
751
752 return 0;
753 }
754
755 /**
756 * Read clock related registers.
757 *
758 * @param hwmgr the address of the powerplay hardware manager.
759 * @return always 0
760 */
761 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
762 {
763 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
764
765 data->clock_registers.vCG_SPLL_FUNC_CNTL =
766 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
767 ixCG_SPLL_FUNC_CNTL);
768 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
769 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
770 ixCG_SPLL_FUNC_CNTL_2);
771 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
772 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
773 ixCG_SPLL_FUNC_CNTL_3);
774 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
775 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
776 ixCG_SPLL_FUNC_CNTL_4);
777 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
778 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
779 ixCG_SPLL_SPREAD_SPECTRUM);
780 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
781 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
782 ixCG_SPLL_SPREAD_SPECTRUM_2);
783
784 return 0;
785 }
786
787 /**
788 * Find out if memory is GDDR5.
789 *
790 * @param hwmgr the address of the powerplay hardware manager.
791 * @return always 0
792 */
793 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
794 {
795 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
796 uint32_t temp;
797
798 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
799
800 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
801 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
802 MC_SEQ_MISC0_GDDR5_SHIFT));
803
804 return 0;
805 }
806
807 /**
808 * Enables Dynamic Power Management by SMC
809 *
810 * @param hwmgr the address of the powerplay hardware manager.
811 * @return always 0
812 */
813 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
814 {
815 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
816 GENERAL_PWRMGT, STATIC_PM_EN, 1);
817
818 return 0;
819 }
820
821 /**
822 * Initialize PowerGating States for different engines
823 *
824 * @param hwmgr the address of the powerplay hardware manager.
825 * @return always 0
826 */
827 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
828 {
829 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
830
831 data->uvd_power_gated = false;
832 data->vce_power_gated = false;
833 data->samu_power_gated = false;
834 data->acp_power_gated = false;
835 data->pg_acp_init = true;
836
837 return 0;
838 }
839
840 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
841 {
842 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
843 data->low_sclk_interrupt_threshold = 0;
844
845 return 0;
846 }
847
848 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
849 {
850 int tmp_result, result = 0;
851
852 tmp_result = fiji_read_clock_registers(hwmgr);
853 PP_ASSERT_WITH_CODE((0 == tmp_result),
854 "Failed to read clock registers!", result = tmp_result);
855
856 tmp_result = fiji_get_memory_type(hwmgr);
857 PP_ASSERT_WITH_CODE((0 == tmp_result),
858 "Failed to get memory type!", result = tmp_result);
859
860 tmp_result = fiji_enable_acpi_power_management(hwmgr);
861 PP_ASSERT_WITH_CODE((0 == tmp_result),
862 "Failed to enable ACPI power management!", result = tmp_result);
863
864 tmp_result = fiji_init_power_gate_state(hwmgr);
865 PP_ASSERT_WITH_CODE((0 == tmp_result),
866 "Failed to init power gate state!", result = tmp_result);
867
868 tmp_result = tonga_get_mc_microcode_version(hwmgr);
869 PP_ASSERT_WITH_CODE((0 == tmp_result),
870 "Failed to get MC microcode version!", result = tmp_result);
871
872 tmp_result = fiji_init_sclk_threshold(hwmgr);
873 PP_ASSERT_WITH_CODE((0 == tmp_result),
874 "Failed to init sclk threshold!", result = tmp_result);
875
876 return result;
877 }
878
879 /**
880 * Checks if we want to support voltage control
881 *
882 * @param hwmgr the address of the powerplay hardware manager.
883 */
884 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
885 {
886 const struct fiji_hwmgr *data =
887 (const struct fiji_hwmgr *)(hwmgr->backend);
888
889 return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
890 }
891
892 /**
893 * Enable voltage control
894 *
895 * @param hwmgr the address of the powerplay hardware manager.
896 * @return always 0
897 */
898 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
899 {
900 /* enable voltage control */
901 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
902 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
903
904 return 0;
905 }
906
907 /**
908 * Remove repeated voltage values and create table with unique values.
909 *
910 * @param hwmgr the address of the powerplay hardware manager.
911 * @param vol_table the pointer to changing voltage table
912 * @return 0 in success
913 */
914
915 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
916 struct pp_atomctrl_voltage_table *vol_table)
917 {
918 uint32_t i, j;
919 uint16_t vvalue;
920 bool found = false;
921 struct pp_atomctrl_voltage_table *table;
922
923 PP_ASSERT_WITH_CODE((NULL != vol_table),
924 "Voltage Table empty.", return -EINVAL);
925 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
926 GFP_KERNEL);
927
928 if (NULL == table)
929 return -ENOMEM;
930
931 table->mask_low = vol_table->mask_low;
932 table->phase_delay = vol_table->phase_delay;
933
934 for (i = 0; i < vol_table->count; i++) {
935 vvalue = vol_table->entries[i].value;
936 found = false;
937
938 for (j = 0; j < table->count; j++) {
939 if (vvalue == table->entries[j].value) {
940 found = true;
941 break;
942 }
943 }
944
945 if (!found) {
946 table->entries[table->count].value = vvalue;
947 table->entries[table->count].smio_low =
948 vol_table->entries[i].smio_low;
949 table->count++;
950 }
951 }
952
953 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
954 kfree(table);
955
956 return 0;
957 }
958
959 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
960 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
961 {
962 uint32_t i;
963 int result;
964 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
965 struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
966
967 PP_ASSERT_WITH_CODE((0 != dep_table->count),
968 "Voltage Dependency Table empty.", return -EINVAL);
969
970 vol_table->mask_low = 0;
971 vol_table->phase_delay = 0;
972 vol_table->count = dep_table->count;
973
974 for (i = 0; i < dep_table->count; i++) {
975 vol_table->entries[i].value = dep_table->entries[i].mvdd;
976 vol_table->entries[i].smio_low = 0;
977 }
978
979 result = fiji_trim_voltage_table(hwmgr, vol_table);
980 PP_ASSERT_WITH_CODE((0 == result),
981 "Failed to trim MVDD table.", return result);
982
983 return 0;
984 }
985
986 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
987 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
988 {
989 uint32_t i;
990 int result;
991 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
992 struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
993
994 PP_ASSERT_WITH_CODE((0 != dep_table->count),
995 "Voltage Dependency Table empty.", return -EINVAL);
996
997 vol_table->mask_low = 0;
998 vol_table->phase_delay = 0;
999 vol_table->count = dep_table->count;
1000
1001 for (i = 0; i < dep_table->count; i++) {
1002 vol_table->entries[i].value = dep_table->entries[i].vddci;
1003 vol_table->entries[i].smio_low = 0;
1004 }
1005
1006 result = fiji_trim_voltage_table(hwmgr, vol_table);
1007 PP_ASSERT_WITH_CODE((0 == result),
1008 "Failed to trim VDDCI table.", return result);
1009
1010 return 0;
1011 }
1012
1013 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1014 phm_ppt_v1_voltage_lookup_table *lookup_table)
1015 {
1016 int i = 0;
1017 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1018 struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1019
1020 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1021 "Voltage Lookup Table empty.", return -EINVAL);
1022
1023 vol_table->mask_low = 0;
1024 vol_table->phase_delay = 0;
1025
1026 vol_table->count = lookup_table->count;
1027
1028 for (i = 0; i < vol_table->count; i++) {
1029 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1030 vol_table->entries[i].smio_low = 0;
1031 }
1032
1033 return 0;
1034 }
1035
1036 /* ---- Voltage Tables ----
1037 * If the voltage table would be bigger than
1038 * what will fit into the state table on
1039 * the SMC keep only the higher entries.
1040 */
1041 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1042 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1043 {
1044 unsigned int i, diff;
1045
1046 if (vol_table->count <= max_vol_steps)
1047 return;
1048
1049 diff = vol_table->count - max_vol_steps;
1050
1051 for (i = 0; i < max_vol_steps; i++)
1052 vol_table->entries[i] = vol_table->entries[i + diff];
1053
1054 vol_table->count = max_vol_steps;
1055
1056 return;
1057 }
1058
1059 /**
1060 * Create Voltage Tables.
1061 *
1062 * @param hwmgr the address of the powerplay hardware manager.
1063 * @return always 0
1064 */
1065 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1066 {
1067 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1068 struct phm_ppt_v1_information *table_info =
1069 (struct phm_ppt_v1_information *)hwmgr->pptable;
1070 int result;
1071
1072 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1073 result = atomctrl_get_voltage_table_v3(hwmgr,
1074 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
1075 &(data->mvdd_voltage_table));
1076 PP_ASSERT_WITH_CODE((0 == result),
1077 "Failed to retrieve MVDD table.",
1078 return result);
1079 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1080 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1081 table_info->vdd_dep_on_mclk);
1082 PP_ASSERT_WITH_CODE((0 == result),
1083 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1084 return result;);
1085 }
1086
1087 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1088 result = atomctrl_get_voltage_table_v3(hwmgr,
1089 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1090 &(data->vddci_voltage_table));
1091 PP_ASSERT_WITH_CODE((0 == result),
1092 "Failed to retrieve VDDCI table.",
1093 return result);
1094 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1095 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1096 table_info->vdd_dep_on_mclk);
1097 PP_ASSERT_WITH_CODE((0 == result),
1098 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1099 return result);
1100 }
1101
1102 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1103 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1104 table_info->vddc_lookup_table);
1105 PP_ASSERT_WITH_CODE((0 == result),
1106 "Failed to retrieve SVI2 VDDC table from lookup table.",
1107 return result);
1108 }
1109
1110 PP_ASSERT_WITH_CODE(
1111 (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1112 "Too many voltage values for VDDC. Trimming to fit state table.",
1113 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1114 SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1115
1116 PP_ASSERT_WITH_CODE(
1117 (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1118 "Too many voltage values for VDDCI. Trimming to fit state table.",
1119 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1120 SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1121
1122 PP_ASSERT_WITH_CODE(
1123 (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1124 "Too many voltage values for MVDD. Trimming to fit state table.",
1125 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1126 SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1127
1128 return 0;
1129 }
1130
1131 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1132 {
1133 /* Program additional LP registers
1134 * that are no longer programmed by VBIOS
1135 */
1136 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1137 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1138 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1139 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1140 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1141 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1142 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1143 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1144 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1145 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1146 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1147 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1148 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1149 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1150
1151 return 0;
1152 }
1153
1154 /**
1155 * Programs static screed detection parameters
1156 *
1157 * @param hwmgr the address of the powerplay hardware manager.
1158 * @return always 0
1159 */
1160 static int fiji_program_static_screen_threshold_parameters(
1161 struct pp_hwmgr *hwmgr)
1162 {
1163 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1164
1165 /* Set static screen threshold unit */
1166 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1167 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1168 data->static_screen_threshold_unit);
1169 /* Set static screen threshold */
1170 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1171 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1172 data->static_screen_threshold);
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * Setup display gap for glitch free memory clock switching.
1179 *
1180 * @param hwmgr the address of the powerplay hardware manager.
1181 * @return always 0
1182 */
1183 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1184 {
1185 uint32_t displayGap =
1186 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1187 ixCG_DISPLAY_GAP_CNTL);
1188
1189 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1190 DISP_GAP, DISPLAY_GAP_IGNORE);
1191
1192 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1193 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1194
1195 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1196 ixCG_DISPLAY_GAP_CNTL, displayGap);
1197
1198 return 0;
1199 }
1200
1201 /**
1202 * Programs activity state transition voting clients
1203 *
1204 * @param hwmgr the address of the powerplay hardware manager.
1205 * @return always 0
1206 */
1207 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1208 {
1209 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1210
1211 /* Clear reset for voting clients before enabling DPM */
1212 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1213 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1214 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1215 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1216
1217 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1218 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1219 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1220 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1221 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1222 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1223 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1224 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1225 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1226 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1227 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1228 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1229 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1230 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1231 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1232 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1233
1234 return 0;
1235 }
1236
1237 static int fiji_clear_voting_clients(struct pp_hwmgr *hwmgr)
1238 {
1239 /* Reset voting clients before disabling DPM */
1240 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1241 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
1242 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1243 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
1244
1245 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1246 ixCG_FREQ_TRAN_VOTING_0, 0);
1247 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1248 ixCG_FREQ_TRAN_VOTING_1, 0);
1249 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1250 ixCG_FREQ_TRAN_VOTING_2, 0);
1251 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1252 ixCG_FREQ_TRAN_VOTING_3, 0);
1253 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1254 ixCG_FREQ_TRAN_VOTING_4, 0);
1255 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1256 ixCG_FREQ_TRAN_VOTING_5, 0);
1257 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1258 ixCG_FREQ_TRAN_VOTING_6, 0);
1259 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1260 ixCG_FREQ_TRAN_VOTING_7, 0);
1261
1262 return 0;
1263 }
1264
1265 /**
1266 * Get the location of various tables inside the FW image.
1267 *
1268 * @param hwmgr the address of the powerplay hardware manager.
1269 * @return always 0
1270 */
1271 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1272 {
1273 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1274 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1275 uint32_t tmp;
1276 int result;
1277 bool error = false;
1278
1279 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1280 SMU7_FIRMWARE_HEADER_LOCATION +
1281 offsetof(SMU73_Firmware_Header, DpmTable),
1282 &tmp, data->sram_end);
1283
1284 if (0 == result)
1285 data->dpm_table_start = tmp;
1286
1287 error |= (0 != result);
1288
1289 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1290 SMU7_FIRMWARE_HEADER_LOCATION +
1291 offsetof(SMU73_Firmware_Header, SoftRegisters),
1292 &tmp, data->sram_end);
1293
1294 if (!result) {
1295 data->soft_regs_start = tmp;
1296 smu_data->soft_regs_start = tmp;
1297 }
1298
1299 error |= (0 != result);
1300
1301 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1302 SMU7_FIRMWARE_HEADER_LOCATION +
1303 offsetof(SMU73_Firmware_Header, mcRegisterTable),
1304 &tmp, data->sram_end);
1305
1306 if (!result)
1307 data->mc_reg_table_start = tmp;
1308
1309 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1310 SMU7_FIRMWARE_HEADER_LOCATION +
1311 offsetof(SMU73_Firmware_Header, FanTable),
1312 &tmp, data->sram_end);
1313
1314 if (!result)
1315 data->fan_table_start = tmp;
1316
1317 error |= (0 != result);
1318
1319 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1320 SMU7_FIRMWARE_HEADER_LOCATION +
1321 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1322 &tmp, data->sram_end);
1323
1324 if (!result)
1325 data->arb_table_start = tmp;
1326
1327 error |= (0 != result);
1328
1329 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1330 SMU7_FIRMWARE_HEADER_LOCATION +
1331 offsetof(SMU73_Firmware_Header, Version),
1332 &tmp, data->sram_end);
1333
1334 if (!result)
1335 hwmgr->microcode_version_info.SMC = tmp;
1336
1337 error |= (0 != result);
1338
1339 return error ? -1 : 0;
1340 }
1341
1342 /* Copy one arb setting to another and then switch the active set.
1343 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1344 */
1345 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1346 uint32_t arb_src, uint32_t arb_dest)
1347 {
1348 uint32_t mc_arb_dram_timing;
1349 uint32_t mc_arb_dram_timing2;
1350 uint32_t burst_time;
1351 uint32_t mc_cg_config;
1352
1353 switch (arb_src) {
1354 case MC_CG_ARB_FREQ_F0:
1355 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1356 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1357 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1358 break;
1359 case MC_CG_ARB_FREQ_F1:
1360 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1361 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1362 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1363 break;
1364 default:
1365 return -EINVAL;
1366 }
1367
1368 switch (arb_dest) {
1369 case MC_CG_ARB_FREQ_F0:
1370 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1371 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1372 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1373 break;
1374 case MC_CG_ARB_FREQ_F1:
1375 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1376 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1377 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1378 break;
1379 default:
1380 return -EINVAL;
1381 }
1382
1383 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1384 mc_cg_config |= 0x0000000F;
1385 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1386 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1387
1388 return 0;
1389 }
1390
1391 /**
1392 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1393 *
1394 * @param hwmgr the address of the powerplay hardware manager.
1395 * @return if success then 0;
1396 */
1397 static int fiji_reset_to_default(struct pp_hwmgr *hwmgr)
1398 {
1399 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults);
1400 }
1401
1402 /**
1403 * Initial switch from ARB F0->F1
1404 *
1405 * @param hwmgr the address of the powerplay hardware manager.
1406 * @return always 0
1407 * This function is to be called from the SetPowerState table.
