ubifs: Remove unused header
[deliverable/linux.git] / drivers / gpu / drm / drm_edid.c
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_displayid.h>
38
39 #define version_greater(edid, maj, min) \
40 (((edid)->version > (maj)) || \
41 ((edid)->version == (maj) && (edid)->revision > (min)))
42
43 #define EDID_EST_TIMINGS 16
44 #define EDID_STD_TIMINGS 8
45 #define EDID_DETAILED_TIMINGS 4
46
47 /*
48 * EDID blocks out in the wild have a variety of bugs, try to collect
49 * them here (note that userspace may work around broken monitors first,
50 * but fixes should make their way here so that the kernel "just works"
51 * on as many displays as possible).
52 */
53
54 /* First detailed mode wrong, use largest 60Hz mode */
55 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
56 /* Reported 135MHz pixel clock is too high, needs adjustment */
57 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
58 /* Prefer the largest mode at 75 Hz */
59 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
60 /* Detail timing is in cm not mm */
61 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
62 /* Detailed timing descriptors have bogus size values, so just take the
63 * maximum size and use that.
64 */
65 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
66 /* Monitor forgot to set the first detailed is preferred bit. */
67 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
68 /* use +hsync +vsync for detailed mode */
69 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
70 /* Force reduced-blanking timings for detailed modes */
71 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
72 /* Force 8bpc */
73 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
74 /* Force 12bpc */
75 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
76
77 struct detailed_mode_closure {
78 struct drm_connector *connector;
79 struct edid *edid;
80 bool preferred;
81 u32 quirks;
82 int modes;
83 };
84
85 #define LEVEL_DMT 0
86 #define LEVEL_GTF 1
87 #define LEVEL_GTF2 2
88 #define LEVEL_CVT 3
89
90 static struct edid_quirk {
91 char vendor[4];
92 int product_id;
93 u32 quirks;
94 } edid_quirk_list[] = {
95 /* Acer AL1706 */
96 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
97 /* Acer F51 */
98 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
99 /* Unknown Acer */
100 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
101
102 /* Belinea 10 15 55 */
103 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105
106 /* Envision Peripherals, Inc. EN-7100e */
107 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 /* Envision EN2028 */
109 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110
111 /* Funai Electronics PM36B */
112 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 EDID_QUIRK_DETAILED_IN_CM },
114
115 /* LG Philips LCD LP154W01-A5 */
116 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
117 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
118
119 /* Philips 107p5 CRT */
120 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121
122 /* Proview AY765C */
123 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124
125 /* Samsung SyncMaster 205BW. Note: irony */
126 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
127 /* Samsung SyncMaster 22[5-6]BW */
128 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
129 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
130
131 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
132 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
133
134 /* ViewSonic VA2026w */
135 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
136
137 /* Medion MD 30217 PG */
138 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
139
140 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
141 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
142 };
143
144 /*
145 * Autogenerated from the DMT spec.
146 * This table is copied from xfree86/modes/xf86EdidModes.c.
147 */
148 static const struct drm_display_mode drm_dmt_modes[] = {
149 /* 0x01 - 640x350@85Hz */
150 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
151 736, 832, 0, 350, 382, 385, 445, 0,
152 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
153 /* 0x02 - 640x400@85Hz */
154 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
155 736, 832, 0, 400, 401, 404, 445, 0,
156 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
157 /* 0x03 - 720x400@85Hz */
158 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
159 828, 936, 0, 400, 401, 404, 446, 0,
160 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
161 /* 0x04 - 640x480@60Hz */
162 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 752, 800, 0, 480, 490, 492, 525, 0,
164 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
165 /* 0x05 - 640x480@72Hz */
166 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
167 704, 832, 0, 480, 489, 492, 520, 0,
168 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
169 /* 0x06 - 640x480@75Hz */
170 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
171 720, 840, 0, 480, 481, 484, 500, 0,
172 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
173 /* 0x07 - 640x480@85Hz */
174 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
175 752, 832, 0, 480, 481, 484, 509, 0,
176 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
177 /* 0x08 - 800x600@56Hz */
178 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
179 896, 1024, 0, 600, 601, 603, 625, 0,
180 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
181 /* 0x09 - 800x600@60Hz */
182 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
183 968, 1056, 0, 600, 601, 605, 628, 0,
184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
185 /* 0x0a - 800x600@72Hz */
186 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
187 976, 1040, 0, 600, 637, 643, 666, 0,
188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
189 /* 0x0b - 800x600@75Hz */
190 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
191 896, 1056, 0, 600, 601, 604, 625, 0,
192 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
193 /* 0x0c - 800x600@85Hz */
194 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
195 896, 1048, 0, 600, 601, 604, 631, 0,
196 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
197 /* 0x0d - 800x600@120Hz RB */
198 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
199 880, 960, 0, 600, 603, 607, 636, 0,
200 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
201 /* 0x0e - 848x480@60Hz */
202 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
203 976, 1088, 0, 480, 486, 494, 517, 0,
204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
205 /* 0x0f - 1024x768@43Hz, interlace */
206 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
207 1208, 1264, 0, 768, 768, 772, 817, 0,
208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
209 DRM_MODE_FLAG_INTERLACE) },
210 /* 0x10 - 1024x768@60Hz */
211 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
212 1184, 1344, 0, 768, 771, 777, 806, 0,
213 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
214 /* 0x11 - 1024x768@70Hz */
215 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
216 1184, 1328, 0, 768, 771, 777, 806, 0,
217 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
218 /* 0x12 - 1024x768@75Hz */
219 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
220 1136, 1312, 0, 768, 769, 772, 800, 0,
221 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
222 /* 0x13 - 1024x768@85Hz */
223 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
224 1168, 1376, 0, 768, 769, 772, 808, 0,
225 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
226 /* 0x14 - 1024x768@120Hz RB */
227 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
228 1104, 1184, 0, 768, 771, 775, 813, 0,
229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
230 /* 0x15 - 1152x864@75Hz */
231 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
232 1344, 1600, 0, 864, 865, 868, 900, 0,
233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
234 /* 0x55 - 1280x720@60Hz */
235 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
236 1430, 1650, 0, 720, 725, 730, 750, 0,
237 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
238 /* 0x16 - 1280x768@60Hz RB */
239 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
240 1360, 1440, 0, 768, 771, 778, 790, 0,
241 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
242 /* 0x17 - 1280x768@60Hz */
243 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
244 1472, 1664, 0, 768, 771, 778, 798, 0,
245 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
246 /* 0x18 - 1280x768@75Hz */
247 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
248 1488, 1696, 0, 768, 771, 778, 805, 0,
249 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
250 /* 0x19 - 1280x768@85Hz */
251 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
252 1496, 1712, 0, 768, 771, 778, 809, 0,
253 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
254 /* 0x1a - 1280x768@120Hz RB */
255 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
256 1360, 1440, 0, 768, 771, 778, 813, 0,
257 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
258 /* 0x1b - 1280x800@60Hz RB */
259 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
260 1360, 1440, 0, 800, 803, 809, 823, 0,
261 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
262 /* 0x1c - 1280x800@60Hz */
263 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
264 1480, 1680, 0, 800, 803, 809, 831, 0,
265 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 /* 0x1d - 1280x800@75Hz */
267 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
268 1488, 1696, 0, 800, 803, 809, 838, 0,
269 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
270 /* 0x1e - 1280x800@85Hz */
271 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
272 1496, 1712, 0, 800, 803, 809, 843, 0,
273 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
274 /* 0x1f - 1280x800@120Hz RB */
275 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
276 1360, 1440, 0, 800, 803, 809, 847, 0,
277 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
278 /* 0x20 - 1280x960@60Hz */
279 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
280 1488, 1800, 0, 960, 961, 964, 1000, 0,
281 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 /* 0x21 - 1280x960@85Hz */
283 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
284 1504, 1728, 0, 960, 961, 964, 1011, 0,
285 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
286 /* 0x22 - 1280x960@120Hz RB */
287 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
288 1360, 1440, 0, 960, 963, 967, 1017, 0,
289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
290 /* 0x23 - 1280x1024@60Hz */
291 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
292 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 /* 0x24 - 1280x1024@75Hz */
295 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
296 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
297 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 /* 0x25 - 1280x1024@85Hz */
299 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
300 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
301 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
302 /* 0x26 - 1280x1024@120Hz RB */
303 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
304 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x27 - 1360x768@60Hz */
307 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
308 1536, 1792, 0, 768, 771, 777, 795, 0,
309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 /* 0x28 - 1360x768@120Hz RB */
311 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
312 1440, 1520, 0, 768, 771, 776, 813, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
314 /* 0x51 - 1366x768@60Hz */
315 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
316 1579, 1792, 0, 768, 771, 774, 798, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x56 - 1366x768@60Hz */
319 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
320 1436, 1500, 0, 768, 769, 772, 800, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 /* 0x29 - 1400x1050@60Hz RB */
323 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
324 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
326 /* 0x2a - 1400x1050@60Hz */
327 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
328 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
329 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x2b - 1400x1050@75Hz */
331 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
332 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
333 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
334 /* 0x2c - 1400x1050@85Hz */
335 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
336 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
337 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x2d - 1400x1050@120Hz RB */
339 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
340 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
341 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
342 /* 0x2e - 1440x900@60Hz RB */
343 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
344 1520, 1600, 0, 900, 903, 909, 926, 0,
345 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
346 /* 0x2f - 1440x900@60Hz */
347 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
348 1672, 1904, 0, 900, 903, 909, 934, 0,
349 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 /* 0x30 - 1440x900@75Hz */
351 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
352 1688, 1936, 0, 900, 903, 909, 942, 0,
353 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 /* 0x31 - 1440x900@85Hz */
355 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
356 1696, 1952, 0, 900, 903, 909, 948, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x32 - 1440x900@120Hz RB */
359 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
360 1520, 1600, 0, 900, 903, 909, 953, 0,
361 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
362 /* 0x53 - 1600x900@60Hz */
363 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
364 1704, 1800, 0, 900, 901, 904, 1000, 0,
365 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x33 - 1600x1200@60Hz */
367 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
368 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 /* 0x34 - 1600x1200@65Hz */
371 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
372 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x35 - 1600x1200@70Hz */
375 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
376 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x36 - 1600x1200@75Hz */
379 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
380 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 /* 0x37 - 1600x1200@85Hz */
383 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
384 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x38 - 1600x1200@120Hz RB */
387 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
388 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 /* 0x39 - 1680x1050@60Hz RB */
391 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
392 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
394 /* 0x3a - 1680x1050@60Hz */
395 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
396 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
397 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 /* 0x3b - 1680x1050@75Hz */
399 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
400 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
401 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x3c - 1680x1050@85Hz */
403 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
404 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
405 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 /* 0x3d - 1680x1050@120Hz RB */
407 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
408 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410 /* 0x3e - 1792x1344@60Hz */
411 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
412 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
413 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x3f - 1792x1344@75Hz */
415 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
416 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
417 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 /* 0x40 - 1792x1344@120Hz RB */
419 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
420 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422 /* 0x41 - 1856x1392@60Hz */
423 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
424 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x42 - 1856x1392@75Hz */
427 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
428 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x43 - 1856x1392@120Hz RB */
431 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
432 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x52 - 1920x1080@60Hz */
435 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
436 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
437 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x44 - 1920x1200@60Hz RB */
439 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
440 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
442 /* 0x45 - 1920x1200@60Hz */
443 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
444 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x46 - 1920x1200@75Hz */
447 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
448 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x47 - 1920x1200@85Hz */
451 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
452 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
453 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 /* 0x48 - 1920x1200@120Hz RB */
455 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
456 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
458 /* 0x49 - 1920x1440@60Hz */
459 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
460 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
461 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x4a - 1920x1440@75Hz */
463 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
464 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
465 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 /* 0x4b - 1920x1440@120Hz RB */
467 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
468 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
470 /* 0x54 - 2048x1152@60Hz */
471 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
472 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
473 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x4c - 2560x1600@60Hz RB */
475 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
476 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478 /* 0x4d - 2560x1600@60Hz */
479 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
480 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
481 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 /* 0x4e - 2560x1600@75Hz */
483 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
484 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
485 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
486 /* 0x4f - 2560x1600@85Hz */
487 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
488 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x50 - 2560x1600@120Hz RB */
491 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
492 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
493 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
494 /* 0x57 - 4096x2160@60Hz RB */
495 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
496 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
498 /* 0x58 - 4096x2160@59.94Hz RB */
499 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
500 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 };
503
504 /*
505 * These more or less come from the DMT spec. The 720x400 modes are
506 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
507 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
508 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
509 * mode.