1408 */
1409 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1410 {
1411 return fiji_copy_and_switch_arb_sets(hwmgr,
1412 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1413 }
1414
1415 static int fiji_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
1416 {
1417 uint32_t tmp;
1418
1419 tmp = (cgs_read_ind_register(hwmgr->device,
1420 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
1421 0x0000ff00) >> 8;
1422
1423 if (tmp == MC_CG_ARB_FREQ_F0)
1424 return 0;
1425
1426 return fiji_copy_and_switch_arb_sets(hwmgr,
1427 tmp, MC_CG_ARB_FREQ_F0);
1428 }
1429
1430 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1431 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1432 {
1433 int i;
1434 PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1435 "Fatal error, can not set up single DPM table entries "
1436 "to exceed max number!",);
1437
1438 dpm_table->count = count;
1439 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1440 dpm_table->dpm_levels[i].enabled = false;
1441
1442 return 0;
1443 }
1444
1445 static void fiji_setup_pcie_table_entry(
1446 struct fiji_single_dpm_table *dpm_table,
1447 uint32_t index, uint32_t pcie_gen,
1448 uint32_t pcie_lanes)
1449 {
1450 dpm_table->dpm_levels[index].value = pcie_gen;
1451 dpm_table->dpm_levels[index].param1 = pcie_lanes;
1452 dpm_table->dpm_levels[index].enabled = true;
1453 }
1454
1455 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1456 {
1457 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1458 struct phm_ppt_v1_information *table_info =
1459 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1460 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1461 uint32_t i, max_entry;
1462
1463 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1464 data->use_pcie_power_saving_levels), "No pcie performance levels!",
1465 return -EINVAL);
1466
1467 if (data->use_pcie_performance_levels &&
1468 !data->use_pcie_power_saving_levels) {
1469 data->pcie_gen_power_saving = data->pcie_gen_performance;
1470 data->pcie_lane_power_saving = data->pcie_lane_performance;
1471 } else if (!data->use_pcie_performance_levels &&
1472 data->use_pcie_power_saving_levels) {
1473 data->pcie_gen_performance = data->pcie_gen_power_saving;
1474 data->pcie_lane_performance = data->pcie_lane_power_saving;
1475 }
1476
1477 fiji_reset_single_dpm_table(hwmgr,
1478 &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1479
1480 if (pcie_table != NULL) {
1481 /* max_entry is used to make sure we reserve one PCIE level
1482 * for boot level (fix for A+A PSPP issue).
1483 * If PCIE table from PPTable have ULV entry + 8 entries,
1484 * then ignore the last entry.*/
1485 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1486 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1487 for (i = 1; i < max_entry; i++) {
1488 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1489 get_pcie_gen_support(data->pcie_gen_cap,
1490 pcie_table->entries[i].gen_speed),
1491 get_pcie_lane_support(data->pcie_lane_cap,
1492 pcie_table->entries[i].lane_width));
1493 }
1494 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1495 } else {
1496 /* Hardcode Pcie Table */
1497 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1498 get_pcie_gen_support(data->pcie_gen_cap,
1499 PP_Min_PCIEGen),
1500 get_pcie_lane_support(data->pcie_lane_cap,
1501 PP_Max_PCIELane));
1502 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1503 get_pcie_gen_support(data->pcie_gen_cap,
1504 PP_Min_PCIEGen),
1505 get_pcie_lane_support(data->pcie_lane_cap,
1506 PP_Max_PCIELane));
1507 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1508 get_pcie_gen_support(data->pcie_gen_cap,
1509 PP_Max_PCIEGen),
1510 get_pcie_lane_support(data->pcie_lane_cap,
1511 PP_Max_PCIELane));
1512 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1513 get_pcie_gen_support(data->pcie_gen_cap,
1514 PP_Max_PCIEGen),
1515 get_pcie_lane_support(data->pcie_lane_cap,
1516 PP_Max_PCIELane));
1517 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1518 get_pcie_gen_support(data->pcie_gen_cap,
1519 PP_Max_PCIEGen),
1520 get_pcie_lane_support(data->pcie_lane_cap,
1521 PP_Max_PCIELane));
1522 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1523 get_pcie_gen_support(data->pcie_gen_cap,
1524 PP_Max_PCIEGen),
1525 get_pcie_lane_support(data->pcie_lane_cap,
1526 PP_Max_PCIELane));
1527
1528 data->dpm_table.pcie_speed_table.count = 6;
1529 }
1530 /* Populate last level for boot PCIE level, but do not increment count. */
1531 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1532 data->dpm_table.pcie_speed_table.count,
1533 get_pcie_gen_support(data->pcie_gen_cap,
1534 PP_Min_PCIEGen),
1535 get_pcie_lane_support(data->pcie_lane_cap,
1536 PP_Max_PCIELane));
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * This function is to initalize all DPM state tables
1543 * for SMU7 based on the dependency table.
1544 * Dynamic state patching function will then trim these
1545 * state tables to the allowed range based
1546 * on the power policy or external client requests,
1547 * such as UVD request, etc.
1548 */
1549 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1550 {
1551 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1552 struct phm_ppt_v1_information *table_info =
1553 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1554 uint32_t i;
1555
1556 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1557 table_info->vdd_dep_on_sclk;
1558 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1559 table_info->vdd_dep_on_mclk;
1560
1561 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1562 "SCLK dependency table is missing. This table is mandatory",
1563 return -EINVAL);
1564 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1565 "SCLK dependency table has to have is missing. "
1566 "This table is mandatory",
1567 return -EINVAL);
1568
1569 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1570 "MCLK dependency table is missing. This table is mandatory",
1571 return -EINVAL);
1572 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1573 "MCLK dependency table has to have is missing. "
1574 "This table is mandatory",
1575 return -EINVAL);
1576
1577 /* clear the state table to reset everything to default */
1578 fiji_reset_single_dpm_table(hwmgr,
1579 &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1580 fiji_reset_single_dpm_table(hwmgr,
1581 &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1582
1583 /* Initialize Sclk DPM table based on allow Sclk values */
1584 data->dpm_table.sclk_table.count = 0;
1585 for (i = 0; i < dep_sclk_table->count; i++) {
1586 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1587 [data->dpm_table.sclk_table.count - 1].value !=
1588 dep_sclk_table->entries[i].clk) {
1589 data->dpm_table.sclk_table.dpm_levels
1590 [data->dpm_table.sclk_table.count].value =
1591 dep_sclk_table->entries[i].clk;
1592 data->dpm_table.sclk_table.dpm_levels
1593 [data->dpm_table.sclk_table.count].enabled =
1594 (i == 0) ? true : false;
1595 data->dpm_table.sclk_table.count++;
1596 }
1597 }
1598
1599 /* Initialize Mclk DPM table based on allow Mclk values */
1600 data->dpm_table.mclk_table.count = 0;
1601 for (i=0; i<dep_mclk_table->count; i++) {
1602 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1603 [data->dpm_table.mclk_table.count - 1].value !=
1604 dep_mclk_table->entries[i].clk) {
1605 data->dpm_table.mclk_table.dpm_levels
1606 [data->dpm_table.mclk_table.count].value =
1607 dep_mclk_table->entries[i].clk;
1608 data->dpm_table.mclk_table.dpm_levels
1609 [data->dpm_table.mclk_table.count].enabled =
1610 (i == 0) ? true : false;
1611 data->dpm_table.mclk_table.count++;
1612 }
1613 }
1614
1615 /* setup PCIE gen speed levels */
1616 fiji_setup_default_pcie_table(hwmgr);
1617
1618 /* save a copy of the default DPM table */
1619 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1620 sizeof(struct fiji_dpm_table));
1621
1622 return 0;
1623 }
1624
1625 /**
1626 * @brief PhwFiji_GetVoltageOrder
1627 * Returns index of requested voltage record in lookup(table)
1628 * @param lookup_table - lookup list to search in
1629 * @param voltage - voltage to look for
1630 * @return 0 on success
1631 */
1632 uint8_t fiji_get_voltage_index(
1633 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1634 {
1635 uint8_t count = (uint8_t) (lookup_table->count);
1636 uint8_t i;
1637
1638 PP_ASSERT_WITH_CODE((NULL != lookup_table),
1639 "Lookup Table empty.", return 0);
1640 PP_ASSERT_WITH_CODE((0 != count),
1641 "Lookup Table empty.", return 0);
1642
1643 for (i = 0; i < lookup_table->count; i++) {
1644 /* find first voltage equal or bigger than requested */
1645 if (lookup_table->entries[i].us_vdd >= voltage)
1646 return i;
1647 }
1648 /* voltage is bigger than max voltage in the table */
1649 return i - 1;
1650 }
1651
1652 /**
1653 * Preparation of vddc and vddgfx CAC tables for SMC.
1654 *
1655 * @param hwmgr the address of the hardware manager
1656 * @param table the SMC DPM table structure to be populated
1657 * @return always 0
1658 */
1659 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1660 struct SMU73_Discrete_DpmTable *table)
1661 {
1662 uint32_t count;
1663 uint8_t index;
1664 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1665 struct phm_ppt_v1_information *table_info =
1666 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1667 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1668 table_info->vddc_lookup_table;
1669 /* tables is already swapped, so in order to use the value from it,
1670 * we need to swap it back.
1671 * We are populating vddc CAC data to BapmVddc table
1672 * in split and merged mode
1673 */
1674 for( count = 0; count<lookup_table->count; count++) {
1675 index = fiji_get_voltage_index(lookup_table,
1676 data->vddc_voltage_table.entries[count].value);
1677 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1678 (lookup_table->entries[index].us_cac_low *
1679 VOLTAGE_SCALE)) / 25);
1680 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1681 (lookup_table->entries[index].us_cac_high *
1682 VOLTAGE_SCALE)) / 25);
1683 }
1684
1685 return 0;
1686 }
1687
1688 /**
1689 * Preparation of voltage tables for SMC.
1690 *
1691 * @param hwmgr the address of the hardware manager
1692 * @param table the SMC DPM table structure to be populated
1693 * @return always 0
1694 */
1695
1696 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1697 struct SMU73_Discrete_DpmTable *table)
1698 {
1699 int result;
1700
1701 result = fiji_populate_cac_table(hwmgr, table);
1702 PP_ASSERT_WITH_CODE(0 == result,
1703 "can not populate CAC voltage tables to SMC",
1704 return -EINVAL);
1705
1706 return 0;
1707 }
1708
1709 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1710 struct SMU73_Discrete_Ulv *state)
1711 {
1712 int result = 0;
1713 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1714 struct phm_ppt_v1_information *table_info =
1715 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1716
1717 state->CcPwrDynRm = 0;
1718 state->CcPwrDynRm1 = 0;
1719
1720 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1721 state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1722 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1723
1724 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1725
1726 if (!result) {
1727 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1728 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1729 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1730 }
1731 return result;
1732 }
1733
1734 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1735 struct SMU73_Discrete_DpmTable *table)
1736 {
1737 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1738 }
1739
1740 static int32_t fiji_get_dpm_level_enable_mask_value(
1741 struct fiji_single_dpm_table* dpm_table)
1742 {
1743 int32_t i;
1744 int32_t mask = 0;
1745
1746 for (i = dpm_table->count; i > 0; i--) {
1747 mask = mask << 1;
1748 if (dpm_table->dpm_levels[i - 1].enabled)
1749 mask |= 0x1;
1750 else
1751 mask &= 0xFFFFFFFE;
1752 }
1753 return mask;
1754 }
1755
1756 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1757 struct SMU73_Discrete_DpmTable *table)
1758 {
1759 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1760 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1761 int i;
1762
1763 /* Index (dpm_table->pcie_speed_table.count)
1764 * is reserved for PCIE boot level. */
1765 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1766 table->LinkLevel[i].PcieGenSpeed =
1767 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1768 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1769 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1770 table->LinkLevel[i].EnabledForActivity = 1;
1771 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1772 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1773 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1774 }
1775
1776 data->smc_state_table.LinkLevelCount =
1777 (uint8_t)dpm_table->pcie_speed_table.count;
1778 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1779 fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1780
1781 return 0;
1782 }
1783
1784 /**
1785 * Calculates the SCLK dividers using the provided engine clock
1786 *
1787 * @param hwmgr the address of the hardware manager
1788 * @param clock the engine clock to use to populate the structure
1789 * @param sclk the SMC SCLK structure to be populated
1790 */
1791 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1792 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1793 {
1794 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1795 struct pp_atomctrl_clock_dividers_vi dividers;
1796 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1797 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1798 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1799 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1800 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1801 uint32_t ref_clock;
1802 uint32_t ref_divider;
1803 uint32_t fbdiv;
1804 int result;
1805
1806 /* get the engine clock dividers for this clock value */
1807 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
1808
1809 PP_ASSERT_WITH_CODE(result == 0,
1810 "Error retrieving Engine Clock dividers from VBIOS.",
1811 return result);
1812
1813 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1814 ref_clock = atomctrl_get_reference_clock(hwmgr);
1815 ref_divider = 1 + dividers.uc_pll_ref_div;
1816
1817 /* low 14 bits is fraction and high 12 bits is divider */
1818 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1819
1820 /* SPLL_FUNC_CNTL setup */
1821 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1822 SPLL_REF_DIV, dividers.uc_pll_ref_div);
1823 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1824 SPLL_PDIV_A, dividers.uc_pll_post_div);
1825
1826 /* SPLL_FUNC_CNTL_3 setup*/
1827 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1828 SPLL_FB_DIV, fbdiv);
1829
1830 /* set to use fractional accumulation*/
1831 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1832 SPLL_DITHEN, 1);
1833
1834 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1835 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1836 struct pp_atomctrl_internal_ss_info ssInfo;
1837
1838 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1839 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1840 vco_freq, &ssInfo)) {
1841 /*
1842 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1843 * ss_info.speed_spectrum_rate -- in unit of khz
1844 *
1845 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1846 */
1847 uint32_t clk_s = ref_clock * 5 /
1848 (ref_divider * ssInfo.speed_spectrum_rate);
1849 /* clkv = 2 * D * fbdiv / NS */
1850 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1851 fbdiv / (clk_s * 10000);
1852
1853 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1854 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1855 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1856 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1857 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1858 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1859 }
1860 }
1861
1862 sclk->SclkFrequency = clock;
1863 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
1864 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
1865 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
1866 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
1867 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
1868
1869 return 0;
1870 }
1871
1872 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1873 {
1874 uint32_t i;
1875 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1876 struct pp_atomctrl_voltage_table *vddci_table =
1877 &(data->vddci_voltage_table);
1878
1879 for (i = 0; i < vddci_table->count; i++) {
1880 if (vddci_table->entries[i].value >= vddci)
1881 return vddci_table->entries[i].value;
1882 }
1883
1884 PP_ASSERT_WITH_CODE(false,
1885 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1886 return vddci_table->entries[i-1].value);
1887 }
1888
1889 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1890 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1891 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1892 {
1893 uint32_t i;
1894 uint16_t vddci;
1895 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1896
1897 *voltage = *mvdd = 0;
1898
1899 /* clock - voltage dependency table is empty table */
1900 if (dep_table->count == 0)
1901 return -EINVAL;
1902
1903 for (i = 0; i < dep_table->count; i++) {
1904 /* find first sclk bigger than request */
1905 if (dep_table->entries[i].clk >= clock) {
1906 *voltage |= (dep_table->entries[i].vddc *
1907 VOLTAGE_SCALE) << VDDC_SHIFT;
1908 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1909 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1910 VOLTAGE_SCALE) << VDDCI_SHIFT;
1911 else if (dep_table->entries[i].vddci)
1912 *voltage |= (dep_table->entries[i].vddci *
1913 VOLTAGE_SCALE) << VDDCI_SHIFT;
1914 else {
1915 vddci = fiji_find_closest_vddci(hwmgr,
1916 (dep_table->entries[i].vddc -
1917 (uint16_t)data->vddc_vddci_delta));
1918 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1919 }
1920
1921 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1922 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1923 VOLTAGE_SCALE;
1924 else if (dep_table->entries[i].mvdd)
1925 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1926 VOLTAGE_SCALE;
1927
1928 *voltage |= 1 << PHASES_SHIFT;
1929 return 0;
1930 }
1931 }
1932
1933 /* sclk is bigger than max sclk in the dependence table */
1934 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1935
1936 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1937 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1938 VOLTAGE_SCALE) << VDDCI_SHIFT;
1939 else if (dep_table->entries[i-1].vddci) {
1940 vddci = fiji_find_closest_vddci(hwmgr,
1941 (dep_table->entries[i].vddc -
1942 (uint16_t)data->vddc_vddci_delta));
1943 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1944 }
1945
1946 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1947 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1948 else if (dep_table->entries[i].mvdd)
1949 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1950
1951 return 0;
1952 }
1953
1954 static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock,
1955 uint32_t clock_insr)
1956 {
1957 uint8_t i;
1958 uint32_t temp;
1959 uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK);
1960
1961 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
1962 for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
1963 temp = clock >> i;
1964
1965 if (temp >= min || i == 0)
1966 break;
1967 }
1968 return i;
1969 }
1970 /**
1971 * Populates single SMC SCLK structure using the provided engine clock
1972 *
1973 * @param hwmgr the address of the hardware manager
1974 * @param clock the engine clock to use to populate the structure
1975 * @param sclk the SMC SCLK structure to be populated
1976 */
1977
1978 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1979 uint32_t clock, uint16_t sclk_al_threshold,
1980 struct SMU73_Discrete_GraphicsLevel *level)
1981 {
1982 int result;
1983 /* PP_Clocks minClocks; */
1984 uint32_t threshold, mvdd;
1985 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1986 struct phm_ppt_v1_information *table_info =
1987 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1988
1989 result = fiji_calculate_sclk_params(hwmgr, clock, level);
1990
1991 /* populate graphics levels */
1992 result = fiji_get_dependency_volt_by_clk(hwmgr,
1993 table_info->vdd_dep_on_sclk, clock,
1994 &level->MinVoltage, &mvdd);
1995 PP_ASSERT_WITH_CODE((0 == result),
1996 "can not find VDDC voltage value for "
1997 "VDDC engine clock dependency table",
1998 return result);
1999
2000 level->SclkFrequency = clock;
2001 level->ActivityLevel = sclk_al_threshold;
2002 level->CcPwrDynRm = 0;
2003 level->CcPwrDynRm1 = 0;
2004 level->EnabledForActivity = 0;
2005 level->EnabledForThrottle = 1;
2006 level->UpHyst = 10;
2007 level->DownHyst = 0;
2008 level->VoltageDownHyst = 0;
2009 level->PowerThrottle = 0;
2010
2011 threshold = clock * data->fast_watermark_threshold / 100;
2012
2013
2014 data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
2015
2016 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2017 level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock,
2018 hwmgr->display_config.min_core_set_clock_in_sr);
2019
2020
2021 /* Default to slow, highest DPM level will be
2022 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
2023 */
2024 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2025
2026 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
2027 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
2028 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
2029 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
2030 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
2031 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
2032 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
2033 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
2034 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
2035
2036 return 0;
2037 }
2038 /**
2039 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2040 *
2041 * @param hwmgr the address of the hardware manager
2042 */
2043 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2044 {
2045 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2046 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2047 struct phm_ppt_v1_information *table_info =
2048 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2049 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
2050 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
2051 int result = 0;
2052 uint32_t array = data->dpm_table_start +
2053 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2054 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
2055 SMU73_MAX_LEVELS_GRAPHICS;
2056 struct SMU73_Discrete_GraphicsLevel *levels =
2057 data->smc_state_table.GraphicsLevel;
2058 uint32_t i, max_entry;
2059 uint8_t hightest_pcie_level_enabled = 0,
2060 lowest_pcie_level_enabled = 0,
2061 mid_pcie_level_enabled = 0,
2062 count = 0;
2063
2064 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2065 result = fiji_populate_single_graphic_level(hwmgr,
2066 dpm_table->sclk_table.dpm_levels[i].value,
2067 (uint16_t)data->activity_target[i],
2068 &levels[i]);
2069 if (result)
2070 return result;
2071
2072 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2073 if (i > 1)
2074 levels[i].DeepSleepDivId = 0;
2075 }
2076
2077 /* Only enable level 0 for now.*/
2078 levels[0].EnabledForActivity = 1;
2079
2080 /* set highest level watermark to high */
2081 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2082 PPSMC_DISPLAY_WATERMARK_HIGH;
2083
2084 data->smc_state_table.GraphicsDpmLevelCount =
2085 (uint8_t)dpm_table->sclk_table.count;
2086 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2087 fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2088
2089 if (pcie_table != NULL) {
2090 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2091 "There must be 1 or more PCIE levels defined in PPTable.",
2092 return -EINVAL);
2093 max_entry = pcie_entry_cnt - 1;
2094 for (i = 0; i < dpm_table->sclk_table.count; i++)
2095 levels[i].pcieDpmLevel =
2096 (uint8_t) ((i < max_entry)? i : max_entry);
2097 } else {
2098 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2099 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2100 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2101 hightest_pcie_level_enabled++;
2102
2103 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2104 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2105 (1 << lowest_pcie_level_enabled)) == 0 ))
2106 lowest_pcie_level_enabled++;
2107
2108 while ((count < hightest_pcie_level_enabled) &&
2109 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2110 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2111 count++;
2112
2113 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2114 hightest_pcie_level_enabled?
2115 (lowest_pcie_level_enabled + 1 + count) :
2116 hightest_pcie_level_enabled;
2117
2118 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2119 for(i = 2; i < dpm_table->sclk_table.count; i++)
2120 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2121
2122 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2123 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2124
2125 /* set pcieDpmLevel to mid_pcie_level_enabled */
2126 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2127 }
2128 /* level count will send to smc once at init smc table and never change */
2129 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2130 (uint32_t)array_size, data->sram_end);
2131
2132 return result;
2133 }
2134
2135 /**
2136 * MCLK Frequency Ratio
2137 * SEQ_CG_RESP Bit[31:24] - 0x0
2138 * Bit[27:24] \96 DDR3 Frequency ratio
2139 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
2140 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
2141 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
2142 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
2143 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
2144 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
2145 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
2146 * 400 < 0x7 <= 450MHz, 800 < 0xF
2147 */
2148 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2149 {
2150 if (mem_clock <= 10000) return 0x0;
2151 if (mem_clock <= 15000) return 0x1;
2152 if (mem_clock <= 20000) return 0x2;
2153 if (mem_clock <= 25000) return 0x3;
2154 if (mem_clock <= 30000) return 0x4;
2155 if (mem_clock <= 35000) return 0x5;
2156 if (mem_clock <= 40000) return 0x6;
2157 if (mem_clock <= 45000) return 0x7;
2158 if (mem_clock <= 50000) return 0x8;
2159 if (mem_clock <= 55000) return 0x9;
2160 if (mem_clock <= 60000) return 0xa;
2161 if (mem_clock <= 65000) return 0xb;
2162 if (mem_clock <= 70000) return 0xc;
2163 if (mem_clock <= 75000) return 0xd;
2164 if (mem_clock <= 80000) return 0xe;
2165 /* mem_clock > 800MHz */
2166 return 0xf;
2167 }
2168
2169 /**
2170 * Populates the SMC MCLK structure using the provided memory clock
2171 *
2172 * @param hwmgr the address of the hardware manager
2173 * @param clock the memory clock to use to populate the structure
2174 * @param sclk the SMC SCLK structure to be populated
2175 */
2176 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2177 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2178 {
2179 struct pp_atomctrl_memory_clock_param mem_param;
2180 int result;
2181
2182 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2183 PP_ASSERT_WITH_CODE((0 == result),
2184 "Failed to get Memory PLL Dividers.",);
2185
2186 /* Save the result data to outpupt memory level structure */
2187 mclk->MclkFrequency = clock;
2188 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
2189 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
2190
2191 return result;
2192 }
2193
2194 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2195 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2196 {
2197 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2198 struct phm_ppt_v1_information *table_info =
2199 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2200 int result = 0;
2201
2202 if (table_info->vdd_dep_on_mclk) {
2203 result = fiji_get_dependency_volt_by_clk(hwmgr,
2204 table_info->vdd_dep_on_mclk, clock,
2205 &mem_level->MinVoltage, &mem_level->MinMvdd);
2206 PP_ASSERT_WITH_CODE((0 == result),
2207 "can not find MinVddc voltage value from memory "
2208 "VDDC voltage dependency table", return result);
2209 }
2210
2211 mem_level->EnabledForThrottle = 1;
2212 mem_level->EnabledForActivity = 0;
2213 mem_level->UpHyst = 0;
2214 mem_level->DownHyst = 100;
2215 mem_level->VoltageDownHyst = 0;
2216 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2217 mem_level->StutterEnable = false;
2218
2219 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2220
2221 /* enable stutter mode if all the follow condition applied
2222 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2223 * &(data->DisplayTiming.numExistingDisplays));
2224 */
2225 data->display_timing.num_existing_displays = 1;
2226
2227 if ((data->mclk_stutter_mode_threshold) &&
2228 (clock <= data->mclk_stutter_mode_threshold) &&
2229 (!data->is_uvd_enabled) &&
2230 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2231 STUTTER_ENABLE) & 0x1))
2232 mem_level->StutterEnable = true;
2233
2234 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2235 if (!result) {
2236 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2237 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2238 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2239 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2240 }
2241 return result;
2242 }
2243
2244 /**
2245 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2246 *
2247 * @param hwmgr the address of the hardware manager
2248 */
2249 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2250 {
2251 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2252 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2253 int result;
2254 /* populate MCLK dpm table to SMU7 */
2255 uint32_t array = data->dpm_table_start +
2256 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2257 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2258 SMU73_MAX_LEVELS_MEMORY;
2259 struct SMU73_Discrete_MemoryLevel *levels =
2260 data->smc_state_table.MemoryLevel;
2261 uint32_t i;
2262
2263 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2264 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2265 "can not populate memory level as memory clock is zero",
2266 return -EINVAL);
2267 result = fiji_populate_single_memory_level(hwmgr,
2268 dpm_table->mclk_table.dpm_levels[i].value,
2269 &levels[i]);
2270 if (result)
2271 return result;
2272 }
2273
2274 /* Only enable level 0 for now. */
2275 levels[0].EnabledForActivity = 1;
2276
2277 /* in order to prevent MC activity from stutter mode to push DPM up.
2278 * the UVD change complements this by putting the MCLK in
2279 * a higher state by default such that we are not effected by
2280 * up threshold or and MCLK DPM latency.
2281 */
2282 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2283 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2284
2285 data->smc_state_table.MemoryDpmLevelCount =
2286 (uint8_t)dpm_table->mclk_table.count;
2287 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2288 fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2289 /* set highest level watermark to high */
2290 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2291 PPSMC_DISPLAY_WATERMARK_HIGH;
2292
2293 /* level count will send to smc once at init smc table and never change */
2294 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2295 (uint32_t)array_size, data->sram_end);
2296
2297 return result;
2298 }
2299
2300 /**
2301 * Populates the SMC MVDD structure using the provided memory clock.
2302 *
2303 * @param hwmgr the address of the hardware manager
2304 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2305 * @param voltage the SMC VOLTAGE structure to be populated
2306 */
2307 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2308 uint32_t mclk, SMIO_Pattern *smio_pat)
2309 {
2310 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2311 struct phm_ppt_v1_information *table_info =
2312 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2313 uint32_t i = 0;
2314
2315 if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2316 /* find mvdd value which clock is more than request */
2317 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2318 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2319 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2320 break;
2321 }
2322 }
2323 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2324 "MVDD Voltage is outside the supported range.",
2325 return -EINVAL);
2326 } else
2327 return -EINVAL;
2328
2329 return 0;
2330 }
2331
2332 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2333 SMU73_Discrete_DpmTable *table)
2334 {
2335 int result = 0;
2336 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2337 struct phm_ppt_v1_information *table_info =
2338 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2339 struct pp_atomctrl_clock_dividers_vi dividers;
2340 SMIO_Pattern vol_level;
2341 uint32_t mvdd;
2342 uint16_t us_mvdd;
2343 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2344 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2345
2346 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2347
2348 if (!data->sclk_dpm_key_disabled) {
2349 /* Get MinVoltage and Frequency from DPM0,
2350 * already converted to SMC_UL */
2351 table->ACPILevel.SclkFrequency =
2352 data->dpm_table.sclk_table.dpm_levels[0].value;
2353 result = fiji_get_dependency_volt_by_clk(hwmgr,
2354 table_info->vdd_dep_on_sclk,
2355 table->ACPILevel.SclkFrequency,
2356 &table->ACPILevel.MinVoltage, &mvdd);
2357 PP_ASSERT_WITH_CODE((0 == result),
2358 "Cannot find ACPI VDDC voltage value "
2359 "in Clock Dependency Table",);
2360 } else {
2361 table->ACPILevel.SclkFrequency =
2362 data->vbios_boot_state.sclk_bootup_value;
2363 table->ACPILevel.MinVoltage =
2364 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2365 }
2366
2367 /* get the engine clock dividers for this clock value */
2368 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2369 table->ACPILevel.SclkFrequency, &dividers);
2370 PP_ASSERT_WITH_CODE(result == 0,
2371 "Error retrieving Engine Clock dividers from VBIOS.",
2372 return result);
2373
2374 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2375 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2376 table->ACPILevel.DeepSleepDivId = 0;
2377
2378 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2379 SPLL_PWRON, 0);
2380 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2381 SPLL_RESET, 1);
2382 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2383 SCLK_MUX_SEL, 4);
2384
2385 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2386 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2387 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2388 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2389 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2390 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2391 table->ACPILevel.CcPwrDynRm = 0;
2392 table->ACPILevel.CcPwrDynRm1 = 0;
2393
2394 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2395 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2396 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2397 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2398 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2399 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2400 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2401 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2402 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2403 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2404 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2405
2406 if (!data->mclk_dpm_key_disabled) {
2407 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2408 table->MemoryACPILevel.MclkFrequency =
2409 data->dpm_table.mclk_table.dpm_levels[0].value;
2410 result = fiji_get_dependency_volt_by_clk(hwmgr,
2411 table_info->vdd_dep_on_mclk,
2412 table->MemoryACPILevel.MclkFrequency,
2413 &table->MemoryACPILevel.MinVoltage, &mvdd);
2414 PP_ASSERT_WITH_CODE((0 == result),
2415 "Cannot find ACPI VDDCI voltage value "
2416 "in Clock Dependency Table",);
2417 } else {
2418 table->MemoryACPILevel.MclkFrequency =
2419 data->vbios_boot_state.mclk_bootup_value;
2420 table->MemoryACPILevel.MinVoltage =
2421 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2422 }
2423
2424 us_mvdd = 0;
2425 if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2426 (data->mclk_dpm_key_disabled))
2427 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2428 else {
2429 if (!fiji_populate_mvdd_value(hwmgr,
2430 data->dpm_table.mclk_table.dpm_levels[0].value,
2431 &vol_level))
2432 us_mvdd = vol_level.Voltage;
2433 }
2434
2435 table->MemoryACPILevel.MinMvdd =
2436 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2437
2438 table->MemoryACPILevel.EnabledForThrottle = 0;
2439 table->MemoryACPILevel.EnabledForActivity = 0;
2440 table->MemoryACPILevel.UpHyst = 0;
2441 table->MemoryACPILevel.DownHyst = 100;
2442 table->MemoryACPILevel.VoltageDownHyst = 0;
2443 table->MemoryACPILevel.ActivityLevel =
2444 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2445
2446 table->MemoryACPILevel.StutterEnable = false;
2447 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2448 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2449
2450 return result;
2451 }
2452
2453 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2454 SMU73_Discrete_DpmTable *table)
2455 {
2456 int result = -EINVAL;
2457 uint8_t count;
2458 struct pp_atomctrl_clock_dividers_vi dividers;
2459 struct phm_ppt_v1_information *table_info =
2460 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2461 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2462 table_info->mm_dep_table;
2463 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2464
2465 table->VceLevelCount = (uint8_t)(mm_table->count);
2466 table->VceBootLevel = 0;
2467
2468 for(count = 0; count < table->VceLevelCount; count++) {
2469 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2470 table->VceLevel[count].MinVoltage = 0;
2471 table->VceLevel[count].MinVoltage |=
2472 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2473 table->VceLevel[count].MinVoltage |=
2474 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2475 VOLTAGE_SCALE) << VDDCI_SHIFT;
2476 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2477
2478 /*retrieve divider value for VBIOS */
2479 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2480 table->VceLevel[count].Frequency, &dividers);
2481 PP_ASSERT_WITH_CODE((0 == result),
2482 "can not find divide id for VCE engine clock",
2483 return result);
2484
2485 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2486
2487 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2488 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2489 }
2490 return result;
2491 }
2492
2493 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2494 SMU73_Discrete_DpmTable *table)
2495 {
2496 int result = -EINVAL;
2497 uint8_t count;
2498 struct pp_atomctrl_clock_dividers_vi dividers;
2499 struct phm_ppt_v1_information *table_info =
2500 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2501 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2502 table_info->mm_dep_table;
2503 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2504
2505 table->AcpLevelCount = (uint8_t)(mm_table->count);
2506 table->AcpBootLevel = 0;
2507
2508 for (count = 0; count < table->AcpLevelCount; count++) {
2509 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2510 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2511 VOLTAGE_SCALE) << VDDC_SHIFT;
2512 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2513 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2514 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2515
2516 /* retrieve divider value for VBIOS */
2517 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2518 table->AcpLevel[count].Frequency, &dividers);
2519 PP_ASSERT_WITH_CODE((0 == result),
2520 "can not find divide id for engine clock", return result);
2521
2522 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2523
2524 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2525 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2526 }
2527 return result;
2528 }
2529
2530 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2531 SMU73_Discrete_DpmTable *table)
2532 {
2533 int result = -EINVAL;
2534 uint8_t count;
2535 struct pp_atomctrl_clock_dividers_vi dividers;
2536 struct phm_ppt_v1_information *table_info =
2537 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2538 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2539 table_info->mm_dep_table;
2540 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2541
2542 table->SamuBootLevel = 0;
2543 table->SamuLevelCount = (uint8_t)(mm_table->count);
2544
2545 for (count = 0; count < table->SamuLevelCount; count++) {
2546 /* not sure whether we need evclk or not */
2547 table->SamuLevel[count].MinVoltage = 0;
2548 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2549 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2550 VOLTAGE_SCALE) << VDDC_SHIFT;
2551 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2552 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2553 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2554
2555 /* retrieve divider value for VBIOS */
2556 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2557 table->SamuLevel[count].Frequency, &dividers);
2558 PP_ASSERT_WITH_CODE((0 == result),
2559 "can not find divide id for samu clock", return result);
2560
2561 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2562
2563 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2564 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2565 }
2566 return result;
2567 }
2568
2569 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2570 int32_t eng_clock, int32_t mem_clock,
2571 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2572 {
2573 uint32_t dram_timing;
2574 uint32_t dram_timing2;
2575 uint32_t burstTime;
2576 ULONG state, trrds, trrdl;
2577 int result;
2578
2579 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2580 eng_clock, mem_clock);
2581 PP_ASSERT_WITH_CODE(result == 0,
2582 "Error calling VBIOS to set DRAM_TIMING.", return result);
2583
2584 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2585 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2586 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2587
2588 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2589 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2590 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2591
2592 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
2593 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2594 arb_regs->McArbBurstTime = (uint8_t)burstTime;
2595 arb_regs->TRRDS = (uint8_t)trrds;
2596 arb_regs->TRRDL = (uint8_t)trrdl;
2597
2598 return 0;
2599 }
2600
2601 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2602 {
2603 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2604 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2605 uint32_t i, j;
2606 int result = 0;
2607
2608 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2609 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2610 result = fiji_populate_memory_timing_parameters(hwmgr,
2611 data->dpm_table.sclk_table.dpm_levels[i].value,
2612 data->dpm_table.mclk_table.dpm_levels[j].value,
2613 &arb_regs.entries[i][j]);
2614 if (result)
2615 break;
2616 }
2617 }
2618
2619 if (!result)
2620 result = fiji_copy_bytes_to_smc(
2621 hwmgr->smumgr,
2622 data->arb_table_start,
2623 (uint8_t *)&arb_regs,
2624 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2625 data->sram_end);
2626 return result;
2627 }
2628
2629 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2630 struct SMU73_Discrete_DpmTable *table)
2631 {
2632 int result = -EINVAL;
2633 uint8_t count;
2634 struct pp_atomctrl_clock_dividers_vi dividers;
2635 struct phm_ppt_v1_information *table_info =
2636 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2637 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2638 table_info->mm_dep_table;
2639 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2640
2641 table->UvdLevelCount = (uint8_t)(mm_table->count);
2642 table->UvdBootLevel = 0;
2643
2644 for (count = 0; count < table->UvdLevelCount; count++) {
2645 table->UvdLevel[count].MinVoltage = 0;
2646 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2647 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2648 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2649 VOLTAGE_SCALE) << VDDC_SHIFT;