510 *
511 * The DMT modes have been fact-checked; the rest are mild guesses.
512 */
513 static const struct drm_display_mode edid_est_modes[] = {
514 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
515 968, 1056, 0, 600, 601, 605, 628, 0,
516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
517 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
518 896, 1024, 0, 600, 601, 603, 625, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
520 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
521 720, 840, 0, 480, 481, 484, 500, 0,
522 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
523 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
524 704, 832, 0, 480, 489, 491, 520, 0,
525 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
526 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
527 768, 864, 0, 480, 483, 486, 525, 0,
528 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
529 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
530 752, 800, 0, 480, 490, 492, 525, 0,
531 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
532 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
533 846, 900, 0, 400, 421, 423, 449, 0,
534 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
535 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
536 846, 900, 0, 400, 412, 414, 449, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
538 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
539 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
540 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
541 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
542 1136, 1312, 0, 768, 769, 772, 800, 0,
543 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
544 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
545 1184, 1328, 0, 768, 771, 777, 806, 0,
546 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
547 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
548 1184, 1344, 0, 768, 771, 777, 806, 0,
549 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
550 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
551 1208, 1264, 0, 768, 768, 776, 817, 0,
552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
553 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
554 928, 1152, 0, 624, 625, 628, 667, 0,
555 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
556 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
557 896, 1056, 0, 600, 601, 604, 625, 0,
558 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
559 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
560 976, 1040, 0, 600, 637, 643, 666, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
562 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
563 1344, 1600, 0, 864, 865, 868, 900, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
565 };
566
567 struct minimode {
568 short w;
569 short h;
570 short r;
571 short rb;
572 };
573
574 static const struct minimode est3_modes[] = {
575 /* byte 6 */
576 { 640, 350, 85, 0 },
577 { 640, 400, 85, 0 },
578 { 720, 400, 85, 0 },
579 { 640, 480, 85, 0 },
580 { 848, 480, 60, 0 },
581 { 800, 600, 85, 0 },
582 { 1024, 768, 85, 0 },
583 { 1152, 864, 75, 0 },
584 /* byte 7 */
585 { 1280, 768, 60, 1 },
586 { 1280, 768, 60, 0 },
587 { 1280, 768, 75, 0 },
588 { 1280, 768, 85, 0 },
589 { 1280, 960, 60, 0 },
590 { 1280, 960, 85, 0 },
591 { 1280, 1024, 60, 0 },
592 { 1280, 1024, 85, 0 },
593 /* byte 8 */
594 { 1360, 768, 60, 0 },
595 { 1440, 900, 60, 1 },
596 { 1440, 900, 60, 0 },
597 { 1440, 900, 75, 0 },
598 { 1440, 900, 85, 0 },
599 { 1400, 1050, 60, 1 },
600 { 1400, 1050, 60, 0 },
601 { 1400, 1050, 75, 0 },
602 /* byte 9 */
603 { 1400, 1050, 85, 0 },
604 { 1680, 1050, 60, 1 },
605 { 1680, 1050, 60, 0 },
606 { 1680, 1050, 75, 0 },
607 { 1680, 1050, 85, 0 },
608 { 1600, 1200, 60, 0 },
609 { 1600, 1200, 65, 0 },
610 { 1600, 1200, 70, 0 },
611 /* byte 10 */
612 { 1600, 1200, 75, 0 },
613 { 1600, 1200, 85, 0 },
614 { 1792, 1344, 60, 0 },
615 { 1792, 1344, 75, 0 },
616 { 1856, 1392, 60, 0 },
617 { 1856, 1392, 75, 0 },
618 { 1920, 1200, 60, 1 },
619 { 1920, 1200, 60, 0 },
620 /* byte 11 */
621 { 1920, 1200, 75, 0 },
622 { 1920, 1200, 85, 0 },
623 { 1920, 1440, 60, 0 },
624 { 1920, 1440, 75, 0 },
625 };
626
627 static const struct minimode extra_modes[] = {
628 { 1024, 576, 60, 0 },
629 { 1366, 768, 60, 0 },
630 { 1600, 900, 60, 0 },
631 { 1680, 945, 60, 0 },
632 { 1920, 1080, 60, 0 },
633 { 2048, 1152, 60, 0 },
634 { 2048, 1536, 60, 0 },
635 };
636
637 /*
638 * Probably taken from CEA-861 spec.
639 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
640 *
641 * Index using the VIC.
642 */
643 static const struct drm_display_mode edid_cea_modes[] = {
644 /* 0 - dummy, VICs start at 1 */
645 { },
646 /* 1 - 640x480@60Hz */
647 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
648 752, 800, 0, 480, 490, 492, 525, 0,
649 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
650 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
651 /* 2 - 720x480@60Hz */
652 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
653 798, 858, 0, 480, 489, 495, 525, 0,
654 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
655 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
656 /* 3 - 720x480@60Hz */
657 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
658 798, 858, 0, 480, 489, 495, 525, 0,
659 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
660 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 /* 4 - 1280x720@60Hz */
662 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
663 1430, 1650, 0, 720, 725, 730, 750, 0,
664 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
665 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 /* 5 - 1920x1080i@60Hz */
667 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
668 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
669 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
670 DRM_MODE_FLAG_INTERLACE),
671 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
672 /* 6 - 720(1440)x480i@60Hz */
673 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
674 801, 858, 0, 480, 488, 494, 525, 0,
675 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
676 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
677 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
678 /* 7 - 720(1440)x480i@60Hz */
679 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
680 801, 858, 0, 480, 488, 494, 525, 0,
681 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
682 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
683 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
684 /* 8 - 720(1440)x240@60Hz */
685 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
686 801, 858, 0, 240, 244, 247, 262, 0,
687 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
688 DRM_MODE_FLAG_DBLCLK),
689 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
690 /* 9 - 720(1440)x240@60Hz */
691 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
692 801, 858, 0, 240, 244, 247, 262, 0,
693 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
694 DRM_MODE_FLAG_DBLCLK),
695 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
696 /* 10 - 2880x480i@60Hz */
697 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
698 3204, 3432, 0, 480, 488, 494, 525, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
700 DRM_MODE_FLAG_INTERLACE),
701 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
702 /* 11 - 2880x480i@60Hz */
703 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
704 3204, 3432, 0, 480, 488, 494, 525, 0,
705 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
706 DRM_MODE_FLAG_INTERLACE),
707 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
708 /* 12 - 2880x240@60Hz */
709 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
710 3204, 3432, 0, 240, 244, 247, 262, 0,
711 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
712 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
713 /* 13 - 2880x240@60Hz */
714 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
715 3204, 3432, 0, 240, 244, 247, 262, 0,
716 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
717 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
718 /* 14 - 1440x480@60Hz */
719 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
720 1596, 1716, 0, 480, 489, 495, 525, 0,
721 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
722 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
723 /* 15 - 1440x480@60Hz */
724 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
725 1596, 1716, 0, 480, 489, 495, 525, 0,
726 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
727 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
728 /* 16 - 1920x1080@60Hz */
729 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
730 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
731 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
732 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
733 /* 17 - 720x576@50Hz */
734 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
735 796, 864, 0, 576, 581, 586, 625, 0,
736 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
737 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
738 /* 18 - 720x576@50Hz */
739 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
740 796, 864, 0, 576, 581, 586, 625, 0,
741 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
742 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
743 /* 19 - 1280x720@50Hz */
744 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
745 1760, 1980, 0, 720, 725, 730, 750, 0,
746 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
747 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
748 /* 20 - 1920x1080i@50Hz */
749 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
750 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
751 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
752 DRM_MODE_FLAG_INTERLACE),
753 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
754 /* 21 - 720(1440)x576i@50Hz */
755 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
756 795, 864, 0, 576, 580, 586, 625, 0,
757 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
758 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
759 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
760 /* 22 - 720(1440)x576i@50Hz */
761 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
762 795, 864, 0, 576, 580, 586, 625, 0,
763 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
764 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
765 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
766 /* 23 - 720(1440)x288@50Hz */
767 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
768 795, 864, 0, 288, 290, 293, 312, 0,
769 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
770 DRM_MODE_FLAG_DBLCLK),
771 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
772 /* 24 - 720(1440)x288@50Hz */
773 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
774 795, 864, 0, 288, 290, 293, 312, 0,
775 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
776 DRM_MODE_FLAG_DBLCLK),
777 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 /* 25 - 2880x576i@50Hz */
779 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
780 3180, 3456, 0, 576, 580, 586, 625, 0,
781 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 DRM_MODE_FLAG_INTERLACE),
783 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
784 /* 26 - 2880x576i@50Hz */
785 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
786 3180, 3456, 0, 576, 580, 586, 625, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 DRM_MODE_FLAG_INTERLACE),
789 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
790 /* 27 - 2880x288@50Hz */
791 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
792 3180, 3456, 0, 288, 290, 293, 312, 0,
793 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
794 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
795 /* 28 - 2880x288@50Hz */
796 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
797 3180, 3456, 0, 288, 290, 293, 312, 0,
798 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
799 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
800 /* 29 - 1440x576@50Hz */
801 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
802 1592, 1728, 0, 576, 581, 586, 625, 0,
803 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
804 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
805 /* 30 - 1440x576@50Hz */
806 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
807 1592, 1728, 0, 576, 581, 586, 625, 0,
808 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
809 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
810 /* 31 - 1920x1080@50Hz */
811 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
812 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
813 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
814 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
815 /* 32 - 1920x1080@24Hz */
816 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
817 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
818 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
819 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 /* 33 - 1920x1080@25Hz */
821 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
822 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
823 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 /* 34 - 1920x1080@30Hz */