2650 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2651 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2652 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2653
2654 /* retrieve divider value for VBIOS */
2655 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2656 table->UvdLevel[count].VclkFrequency, &dividers);
2657 PP_ASSERT_WITH_CODE((0 == result),
2658 "can not find divide id for Vclk clock", return result);
2659
2660 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2661
2662 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2663 table->UvdLevel[count].DclkFrequency, &dividers);
2664 PP_ASSERT_WITH_CODE((0 == result),
2665 "can not find divide id for Dclk clock", return result);
2666
2667 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2668
2669 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2670 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2671 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2672
2673 }
2674 return result;
2675 }
2676
2677 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2678 uint32_t value, uint32_t *boot_level)
2679 {
2680 int result = -EINVAL;
2681 uint32_t i;
2682
2683 for (i = 0; i < table->count; i++) {
2684 if (value == table->dpm_levels[i].value) {
2685 *boot_level = i;
2686 result = 0;
2687 }
2688 }
2689 return result;
2690 }
2691
2692 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2693 struct SMU73_Discrete_DpmTable *table)
2694 {
2695 int result = 0;
2696 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2697
2698 table->GraphicsBootLevel = 0;
2699 table->MemoryBootLevel = 0;
2700
2701 /* find boot level from dpm table */
2702 result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2703 data->vbios_boot_state.sclk_bootup_value,
2704 (uint32_t *)&(table->GraphicsBootLevel));
2705
2706 result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2707 data->vbios_boot_state.mclk_bootup_value,
2708 (uint32_t *)&(table->MemoryBootLevel));
2709
2710 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
2711 VOLTAGE_SCALE;
2712 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2713 VOLTAGE_SCALE;
2714 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
2715 VOLTAGE_SCALE;
2716
2717 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2718 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2719 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2720
2721 return 0;
2722 }
2723
2724 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2725 {
2726 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2727 struct phm_ppt_v1_information *table_info =
2728 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2729 uint8_t count, level;
2730
2731 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2732 for (level = 0; level < count; level++) {
2733 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2734 data->vbios_boot_state.sclk_bootup_value) {
2735 data->smc_state_table.GraphicsBootLevel = level;
2736 break;
2737 }
2738 }
2739
2740 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2741 for (level = 0; level < count; level++) {
2742 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2743 data->vbios_boot_state.mclk_bootup_value) {
2744 data->smc_state_table.MemoryBootLevel = level;
2745 break;
2746 }
2747 }
2748
2749 return 0;
2750 }
2751
2752 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2753 {
2754 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2755 volt_with_cks, value;
2756 uint16_t clock_freq_u16;
2757 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2758 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2759 volt_offset = 0;
2760 struct phm_ppt_v1_information *table_info =
2761 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2762 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2763 table_info->vdd_dep_on_sclk;
2764
2765 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2766
2767 /* Read SMU_Eefuse to read and calculate RO and determine
2768 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2769 */
2770 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2771 ixSMU_EFUSE_0 + (146 * 4));
2772 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2773 ixSMU_EFUSE_0 + (148 * 4));
2774 efuse &= 0xFF000000;
2775 efuse = efuse >> 24;
2776 efuse2 &= 0xF;
2777
2778 if (efuse2 == 1)
2779 ro = (2300 - 1350) * efuse / 255 + 1350;
2780 else
2781 ro = (2500 - 1000) * efuse / 255 + 1000;
2782
2783 if (ro >= 1660)
2784 type = 0;
2785 else
2786 type = 1;
2787
2788 /* Populate Stretch amount */
2789 data->smc_state_table.ClockStretcherAmount = stretch_amount;
2790
2791 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2792 for (i = 0; i < sclk_table->count; i++) {
2793 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2794 sclk_table->entries[i].cks_enable << i;
2795 volt_without_cks = (uint32_t)((14041 *
2796 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2797 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2798 volt_with_cks = (uint32_t)((13946 *
2799 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2800 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2801 if (volt_without_cks >= volt_with_cks)
2802 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2803 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2804 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2805 }
2806
2807 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2808 STRETCH_ENABLE, 0x0);
2809 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2810 masterReset, 0x1);
2811 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2812 staticEnable, 0x1);
2813 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2814 masterReset, 0x0);
2815
2816 /* Populate CKS Lookup Table */
2817 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2818 stretch_amount2 = 0;
2819 else if (stretch_amount == 3 || stretch_amount == 4)
2820 stretch_amount2 = 1;
2821 else {
2822 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2823 PHM_PlatformCaps_ClockStretcher);
2824 PP_ASSERT_WITH_CODE(false,
2825 "Stretch Amount in PPTable not supported\n",
2826 return -EINVAL);
2827 }
2828
2829 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2830 ixPWR_CKS_CNTL);
2831 value &= 0xFFC2FF87;
2832 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2833 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2834 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2835 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2836 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2837 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2838 SclkFrequency) / 100);
2839 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2840 clock_freq_u16 &&
2841 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2842 clock_freq_u16) {
2843 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2844 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2845 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2846 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2847 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2848 value |= (fiji_clock_stretch_amount_conversion
2849 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2850 [stretch_amount]) << 3;
2851 }
2852 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2853 CKS_LOOKUPTableEntry[0].minFreq);
2854 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2855 CKS_LOOKUPTableEntry[0].maxFreq);
2856 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2857 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2858 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2859 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2860
2861 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2862 ixPWR_CKS_CNTL, value);
2863
2864 /* Populate DDT Lookup Table */
2865 for (i = 0; i < 4; i++) {
2866 /* Assign the minimum and maximum VID stored
2867 * in the last row of Clock Stretcher Voltage Table.
2868 */
2869 data->smc_state_table.ClockStretcherDataTable.
2870 ClockStretcherDataTableEntry[i].minVID =
2871 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2872 data->smc_state_table.ClockStretcherDataTable.
2873 ClockStretcherDataTableEntry[i].maxVID =
2874 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2875 /* Loop through each SCLK and check the frequency
2876 * to see if it lies within the frequency for clock stretcher.
2877 */
2878 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2879 cks_setting = 0;
2880 clock_freq = PP_SMC_TO_HOST_UL(
2881 data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2882 /* Check the allowed frequency against the sclk level[j].
2883 * Sclk's endianness has already been converted,
2884 * and it's in 10Khz unit,
2885 * as opposed to Data table, which is in Mhz unit.
2886 */
2887 if (clock_freq >=
2888 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2889 cks_setting |= 0x2;
2890 if (clock_freq <
2891 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2892 cks_setting |= 0x1;
2893 }
2894 data->smc_state_table.ClockStretcherDataTable.
2895 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2896 }
2897 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2898 ClockStretcherDataTable.
2899 ClockStretcherDataTableEntry[i].setting);
2900 }
2901
2902 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2903 value &= 0xFFFFFFFE;
2904 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2905
2906 return 0;
2907 }
2908
2909 /**
2910 * Populates the SMC VRConfig field in DPM table.
2911 *
2912 * @param hwmgr the address of the hardware manager
2913 * @param table the SMC DPM table structure to be populated
2914 * @return always 0
2915 */
2916 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2917 struct SMU73_Discrete_DpmTable *table)
2918 {
2919 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2920 uint16_t config;
2921
2922 config = VR_MERGED_WITH_VDDC;
2923 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2924
2925 /* Set Vddc Voltage Controller */
2926 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2927 config = VR_SVI2_PLANE_1;
2928 table->VRConfig |= config;
2929 } else {
2930 PP_ASSERT_WITH_CODE(false,
2931 "VDDC should be on SVI2 control in merged mode!",);
2932 }
2933 /* Set Vddci Voltage Controller */
2934 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2935 config = VR_SVI2_PLANE_2; /* only in merged mode */
2936 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2937 } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2938 config = VR_SMIO_PATTERN_1;
2939 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2940 } else {
2941 config = VR_STATIC_VOLTAGE;
2942 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2943 }
2944 /* Set Mvdd Voltage Controller */
2945 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2946 config = VR_SVI2_PLANE_2;
2947 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2948 } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2949 config = VR_SMIO_PATTERN_2;
2950 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2951 } else {
2952 config = VR_STATIC_VOLTAGE;
2953 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2954 }
2955
2956 return 0;
2957 }
2958
2959 /**
2960 * Initializes the SMC table and uploads it
2961 *
2962 * @param hwmgr the address of the powerplay hardware manager.
2963 * @param pInput the pointer to input data (PowerState)
2964 * @return always 0
2965 */
2966 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2967 {
2968 int result;
2969 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2970 struct phm_ppt_v1_information *table_info =
2971 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2972 struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2973 const struct fiji_ulv_parm *ulv = &(data->ulv);
2974 uint8_t i;
2975 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2976
2977 result = fiji_setup_default_dpm_tables(hwmgr);
2978 PP_ASSERT_WITH_CODE(0 == result,
2979 "Failed to setup default DPM tables!", return result);
2980
2981 if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2982 fiji_populate_smc_voltage_tables(hwmgr, table);
2983
2984 table->SystemFlags = 0;
2985
2986 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2987 PHM_PlatformCaps_AutomaticDCTransition))
2988 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2989
2990 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2991 PHM_PlatformCaps_StepVddc))
2992 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2993
2994 if (data->is_memory_gddr5)
2995 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2996
2997 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2998 result = fiji_populate_ulv_state(hwmgr, table);
2999 PP_ASSERT_WITH_CODE(0 == result,
3000 "Failed to initialize ULV state!", return result);
3001 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3002 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
3003 }
3004
3005 result = fiji_populate_smc_link_level(hwmgr, table);
3006 PP_ASSERT_WITH_CODE(0 == result,
3007 "Failed to initialize Link Level!", return result);
3008
3009 result = fiji_populate_all_graphic_levels(hwmgr);
3010 PP_ASSERT_WITH_CODE(0 == result,
3011 "Failed to initialize Graphics Level!", return result);
3012
3013 result = fiji_populate_all_memory_levels(hwmgr);
3014 PP_ASSERT_WITH_CODE(0 == result,
3015 "Failed to initialize Memory Level!", return result);
3016
3017 result = fiji_populate_smc_acpi_level(hwmgr, table);
3018 PP_ASSERT_WITH_CODE(0 == result,
3019 "Failed to initialize ACPI Level!", return result);
3020
3021 result = fiji_populate_smc_vce_level(hwmgr, table);
3022 PP_ASSERT_WITH_CODE(0 == result,
3023 "Failed to initialize VCE Level!", return result);
3024
3025 result = fiji_populate_smc_acp_level(hwmgr, table);
3026 PP_ASSERT_WITH_CODE(0 == result,
3027 "Failed to initialize ACP Level!", return result);
3028
3029 result = fiji_populate_smc_samu_level(hwmgr, table);
3030 PP_ASSERT_WITH_CODE(0 == result,
3031 "Failed to initialize SAMU Level!", return result);
3032
3033 /* Since only the initial state is completely set up at this point
3034 * (the other states are just copies of the boot state) we only
3035 * need to populate the ARB settings for the initial state.
3036 */
3037 result = fiji_program_memory_timing_parameters(hwmgr);
3038 PP_ASSERT_WITH_CODE(0 == result,
3039 "Failed to Write ARB settings for the initial state.", return result);
3040
3041 result = fiji_populate_smc_uvd_level(hwmgr, table);
3042 PP_ASSERT_WITH_CODE(0 == result,
3043 "Failed to initialize UVD Level!", return result);
3044
3045 result = fiji_populate_smc_boot_level(hwmgr, table);
3046 PP_ASSERT_WITH_CODE(0 == result,
3047 "Failed to initialize Boot Level!", return result);
3048
3049 result = fiji_populate_smc_initailial_state(hwmgr);
3050 PP_ASSERT_WITH_CODE(0 == result,
3051 "Failed to initialize Boot State!", return result);
3052
3053 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
3054 PP_ASSERT_WITH_CODE(0 == result,
3055 "Failed to populate BAPM Parameters!", return result);
3056
3057 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3058 PHM_PlatformCaps_ClockStretcher)) {
3059 result = fiji_populate_clock_stretcher_data_table(hwmgr);
3060 PP_ASSERT_WITH_CODE(0 == result,
3061 "Failed to populate Clock Stretcher Data Table!",
3062 return result);
3063 }
3064
3065 table->GraphicsVoltageChangeEnable = 1;
3066 table->GraphicsThermThrottleEnable = 1;
3067 table->GraphicsInterval = 1;
3068 table->VoltageInterval = 1;
3069 table->ThermalInterval = 1;
3070 table->TemperatureLimitHigh =
3071 table_info->cac_dtp_table->usTargetOperatingTemp *
3072 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3073 table->TemperatureLimitLow =
3074 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3075 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3076 table->MemoryVoltageChangeEnable = 1;
3077 table->MemoryInterval = 1;
3078 table->VoltageResponseTime = 0;
3079 table->PhaseResponseTime = 0;
3080 table->MemoryThermThrottleEnable = 1;
3081 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
3082 table->PCIeGenInterval = 1;
3083 table->VRConfig = 0;
3084
3085 result = fiji_populate_vr_config(hwmgr, table);
3086 PP_ASSERT_WITH_CODE(0 == result,
3087 "Failed to populate VRConfig setting!", return result);
3088
3089 table->ThermGpio = 17;
3090 table->SclkStepSize = 0x4000;
3091
3092 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3093 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3094 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3095 PHM_PlatformCaps_RegulatorHot);
3096 } else {
3097 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3098 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3099 PHM_PlatformCaps_RegulatorHot);
3100 }
3101
3102 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3103 &gpio_pin)) {
3104 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3105 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3106 PHM_PlatformCaps_AutomaticDCTransition);
3107 } else {
3108 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3109 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3110 PHM_PlatformCaps_AutomaticDCTransition);
3111 }
3112
3113 /* Thermal Output GPIO */
3114 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3115 &gpio_pin)) {
3116 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3117 PHM_PlatformCaps_ThermalOutGPIO);
3118
3119 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3120
3121 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3122 * since VBIOS will program this register to set 'inactive state',
3123 * driver can then determine 'active state' from this and
3124 * program SMU with correct polarity
3125 */
3126 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3127 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3128 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3129
3130 /* if required, combine VRHot/PCC with thermal out GPIO */
3131 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3132 PHM_PlatformCaps_RegulatorHot) &&
3133 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3134 PHM_PlatformCaps_CombinePCCWithThermalSignal))
3135 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3136 } else {
3137 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3138 PHM_PlatformCaps_ThermalOutGPIO);
3139 table->ThermOutGpio = 17;
3140 table->ThermOutPolarity = 1;
3141 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3142 }
3143
3144 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3145 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3146
3147 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3148 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3149 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3150 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3151 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3152 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3153 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3154 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3155 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3156
3157 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3158 result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3159 data->dpm_table_start +
3160 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3161 (uint8_t *)&(table->SystemFlags),
3162 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3163 data->sram_end);
3164 PP_ASSERT_WITH_CODE(0 == result,
3165 "Failed to upload dpm data to SMC memory!", return result);
3166
3167 return 0;
3168 }
3169
3170 /**
3171 * Initialize the ARB DRAM timing table's index field.
3172 *
3173 * @param hwmgr the address of the powerplay hardware manager.
3174 * @return always 0
3175 */
3176 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3177 {
3178 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3179 uint32_t tmp;
3180 int result;
3181
3182 /* This is a read-modify-write on the first byte of the ARB table.
3183 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3184 * is the field 'current'.
3185 * This solution is ugly, but we never write the whole table only
3186 * individual fields in it.
3187 * In reality this field should not be in that structure
3188 * but in a soft register.
3189 */
3190 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3191 data->arb_table_start, &tmp, data->sram_end);
3192
3193 if (result)
3194 return result;
3195
3196 tmp &= 0x00FFFFFF;
3197 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3198
3199 return fiji_write_smc_sram_dword(hwmgr->smumgr,
3200 data->arb_table_start, tmp, data->sram_end);
3201 }
3202
3203 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3204 {
3205 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3206 PHM_PlatformCaps_RegulatorHot))
3207 return smum_send_msg_to_smc(hwmgr->smumgr,
3208 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3209
3210 return 0;
3211 }
3212
3213 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3214 {
3215 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3216 SCLK_PWRMGT_OFF, 0);
3217 return 0;
3218 }
3219
3220 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3221 {
3222 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3223 struct fiji_ulv_parm *ulv = &(data->ulv);
3224
3225 if (ulv->ulv_supported)
3226 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3227
3228 return 0;
3229 }
3230
3231 static int fiji_disable_ulv(struct pp_hwmgr *hwmgr)
3232 {
3233 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3234 struct fiji_ulv_parm *ulv = &(data->ulv);
3235
3236 if (ulv->ulv_supported)
3237 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV);
3238
3239 return 0;
3240 }
3241
3242 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3243 {
3244 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3245 PHM_PlatformCaps_SclkDeepSleep)) {
3246 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3247 PP_ASSERT_WITH_CODE(false,
3248 "Attempt to enable Master Deep Sleep switch failed!",
3249 return -1);
3250 } else {
3251 if (smum_send_msg_to_smc(hwmgr->smumgr,
3252 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3253 PP_ASSERT_WITH_CODE(false,
3254 "Attempt to disable Master Deep Sleep switch failed!",
3255 return -1);
3256 }
3257 }
3258
3259 return 0;
3260 }
3261
3262 static int fiji_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3263 {
3264 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3265 PHM_PlatformCaps_SclkDeepSleep)) {
3266 if (smum_send_msg_to_smc(hwmgr->smumgr,
3267 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3268 PP_ASSERT_WITH_CODE(false,
3269 "Attempt to disable Master Deep Sleep switch failed!",
3270 return -1);
3271 }
3272 }
3273
3274 return 0;
3275 }
3276
3277 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3278 {
3279 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3280 uint32_t val, val0, val2;
3281 uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
3282
3283 /* enable SCLK dpm */
3284 if(!data->sclk_dpm_key_disabled)
3285 PP_ASSERT_WITH_CODE(
3286 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3287 "Failed to enable SCLK DPM during DPM Start Function!",
3288 return -1);
3289
3290 /* enable MCLK dpm */
3291 if(0 == data->mclk_dpm_key_disabled) {
3292 cpl_threshold = 0;
3293 mc_threshold = 0;
3294
3295 /* Read per MCD tile (0 - 7) */
3296 for (i = 0; i < 8; i++) {
3297 PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3298 val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3299 if (0xf0000000 != val) {
3300 /* count number of MCQ that has channel(s) enabled */
3301 cpl_threshold++;
3302 /* only harvest 3 or full 4 supported */
3303 mc_threshold = val ? 3 : 4;
3304 }
3305 }
3306 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3307 "Number of MCQ is zero!", return -EINVAL;);
3308
3309 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3310 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3311 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3312 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3313 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3314 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3315 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3316 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3317 ixLCAC_MC0_CNTL, mc_threshold);
3318 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3319 ixLCAC_MC1_CNTL, mc_threshold);
3320 if (8 == cpl_threshold) {
3321 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3322 ixLCAC_MC2_CNTL, mc_threshold);
3323 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3324 ixLCAC_MC3_CNTL, mc_threshold);
3325 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3326 ixLCAC_MC4_CNTL, mc_threshold);
3327 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3328 ixLCAC_MC5_CNTL, mc_threshold);
3329 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3330 ixLCAC_MC6_CNTL, mc_threshold);
3331 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3332 ixLCAC_MC7_CNTL, mc_threshold);
3333 }
3334 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3335 ixLCAC_CPL_CNTL, cpl_cntl);
3336
3337 udelay(5);
3338
3339 mc_threshold = mc_threshold |
3340 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3341 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3342 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3343 ixLCAC_MC0_CNTL, mc_threshold);
3344 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3345 ixLCAC_MC1_CNTL, mc_threshold);
3346 if (8 == cpl_threshold) {
3347 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3348 ixLCAC_MC2_CNTL, mc_threshold);
3349 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3350 ixLCAC_MC3_CNTL, mc_threshold);
3351 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3352 ixLCAC_MC4_CNTL, mc_threshold);
3353 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3354 ixLCAC_MC5_CNTL, mc_threshold);
3355 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3356 ixLCAC_MC6_CNTL, mc_threshold);
3357 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3358 ixLCAC_MC7_CNTL, mc_threshold);
3359 }
3360 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3361 ixLCAC_CPL_CNTL, cpl_cntl);
3362
3363 /* Program CAC_EN per MCD (0-7) Tile */
3364 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3365 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3366 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3367 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3368 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3369 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3370 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3371 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3372 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3373 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3374
3375 for (i = 0; i < 8; i++) {
3376 /* Enable MCD i Tile read & write */
3377 val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3378 (1 << i));
3379 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3380 /* Enbale CAC_ON MCD i Tile */
3381 val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3382 val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3383 cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3384 }
3385 /* Set MC_CONFIG_MCD back to its default setting val0 */
3386 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3387
3388 PP_ASSERT_WITH_CODE(
3389 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3390 PPSMC_MSG_MCLKDPM_Enable)),
3391 "Failed to enable MCLK DPM during DPM Start Function!",
3392 return -1);
3393 }
3394 return 0;
3395 }
3396
3397 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3398 {
3399 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3400
3401 /*enable general power management */
3402 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3403 GLOBAL_PWRMGT_EN, 1);
3404 /* enable sclk deep sleep */
3405 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3406 DYNAMIC_PM_EN, 1);
3407 /* prepare for PCIE DPM */
3408 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3409 data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3410 VoltageChangeTimeout), 0x1000);
3411 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3412 SWRST_COMMAND_1, RESETLC, 0x0);
3413
3414 PP_ASSERT_WITH_CODE(
3415 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3416 PPSMC_MSG_Voltage_Cntl_Enable)),
3417 "Failed to enable voltage DPM during DPM Start Function!",
3418 return -1);
3419
3420 if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3421 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3422 return -1;
3423 }
3424
3425 /* enable PCIE dpm */
3426 if(!data->pcie_dpm_key_disabled) {
3427 PP_ASSERT_WITH_CODE(
3428 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3429 PPSMC_MSG_PCIeDPM_Enable)),
3430 "Failed to enable pcie DPM during DPM Start Function!",
3431 return -1);
3432 }
3433
3434 return 0;
3435 }
3436
3437 static int fiji_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3438 {
3439 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3440
3441 /* disable SCLK dpm */
3442 if (!data->sclk_dpm_key_disabled)
3443 PP_ASSERT_WITH_CODE(
3444 (smum_send_msg_to_smc(hwmgr->smumgr,
3445 PPSMC_MSG_DPM_Disable) == 0),
3446 "Failed to disable SCLK DPM!",
3447 return -1);
3448
3449 /* disable MCLK dpm */
3450 if (!data->mclk_dpm_key_disabled) {
3451 PP_ASSERT_WITH_CODE(
3452 (smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3453 PPSMC_MSG_MCLKDPM_SetEnabledMask, 1) == 0),
3454 "Failed to force MCLK DPM0!",
3455 return -1);
3456
3457 PP_ASSERT_WITH_CODE(
3458 (smum_send_msg_to_smc(hwmgr->smumgr,
3459 PPSMC_MSG_MCLKDPM_Disable) == 0),
3460 "Failed to disable MCLK DPM!",
3461 return -1);
3462 }
3463
3464 return 0;
3465 }
3466
3467 static int fiji_stop_dpm(struct pp_hwmgr *hwmgr)
3468 {
3469 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3470
3471 /* disable general power management */
3472 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3473 GLOBAL_PWRMGT_EN, 0);
3474 /* disable sclk deep sleep */
3475 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3476 DYNAMIC_PM_EN, 0);
3477
3478 /* disable PCIE dpm */
3479 if (!data->pcie_dpm_key_disabled) {
3480 PP_ASSERT_WITH_CODE(
3481 (smum_send_msg_to_smc(hwmgr->smumgr,
3482 PPSMC_MSG_PCIeDPM_Disable) == 0),
3483 "Failed to disable pcie DPM during DPM Stop Function!",
3484 return -1);
3485 }
3486
3487 if (fiji_disable_sclk_mclk_dpm(hwmgr)) {
3488 printk(KERN_ERR "Failed to disable Sclk DPM and Mclk DPM!");
3489 return -1;
3490 }
3491
3492 PP_ASSERT_WITH_CODE(
3493 (smum_send_msg_to_smc(hwmgr->smumgr,
3494 PPSMC_MSG_Voltage_Cntl_Disable) == 0),
3495 "Failed to disable voltage DPM during DPM Stop Function!",
3496 return -1);
3497
3498 return 0;
3499 }
3500
3501 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3502 uint32_t sources)
3503 {
3504 bool protection;
3505 enum DPM_EVENT_SRC src;
3506
3507 switch (sources) {
3508 default:
3509 printk(KERN_ERR "Unknown throttling event sources.");
3510 /* fall through */
3511 case 0:
3512 protection = false;
3513 /* src is unused */
3514 break;
3515 case (1 << PHM_AutoThrottleSource_Thermal):
3516 protection = true;
3517 src = DPM_EVENT_SRC_DIGITAL;
3518 break;
3519 case (1 << PHM_AutoThrottleSource_External):
3520 protection = true;
3521 src = DPM_EVENT_SRC_EXTERNAL;
3522 break;
3523 case (1 << PHM_AutoThrottleSource_External) |
3524 (1 << PHM_AutoThrottleSource_Thermal):
3525 protection = true;
3526 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3527 break;
3528 }
3529 /* Order matters - don't enable thermal protection for the wrong source. */
3530 if (protection) {
3531 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3532 DPM_EVENT_SRC, src);
3533 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3534 THERMAL_PROTECTION_DIS,
3535 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3536 PHM_PlatformCaps_ThermalController));
3537 } else
3538 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3539 THERMAL_PROTECTION_DIS, 1);
3540 }
3541
3542 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3543 PHM_AutoThrottleSource source)
3544 {
3545 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3546
3547 if (!(data->active_auto_throttle_sources & (1 << source))) {
3548 data->active_auto_throttle_sources |= 1 << source;
3549 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3550 }
3551 return 0;
3552 }
3553
3554 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3555 {
3556 return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3557 }
3558
3559 static int fiji_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3560 PHM_AutoThrottleSource source)
3561 {
3562 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3563
3564 if (data->active_auto_throttle_sources & (1 << source)) {
3565 data->active_auto_throttle_sources &= ~(1 << source);
3566 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3567 }
3568 return 0;
3569 }
3570
3571 static int fiji_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3572 {
3573 return fiji_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3574 }
3575
3576 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3577 {
3578 int tmp_result, result = 0;
3579
3580 tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3581 PP_ASSERT_WITH_CODE(result == 0,
3582 "DPM is already running right now, no need to enable DPM!",
3583 return 0);
3584
3585 if (fiji_voltage_control(hwmgr)) {
3586 tmp_result = fiji_enable_voltage_control(hwmgr);
3587 PP_ASSERT_WITH_CODE(tmp_result == 0,
3588 "Failed to enable voltage control!",
3589 result = tmp_result);
3590 }
3591
3592 if (fiji_voltage_control(hwmgr)) {
3593 tmp_result = fiji_construct_voltage_tables(hwmgr);
3594 PP_ASSERT_WITH_CODE((0 == tmp_result),
3595 "Failed to contruct voltage tables!",
3596 result = tmp_result);
3597 }
3598
3599 tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3600 PP_ASSERT_WITH_CODE((0 == tmp_result),
3601 "Failed to initialize MC reg table!", result = tmp_result);
3602
3603 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3604 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3605 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3606 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3607
3608 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3609 PHM_PlatformCaps_ThermalController))
3610 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3611 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3612
3613 tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3614 PP_ASSERT_WITH_CODE((0 == tmp_result),
3615 "Failed to program static screen threshold parameters!",
3616 result = tmp_result);
3617
3618 tmp_result = fiji_enable_display_gap(hwmgr);
3619 PP_ASSERT_WITH_CODE((0 == tmp_result),
3620 "Failed to enable display gap!", result = tmp_result);
3621
3622 tmp_result = fiji_program_voting_clients(hwmgr);
3623 PP_ASSERT_WITH_CODE((0 == tmp_result),
3624 "Failed to program voting clients!", result = tmp_result);
3625
3626 tmp_result = fiji_process_firmware_header(hwmgr);
3627 PP_ASSERT_WITH_CODE((0 == tmp_result),
3628 "Failed to process firmware header!", result = tmp_result);
3629
3630 tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3631 PP_ASSERT_WITH_CODE((0 == tmp_result),
3632 "Failed to initialize switch from ArbF0 to F1!",
3633 result = tmp_result);
3634
3635 tmp_result = fiji_init_smc_table(hwmgr);
3636 PP_ASSERT_WITH_CODE((0 == tmp_result),
3637 "Failed to initialize SMC table!", result = tmp_result);
3638
3639 tmp_result = fiji_init_arb_table_index(hwmgr);
3640 PP_ASSERT_WITH_CODE((0 == tmp_result),
3641 "Failed to initialize ARB table index!", result = tmp_result);
3642
3643 tmp_result = fiji_populate_pm_fuses(hwmgr);
3644 PP_ASSERT_WITH_CODE((0 == tmp_result),
3645 "Failed to populate PM fuses!", result = tmp_result);
3646
3647 tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3648 PP_ASSERT_WITH_CODE((0 == tmp_result),
3649 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3650
3651 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3652 PP_ASSERT_WITH_CODE((0 == tmp_result),
3653 "Failed to notify no display!", result = tmp_result);
3654
3655 tmp_result = fiji_enable_sclk_control(hwmgr);
3656 PP_ASSERT_WITH_CODE((0 == tmp_result),
3657 "Failed to enable SCLK control!", result = tmp_result);
3658
3659 tmp_result = fiji_enable_ulv(hwmgr);
3660 PP_ASSERT_WITH_CODE((0 == tmp_result),
3661 "Failed to enable ULV!", result = tmp_result);
3662
3663 tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3664 PP_ASSERT_WITH_CODE((0 == tmp_result),
3665 "Failed to enable deep sleep master switch!", result = tmp_result);
3666
3667 tmp_result = fiji_start_dpm(hwmgr);
3668 PP_ASSERT_WITH_CODE((0 == tmp_result),
3669 "Failed to start DPM!", result = tmp_result);
3670
3671 tmp_result = fiji_enable_smc_cac(hwmgr);
3672 PP_ASSERT_WITH_CODE((0 == tmp_result),
3673 "Failed to enable SMC CAC!", result = tmp_result);
3674
3675 tmp_result = fiji_enable_power_containment(hwmgr);
3676 PP_ASSERT_WITH_CODE((0 == tmp_result),
3677 "Failed to enable power containment!", result = tmp_result);
3678
3679 tmp_result = fiji_power_control_set_level(hwmgr);
3680 PP_ASSERT_WITH_CODE((0 == tmp_result),
3681 "Failed to power control set level!", result = tmp_result);
3682
3683 tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3684 PP_ASSERT_WITH_CODE((0 == tmp_result),
3685 "Failed to enable thermal auto throttle!", result = tmp_result);
3686
3687 return result;
3688 }
3689
3690 static int fiji_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
3691 {
3692 int tmp_result, result = 0;
3693
3694 tmp_result = (fiji_is_dpm_running(hwmgr)) ? 0 : -1;
3695 PP_ASSERT_WITH_CODE(tmp_result == 0,
3696 "DPM is not running right now, no need to disable DPM!",
3697 return 0);
3698
3699 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3700 PHM_PlatformCaps_ThermalController))
3701 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3702 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
3703
3704 tmp_result = fiji_disable_power_containment(hwmgr);
3705 PP_ASSERT_WITH_CODE((tmp_result == 0),
3706 "Failed to disable power containment!", result = tmp_result);
3707
3708 tmp_result = fiji_disable_smc_cac(hwmgr);
3709 PP_ASSERT_WITH_CODE((tmp_result == 0),
3710 "Failed to disable SMC CAC!", result = tmp_result);
3711
3712 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3713 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
3714 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3715 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
3716
3717 tmp_result = fiji_disable_thermal_auto_throttle(hwmgr);
3718 PP_ASSERT_WITH_CODE((tmp_result == 0),
3719 "Failed to disable thermal auto throttle!", result = tmp_result);
3720
3721 tmp_result = fiji_stop_dpm(hwmgr);
3722 PP_ASSERT_WITH_CODE((tmp_result == 0),
3723 "Failed to stop DPM!", result = tmp_result);
3724
3725 tmp_result = fiji_disable_deep_sleep_master_switch(hwmgr);
3726 PP_ASSERT_WITH_CODE((tmp_result == 0),
3727 "Failed to disable deep sleep master switch!", result = tmp_result);
3728
3729 tmp_result = fiji_disable_ulv(hwmgr);
3730 PP_ASSERT_WITH_CODE((tmp_result == 0),
3731 "Failed to disable ULV!", result = tmp_result);
3732
3733 tmp_result = fiji_clear_voting_clients(hwmgr);
3734 PP_ASSERT_WITH_CODE((tmp_result == 0),
3735 "Failed to clear voting clients!", result = tmp_result);
3736
3737 tmp_result = fiji_reset_to_default(hwmgr);
3738 PP_ASSERT_WITH_CODE((tmp_result == 0),
3739 "Failed to reset to default!", result = tmp_result);
3740
3741 tmp_result = fiji_force_switch_to_arbf0(hwmgr);
3742 PP_ASSERT_WITH_CODE((tmp_result == 0),
3743 "Failed to force to switch arbf0!", result = tmp_result);
3744
3745 return result;
3746 }
3747
3748 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3749 {
3750 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3751 uint32_t level, tmp;
3752
3753 if (!data->sclk_dpm_key_disabled) {
3754 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3755 level = 0;
3756 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3757 while (tmp >>= 1)
3758 level++;
3759 if (level)
3760 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3761 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3762 (1 << level));
3763 }
3764 }
3765
3766 if (!data->mclk_dpm_key_disabled) {
3767 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3768 level = 0;
3769 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3770 while (tmp >>= 1)
3771 level++;
3772 if (level)
3773 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3774 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3775 (1 << level));
3776 }
3777 }
3778
3779 if (!data->pcie_dpm_key_disabled) {
3780 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3781 level = 0;
3782 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3783 while (tmp >>= 1)
3784 level++;
3785 if (level)
3786 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3787 PPSMC_MSG_PCIeDPM_ForceLevel,
3788 (1 << level));
3789 }
3790 }
3791 return 0;
3792 }
3793
3794 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3795 {
3796 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3797
3798 phm_apply_dal_min_voltage_request(hwmgr);
3799
3800 if (!data->sclk_dpm_key_disabled) {
3801 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3802 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3803 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3804 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3805 }
3806 return 0;
3807 }
3808
3809 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3810 {
3811 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3812
3813 if (!fiji_is_dpm_running(hwmgr))
3814 return -EINVAL;
3815
3816 if (!data->pcie_dpm_key_disabled) {
3817 smum_send_msg_to_smc(hwmgr->smumgr,
3818 PPSMC_MSG_PCIeDPM_UnForceLevel);
3819 }
3820
3821 return fiji_upload_dpmlevel_enable_mask(hwmgr);
3822 }
3823
3824 static uint32_t fiji_get_lowest_enabled_level(
3825 struct pp_hwmgr *hwmgr, uint32_t mask)
3826 {
3827 uint32_t level = 0;
3828
3829 while(0 == (mask & (1 << level)))
3830 level++;
3831
3832 return level;
3833 }
3834
3835 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3836 {
3837 struct fiji_hwmgr *data =