826 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
827 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
828 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
829 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
830 /* 35 - 2880x480@60Hz */
831 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
832 3192, 3432, 0, 480, 489, 495, 525, 0,
833 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
835 /* 36 - 2880x480@60Hz */
836 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
837 3192, 3432, 0, 480, 489, 495, 525, 0,
838 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
839 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
840 /* 37 - 2880x576@50Hz */
841 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
842 3184, 3456, 0, 576, 581, 586, 625, 0,
843 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
844 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
845 /* 38 - 2880x576@50Hz */
846 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
847 3184, 3456, 0, 576, 581, 586, 625, 0,
848 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
849 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
850 /* 39 - 1920x1080i@50Hz */
851 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
852 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
853 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
854 DRM_MODE_FLAG_INTERLACE),
855 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
856 /* 40 - 1920x1080i@100Hz */
857 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
858 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
859 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
860 DRM_MODE_FLAG_INTERLACE),
861 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
862 /* 41 - 1280x720@100Hz */
863 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
864 1760, 1980, 0, 720, 725, 730, 750, 0,
865 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
866 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
867 /* 42 - 720x576@100Hz */
868 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
869 796, 864, 0, 576, 581, 586, 625, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
871 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
872 /* 43 - 720x576@100Hz */
873 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
874 796, 864, 0, 576, 581, 586, 625, 0,
875 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
876 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
877 /* 44 - 720(1440)x576i@100Hz */
878 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
879 795, 864, 0, 576, 580, 586, 625, 0,
880 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
881 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
882 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
883 /* 45 - 720(1440)x576i@100Hz */
884 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
885 795, 864, 0, 576, 580, 586, 625, 0,
886 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
887 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
888 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
889 /* 46 - 1920x1080i@120Hz */
890 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
891 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
892 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
893 DRM_MODE_FLAG_INTERLACE),
894 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 47 - 1280x720@120Hz */
896 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
897 1430, 1650, 0, 720, 725, 730, 750, 0,
898 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
899 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
900 /* 48 - 720x480@120Hz */
901 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
902 798, 858, 0, 480, 489, 495, 525, 0,
903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
905 /* 49 - 720x480@120Hz */
906 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
907 798, 858, 0, 480, 489, 495, 525, 0,
908 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
909 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 /* 50 - 720(1440)x480i@120Hz */
911 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
912 801, 858, 0, 480, 488, 494, 525, 0,
913 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
914 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
915 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
916 /* 51 - 720(1440)x480i@120Hz */
917 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
918 801, 858, 0, 480, 488, 494, 525, 0,
919 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
920 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
921 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
922 /* 52 - 720x576@200Hz */
923 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
924 796, 864, 0, 576, 581, 586, 625, 0,
925 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
926 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
927 /* 53 - 720x576@200Hz */
928 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
929 796, 864, 0, 576, 581, 586, 625, 0,
930 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
931 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
932 /* 54 - 720(1440)x576i@200Hz */
933 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
934 795, 864, 0, 576, 580, 586, 625, 0,
935 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
936 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
937 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
938 /* 55 - 720(1440)x576i@200Hz */
939 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
940 795, 864, 0, 576, 580, 586, 625, 0,
941 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
942 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
943 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 /* 56 - 720x480@240Hz */
945 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
946 798, 858, 0, 480, 489, 495, 525, 0,
947 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
948 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
949 /* 57 - 720x480@240Hz */
950 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
951 798, 858, 0, 480, 489, 495, 525, 0,
952 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
953 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
954 /* 58 - 720(1440)x480i@240 */
955 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
956 801, 858, 0, 480, 488, 494, 525, 0,
957 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
958 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
959 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 /* 59 - 720(1440)x480i@240 */
961 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
962 801, 858, 0, 480, 488, 494, 525, 0,
963 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
964 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
965 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 /* 60 - 1280x720@24Hz */
967 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
968 3080, 3300, 0, 720, 725, 730, 750, 0,
969 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
970 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
971 /* 61 - 1280x720@25Hz */
972 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
973 3740, 3960, 0, 720, 725, 730, 750, 0,
974 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
975 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
976 /* 62 - 1280x720@30Hz */
977 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
978 3080, 3300, 0, 720, 725, 730, 750, 0,
979 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
980 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
981 /* 63 - 1920x1080@120Hz */
982 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
983 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
984 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
985 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
986 /* 64 - 1920x1080@100Hz */
987 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
988 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
990 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
991 };
992
993 /*
994 * HDMI 1.4 4k modes. Index using the VIC.
995 */
996 static const struct drm_display_mode edid_4k_modes[] = {
997 /* 0 - dummy, VICs start at 1 */
998 { },
999 /* 1 - 3840x2160@30Hz */
1000 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1001 3840, 4016, 4104, 4400, 0,
1002 2160, 2168, 2178, 2250, 0,
1003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1004 .vrefresh = 30, },
1005 /* 2 - 3840x2160@25Hz */
1006 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1007 3840, 4896, 4984, 5280, 0,
1008 2160, 2168, 2178, 2250, 0,
1009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1010 .vrefresh = 25, },
1011 /* 3 - 3840x2160@24Hz */
1012 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1013 3840, 5116, 5204, 5500, 0,
1014 2160, 2168, 2178, 2250, 0,
1015 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1016 .vrefresh = 24, },
1017 /* 4 - 4096x2160@24Hz (SMPTE) */
1018 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1019 4096, 5116, 5204, 5500, 0,
1020 2160, 2168, 2178, 2250, 0,
1021 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1022 .vrefresh = 24, },
1023 };
1024
1025 /*** DDC fetch and block validation ***/
1026
1027 static const u8 edid_header[] = {
1028 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1029 };
1030
1031 /**
1032 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1033 * @raw_edid: pointer to raw base EDID block
1034 *
1035 * Sanity check the header of the base EDID block.
1036 *
1037 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1038 */
1039 int drm_edid_header_is_valid(const u8 *raw_edid)
1040 {
1041 int i, score = 0;
1042
1043 for (i = 0; i < sizeof(edid_header); i++)
1044 if (raw_edid[i] == edid_header[i])
1045 score++;
1046
1047 return score;
1048 }
1049 EXPORT_SYMBOL(drm_edid_header_is_valid);
1050
1051 static int edid_fixup __read_mostly = 6;
1052 module_param_named(edid_fixup, edid_fixup, int, 0400);
1053 MODULE_PARM_DESC(edid_fixup,
1054 "Minimum number of valid EDID header bytes (0-8, default 6)");
1055
1056 static void drm_get_displayid(struct drm_connector *connector,
1057 struct edid *edid);
1058
1059 static int drm_edid_block_checksum(const u8 *raw_edid)
1060 {
1061 int i;
1062 u8 csum = 0;
1063 for (i = 0; i < EDID_LENGTH; i++)
1064 csum += raw_edid[i];
1065
1066 return csum;
1067 }
1068
1069 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1070 {
1071 if (memchr_inv(in_edid, 0, length))
1072 return false;
1073
1074 return true;
1075 }
1076
1077 /**
1078 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1079 * @raw_edid: pointer to raw EDID block
1080 * @block: type of block to validate (0 for base, extension otherwise)
1081 * @print_bad_edid: if true, dump bad EDID blocks to the console
1082 * @edid_corrupt: if true, the header or checksum is invalid
1083 *
1084 * Validate a base or extension EDID block and optionally dump bad blocks to
1085 * the console.
1086 *
1087 * Return: True if the block is valid, false otherwise.
1088 */
1089 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1090 bool *edid_corrupt)
1091 {
1092 u8 csum;
1093 struct edid *edid = (struct edid *)raw_edid;
1094
1095 if (WARN_ON(!raw_edid))
1096 return false;
1097
1098 if (edid_fixup > 8 || edid_fixup < 0)
1099 edid_fixup = 6;
1100
1101 if (block == 0) {
1102 int score = drm_edid_header_is_valid(raw_edid);
1103 if (score == 8) {
1104 if (edid_corrupt)
1105 *edid_corrupt = false;
1106 } else if (score >= edid_fixup) {
1107 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1108 * The corrupt flag needs to be set here otherwise, the
1109 * fix-up code here will correct the problem, the
1110 * checksum is correct and the test fails
1111 */
1112 if (edid_corrupt)
1113 *edid_corrupt = true;
1114 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1115 memcpy(raw_edid, edid_header, sizeof(edid_header));
1116 } else {
1117 if (edid_corrupt)
1118 *edid_corrupt = true;
1119 goto bad;
1120 }
1121 }
1122
1123 csum = drm_edid_block_checksum(raw_edid);
1124 if (csum) {
1125 if (print_bad_edid) {
1126 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1127 }
1128
1129 if (edid_corrupt)
1130 *edid_corrupt = true;
1131
1132 /* allow CEA to slide through, switches mangle this */
1133 if (raw_edid[0] != 0x02)
1134 goto bad;
1135 }
1136
1137 /* per-block-type checks */
1138 switch (raw_edid[0]) {
1139 case 0: /* base */
1140 if (edid->version != 1) {
1141 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1142 goto bad;
1143 }
1144
1145 if (edid->revision > 4)
1146 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1147 break;
1148
1149 default:
1150 break;
1151 }
1152
1153 return true;
1154
1155 bad:
1156 if (print_bad_edid) {
1157 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1158 printk(KERN_ERR "EDID block is all zeroes\n");
1159 } else {
1160 printk(KERN_ERR "Raw EDID:\n");
1161 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1162 raw_edid, EDID_LENGTH, false);
1163 }
1164 }
1165 return false;
1166 }
1167 EXPORT_SYMBOL(drm_edid_block_valid);
1168
1169 /**
1170 * drm_edid_is_valid - sanity check EDID data
1171 * @edid: EDID data
1172 *
1173 * Sanity-check an entire EDID record (including extensions)
1174 *
1175 * Return: True if the EDID data is valid, false otherwise.