3838 (struct fiji_hwmgr *)(hwmgr->backend);
3839 uint32_t level;
3840
3841 if (!data->sclk_dpm_key_disabled)
3842 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3843 level = fiji_get_lowest_enabled_level(hwmgr,
3844 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3845 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3846 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3847 (1 << level));
3848
3849 }
3850
3851 if (!data->mclk_dpm_key_disabled) {
3852 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3853 level = fiji_get_lowest_enabled_level(hwmgr,
3854 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3855 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3856 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3857 (1 << level));
3858 }
3859 }
3860
3861 if (!data->pcie_dpm_key_disabled) {
3862 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3863 level = fiji_get_lowest_enabled_level(hwmgr,
3864 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3865 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3866 PPSMC_MSG_PCIeDPM_ForceLevel,
3867 (1 << level));
3868 }
3869 }
3870
3871 return 0;
3872
3873 }
3874 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3875 enum amd_dpm_forced_level level)
3876 {
3877 int ret = 0;
3878
3879 switch (level) {
3880 case AMD_DPM_FORCED_LEVEL_HIGH:
3881 ret = fiji_force_dpm_highest(hwmgr);
3882 if (ret)
3883 return ret;
3884 break;
3885 case AMD_DPM_FORCED_LEVEL_LOW:
3886 ret = fiji_force_dpm_lowest(hwmgr);
3887 if (ret)
3888 return ret;
3889 break;
3890 case AMD_DPM_FORCED_LEVEL_AUTO:
3891 ret = fiji_unforce_dpm_levels(hwmgr);
3892 if (ret)
3893 return ret;
3894 break;
3895 default:
3896 break;
3897 }
3898
3899 hwmgr->dpm_level = level;
3900
3901 return ret;
3902 }
3903
3904 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3905 {
3906 return sizeof(struct fiji_power_state);
3907 }
3908
3909 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3910 void *state, struct pp_power_state *power_state,
3911 void *pp_table, uint32_t classification_flag)
3912 {
3913 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3914 struct fiji_power_state *fiji_power_state =
3915 (struct fiji_power_state *)(&(power_state->hardware));
3916 struct fiji_performance_level *performance_level;
3917 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3918 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3919 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3920 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3921 (ATOM_Tonga_SCLK_Dependency_Table *)
3922 (((unsigned long)powerplay_table) +
3923 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3924 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3925 (ATOM_Tonga_MCLK_Dependency_Table *)
3926 (((unsigned long)powerplay_table) +
3927 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3928
3929 /* The following fields are not initialized here: id orderedList allStatesList */
3930 power_state->classification.ui_label =
3931 (le16_to_cpu(state_entry->usClassification) &
3932 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3933 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3934 power_state->classification.flags = classification_flag;
3935 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3936
3937 power_state->classification.temporary_state = false;
3938 power_state->classification.to_be_deleted = false;
3939
3940 power_state->validation.disallowOnDC =
3941 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3942 ATOM_Tonga_DISALLOW_ON_DC));
3943
3944 power_state->pcie.lanes = 0;
3945
3946 power_state->display.disableFrameModulation = false;
3947 power_state->display.limitRefreshrate = false;
3948 power_state->display.enableVariBright =
3949 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3950 ATOM_Tonga_ENABLE_VARIBRIGHT));
3951
3952 power_state->validation.supportedPowerLevels = 0;
3953 power_state->uvd_clocks.VCLK = 0;
3954 power_state->uvd_clocks.DCLK = 0;
3955 power_state->temperatures.min = 0;
3956 power_state->temperatures.max = 0;
3957
3958 performance_level = &(fiji_power_state->performance_levels
3959 [fiji_power_state->performance_level_count++]);
3960
3961 PP_ASSERT_WITH_CODE(
3962 (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3963 "Performance levels exceeds SMC limit!",
3964 return -1);
3965
3966 PP_ASSERT_WITH_CODE(
3967 (fiji_power_state->performance_level_count <=
3968 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3969 "Performance levels exceeds Driver limit!",
3970 return -1);
3971
3972 /* Performance levels are arranged from low to high. */
3973 performance_level->memory_clock = mclk_dep_table->entries
3974 [state_entry->ucMemoryClockIndexLow].ulMclk;
3975 performance_level->engine_clock = sclk_dep_table->entries
3976 [state_entry->ucEngineClockIndexLow].ulSclk;
3977 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3978 state_entry->ucPCIEGenLow);
3979 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3980 state_entry->ucPCIELaneHigh);
3981
3982 performance_level = &(fiji_power_state->performance_levels
3983 [fiji_power_state->performance_level_count++]);
3984 performance_level->memory_clock = mclk_dep_table->entries
3985 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3986 performance_level->engine_clock = sclk_dep_table->entries
3987 [state_entry->ucEngineClockIndexHigh].ulSclk;
3988 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3989 state_entry->ucPCIEGenHigh);
3990 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3991 state_entry->ucPCIELaneHigh);
3992
3993 return 0;
3994 }
3995
3996 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3997 unsigned long entry_index, struct pp_power_state *state)
3998 {
3999 int result;
4000 struct fiji_power_state *ps;
4001 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4002 struct phm_ppt_v1_information *table_info =
4003 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4004 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
4005 table_info->vdd_dep_on_mclk;
4006
4007 state->hardware.magic = PHM_VIslands_Magic;
4008
4009 ps = (struct fiji_power_state *)(&state->hardware);
4010
4011 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
4012 fiji_get_pp_table_entry_callback_func);
4013
4014 /* This is the earliest time we have all the dependency table and the VBIOS boot state
4015 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
4016 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
4017 */
4018 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
4019 if (dep_mclk_table->entries[0].clk !=
4020 data->vbios_boot_state.mclk_bootup_value)
4021 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
4022 "does not match VBIOS boot MCLK level");
4023 if (dep_mclk_table->entries[0].vddci !=
4024 data->vbios_boot_state.vddci_bootup_value)
4025 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
4026 "does not match VBIOS boot VDDCI level");
4027 }
4028
4029 /* set DC compatible flag if this state supports DC */
4030 if (!state->validation.disallowOnDC)
4031 ps->dc_compatible = true;
4032
4033 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
4034 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
4035
4036 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
4037 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
4038
4039 if (!result) {
4040 uint32_t i;
4041
4042 switch (state->classification.ui_label) {
4043 case PP_StateUILabel_Performance:
4044 data->use_pcie_performance_levels = true;
4045
4046 for (i = 0; i < ps->performance_level_count; i++) {
4047 if (data->pcie_gen_performance.max <
4048 ps->performance_levels[i].pcie_gen)
4049 data->pcie_gen_performance.max =
4050 ps->performance_levels[i].pcie_gen;
4051
4052 if (data->pcie_gen_performance.min >
4053 ps->performance_levels[i].pcie_gen)
4054 data->pcie_gen_performance.min =
4055 ps->performance_levels[i].pcie_gen;
4056
4057 if (data->pcie_lane_performance.max <
4058 ps->performance_levels[i].pcie_lane)
4059 data->pcie_lane_performance.max =
4060 ps->performance_levels[i].pcie_lane;
4061
4062 if (data->pcie_lane_performance.min >
4063 ps->performance_levels[i].pcie_lane)
4064 data->pcie_lane_performance.min =
4065 ps->performance_levels[i].pcie_lane;
4066 }
4067 break;
4068 case PP_StateUILabel_Battery:
4069 data->use_pcie_power_saving_levels = true;
4070
4071 for (i = 0; i < ps->performance_level_count; i++) {
4072 if (data->pcie_gen_power_saving.max <
4073 ps->performance_levels[i].pcie_gen)
4074 data->pcie_gen_power_saving.max =
4075 ps->performance_levels[i].pcie_gen;
4076
4077 if (data->pcie_gen_power_saving.min >
4078 ps->performance_levels[i].pcie_gen)
4079 data->pcie_gen_power_saving.min =
4080 ps->performance_levels[i].pcie_gen;
4081
4082 if (data->pcie_lane_power_saving.max <
4083 ps->performance_levels[i].pcie_lane)
4084 data->pcie_lane_power_saving.max =
4085 ps->performance_levels[i].pcie_lane;
4086
4087 if (data->pcie_lane_power_saving.min >
4088 ps->performance_levels[i].pcie_lane)
4089 data->pcie_lane_power_saving.min =
4090 ps->performance_levels[i].pcie_lane;
4091 }
4092 break;
4093 default:
4094 break;
4095 }
4096 }
4097 return 0;
4098 }
4099
4100 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4101 struct pp_power_state *request_ps,
4102 const struct pp_power_state *current_ps)
4103 {
4104 struct fiji_power_state *fiji_ps =
4105 cast_phw_fiji_power_state(&request_ps->hardware);
4106 uint32_t sclk;
4107 uint32_t mclk;
4108 struct PP_Clocks minimum_clocks = {0};
4109 bool disable_mclk_switching;
4110 bool disable_mclk_switching_for_frame_lock;
4111 struct cgs_display_info info = {0};
4112 const struct phm_clock_and_voltage_limits *max_limits;
4113 uint32_t i;
4114 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4115 struct phm_ppt_v1_information *table_info =
4116 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4117 int32_t count;
4118 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4119
4120 data->battery_state = (PP_StateUILabel_Battery ==
4121 request_ps->classification.ui_label);
4122
4123 PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
4124 "VI should always have 2 performance levels",);
4125
4126 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4127 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4128 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4129
4130 /* Cap clock DPM tables at DC MAX if it is in DC. */
4131 if (PP_PowerSource_DC == hwmgr->power_source) {
4132 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4133 if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
4134 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
4135 if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
4136 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
4137 }
4138 }
4139
4140 fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
4141 fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
4142
4143 fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4144
4145 cgs_get_active_displays_info(hwmgr->device, &info);
4146
4147 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4148
4149 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4150
4151 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4152 PHM_PlatformCaps_StablePState)) {
4153 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4154 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4155
4156 for (count = table_info->vdd_dep_on_sclk->count - 1;
4157 count >= 0; count--) {
4158 if (stable_pstate_sclk >=
4159 table_info->vdd_dep_on_sclk->entries[count].clk) {
4160 stable_pstate_sclk =
4161 table_info->vdd_dep_on_sclk->entries[count].clk;
4162 break;
4163 }
4164 }
4165
4166 if (count < 0)
4167 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
4168
4169 stable_pstate_mclk = max_limits->mclk;
4170
4171 minimum_clocks.engineClock = stable_pstate_sclk;
4172 minimum_clocks.memoryClock = stable_pstate_mclk;
4173 }
4174
4175 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4176 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4177
4178 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4179 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4180
4181 fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4182
4183 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4184 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
4185 hwmgr->platform_descriptor.overdriveLimit.engineClock),
4186 "Overdrive sclk exceeds limit",
4187 hwmgr->gfx_arbiter.sclk_over_drive =
4188 hwmgr->platform_descriptor.overdriveLimit.engineClock);
4189
4190 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4191 fiji_ps->performance_levels[1].engine_clock =
4192 hwmgr->gfx_arbiter.sclk_over_drive;
4193 }
4194
4195 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4196 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
4197 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4198 "Overdrive mclk exceeds limit",
4199 hwmgr->gfx_arbiter.mclk_over_drive =
4200 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4201
4202 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4203 fiji_ps->performance_levels[1].memory_clock =
4204 hwmgr->gfx_arbiter.mclk_over_drive;
4205 }
4206
4207 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4208 hwmgr->platform_descriptor.platformCaps,
4209 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4210
4211 disable_mclk_switching = (1 < info.display_count) ||
4212 disable_mclk_switching_for_frame_lock;
4213
4214 sclk = fiji_ps->performance_levels[0].engine_clock;
4215 mclk = fiji_ps->performance_levels[0].memory_clock;
4216
4217 if (disable_mclk_switching)
4218 mclk = fiji_ps->performance_levels
4219 [fiji_ps->performance_level_count - 1].memory_clock;
4220
4221 if (sclk < minimum_clocks.engineClock)
4222 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4223 max_limits->sclk : minimum_clocks.engineClock;
4224
4225 if (mclk < minimum_clocks.memoryClock)
4226 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4227 max_limits->mclk : minimum_clocks.memoryClock;
4228
4229 fiji_ps->performance_levels[0].engine_clock = sclk;
4230 fiji_ps->performance_levels[0].memory_clock = mclk;
4231
4232 fiji_ps->performance_levels[1].engine_clock =
4233 (fiji_ps->performance_levels[1].engine_clock >=
4234 fiji_ps->performance_levels[0].engine_clock) ?
4235 fiji_ps->performance_levels[1].engine_clock :
4236 fiji_ps->performance_levels[0].engine_clock;
4237
4238 if (disable_mclk_switching) {
4239 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4240 mclk = fiji_ps->performance_levels[1].memory_clock;
4241
4242 fiji_ps->performance_levels[0].memory_clock = mclk;
4243 fiji_ps->performance_levels[1].memory_clock = mclk;
4244 } else {
4245 if (fiji_ps->performance_levels[1].memory_clock <
4246 fiji_ps->performance_levels[0].memory_clock)
4247 fiji_ps->performance_levels[1].memory_clock =
4248 fiji_ps->performance_levels[0].memory_clock;
4249 }
4250
4251 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4252 PHM_PlatformCaps_StablePState)) {
4253 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4254 fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4255 fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4256 fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4257 fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4258 }
4259 }
4260
4261 return 0;
4262 }
4263
4264 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4265 {
4266 const struct phm_set_power_state_input *states =
4267 (const struct phm_set_power_state_input *)input;
4268 const struct fiji_power_state *fiji_ps =
4269 cast_const_phw_fiji_power_state(states->pnew_state);
4270 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4271 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4272 uint32_t sclk = fiji_ps->performance_levels
4273 [fiji_ps->performance_level_count - 1].engine_clock;
4274 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4275 uint32_t mclk = fiji_ps->performance_levels
4276 [fiji_ps->performance_level_count - 1].memory_clock;
4277 uint32_t i;
4278 struct cgs_display_info info = {0};
4279
4280 data->need_update_smu7_dpm_table = 0;
4281
4282 for (i = 0; i < sclk_table->count; i++) {
4283 if (sclk == sclk_table->dpm_levels[i].value)
4284 break;
4285 }
4286
4287 if (i >= sclk_table->count)
4288 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4289 else {
4290 if(data->display_timing.min_clock_in_sr !=
4291 hwmgr->display_config.min_core_set_clock_in_sr)
4292 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4293 }
4294
4295 for (i = 0; i < mclk_table->count; i++) {
4296 if (mclk == mclk_table->dpm_levels[i].value)
4297 break;
4298 }
4299
4300 if (i >= mclk_table->count)
4301 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4302
4303 cgs_get_active_displays_info(hwmgr->device, &info);
4304
4305 if (data->display_timing.num_existing_displays != info.display_count)
4306 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4307
4308 return 0;
4309 }
4310
4311 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4312 const struct fiji_power_state *fiji_ps)
4313 {
4314 uint32_t i;
4315 uint32_t sclk, max_sclk = 0;
4316 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4317 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4318
4319 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4320 sclk = fiji_ps->performance_levels[i].engine_clock;
4321 if (max_sclk < sclk)
4322 max_sclk = sclk;
4323 }
4324
4325 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4326 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4327 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4328 dpm_table->pcie_speed_table.dpm_levels
4329 [dpm_table->pcie_speed_table.count - 1].value :
4330 dpm_table->pcie_speed_table.dpm_levels[i].value);
4331 }
4332
4333 return 0;
4334 }
4335
4336 static int fiji_request_link_speed_change_before_state_change(
4337 struct pp_hwmgr *hwmgr, const void *input)
4338 {
4339 const struct phm_set_power_state_input *states =
4340 (const struct phm_set_power_state_input *)input;
4341 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4342 const struct fiji_power_state *fiji_nps =
4343 cast_const_phw_fiji_power_state(states->pnew_state);
4344 const struct fiji_power_state *fiji_cps =
4345 cast_const_phw_fiji_power_state(states->pcurrent_state);
4346
4347 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4348 uint16_t current_link_speed;
4349
4350 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4351 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4352 else
4353 current_link_speed = data->force_pcie_gen;
4354
4355 data->force_pcie_gen = PP_PCIEGenInvalid;
4356 data->pspp_notify_required = false;
4357 if (target_link_speed > current_link_speed) {
4358 switch(target_link_speed) {
4359 case PP_PCIEGen3:
4360 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4361 break;
4362 data->force_pcie_gen = PP_PCIEGen2;
4363 if (current_link_speed == PP_PCIEGen2)
4364 break;
4365 case PP_PCIEGen2:
4366 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4367 break;
4368 default:
4369 data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4370 break;
4371 }
4372 } else {
4373 if (target_link_speed < current_link_speed)
4374 data->pspp_notify_required = true;
4375 }
4376
4377 return 0;
4378 }
4379
4380 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4381 {
4382 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4383
4384 if (0 == data->need_update_smu7_dpm_table)
4385 return 0;
4386
4387 if ((0 == data->sclk_dpm_key_disabled) &&
4388 (data->need_update_smu7_dpm_table &
4389 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4390 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4391 "Trying to freeze SCLK DPM when DPM is disabled",
4392 );
4393 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4394 PPSMC_MSG_SCLKDPM_FreezeLevel),
4395 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4396 return -1);
4397 }
4398
4399 if ((0 == data->mclk_dpm_key_disabled) &&
4400 (data->need_update_smu7_dpm_table &
4401 DPMTABLE_OD_UPDATE_MCLK)) {
4402 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4403 "Trying to freeze MCLK DPM when DPM is disabled",
4404 );
4405 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4406 PPSMC_MSG_MCLKDPM_FreezeLevel),
4407 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4408 return -1);
4409 }
4410
4411 return 0;
4412 }
4413
4414 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4415 struct pp_hwmgr *hwmgr, const void *input)
4416 {
4417 int result = 0;
4418 const struct phm_set_power_state_input *states =
4419 (const struct phm_set_power_state_input *)input;
4420 const struct fiji_power_state *fiji_ps =
4421 cast_const_phw_fiji_power_state(states->pnew_state);
4422 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4423 uint32_t sclk = fiji_ps->performance_levels
4424 [fiji_ps->performance_level_count - 1].engine_clock;
4425 uint32_t mclk = fiji_ps->performance_levels
4426 [fiji_ps->performance_level_count - 1].memory_clock;
4427 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4428
4429 struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4430 uint32_t dpm_count, clock_percent;
4431 uint32_t i;
4432
4433 if (0 == data->need_update_smu7_dpm_table)
4434 return 0;
4435
4436 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4437 dpm_table->sclk_table.dpm_levels
4438 [dpm_table->sclk_table.count - 1].value = sclk;
4439
4440 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4441 PHM_PlatformCaps_OD6PlusinACSupport) ||
4442 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4443 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4444 /* Need to do calculation based on the golden DPM table
4445 * as the Heatmap GPU Clock axis is also based on the default values
4446 */
4447 PP_ASSERT_WITH_CODE(
4448 (golden_dpm_table->sclk_table.dpm_levels
4449 [golden_dpm_table->sclk_table.count - 1].value != 0),
4450 "Divide by 0!",
4451 return -1);
4452 dpm_count = dpm_table->sclk_table.count < 2 ?