1176 */
1177 bool drm_edid_is_valid(struct edid *edid)
1178 {
1179 int i;
1180 u8 *raw = (u8 *)edid;
1181
1182 if (!edid)
1183 return false;
1184
1185 for (i = 0; i <= edid->extensions; i++)
1186 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1187 return false;
1188
1189 return true;
1190 }
1191 EXPORT_SYMBOL(drm_edid_is_valid);
1192
1193 #define DDC_SEGMENT_ADDR 0x30
1194 /**
1195 * drm_do_probe_ddc_edid() - get EDID information via I2C
1196 * @data: I2C device adapter
1197 * @buf: EDID data buffer to be filled
1198 * @block: 128 byte EDID block to start fetching from
1199 * @len: EDID data buffer length to fetch
1200 *
1201 * Try to fetch EDID information by calling I2C driver functions.
1202 *
1203 * Return: 0 on success or -1 on failure.
1204 */
1205 static int
1206 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1207 {
1208 struct i2c_adapter *adapter = data;
1209 unsigned char start = block * EDID_LENGTH;
1210 unsigned char segment = block >> 1;
1211 unsigned char xfers = segment ? 3 : 2;
1212 int ret, retries = 5;
1213
1214 /*
1215 * The core I2C driver will automatically retry the transfer if the
1216 * adapter reports EAGAIN. However, we find that bit-banging transfers
1217 * are susceptible to errors under a heavily loaded machine and
1218 * generate spurious NAKs and timeouts. Retrying the transfer
1219 * of the individual block a few times seems to overcome this.
1220 */
1221 do {
1222 struct i2c_msg msgs[] = {
1223 {
1224 .addr = DDC_SEGMENT_ADDR,
1225 .flags = 0,
1226 .len = 1,
1227 .buf = &segment,
1228 }, {
1229 .addr = DDC_ADDR,
1230 .flags = 0,
1231 .len = 1,
1232 .buf = &start,
1233 }, {
1234 .addr = DDC_ADDR,
1235 .flags = I2C_M_RD,
1236 .len = len,
1237 .buf = buf,
1238 }
1239 };
1240
1241 /*
1242 * Avoid sending the segment addr to not upset non-compliant
1243 * DDC monitors.
1244 */
1245 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1246
1247 if (ret == -ENXIO) {
1248 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1249 adapter->name);
1250 break;
1251 }
1252 } while (ret != xfers && --retries);
1253
1254 return ret == xfers ? 0 : -1;
1255 }
1256
1257 /**
1258 * drm_do_get_edid - get EDID data using a custom EDID block read function
1259 * @connector: connector we're probing
1260 * @get_edid_block: EDID block read function
1261 * @data: private data passed to the block read function
1262 *
1263 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1264 * exposes a different interface to read EDID blocks this function can be used
1265 * to get EDID data using a custom block read function.
1266 *
1267 * As in the general case the DDC bus is accessible by the kernel at the I2C
1268 * level, drivers must make all reasonable efforts to expose it as an I2C
1269 * adapter and use drm_get_edid() instead of abusing this function.
1270 *
1271 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1272 */
1273 struct edid *drm_do_get_edid(struct drm_connector *connector,
1274 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1275 size_t len),
1276 void *data)
1277 {
1278 int i, j = 0, valid_extensions = 0;
1279 u8 *block, *new;
1280 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1281
1282 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1283 return NULL;
1284
1285 /* base block fetch */
1286 for (i = 0; i < 4; i++) {
1287 if (get_edid_block(data, block, 0, EDID_LENGTH))
1288 goto out;
1289 if (drm_edid_block_valid(block, 0, print_bad_edid,
1290 &connector->edid_corrupt))
1291 break;
1292 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1293 connector->null_edid_counter++;
1294 goto carp;
1295 }
1296 }
1297 if (i == 4)
1298 goto carp;
1299
1300 /* if there's no extensions, we're done */
1301 if (block[0x7e] == 0)
1302 return (struct edid *)block;
1303
1304 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1305 if (!new)
1306 goto out;
1307 block = new;
1308
1309 for (j = 1; j <= block[0x7e]; j++) {
1310 for (i = 0; i < 4; i++) {
1311 if (get_edid_block(data,
1312 block + (valid_extensions + 1) * EDID_LENGTH,
1313 j, EDID_LENGTH))
1314 goto out;
1315 if (drm_edid_block_valid(block + (valid_extensions + 1)
1316 * EDID_LENGTH, j,
1317 print_bad_edid,
1318 NULL)) {
1319 valid_extensions++;
1320 break;
1321 }
1322 }
1323
1324 if (i == 4 && print_bad_edid) {
1325 dev_warn(connector->dev->dev,
1326 "%s: Ignoring invalid EDID block %d.\n",
1327 connector->name, j);
1328
1329 connector->bad_edid_counter++;
1330 }
1331 }
1332
1333 if (valid_extensions != block[0x7e]) {
1334 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1335 block[0x7e] = valid_extensions;
1336 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1337 if (!new)
1338 goto out;
1339 block = new;
1340 }
1341
1342 return (struct edid *)block;
1343
1344 carp:
1345 if (print_bad_edid) {
1346 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1347 connector->name, j);
1348 }
1349 connector->bad_edid_counter++;
1350
1351 out:
1352 kfree(block);
1353 return NULL;
1354 }
1355 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1356
1357 /**
1358 * drm_probe_ddc() - probe DDC presence
1359 * @adapter: I2C adapter to probe
1360 *
1361 * Return: True on success, false on failure.
1362 */
1363 bool
1364 drm_probe_ddc(struct i2c_adapter *adapter)
1365 {
1366 unsigned char out;
1367
1368 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1369 }
1370 EXPORT_SYMBOL(drm_probe_ddc);
1371
1372 /**
1373 * drm_get_edid - get EDID data, if available
1374 * @connector: connector we're probing
1375 * @adapter: I2C adapter to use for DDC
1376 *
1377 * Poke the given I2C channel to grab EDID data if possible. If found,
1378 * attach it to the connector.
1379 *
1380 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1381 */
1382 struct edid *drm_get_edid(struct drm_connector *connector,
1383 struct i2c_adapter *adapter)
1384 {
1385 struct edid *edid;
1386
1387 if (!drm_probe_ddc(adapter))
1388 return NULL;
1389
1390 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1391 if (edid)
1392 drm_get_displayid(connector, edid);
1393 return edid;
1394 }
1395 EXPORT_SYMBOL(drm_get_edid);
1396
1397 /**
1398 * drm_edid_duplicate - duplicate an EDID and the extensions
1399 * @edid: EDID to duplicate
1400 *
1401 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1402 */
1403 struct edid *drm_edid_duplicate(const struct edid *edid)
1404 {
1405 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1406 }
1407 EXPORT_SYMBOL(drm_edid_duplicate);
1408
1409 /*** EDID parsing ***/
1410
1411 /**
1412 * edid_vendor - match a string against EDID's obfuscated vendor field
1413 * @edid: EDID to match
1414 * @vendor: vendor string
1415 *
1416 * Returns true if @vendor is in @edid, false otherwise
1417 */
1418 static bool edid_vendor(struct edid *edid, char *vendor)
1419 {
1420 char edid_vendor[3];
1421
1422 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1423 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1424 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1425 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1426
1427 return !strncmp(edid_vendor, vendor, 3);
1428 }
1429
1430 /**
1431 * edid_get_quirks - return quirk flags for a given EDID
1432 * @edid: EDID to process
1433 *
1434 * This tells subsequent routines what fixes they need to apply.
1435 */
1436 static u32 edid_get_quirks(struct edid *edid)
1437 {
1438 struct edid_quirk *quirk;
1439 int i;
1440
1441 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1442 quirk = &edid_quirk_list[i];
1443
1444 if (edid_vendor(edid, quirk->vendor) &&
1445 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1446 return quirk->quirks;
1447 }
1448
1449 return 0;
1450 }
1451
1452 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1453 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1454
1455 /**
1456 * edid_fixup_preferred - set preferred modes based on quirk list
1457 * @connector: has mode list to fix up
1458 * @quirks: quirks list
1459 *
1460 * Walk the mode list for @connector, clearing the preferred status
1461 * on existing modes and setting it anew for the right mode ala @quirks.
1462 */
1463 static void edid_fixup_preferred(struct drm_connector *connector,
1464 u32 quirks)
1465 {
1466 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1467 int target_refresh = 0;
1468 int cur_vrefresh, preferred_vrefresh;
1469
1470 if (list_empty(&connector->probed_modes))
1471 return;
1472
1473 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1474 target_refresh = 60;
1475 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1476 target_refresh = 75;
1477
1478 preferred_mode = list_first_entry(&connector->probed_modes,
1479 struct drm_display_mode, head);
1480
1481 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1482 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1483
1484 if (cur_mode == preferred_mode)
1485 continue;
1486
1487 /* Largest mode is preferred */
1488 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1489 preferred_mode = cur_mode;
1490
1491 cur_vrefresh = cur_mode->vrefresh ?
1492 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1493 preferred_vrefresh = preferred_mode->vrefresh ?
1494 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1495 /* At a given size, try to get closest to target refresh */
1496 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1497 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1498 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1499 preferred_mode = cur_mode;
1500 }
1501 }
1502
1503 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1504 }
1505
1506 static bool
1507 mode_is_rb(const struct drm_display_mode *mode)
1508 {
1509 return (mode->htotal - mode->hdisplay == 160) &&
1510 (mode->hsync_end - mode->hdisplay == 80) &&
1511 (mode->hsync_end - mode->hsync_start == 32) &&
1512 (mode->vsync_start - mode->vdisplay == 3);
1513 }
1514
1515 /*
1516 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1517 * @dev: Device to duplicate against
1518 * @hsize: Mode width
1519 * @vsize: Mode height
1520 * @fresh: Mode refresh rate
1521 * @rb: Mode reduced-blanking-ness
1522 *
1523 * Walk the DMT mode list looking for a match for the given parameters.
1524 *
1525 * Return: A newly allocated copy of the mode, or NULL if not found.
1526 */
1527 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1528 int hsize, int vsize, int fresh,
1529 bool rb)
1530 {
1531 int i;
1532
1533 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1534 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1535 if (hsize != ptr->hdisplay)
1536 continue;
1537 if (vsize != ptr->vdisplay)
1538 continue;
1539 if (fresh != drm_mode_vrefresh(ptr))
1540 continue;
1541 if (rb != mode_is_rb(ptr))
1542 continue;
1543
1544 return drm_mode_duplicate(dev, ptr);
1545 }
1546
1547 return NULL;
1548 }
1549 EXPORT_SYMBOL(drm_mode_find_dmt);
1550
1551 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1552
1553 static void
1554 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1555 {
1556 int i, n = 0;
1557 u8 d = ext[0x02];
1558 u8 *det_base = ext + d;
1559
1560 n = (127 - d) / 18;
1561 for (i = 0; i < n; i++)
1562 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1563 }
1564
1565 static void
1566 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1567 {
1568 unsigned int i, n = min((int)ext[0x02], 6);
1569 u8 *det_base = ext + 5;
1570
1571 if (ext[0x01] != 1)
1572 return; /* unknown version */
1573
1574 for (i = 0; i < n; i++)
1575 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1576 }
1577
1578 static void
1579 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1580 {
1581 int i;
1582 struct edid *edid = (struct edid *)raw_edid;
1583
1584 if (edid == NULL)
1585 return;
1586
1587 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1588 cb(&(edid->detailed_timings[i]), closure);
1589
1590 for (i = 1; i <= raw_edid[0x7e]; i++) {
1591 u8 *ext = raw_edid + (i * EDID_LENGTH);
1592 switch (*ext) {
1593 case CEA_EXT:
1594 cea_for_each_detailed_block(ext, cb, closure);
1595 break;
1596 case VTB_EXT:
1597 vtb_for_each_detailed_block(ext, cb, closure);
1598 break;
1599 default:
1600 break;
1601 }
1602 }
1603 }
1604
1605 static void
1606 is_rb(struct detailed_timing *t, void *data)
1607 {
1608 u8 *r = (u8 *)t;
1609 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1610 if (r[15] & 0x10)
1611 *(bool *)data = true;
1612 }
1613
1614 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1615 static bool
1616 drm_monitor_supports_rb(struct edid *edid)
1617 {
1618 if (edid->revision >= 4) {
1619 bool ret = false;
1620 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1621 return ret;
1622 }
1623
1624 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1625 }
1626
1627 static void
1628 find_gtf2(struct detailed_timing *t, void *data)
1629 {
1630 u8 *r = (u8 *)t;
1631 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1632 *(u8 **)data = r;
1633 }
1634
1635 /* Secondary GTF curve kicks in above some break frequency */
1636 static int
1637 drm_gtf2_hbreak(struct edid *edid)
1638 {
1639 u8 *r = NULL;
1640 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1641 return r ? (r[12] * 2) : 0;
1642 }
1643
1644 static int
1645 drm_gtf2_2c(struct edid *edid)
1646 {
1647 u8 *r = NULL;
1648 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1649 return r ? r[13] : 0;
1650 }
1651
1652 static int
1653 drm_gtf2_m(struct edid *edid)
1654 {
1655 u8 *r = NULL;
1656 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1657 return r ? (r[15] << 8) + r[14] : 0;
1658 }
1659
1660 static int
1661 drm_gtf2_k(struct edid *edid)
1662 {
1663 u8 *r = NULL;
1664 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1665 return r ? r[16] : 0;
1666 }
1667
1668 static int
1669 drm_gtf2_2j(struct edid *edid)
1670 {
1671 u8 *r = NULL;
1672 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1673 return r ? r[17] : 0;
1674 }
1675
1676 /**
1677 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1678 * @edid: EDID block to scan
1679 */
1680 static int standard_timing_level(struct edid *edid)
1681 {
1682 if (edid->revision >= 2) {
1683 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1684 return LEVEL_CVT;
1685 if (drm_gtf2_hbreak(edid))
1686 return LEVEL_GTF2;
1687 return LEVEL_GTF;
1688 }
1689 return LEVEL_DMT;
1690 }
1691
1692 /*
1693 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1694 * monitors fill with ascii space (0x20) instead.
1695 */
1696 static int
1697 bad_std_timing(u8 a, u8 b)
1698 {
1699 return (a == 0x00 && b == 0x00) ||
1700 (a == 0x01 && b == 0x01) ||
1701 (a == 0x20 && b == 0x20);
1702 }
1703
1704 /**
1705 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1706 * @connector: connector of for the EDID block
1707 * @edid: EDID block to scan
1708 * @t: standard timing params
1709 *
1710 * Take the standard timing params (in this case width, aspect, and refresh)
1711 * and convert them into a real mode using CVT/GTF/DMT.
1712 */
1713 static struct drm_display_mode *
1714 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1715 struct std_timing *t)
1716 {
1717 struct drm_device *dev = connector->dev;
1718 struct drm_display_mode *m, *mode = NULL;
1719 int hsize, vsize;
1720 int vrefresh_rate;
1721 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1722 >> EDID_TIMING_ASPECT_SHIFT;
1723 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1724 >> EDID_TIMING_VFREQ_SHIFT;
1725 int timing_level = standard_timing_level(edid);
1726
1727 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1728 return NULL;
1729
1730 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1731 hsize = t->hsize * 8 + 248;
1732 /* vrefresh_rate = vfreq + 60 */
1733 vrefresh_rate = vfreq + 60;
1734 /* the vdisplay is calculated based on the aspect ratio */
1735 if (aspect_ratio == 0) {
1736 if (edid->revision < 3)
1737 vsize = hsize;
1738 else
1739 vsize = (hsize * 10) / 16;
1740 } else if (aspect_ratio == 1)
1741 vsize = (hsize * 3) / 4;
1742 else if (aspect_ratio == 2)
1743 vsize = (hsize * 4) / 5;
1744 else
1745 vsize = (hsize * 9) / 16;
1746
1747 /* HDTV hack, part 1 */
1748 if (vrefresh_rate == 60 &&
1749 ((hsize == 1360 && vsize == 765) ||
1750 (hsize == 1368 && vsize == 769))) {
1751 hsize = 1366;
1752 vsize = 768;
1753 }
1754
1755 /*
1756 * If this connector already has a mode for this size and refresh
1757 * rate (because it came from detailed or CVT info), use that
1758 * instead. This way we don't have to guess at interlace or
1759 * reduced blanking.
1760 */
1761 list_for_each_entry(m, &connector->probed_modes, head)
1762 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1763 drm_mode_vrefresh(m) == vrefresh_rate)
1764 return NULL;
1765
1766 /* HDTV hack, part 2 */
1767 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1768 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1769 false);
1770 mode->hdisplay = 1366;
1771 mode->hsync_start = mode->hsync_start - 1;
1772 mode->hsync_end = mode->hsync_end - 1;
1773 return mode;
1774 }
1775
1776 /* check whether it can be found in default mode table */
1777 if (drm_monitor_supports_rb(edid)) {
1778 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1779 true);
1780 if (mode)
1781 return mode;
1782 }
1783 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1784 if (mode)
1785 return mode;
1786
1787 /* okay, generate it */
1788 switch (timing_level) {
1789 case LEVEL_DMT:
1790 break;
1791 case LEVEL_GTF:
1792 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1793 break;
1794 case LEVEL_GTF2:
1795 /*
1796 * This is potentially wrong if there's ever a monitor with
1797 * more than one ranges section, each claiming a different
1798 * secondary GTF curve. Please don't do that.
1799 */
1800 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1801 if (!mode)
1802 return NULL;
1803 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1804 drm_mode_destroy(dev, mode);
1805 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1806 vrefresh_rate, 0, 0,
1807 drm_gtf2_m(edid),
1808 drm_gtf2_2c(edid),
1809 drm_gtf2_k(edid),
1810 drm_gtf2_2j(edid));
1811 }
1812 break;
1813 case LEVEL_CVT:
1814 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1815 false);
1816 break;
1817 }
1818 return mode;
1819 }
1820
1821 /*
1822 * EDID is delightfully ambiguous about how interlaced modes are to be
1823 * encoded. Our internal representation is of frame height, but some
1824 * HDTV detailed timings are encoded as field height.
1825 *
1826 * The format list here is from CEA, in frame size. Technically we
1827 * should be checking refresh rate too. Whatever.
1828 */
1829 static void
1830 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1831 struct detailed_pixel_timing *pt)
1832 {
1833 int i;
1834 static const struct {
1835 int w, h;
1836 } cea_interlaced[] = {
1837 { 1920, 1080 },
1838 { 720, 480 },
1839 { 1440, 480 },
1840 { 2880, 480 },
1841 { 720, 576 },
1842 { 1440, 576 },
1843 { 2880, 576 },
1844 };
1845
1846 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1847 return;
1848
1849 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1850 if ((mode->hdisplay == cea_interlaced[i].w) &&
1851 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1852 mode->vdisplay *= 2;
1853 mode->vsync_start *= 2;
1854 mode->vsync_end *= 2;
1855 mode->vtotal *= 2;
1856 mode->vtotal |= 1;
1857 }
1858 }
1859
1860 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1861 }
1862
1863 /**
1864 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1865 * @dev: DRM device (needed to create new mode)
1866 * @edid: EDID block
1867 * @timing: EDID detailed timing info
1868 * @quirks: quirks to apply
1869 *
1870 * An EDID detailed timing block contains enough info for us to create and
1871 * return a new struct drm_display_mode.