4453 0 : dpm_table->sclk_table.count - 2;
4454 for (i = dpm_count; i > 1; i--) {
4455 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4456 [golden_dpm_table->sclk_table.count-1].value) {
4457 clock_percent =
4458 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4459 [golden_dpm_table->sclk_table.count-1].value) * 100) /
4460 golden_dpm_table->sclk_table.dpm_levels
4461 [golden_dpm_table->sclk_table.count-1].value;
4462
4463 dpm_table->sclk_table.dpm_levels[i].value =
4464 golden_dpm_table->sclk_table.dpm_levels[i].value +
4465 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4466 clock_percent)/100;
4467
4468 } else if (golden_dpm_table->sclk_table.dpm_levels
4469 [dpm_table->sclk_table.count-1].value > sclk) {
4470 clock_percent =
4471 ((golden_dpm_table->sclk_table.dpm_levels
4472 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4473 100) /
4474 golden_dpm_table->sclk_table.dpm_levels
4475 [golden_dpm_table->sclk_table.count-1].value;
4476
4477 dpm_table->sclk_table.dpm_levels[i].value =
4478 golden_dpm_table->sclk_table.dpm_levels[i].value -
4479 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4480 clock_percent) / 100;
4481 } else
4482 dpm_table->sclk_table.dpm_levels[i].value =
4483 golden_dpm_table->sclk_table.dpm_levels[i].value;
4484 }
4485 }
4486 }
4487
4488 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4489 dpm_table->mclk_table.dpm_levels
4490 [dpm_table->mclk_table.count - 1].value = mclk;
4491 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4492 PHM_PlatformCaps_OD6PlusinACSupport) ||
4493 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4494 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4495
4496 PP_ASSERT_WITH_CODE(
4497 (golden_dpm_table->mclk_table.dpm_levels
4498 [golden_dpm_table->mclk_table.count-1].value != 0),
4499 "Divide by 0!",
4500 return -1);
4501 dpm_count = dpm_table->mclk_table.count < 2 ?
4502 0 : dpm_table->mclk_table.count - 2;
4503 for (i = dpm_count; i > 1; i--) {
4504 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4505 [golden_dpm_table->mclk_table.count-1].value) {
4506 clock_percent = ((mclk -
4507 golden_dpm_table->mclk_table.dpm_levels
4508 [golden_dpm_table->mclk_table.count-1].value) * 100) /
4509 golden_dpm_table->mclk_table.dpm_levels
4510 [golden_dpm_table->mclk_table.count-1].value;
4511
4512 dpm_table->mclk_table.dpm_levels[i].value =
4513 golden_dpm_table->mclk_table.dpm_levels[i].value +
4514 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4515 clock_percent) / 100;
4516
4517 } else if (golden_dpm_table->mclk_table.dpm_levels
4518 [dpm_table->mclk_table.count-1].value > mclk) {
4519 clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4520 [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4521 golden_dpm_table->mclk_table.dpm_levels
4522 [golden_dpm_table->mclk_table.count-1].value;
4523
4524 dpm_table->mclk_table.dpm_levels[i].value =
4525 golden_dpm_table->mclk_table.dpm_levels[i].value -
4526 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4527 clock_percent) / 100;
4528 } else
4529 dpm_table->mclk_table.dpm_levels[i].value =
4530 golden_dpm_table->mclk_table.dpm_levels[i].value;
4531 }
4532 }
4533 }
4534
4535 if (data->need_update_smu7_dpm_table &
4536 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4537 result = fiji_populate_all_graphic_levels(hwmgr);
4538 PP_ASSERT_WITH_CODE((0 == result),
4539 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4540 return result);
4541 }
4542
4543 if (data->need_update_smu7_dpm_table &
4544 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4545 /*populate MCLK dpm table to SMU7 */
4546 result = fiji_populate_all_memory_levels(hwmgr);
4547 PP_ASSERT_WITH_CODE((0 == result),
4548 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4549 return result);
4550 }
4551
4552 return result;
4553 }
4554
4555 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4556 struct fiji_single_dpm_table * dpm_table,
4557 uint32_t low_limit, uint32_t high_limit)
4558 {
4559 uint32_t i;
4560
4561 for (i = 0; i < dpm_table->count; i++) {
4562 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4563 (dpm_table->dpm_levels[i].value > high_limit))
4564 dpm_table->dpm_levels[i].enabled = false;
4565 else
4566 dpm_table->dpm_levels[i].enabled = true;
4567 }
4568 return 0;
4569 }
4570
4571 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4572 const struct fiji_power_state *fiji_ps)
4573 {
4574 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4575 uint32_t high_limit_count;
4576
4577 PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4578 "power state did not have any performance level",
4579 return -1);
4580
4581 high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4582
4583 fiji_trim_single_dpm_states(hwmgr,
4584 &(data->dpm_table.sclk_table),
4585 fiji_ps->performance_levels[0].engine_clock,
4586 fiji_ps->performance_levels[high_limit_count].engine_clock);
4587
4588 fiji_trim_single_dpm_states(hwmgr,
4589 &(data->dpm_table.mclk_table),
4590 fiji_ps->performance_levels[0].memory_clock,
4591 fiji_ps->performance_levels[high_limit_count].memory_clock);
4592
4593 return 0;
4594 }
4595
4596 static int fiji_generate_dpm_level_enable_mask(
4597 struct pp_hwmgr *hwmgr, const void *input)
4598 {
4599 int result;
4600 const struct phm_set_power_state_input *states =
4601 (const struct phm_set_power_state_input *)input;
4602 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4603 const struct fiji_power_state *fiji_ps =
4604 cast_const_phw_fiji_power_state(states->pnew_state);
4605
4606 result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4607 if (result)
4608 return result;
4609
4610 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4611 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4612 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4613 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4614 data->last_mclk_dpm_enable_mask =
4615 data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4616
4617 if (data->uvd_enabled) {
4618 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4619 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4620 }
4621
4622 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4623 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4624
4625 return 0;
4626 }
4627
4628 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4629 {
4630 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4631 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4632 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4633 }
4634
4635 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4636 {
4637 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4638 PPSMC_MSG_VCEDPM_Enable :
4639 PPSMC_MSG_VCEDPM_Disable);
4640 }
4641
4642 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4643 {
4644 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4645 PPSMC_MSG_SAMUDPM_Enable :
4646 PPSMC_MSG_SAMUDPM_Disable);
4647 }
4648
4649 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4650 {
4651 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4652 PPSMC_MSG_ACPDPM_Enable :
4653 PPSMC_MSG_ACPDPM_Disable);
4654 }
4655
4656 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4657 {
4658 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4659 uint32_t mm_boot_level_offset, mm_boot_level_value;
4660 struct phm_ppt_v1_information *table_info =
4661 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4662
4663 if (!bgate) {
4664 data->smc_state_table.UvdBootLevel = 0;
4665 if (table_info->mm_dep_table->count > 0)
4666 data->smc_state_table.UvdBootLevel =
4667 (uint8_t) (table_info->mm_dep_table->count - 1);
4668 mm_boot_level_offset = data->dpm_table_start +
4669 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4670 mm_boot_level_offset /= 4;
4671 mm_boot_level_offset *= 4;
4672 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4673 CGS_IND_REG__SMC, mm_boot_level_offset);
4674 mm_boot_level_value &= 0x00FFFFFF;
4675 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4676 cgs_write_ind_register(hwmgr->device,
4677 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4678
4679 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4680 PHM_PlatformCaps_UVDDPM) ||
4681 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4682 PHM_PlatformCaps_StablePState))
4683 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4684 PPSMC_MSG_UVDDPM_SetEnabledMask,
4685 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4686 }
4687
4688 return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4689 }
4690
4691 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4692 {
4693 const struct phm_set_power_state_input *states =
4694 (const struct phm_set_power_state_input *)input;
4695 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4696 const struct fiji_power_state *fiji_nps =
4697 cast_const_phw_fiji_power_state(states->pnew_state);
4698 const struct fiji_power_state *fiji_cps =
4699 cast_const_phw_fiji_power_state(states->pcurrent_state);
4700
4701 uint32_t mm_boot_level_offset, mm_boot_level_value;
4702 struct phm_ppt_v1_information *table_info =
4703 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4704
4705 if (fiji_nps->vce_clks.evclk >0 &&
4706 (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4707 data->smc_state_table.VceBootLevel =
4708 (uint8_t) (table_info->mm_dep_table->count - 1);
4709
4710 mm_boot_level_offset = data->dpm_table_start +
4711 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4712 mm_boot_level_offset /= 4;
4713 mm_boot_level_offset *= 4;
4714 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4715 CGS_IND_REG__SMC, mm_boot_level_offset);
4716 mm_boot_level_value &= 0xFF00FFFF;
4717 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4718 cgs_write_ind_register(hwmgr->device,
4719 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4720
4721 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4722 PHM_PlatformCaps_StablePState)) {
4723 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4724 PPSMC_MSG_VCEDPM_SetEnabledMask,
4725 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4726
4727 fiji_enable_disable_vce_dpm(hwmgr, true);
4728 } else if (fiji_nps->vce_clks.evclk == 0 &&
4729 fiji_cps != NULL &&
4730 fiji_cps->vce_clks.evclk > 0)
4731 fiji_enable_disable_vce_dpm(hwmgr, false);
4732 }
4733
4734 return 0;
4735 }
4736
4737 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4738 {
4739 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4740 uint32_t mm_boot_level_offset, mm_boot_level_value;
4741 struct phm_ppt_v1_information *table_info =
4742 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4743
4744 if (!bgate) {
4745 data->smc_state_table.SamuBootLevel =
4746 (uint8_t) (table_info->mm_dep_table->count - 1);
4747 mm_boot_level_offset = data->dpm_table_start +
4748 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4749 mm_boot_level_offset /= 4;
4750 mm_boot_level_offset *= 4;
4751 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4752 CGS_IND_REG__SMC, mm_boot_level_offset);
4753 mm_boot_level_value &= 0xFFFFFF00;
4754 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4755 cgs_write_ind_register(hwmgr->device,
4756 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4757
4758 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4759 PHM_PlatformCaps_StablePState))
4760 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4761 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4762 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4763 }
4764
4765 return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4766 }
4767
4768 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4769 {
4770 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4771 uint32_t mm_boot_level_offset, mm_boot_level_value;
4772 struct phm_ppt_v1_information *table_info =
4773 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4774
4775 if (!bgate) {
4776 data->smc_state_table.AcpBootLevel =
4777 (uint8_t) (table_info->mm_dep_table->count - 1);
4778 mm_boot_level_offset = data->dpm_table_start +
4779 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4780 mm_boot_level_offset /= 4;
4781 mm_boot_level_offset *= 4;
4782 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4783 CGS_IND_REG__SMC, mm_boot_level_offset);
4784 mm_boot_level_value &= 0xFFFF00FF;
4785 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4786 cgs_write_ind_register(hwmgr->device,
4787 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4788
4789 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4790 PHM_PlatformCaps_StablePState))
4791 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4792 PPSMC_MSG_ACPDPM_SetEnabledMask,
4793 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4794 }
4795
4796 return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4797 }
4798
4799 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4800 {
4801 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4802
4803 int result = 0;
4804 uint32_t low_sclk_interrupt_threshold = 0;
4805
4806 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4807 PHM_PlatformCaps_SclkThrottleLowNotification)
4808 && (hwmgr->gfx_arbiter.sclk_threshold !=
4809 data->low_sclk_interrupt_threshold)) {
4810 data->low_sclk_interrupt_threshold =
4811 hwmgr->gfx_arbiter.sclk_threshold;
4812 low_sclk_interrupt_threshold =
4813 data->low_sclk_interrupt_threshold;
4814
4815 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4816
4817 result = fiji_copy_bytes_to_smc(
4818 hwmgr->smumgr,
4819 data->dpm_table_start +
4820 offsetof(SMU73_Discrete_DpmTable,
4821 LowSclkInterruptThreshold),
4822 (uint8_t *)&low_sclk_interrupt_threshold,
4823 sizeof(uint32_t),
4824 data->sram_end);
4825 }
4826
4827 return result;
4828 }
4829
4830 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4831 {
4832 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4833
4834 if (data->need_update_smu7_dpm_table &
4835 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4836 return fiji_program_memory_timing_parameters(hwmgr);
4837
4838 return 0;
4839 }
4840
4841 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4842 {
4843 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4844
4845 if (0 == data->need_update_smu7_dpm_table)
4846 return 0;
4847
4848 if ((0 == data->sclk_dpm_key_disabled) &&
4849 (data->need_update_smu7_dpm_table &
4850 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4851
4852 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4853 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4854 );
4855 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4856 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4857 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4858 return -1);
4859 }
4860
4861 if ((0 == data->mclk_dpm_key_disabled) &&
4862 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4863
4864 PP_ASSERT_WITH_CODE(fiji_is_dpm_running(hwmgr),
4865 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4866 );
4867 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4868 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4869 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4870 return -1);
4871 }
4872
4873 data->need_update_smu7_dpm_table = 0;
4874
4875 return 0;
4876 }
4877
4878 /* Look up the voltaged based on DAL's requested level.
4879 * and then send the requested VDDC voltage to SMC
4880 */
4881 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4882 {
4883 return;
4884 }
4885
4886 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4887 {
4888 int result;
4889 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4890
4891 /* Apply minimum voltage based on DAL's request level */
4892 fiji_apply_dal_minimum_voltage_request(hwmgr);
4893
4894 if (0 == data->sclk_dpm_key_disabled) {
4895 /* Checking if DPM is running. If we discover hang because of this,
4896 * we should skip this message.
4897 */
4898 if (!fiji_is_dpm_running(hwmgr))
4899 printk(KERN_ERR "[ powerplay ] "
4900 "Trying to set Enable Mask when DPM is disabled \n");
4901
4902 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4903 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4904 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4905 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4906 PP_ASSERT_WITH_CODE((0 == result),
4907 "Set Sclk Dpm enable Mask failed", return -1);
4908 }
4909 }
4910
4911 if (0 == data->mclk_dpm_key_disabled) {
4912 /* Checking if DPM is running. If we discover hang because of this,
4913 * we should skip this message.