1872 */
1873 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1874 struct edid *edid,
1875 struct detailed_timing *timing,
1876 u32 quirks)
1877 {
1878 struct drm_display_mode *mode;
1879 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1880 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1881 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1882 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1883 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1884 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1885 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1886 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1887 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1888
1889 /* ignore tiny modes */
1890 if (hactive < 64 || vactive < 64)
1891 return NULL;
1892
1893 if (pt->misc & DRM_EDID_PT_STEREO) {
1894 DRM_DEBUG_KMS("stereo mode not supported\n");
1895 return NULL;
1896 }
1897 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1898 DRM_DEBUG_KMS("composite sync not supported\n");
1899 }
1900
1901 /* it is incorrect if hsync/vsync width is zero */
1902 if (!hsync_pulse_width || !vsync_pulse_width) {
1903 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1904 "Wrong Hsync/Vsync pulse width\n");
1905 return NULL;
1906 }
1907
1908 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1909 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1910 if (!mode)
1911 return NULL;
1912
1913 goto set_size;
1914 }
1915
1916 mode = drm_mode_create(dev);
1917 if (!mode)
1918 return NULL;
1919
1920 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1921 timing->pixel_clock = cpu_to_le16(1088);
1922
1923 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1924
1925 mode->hdisplay = hactive;
1926 mode->hsync_start = mode->hdisplay + hsync_offset;
1927 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1928 mode->htotal = mode->hdisplay + hblank;
1929
1930 mode->vdisplay = vactive;
1931 mode->vsync_start = mode->vdisplay + vsync_offset;
1932 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1933 mode->vtotal = mode->vdisplay + vblank;
1934
1935 /* Some EDIDs have bogus h/vtotal values */
1936 if (mode->hsync_end > mode->htotal)
1937 mode->htotal = mode->hsync_end + 1;
1938 if (mode->vsync_end > mode->vtotal)
1939 mode->vtotal = mode->vsync_end + 1;
1940
1941 drm_mode_do_interlace_quirk(mode, pt);
1942
1943 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1944 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1945 }
1946
1947 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1948 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1949 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1950 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1951
1952 set_size:
1953 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1954 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1955
1956 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1957 mode->width_mm *= 10;
1958 mode->height_mm *= 10;
1959 }
1960
1961 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1962 mode->width_mm = edid->width_cm * 10;
1963 mode->height_mm = edid->height_cm * 10;
1964 }
1965
1966 mode->type = DRM_MODE_TYPE_DRIVER;
1967 mode->vrefresh = drm_mode_vrefresh(mode);
1968 drm_mode_set_name(mode);
1969
1970 return mode;
1971 }
1972
1973 static bool
1974 mode_in_hsync_range(const struct drm_display_mode *mode,
1975 struct edid *edid, u8 *t)
1976 {
1977 int hsync, hmin, hmax;
1978
1979 hmin = t[7];
1980 if (edid->revision >= 4)
1981 hmin += ((t[4] & 0x04) ? 255 : 0);
1982 hmax = t[8];
1983 if (edid->revision >= 4)
1984 hmax += ((t[4] & 0x08) ? 255 : 0);
1985 hsync = drm_mode_hsync(mode);
1986
1987 return (hsync <= hmax && hsync >= hmin);
1988 }
1989
1990 static bool
1991 mode_in_vsync_range(const struct drm_display_mode *mode,
1992 struct edid *edid, u8 *t)
1993 {
1994 int vsync, vmin, vmax;
1995
1996 vmin = t[5];
1997 if (edid->revision >= 4)
1998 vmin += ((t[4] & 0x01) ? 255 : 0);
1999 vmax = t[6];
2000 if (edid->revision >= 4)
2001 vmax += ((t[4] & 0x02) ? 255 : 0);
2002 vsync = drm_mode_vrefresh(mode);
2003
2004 return (vsync <= vmax && vsync >= vmin);
2005 }
2006
2007 static u32
2008 range_pixel_clock(struct edid *edid, u8 *t)
2009 {
2010 /* unspecified */
2011 if (t[9] == 0 || t[9] == 255)
2012 return 0;
2013
2014 /* 1.4 with CVT support gives us real precision, yay */
2015 if (edid->revision >= 4 && t[10] == 0x04)
2016 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2017
2018 /* 1.3 is pathetic, so fuzz up a bit */
2019 return t[9] * 10000 + 5001;
2020 }
2021
2022 static bool
2023 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2024 struct detailed_timing *timing)
2025 {
2026 u32 max_clock;
2027 u8 *t = (u8 *)timing;
2028
2029 if (!mode_in_hsync_range(mode, edid, t))
2030 return false;
2031
2032 if (!mode_in_vsync_range(mode, edid, t))
2033 return false;
2034
2035 if ((max_clock = range_pixel_clock(edid, t)))
2036 if (mode->clock > max_clock)
2037 return false;
2038
2039 /* 1.4 max horizontal check */
2040 if (edid->revision >= 4 && t[10] == 0x04)
2041 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2042 return false;
2043
2044 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2045 return false;
2046
2047 return true;
2048 }
2049
2050 static bool valid_inferred_mode(const struct drm_connector *connector,
2051 const struct drm_display_mode *mode)
2052 {
2053 const struct drm_display_mode *m;
2054 bool ok = false;
2055
2056 list_for_each_entry(m, &connector->probed_modes, head) {
2057 if (mode->hdisplay == m->hdisplay &&
2058 mode->vdisplay == m->vdisplay &&
2059 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2060 return false; /* duplicated */
2061 if (mode->hdisplay <= m->hdisplay &&
2062 mode->vdisplay <= m->vdisplay)
2063 ok = true;
2064 }
2065 return ok;
2066 }
2067
2068 static int
2069 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2070 struct detailed_timing *timing)
2071 {
2072 int i, modes = 0;
2073 struct drm_display_mode *newmode;
2074 struct drm_device *dev = connector->dev;
2075
2076 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2077 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2078 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2079 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2080 if (newmode) {
2081 drm_mode_probed_add(connector, newmode);
2082 modes++;
2083 }
2084 }
2085 }
2086
2087 return modes;
2088 }
2089
2090 /* fix up 1366x768 mode from 1368x768;
2091 * GFT/CVT can't express 1366 width which isn't dividable by 8
2092 */
2093 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2094 {
2095 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2096 mode->hdisplay = 1366;
2097 mode->hsync_start--;
2098 mode->hsync_end--;
2099 drm_mode_set_name(mode);
2100 }
2101 }
2102
2103 static int
2104 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2105 struct detailed_timing *timing)
2106 {
2107 int i, modes = 0;
2108 struct drm_display_mode *newmode;
2109 struct drm_device *dev = connector->dev;
2110
2111 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2112 const struct minimode *m = &extra_modes[i];
2113 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2114 if (!newmode)
2115 return modes;
2116
2117 fixup_mode_1366x768(newmode);
2118 if (!mode_in_range(newmode, edid, timing) ||
2119 !valid_inferred_mode(connector, newmode)) {
2120 drm_mode_destroy(dev, newmode);
2121 continue;
2122 }
2123
2124 drm_mode_probed_add(connector, newmode);
2125 modes++;
2126 }
2127
2128 return modes;
2129 }
2130
2131 static int
2132 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2133 struct detailed_timing *timing)
2134 {
2135 int i, modes = 0;
2136 struct drm_display_mode *newmode;
2137 struct drm_device *dev = connector->dev;
2138 bool rb = drm_monitor_supports_rb(edid);
2139
2140 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2141 const struct minimode *m = &extra_modes[i];
2142 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2143 if (!newmode)
2144 return modes;
2145
2146 fixup_mode_1366x768(newmode);
2147 if (!mode_in_range(newmode, edid, timing) ||
2148 !valid_inferred_mode(connector, newmode)) {
2149 drm_mode_destroy(dev, newmode);
2150 continue;
2151 }
2152
2153 drm_mode_probed_add(connector, newmode);
2154 modes++;
2155 }
2156
2157 return modes;
2158 }
2159
2160 static void
2161 do_inferred_modes(struct detailed_timing *timing, void *c)
2162 {
2163 struct detailed_mode_closure *closure = c;
2164 struct detailed_non_pixel *data = &timing->data.other_data;
2165 struct detailed_data_monitor_range *range = &data->data.range;
2166
2167 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2168 return;
2169
2170 closure->modes += drm_dmt_modes_for_range(closure->connector,
2171 closure->edid,
2172 timing);
2173
2174 if (!version_greater(closure->edid, 1, 1))
2175 return; /* GTF not defined yet */
2176
2177 switch (range->flags) {
2178 case 0x02: /* secondary gtf, XXX could do more */
2179 case 0x00: /* default gtf */
2180 closure->modes += drm_gtf_modes_for_range(closure->connector,
2181 closure->edid,
2182 timing);
2183 break;
2184 case 0x04: /* cvt, only in 1.4+ */
2185 if (!version_greater(closure->edid, 1, 3))
2186 break;
2187
2188 closure->modes += drm_cvt_modes_for_range(closure->connector,
2189 closure->edid,
2190 timing);
2191 break;
2192 case 0x01: /* just the ranges, no formula */
2193 default:
2194 break;
2195 }
2196 }
2197
2198 static int
2199 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2200 {
2201 struct detailed_mode_closure closure = {
2202 .connector = connector,
2203 .edid = edid,
2204 };
2205
2206 if (version_greater(edid, 1, 0))
2207 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2208 &closure);
2209
2210 return closure.modes;
2211 }
2212
2213 static int
2214 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2215 {
2216 int i, j, m, modes = 0;
2217 struct drm_display_mode *mode;
2218 u8 *est = ((u8 *)timing) + 5;
2219
2220 for (i = 0; i < 6; i++) {
2221 for (j = 7; j >= 0; j--) {
2222 m = (i * 8) + (7 - j);
2223 if (m >= ARRAY_SIZE(est3_modes))
2224 break;
2225 if (est[i] & (1 << j)) {
2226 mode = drm_mode_find_dmt(connector->dev,
2227 est3_modes[m].w,
2228 est3_modes[m].h,
2229 est3_modes[m].r,
2230 est3_modes[m].rb);
2231 if (mode) {
2232 drm_mode_probed_add(connector, mode);
2233 modes++;
2234 }
2235 }
2236 }
2237 }
2238
2239 return modes;
2240 }
2241
2242 static void
2243 do_established_modes(struct detailed_timing *timing, void *c)
2244 {
2245 struct detailed_mode_closure *closure = c;
2246 struct detailed_non_pixel *data = &timing->data.other_data;
2247
2248 if (data->type == EDID_DETAIL_EST_TIMINGS)
2249 closure->modes += drm_est3_modes(closure->connector, timing);
2250 }
2251
2252 /**
2253 * add_established_modes - get est. modes from EDID and add them
2254 * @connector: connector to add mode(s) to
2255 * @edid: EDID block to scan
2256 *
2257 * Each EDID block contains a bitmap of the supported "established modes" list
2258 * (defined above). Tease them out and add them to the global modes list.
2259 */
2260 static int
2261 add_established_modes(struct drm_connector *connector, struct edid *edid)
2262 {
2263 struct drm_device *dev = connector->dev;
2264 unsigned long est_bits = edid->established_timings.t1 |
2265 (edid->established_timings.t2 << 8) |
2266 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2267 int i, modes = 0;
2268 struct detailed_mode_closure closure = {
2269 .connector = connector,
2270 .edid = edid,
2271 };
2272
2273 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2274 if (est_bits & (1<<i)) {
2275 struct drm_display_mode *newmode;
2276 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2277 if (newmode) {
2278 drm_mode_probed_add(connector, newmode);
2279 modes++;
2280 }
2281 }
2282 }
2283
2284 if (version_greater(edid, 1, 0))
2285 drm_for_each_detailed_block((u8 *)edid,
2286 do_established_modes, &closure);
2287
2288 return modes + closure.modes;
2289 }
2290
2291 static void
2292 do_standard_modes(struct detailed_timing *timing, void *c)
2293 {
2294 struct detailed_mode_closure *closure = c;
2295 struct detailed_non_pixel *data = &timing->data.other_data;
2296 struct drm_connector *connector = closure->connector;
2297 struct edid *edid = closure->edid;
2298
2299 if (data->type == EDID_DETAIL_STD_MODES) {
2300 int i;
2301 for (i = 0; i < 6; i++) {
2302 struct std_timing *std;
2303 struct drm_display_mode *newmode;
2304
2305 std = &data->data.timings[i];
2306 newmode = drm_mode_std(connector, edid, std);
2307 if (newmode) {
2308 drm_mode_probed_add(connector, newmode);
2309 closure->modes++;
2310 }
2311 }
2312 }
2313 }
2314
2315 /**
2316 * add_standard_modes - get std. modes from EDID and add them
2317 * @connector: connector to add mode(s) to
2318 * @edid: EDID block to scan
2319 *
2320 * Standard modes can be calculated using the appropriate standard (DMT,
2321 * GTF or CVT. Grab them from @edid and add them to the list.
2322 */
2323 static int
2324 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2325 {
2326 int i, modes = 0;
2327 struct detailed_mode_closure closure = {
2328 .connector = connector,
2329 .edid = edid,
2330 };
2331
2332 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2333 struct drm_display_mode *newmode;
2334
2335 newmode = drm_mode_std(connector, edid,
2336 &edid->standard_timings[i]);
2337 if (newmode) {
2338 drm_mode_probed_add(connector, newmode);
2339 modes++;
2340 }
2341 }
2342
2343 if (version_greater(edid, 1, 0))
2344 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2345 &closure);
2346
2347 /* XXX should also look for standard codes in VTB blocks */
2348
2349 return modes + closure.modes;
2350 }
2351
2352 static int drm_cvt_modes(struct drm_connector *connector,
2353 struct detailed_timing *timing)
2354 {
2355 int i, j, modes = 0;
2356 struct drm_display_mode *newmode;
2357 struct drm_device *dev = connector->dev;
2358 struct cvt_timing *cvt;
2359 const int rates[] = { 60, 85, 75, 60, 50 };
2360 const u8 empty[3] = { 0, 0, 0 };
2361
2362 for (i = 0; i < 4; i++) {
2363 int uninitialized_var(width), height;
2364 cvt = &(timing->data.other_data.data.cvt[i]);
2365
2366 if (!memcmp(cvt->code, empty, 3))
2367 continue;
2368
2369 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2370 switch (cvt->code[1] & 0x0c) {
2371 case 0x00:
2372 width = height * 4 / 3;
2373 break;
2374 case 0x04:
2375 width = height * 16 / 9;
2376 break;
2377 case 0x08:
2378 width = height * 16 / 10;
2379 break;
2380 case 0x0c:
2381 width = height * 15 / 9;
2382 break;
2383 }
2384
2385 for (j = 1; j < 5; j++) {
2386 if (cvt->code[2] & (1 << j)) {
2387 newmode = drm_cvt_mode(dev, width, height,
2388 rates[j], j == 0,
2389 false, false);
2390 if (newmode) {
2391 drm_mode_probed_add(connector, newmode);
2392 modes++;
2393 }
2394 }
2395 }
2396 }
2397
2398 return modes;
2399 }
2400
2401 static void
2402 do_cvt_mode(struct detailed_timing *timing, void *c)
2403 {
2404 struct detailed_mode_closure *closure = c;
2405 struct detailed_non_pixel *data = &timing->data.other_data;
2406
2407 if (data->type == EDID_DETAIL_CVT_3BYTE)
2408 closure->modes += drm_cvt_modes(closure->connector, timing);
2409 }
2410
2411 static int
2412 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2413 {
2414 struct detailed_mode_closure closure = {
2415 .connector = connector,
2416 .edid = edid,
2417 };
2418
2419 if (version_greater(edid, 1, 2))
2420 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2421
2422 /* XXX should also look for CVT codes in VTB blocks */
2423
2424 return closure.modes;
2425 }
2426
2427 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2428
2429 static void
2430 do_detailed_mode(struct detailed_timing *timing, void *c)
2431 {
2432 struct detailed_mode_closure *closure = c;
2433 struct drm_display_mode *newmode;
2434
2435 if (timing->pixel_clock) {
2436 newmode = drm_mode_detailed(closure->connector->dev,
2437 closure->edid, timing,
2438 closure->quirks);
2439 if (!newmode)
2440 return;
2441
2442 if (closure->preferred)
2443 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2444
2445 /*
2446 * Detailed modes are limited to 10kHz pixel clock resolution,
2447 * so fix up anything that looks like CEA/HDMI mode, but the clock
2448 * is just slightly off.
2449 */
2450 fixup_detailed_cea_mode_clock(newmode);
2451
2452 drm_mode_probed_add(closure->connector, newmode);
2453 closure->modes++;
2454 closure->preferred = 0;
2455 }
2456 }
2457
2458 /*
2459 * add_detailed_modes - Add modes from detailed timings
2460 * @connector: attached connector
2461 * @edid: EDID block to scan
2462 * @quirks: quirks to apply
2463 */
2464 static int
2465 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2466 u32 quirks)
2467 {
2468 struct detailed_mode_closure closure = {
2469 .connector = connector,
2470 .edid = edid,
2471 .preferred = 1,
2472 .quirks = quirks,
2473 };
2474
2475 if (closure.preferred && !version_greater(edid, 1, 3))
2476 closure.preferred =
2477 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2478
2479 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2480
2481 return closure.modes;
2482 }
2483
2484 #define AUDIO_BLOCK 0x01
2485 #define VIDEO_BLOCK 0x02
2486 #define VENDOR_BLOCK 0x03
2487 #define SPEAKER_BLOCK 0x04
2488 #define VIDEO_CAPABILITY_BLOCK 0x07
2489 #define EDID_BASIC_AUDIO (1 << 6)
2490 #define EDID_CEA_YCRCB444 (1 << 5)
2491 #define EDID_CEA_YCRCB422 (1 << 4)
2492 #define EDID_CEA_VCDB_QS (1 << 6)
2493
2494 /*
2495 * Search EDID for CEA extension block.
2496 */
2497 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2498 {
2499 u8 *edid_ext = NULL;
2500 int i;
2501
2502 /* No EDID or EDID extensions */
2503 if (edid == NULL || edid->extensions == 0)
2504 return NULL;
2505
2506 /* Find CEA extension */
2507 for (i = 0; i < edid->extensions; i++) {
2508 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2509 if (edid_ext[0] == ext_id)
2510 break;
2511 }
2512
2513 if (i == edid->extensions)
2514 return NULL;
2515
2516 return edid_ext;
2517 }
2518
2519 static u8 *drm_find_cea_extension(struct edid *edid)
2520 {
2521 return drm_find_edid_extension(edid, CEA_EXT);
2522 }
2523
2524 static u8 *drm_find_displayid_extension(struct edid *edid)
2525 {
2526 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2527 }
2528
2529 /*
2530 * Calculate the alternate clock for the CEA mode
2531 * (60Hz vs. 59.94Hz etc.)
2532 */
2533 static unsigned int
2534 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2535 {
2536 unsigned int clock = cea_mode->clock;
2537
2538 if (cea_mode->vrefresh % 6 != 0)
2539 return clock;
2540
2541 /*
2542 * edid_cea_modes contains the 59.94Hz
2543 * variant for 240 and 480 line modes,
2544 * and the 60Hz variant otherwise.
2545 */
2546 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2547 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2548 else
2549 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2550
2551 return clock;
2552 }
2553
2554 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
2555 unsigned int clock_tolerance)
2556 {
2557 u8 vic;
2558
2559 if (!to_match->clock)
2560 return 0;
2561
2562 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2563 const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
2564 unsigned int clock1, clock2;
2565
2566 /* Check both 60Hz and 59.94Hz */
2567 clock1 = cea_mode->clock;
2568 clock2 = cea_mode_alternate_clock(cea_mode);
2569
2570 if (abs(to_match->clock - clock1) > clock_tolerance &&
2571 abs(to_match->clock - clock2) > clock_tolerance)
2572 continue;
2573
2574 if (drm_mode_equal_no_clocks(to_match, cea_mode))
2575 return vic;
2576 }
2577
2578 return 0;
2579 }
2580
2581 /**
2582 * drm_match_cea_mode - look for a CEA mode matching given mode
2583 * @to_match: display mode
2584 *
2585 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2586 * mode.
2587 */
2588 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2589 {
2590 u8 vic;
2591
2592 if (!to_match->clock)
2593 return 0;
2594
2595 for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) {
2596 const struct drm_display_mode *cea_mode = &edid_cea_modes[vic];
2597 unsigned int clock1, clock2;
2598
2599 /* Check both 60Hz and 59.94Hz */
2600 clock1 = cea_mode->clock;
2601 clock2 = cea_mode_alternate_clock(cea_mode);
2602
2603 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2604 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2605 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2606 return vic;
2607 }
2608 return 0;
2609 }
2610 EXPORT_SYMBOL(drm_match_cea_mode);
2611
2612 static bool drm_valid_cea_vic(u8 vic)
2613 {
2614 return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes);
2615 }
2616
2617 /**
2618 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2619 * the input VIC from the CEA mode list
2620 * @video_code: ID given to each of the CEA modes
2621 *
2622 * Returns picture aspect ratio
2623 */
2624 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2625 {
2626 return edid_cea_modes[video_code].picture_aspect_ratio;
2627 }
2628 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2629
2630 /*
2631 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2632 * specific block).