4914 */
4915 if (!fiji_is_dpm_running(hwmgr))
4916 printk(KERN_ERR "[ powerplay ]"
4917 " Trying to set Enable Mask when DPM is disabled \n");
4918
4919 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4920 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4921 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4922 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4923 PP_ASSERT_WITH_CODE((0 == result),
4924 "Set Mclk Dpm enable Mask failed", return -1);
4925 }
4926 }
4927
4928 return 0;
4929 }
4930
4931 static int fiji_notify_link_speed_change_after_state_change(
4932 struct pp_hwmgr *hwmgr, const void *input)
4933 {
4934 const struct phm_set_power_state_input *states =
4935 (const struct phm_set_power_state_input *)input;
4936 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4937 const struct fiji_power_state *fiji_ps =
4938 cast_const_phw_fiji_power_state(states->pnew_state);
4939 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4940 uint8_t request;
4941
4942 if (data->pspp_notify_required) {
4943 if (target_link_speed == PP_PCIEGen3)
4944 request = PCIE_PERF_REQ_GEN3;
4945 else if (target_link_speed == PP_PCIEGen2)
4946 request = PCIE_PERF_REQ_GEN2;
4947 else
4948 request = PCIE_PERF_REQ_GEN1;
4949
4950 if(request == PCIE_PERF_REQ_GEN1 &&
4951 fiji_get_current_pcie_speed(hwmgr) > 0)
4952 return 0;
4953
4954 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4955 if (PP_PCIEGen2 == target_link_speed)
4956 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4957 else
4958 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4959 }
4960 }
4961
4962 return 0;
4963 }
4964
4965 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4966 const void *input)
4967 {
4968 int tmp_result, result = 0;
4969
4970 tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4971 PP_ASSERT_WITH_CODE((0 == tmp_result),
4972 "Failed to find DPM states clocks in DPM table!",
4973 result = tmp_result);
4974
4975 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4976 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4977 tmp_result =
4978 fiji_request_link_speed_change_before_state_change(hwmgr, input);
4979 PP_ASSERT_WITH_CODE((0 == tmp_result),
4980 "Failed to request link speed change before state change!",
4981 result = tmp_result);
4982 }
4983
4984 tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4985 PP_ASSERT_WITH_CODE((0 == tmp_result),
4986 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4987
4988 tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4989 PP_ASSERT_WITH_CODE((0 == tmp_result),
4990 "Failed to populate and upload SCLK MCLK DPM levels!",
4991 result = tmp_result);
4992
4993 tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4994 PP_ASSERT_WITH_CODE((0 == tmp_result),
4995 "Failed to generate DPM level enabled mask!",
4996 result = tmp_result);
4997
4998 tmp_result = fiji_update_vce_dpm(hwmgr, input);
4999 PP_ASSERT_WITH_CODE((0 == tmp_result),
5000 "Failed to update VCE DPM!",
5001 result = tmp_result);
5002
5003 tmp_result = fiji_update_sclk_threshold(hwmgr);
5004 PP_ASSERT_WITH_CODE((0 == tmp_result),
5005 "Failed to update SCLK threshold!",
5006 result = tmp_result);
5007
5008 tmp_result = fiji_program_mem_timing_parameters(hwmgr);
5009 PP_ASSERT_WITH_CODE((0 == tmp_result),
5010 "Failed to program memory timing parameters!",
5011 result = tmp_result);
5012
5013 tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
5014 PP_ASSERT_WITH_CODE((0 == tmp_result),
5015 "Failed to unfreeze SCLK MCLK DPM!",
5016 result = tmp_result);
5017
5018 tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
5019 PP_ASSERT_WITH_CODE((0 == tmp_result),
5020 "Failed to upload DPM level enabled mask!",
5021 result = tmp_result);
5022
5023 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5024 PHM_PlatformCaps_PCIEPerformanceRequest)) {
5025 tmp_result =
5026 fiji_notify_link_speed_change_after_state_change(hwmgr, input);
5027 PP_ASSERT_WITH_CODE((0 == tmp_result),
5028 "Failed to notify link speed change after state change!",
5029 result = tmp_result);
5030 }
5031
5032 return result;
5033 }
5034
5035 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
5036 {
5037 struct pp_power_state *ps;
5038 struct fiji_power_state *fiji_ps;
5039
5040 if (hwmgr == NULL)
5041 return -EINVAL;
5042
5043 ps = hwmgr->request_ps;
5044
5045 if (ps == NULL)
5046 return -EINVAL;
5047
5048 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5049
5050 if (low)
5051 return fiji_ps->performance_levels[0].engine_clock;
5052 else
5053 return fiji_ps->performance_levels
5054 [fiji_ps->performance_level_count-1].engine_clock;
5055 }
5056
5057 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
5058 {
5059 struct pp_power_state *ps;
5060 struct fiji_power_state *fiji_ps;
5061
5062 if (hwmgr == NULL)
5063 return -EINVAL;
5064
5065 ps = hwmgr->request_ps;
5066
5067 if (ps == NULL)
5068 return -EINVAL;
5069
5070 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5071
5072 if (low)
5073 return fiji_ps->performance_levels[0].memory_clock;
5074 else
5075 return fiji_ps->performance_levels
5076 [fiji_ps->performance_level_count-1].memory_clock;
5077 }
5078
5079 static void fiji_print_current_perforce_level(
5080 struct pp_hwmgr *hwmgr, struct seq_file *m)
5081 {
5082 uint32_t sclk, mclk, activity_percent = 0;
5083 uint32_t offset;
5084 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5085
5086 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5087
5088 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5089
5090 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5091
5092 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5093 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
5094 mclk / 100, sclk / 100);
5095
5096 offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
5097 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5098 activity_percent += 0x80;
5099 activity_percent >>= 8;
5100
5101 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5102
5103 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
5104
5105 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
5106 }
5107
5108 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
5109 {
5110 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5111 uint32_t num_active_displays = 0;
5112 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
5113 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5114 uint32_t display_gap2;
5115 uint32_t pre_vbi_time_in_us;
5116 uint32_t frame_time_in_us;
5117 uint32_t ref_clock;
5118 uint32_t refresh_rate = 0;
5119 struct cgs_display_info info = {0};
5120 struct cgs_mode_info mode_info;
5121
5122 info.mode_info = &mode_info;
5123
5124 cgs_get_active_displays_info(hwmgr->device, &info);
5125 num_active_displays = info.display_count;
5126
5127 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
5128 DISP_GAP, (num_active_displays > 0)?
5129 DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5130 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5131 ixCG_DISPLAY_GAP_CNTL, display_gap);
5132
5133 ref_clock = mode_info.ref_clock;
5134 refresh_rate = mode_info.refresh_rate;
5135
5136 if (refresh_rate == 0)
5137 refresh_rate = 60;
5138
5139 frame_time_in_us = 1000000 / refresh_rate;
5140
5141 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5142 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5143
5144 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5145 ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5146
5147 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5148 data->soft_regs_start +
5149 offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
5150
5151 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5152 data->soft_regs_start +
5153 offsetof(SMU73_SoftRegisters, VBlankTimeout),
5154 (frame_time_in_us - pre_vbi_time_in_us));
5155
5156 if (num_active_displays == 1)
5157 tonga_notify_smc_display_change(hwmgr, true);
5158
5159 return 0;
5160 }
5161
5162 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5163 {
5164 return fiji_program_display_gap(hwmgr);
5165 }
5166
5167 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
5168 uint16_t us_max_fan_pwm)
5169 {
5170 hwmgr->thermal_controller.
5171 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5172
5173 if (phm_is_hw_access_blocked(hwmgr))
5174 return 0;
5175
5176 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5177 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
5178 }
5179
5180 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
5181 uint16_t us_max_fan_rpm)
5182 {
5183 hwmgr->thermal_controller.
5184 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
5185
5186 if (phm_is_hw_access_blocked(hwmgr))
5187 return 0;
5188
5189 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5190 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
5191 }
5192
5193 int fiji_dpm_set_interrupt_state(void *private_data,
5194 unsigned src_id, unsigned type,
5195 int enabled)
5196 {
5197 uint32_t cg_thermal_int;
5198 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5199
5200 if (hwmgr == NULL)
5201 return -EINVAL;
5202
5203 switch (type) {
5204 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5205 if (enabled) {
5206 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5207 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5208 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5209 cgs_write_ind_register(hwmgr->device,
5210 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5211 } else {
5212 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5213 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5214 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5215 cgs_write_ind_register(hwmgr->device,
5216 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5217 }
5218 break;
5219
5220 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5221 if (enabled) {
5222 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5223 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5224 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5225 cgs_write_ind_register(hwmgr->device,
5226 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5227 } else {
5228 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5229 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5230 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5231 cgs_write_ind_register(hwmgr->device,
5232 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5233 }
5234 break;
5235 default:
5236 break;
5237 }
5238 return 0;
5239 }
5240
5241 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5242 const void *thermal_interrupt_info)
5243 {
5244 int result;
5245 const struct pp_interrupt_registration_info *info =
5246 (const struct pp_interrupt_registration_info *)
5247 thermal_interrupt_info;
5248
5249 if (info == NULL)
5250 return -EINVAL;
5251
5252 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5253 fiji_dpm_set_interrupt_state,
5254 info->call_back, info->context);
5255
5256 if (result)
5257 return -EINVAL;
5258
5259 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5260 fiji_dpm_set_interrupt_state,
5261 info->call_back, info->context);
5262
5263 if (result)
5264 return -EINVAL;
5265
5266 return 0;
5267 }
5268
5269 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5270 {
5271 if (mode) {
5272 /* stop auto-manage */
5273 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5274 PHM_PlatformCaps_MicrocodeFanControl))
5275 fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5276 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5277 } else
5278 /* restart auto-manage */
5279 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5280
5281 return 0;
5282 }
5283
5284 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5285 {
5286 if (hwmgr->fan_ctrl_is_in_default_mode)
5287 return hwmgr->fan_ctrl_default_mode;
5288 else
5289 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5290 CG_FDO_CTRL2, FDO_PWM_MODE);
5291 }
5292
5293 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5294 enum pp_clock_type type, uint32_t mask)
5295 {
5296 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5297
5298 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5299 return -EINVAL;
5300
5301 switch (type) {
5302 case PP_SCLK:
5303 if (!data->sclk_dpm_key_disabled)
5304 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5305 PPSMC_MSG_SCLKDPM_SetEnabledMask,
5306 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5307 break;
5308
5309 case PP_MCLK:
5310 if (!data->mclk_dpm_key_disabled)
5311 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5312 PPSMC_MSG_MCLKDPM_SetEnabledMask,
5313 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5314 break;
5315
5316 case PP_PCIE:
5317 {
5318 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5319 uint32_t level = 0;
5320
5321 while (tmp >>= 1)
5322 level++;
5323
5324 if (!data->pcie_dpm_key_disabled)
5325 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5326 PPSMC_MSG_PCIeDPM_ForceLevel,
5327 level);
5328 break;
5329 }
5330 default:
5331 break;
5332 }
5333
5334 return 0;
5335 }
5336
5337 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5338 enum pp_clock_type type, char *buf)
5339 {
5340 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5341 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5342 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5343 struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5344 int i, now, size = 0;
5345 uint32_t clock, pcie_speed;
5346
5347 switch (type) {
5348 case PP_SCLK:
5349 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5350 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5351
5352 for (i = 0; i < sclk_table->count; i++) {
5353 if (clock > sclk_table->dpm_levels[i].value)
5354 continue;
5355 break;
5356 }
5357 now = i;
5358
5359 for (i = 0; i < sclk_table->count; i++)
5360 size += sprintf(buf + size, "%d: %uMhz %s\n",
5361 i, sclk_table->dpm_levels[i].value / 100,
5362 (i == now) ? "*" : "");
5363 break;
5364 case PP_MCLK:
5365 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5366 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5367
5368 for (i = 0; i < mclk_table->count; i++) {
5369 if (clock > mclk_table->dpm_levels[i].value)
5370 continue;
5371 break;
5372 }
5373 now = i;
5374
5375 for (i = 0; i < mclk_table->count; i++)
5376 size += sprintf(buf + size, "%d: %uMhz %s\n",
5377 i, mclk_table->dpm_levels[i].value / 100,
5378 (i == now) ? "*" : "");
5379 break;
5380 case PP_PCIE:
5381 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5382 for (i = 0; i < pcie_table->count; i++) {
5383 if (pcie_speed != pcie_table->dpm_levels[i].value)
5384 continue;
5385 break;
5386 }
5387 now = i;
5388
5389 for (i = 0; i < pcie_table->count; i++)
5390 size += sprintf(buf + size, "%d: %s %s\n", i,
5391 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5392 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5393 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5394 (i == now) ? "*" : "");
5395 break;
5396 default:
5397 break;
5398 }
5399 return size;
5400 }
5401
5402 static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1,
5403 const struct fiji_performance_level *pl2)
5404 {
5405 return ((pl1->memory_clock == pl2->memory_clock) &&
5406 (pl1->engine_clock == pl2->engine_clock) &&
5407 (pl1->pcie_gen == pl2->pcie_gen) &&
5408 (pl1->pcie_lane == pl2->pcie_lane));
5409 }
5410
5411 int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5412 {
5413 const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1);
5414 const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2);
5415 int i;
5416
5417 if (equal == NULL || psa == NULL || psb == NULL)
5418 return -EINVAL;
5419
5420 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5421 if (psa->performance_level_count != psb->performance_level_count) {
5422 *equal = false;
5423 return 0;
5424 }
5425
5426 for (i = 0; i < psa->performance_level_count; i++) {
5427 if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5428 /* If we have found even one performance level pair that is different the states are different. */
5429 *equal = false;
5430 return 0;
5431 }
5432 }
5433
5434 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5435 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
5436 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
5437 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5438 *equal &= (psa->acp_clk == psb->acp_clk);
5439
5440 return 0;
5441 }
5442
5443 bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5444 {
5445 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5446 bool is_update_required = false;
5447 struct cgs_display_info info = {0,0,NULL};
5448
5449 cgs_get_active_displays_info(hwmgr->device, &info);
5450
5451 if (data->display_timing.num_existing_displays != info.display_count)
5452 is_update_required = true;
5453
5454 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5455 if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr)
5456 is_update_required = true;
5457 }
5458
5459 return is_update_required;
5460 }
5461
5462 static int fiji_get_sclk_od(struct pp_hwmgr *hwmgr)
5463 {
5464 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5465 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5466 struct fiji_single_dpm_table *golden_sclk_table =
5467 &(data->golden_dpm_table.sclk_table);
5468 int value;
5469
5470 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
5471 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
5472 100 /
5473 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5474
5475 return value;
5476 }
5477
5478 static int fiji_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5479 {
5480 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5481 struct fiji_single_dpm_table *golden_sclk_table =
5482 &(data->golden_dpm_table.sclk_table);
5483 struct pp_power_state *ps;
5484 struct fiji_power_state *fiji_ps;
5485
5486 if (value > 20)
5487 value = 20;
5488
5489 ps = hwmgr->request_ps;
5490
5491 if (ps == NULL)
5492 return -EINVAL;
5493
5494 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5495
5496 fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].engine_clock =
5497 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5498 value / 100 +
5499 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5500
5501 return 0;
5502 }
5503
5504 static int fiji_get_mclk_od(struct pp_hwmgr *hwmgr)
5505 {
5506 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5507 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5508 struct fiji_single_dpm_table *golden_mclk_table =
5509 &(data->golden_dpm_table.mclk_table);
5510 int value;
5511
5512 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
5513 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
5514 100 /
5515 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5516
5517 return value;
5518 }
5519
5520 static int fiji_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5521 {
5522 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5523 struct fiji_single_dpm_table *golden_mclk_table =
5524 &(data->golden_dpm_table.mclk_table);
5525 struct pp_power_state *ps;
5526 struct fiji_power_state *fiji_ps;
5527
5528 if (value > 20)
5529 value = 20;
5530
5531 ps = hwmgr->request_ps;
5532
5533 if (ps == NULL)
5534 return -EINVAL;
5535
5536 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
5537
5538 fiji_ps->performance_levels[fiji_ps->performance_level_count - 1].memory_clock =
5539 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5540 value / 100 +
5541 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5542
5543 return 0;
5544 }
5545
5546 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5547 .backend_init = &fiji_hwmgr_backend_init,
5548 .backend_fini = &fiji_hwmgr_backend_fini,
5549 .asic_setup = &fiji_setup_asic_task,
5550 .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5551 .dynamic_state_management_disable = &fiji_disable_dpm_tasks,
5552 .force_dpm_level = &fiji_dpm_force_dpm_level,
5553 .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5554 .get_power_state_size = &fiji_get_power_state_size,
5555 .get_pp_table_entry = &fiji_get_pp_table_entry,
5556 .patch_boot_state = &fiji_patch_boot_state,
5557 .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5558 .power_state_set = &fiji_set_power_state_tasks,
5559 .get_sclk = &fiji_dpm_get_sclk,
5560 .get_mclk = &fiji_dpm_get_mclk,
5561 .print_current_perforce_level = &fiji_print_current_perforce_level,
5562 .powergate_uvd = &fiji_phm_powergate_uvd,
5563 .powergate_vce = &fiji_phm_powergate_vce,
5564 .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5565 .notify_smc_display_config_after_ps_adjustment =
5566 &tonga_notify_smc_display_config_after_ps_adjustment,
5567 .display_config_changed = &fiji_display_configuration_changed_task,
5568 .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5569 .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5570 .get_temperature = fiji_thermal_get_temperature,
5571 .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5572 .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5573 .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5574 .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5575 .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5576 .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5577 .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5578 .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5579 .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5580 .set_fan_control_mode = fiji_set_fan_control_mode,
5581 .get_fan_control_mode = fiji_get_fan_control_mode,
5582 .check_states_equal = fiji_check_states_equal,
5583 .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration,
5584 .force_clock_level = fiji_force_clock_level,
5585 .print_clock_levels = fiji_print_clock_levels,
5586 .get_sclk_od = fiji_get_sclk_od,
5587 .set_sclk_od = fiji_set_sclk_od,
5588 .get_mclk_od = fiji_get_mclk_od,
5589 .set_mclk_od = fiji_set_mclk_od,
5590 };
5591
5592 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5593 {
5594 hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5595 hwmgr->pptable_func = &tonga_pptable_funcs;
5596 pp_fiji_thermal_initialize(hwmgr);
5597 return 0;
5598 }
This page took 0.157267 seconds and 6 git commands to generate.