2633 *
2634 * It's almost like cea_mode_alternate_clock(), we just need to add an
2635 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2636 * one.
2637 */
2638 static unsigned int
2639 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2640 {
2641 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2642 return hdmi_mode->clock;
2643
2644 return cea_mode_alternate_clock(hdmi_mode);
2645 }
2646
2647 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
2648 unsigned int clock_tolerance)
2649 {
2650 u8 vic;
2651
2652 if (!to_match->clock)
2653 return 0;
2654
2655 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2656 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2657 unsigned int clock1, clock2;
2658
2659 /* Make sure to also match alternate clocks */
2660 clock1 = hdmi_mode->clock;
2661 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2662
2663 if (abs(to_match->clock - clock1) > clock_tolerance &&
2664 abs(to_match->clock - clock2) > clock_tolerance)
2665 continue;
2666
2667 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
2668 return vic;
2669 }
2670
2671 return 0;
2672 }
2673
2674 /*
2675 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2676 * @to_match: display mode
2677 *
2678 * An HDMI mode is one defined in the HDMI vendor specific block.
2679 *
2680 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2681 */
2682 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2683 {
2684 u8 vic;
2685
2686 if (!to_match->clock)
2687 return 0;
2688
2689 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
2690 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
2691 unsigned int clock1, clock2;
2692
2693 /* Make sure to also match alternate clocks */
2694 clock1 = hdmi_mode->clock;
2695 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2696
2697 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2698 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2699 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2700 return vic;
2701 }
2702 return 0;
2703 }
2704
2705 static bool drm_valid_hdmi_vic(u8 vic)
2706 {
2707 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2708 }
2709
2710 static int
2711 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2712 {
2713 struct drm_device *dev = connector->dev;
2714 struct drm_display_mode *mode, *tmp;
2715 LIST_HEAD(list);
2716 int modes = 0;
2717
2718 /* Don't add CEA modes if the CEA extension block is missing */
2719 if (!drm_find_cea_extension(edid))
2720 return 0;
2721
2722 /*
2723 * Go through all probed modes and create a new mode
2724 * with the alternate clock for certain CEA modes.
2725 */
2726 list_for_each_entry(mode, &connector->probed_modes, head) {
2727 const struct drm_display_mode *cea_mode = NULL;
2728 struct drm_display_mode *newmode;
2729 u8 vic = drm_match_cea_mode(mode);
2730 unsigned int clock1, clock2;
2731
2732 if (drm_valid_cea_vic(vic)) {
2733 cea_mode = &edid_cea_modes[vic];
2734 clock2 = cea_mode_alternate_clock(cea_mode);
2735 } else {
2736 vic = drm_match_hdmi_mode(mode);
2737 if (drm_valid_hdmi_vic(vic)) {
2738 cea_mode = &edid_4k_modes[vic];
2739 clock2 = hdmi_mode_alternate_clock(cea_mode);
2740 }
2741 }
2742
2743 if (!cea_mode)
2744 continue;
2745
2746 clock1 = cea_mode->clock;
2747
2748 if (clock1 == clock2)
2749 continue;
2750
2751 if (mode->clock != clock1 && mode->clock != clock2)
2752 continue;
2753
2754 newmode = drm_mode_duplicate(dev, cea_mode);
2755 if (!newmode)
2756 continue;
2757
2758 /* Carry over the stereo flags */
2759 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2760
2761 /*
2762 * The current mode could be either variant. Make
2763 * sure to pick the "other" clock for the new mode.
2764 */
2765 if (mode->clock != clock1)
2766 newmode->clock = clock1;
2767 else
2768 newmode->clock = clock2;
2769
2770 list_add_tail(&newmode->head, &list);
2771 }
2772
2773 list_for_each_entry_safe(mode, tmp, &list, head) {
2774 list_del(&mode->head);
2775 drm_mode_probed_add(connector, mode);
2776 modes++;
2777 }
2778
2779 return modes;
2780 }
2781
2782 static struct drm_display_mode *
2783 drm_display_mode_from_vic_index(struct drm_connector *connector,
2784 const u8 *video_db, u8 video_len,
2785 u8 video_index)
2786 {
2787 struct drm_device *dev = connector->dev;
2788 struct drm_display_mode *newmode;
2789 u8 vic;
2790
2791 if (video_db == NULL || video_index >= video_len)
2792 return NULL;
2793
2794 /* CEA modes are numbered 1..127 */
2795 vic = (video_db[video_index] & 127);
2796 if (!drm_valid_cea_vic(vic))
2797 return NULL;
2798
2799 newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]);
2800 if (!newmode)
2801 return NULL;
2802
2803 newmode->vrefresh = 0;
2804
2805 return newmode;
2806 }
2807
2808 static int
2809 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2810 {
2811 int i, modes = 0;
2812
2813 for (i = 0; i < len; i++) {
2814 struct drm_display_mode *mode;
2815 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2816 if (mode) {
2817 drm_mode_probed_add(connector, mode);
2818 modes++;
2819 }
2820 }
2821
2822 return modes;
2823 }
2824
2825 struct stereo_mandatory_mode {
2826 int width, height, vrefresh;
2827 unsigned int flags;
2828 };
2829
2830 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2831 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2832 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2833 { 1920, 1080, 50,
2834 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2835 { 1920, 1080, 60,
2836 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2837 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2838 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2839 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2840 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2841 };
2842
2843 static bool
2844 stereo_match_mandatory(const struct drm_display_mode *mode,
2845 const struct stereo_mandatory_mode *stereo_mode)
2846 {
2847 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2848
2849 return mode->hdisplay == stereo_mode->width &&
2850 mode->vdisplay == stereo_mode->height &&
2851 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2852 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2853 }
2854
2855 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2856 {
2857 struct drm_device *dev = connector->dev;
2858 const struct drm_display_mode *mode;
2859 struct list_head stereo_modes;
2860 int modes = 0, i;
2861
2862 INIT_LIST_HEAD(&stereo_modes);
2863
2864 list_for_each_entry(mode, &connector->probed_modes, head) {
2865 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2866 const struct stereo_mandatory_mode *mandatory;
2867 struct drm_display_mode *new_mode;
2868
2869 if (!stereo_match_mandatory(mode,
2870 &stereo_mandatory_modes[i]))
2871 continue;
2872
2873 mandatory = &stereo_mandatory_modes[i];
2874 new_mode = drm_mode_duplicate(dev, mode);
2875 if (!new_mode)
2876 continue;
2877
2878 new_mode->flags |= mandatory->flags;
2879 list_add_tail(&new_mode->head, &stereo_modes);
2880 modes++;
2881 }
2882 }
2883
2884 list_splice_tail(&stereo_modes, &connector->probed_modes);
2885
2886 return modes;
2887 }
2888
2889 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2890 {
2891 struct drm_device *dev = connector->dev;
2892 struct drm_display_mode *newmode;
2893
2894 if (!drm_valid_hdmi_vic(vic)) {
2895 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2896 return 0;
2897 }
2898
2899 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2900 if (!newmode)
2901 return 0;
2902
2903 drm_mode_probed_add(connector, newmode);
2904
2905 return 1;
2906 }
2907
2908 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2909 const u8 *video_db, u8 video_len, u8 video_index)
2910 {
2911 struct drm_display_mode *newmode;
2912 int modes = 0;
2913
2914 if (structure & (1 << 0)) {
2915 newmode = drm_display_mode_from_vic_index(connector, video_db,
2916 video_len,
2917 video_index);
2918 if (newmode) {
2919 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2920 drm_mode_probed_add(connector, newmode);
2921 modes++;
2922 }
2923 }
2924 if (structure & (1 << 6)) {
2925 newmode = drm_display_mode_from_vic_index(connector, video_db,
2926 video_len,
2927 video_index);
2928 if (newmode) {
2929 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2930 drm_mode_probed_add(connector, newmode);
2931 modes++;
2932 }
2933 }
2934 if (structure & (1 << 8)) {
2935 newmode = drm_display_mode_from_vic_index(connector, video_db,
2936 video_len,
2937 video_index);
2938 if (newmode) {
2939 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2940 drm_mode_probed_add(connector, newmode);
2941 modes++;
2942 }
2943 }
2944
2945 return modes;
2946 }
2947
2948 /*
2949 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2950 * @connector: connector corresponding to the HDMI sink
2951 * @db: start of the CEA vendor specific block
2952 * @len: length of the CEA block payload, ie. one can access up to db[len]
2953 *
2954 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2955 * also adds the stereo 3d modes when applicable.
2956 */
2957 static int
2958 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2959 const u8 *video_db, u8 video_len)
2960 {
2961 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2962 u8 vic_len, hdmi_3d_len = 0;
2963 u16 mask;
2964 u16 structure_all;
2965
2966 if (len < 8)
2967 goto out;
2968
2969 /* no HDMI_Video_Present */
2970 if (!(db[8] & (1 << 5)))
2971 goto out;
2972
2973 /* Latency_Fields_Present */
2974 if (db[8] & (1 << 7))
2975 offset += 2;
2976
2977 /* I_Latency_Fields_Present */
2978 if (db[8] & (1 << 6))
2979 offset += 2;
2980
2981 /* the declared length is not long enough for the 2 first bytes
2982 * of additional video format capabilities */
2983 if (len < (8 + offset + 2))
2984 goto out;
2985
2986 /* 3D_Present */
2987 offset++;
2988 if (db[8 + offset] & (1 << 7)) {
2989 modes += add_hdmi_mandatory_stereo_modes(connector);
2990
2991 /* 3D_Multi_present */
2992 multi_present = (db[8 + offset] & 0x60) >> 5;
2993 }
2994
2995 offset++;
2996 vic_len = db[8 + offset] >> 5;
2997 hdmi_3d_len = db[8 + offset] & 0x1f;
2998
2999 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
3000 u8 vic;
3001
3002 vic = db[9 + offset + i];
3003 modes += add_hdmi_mode(connector, vic);
3004 }
3005 offset += 1 + vic_len;
3006
3007 if (multi_present == 1)
3008 multi_len = 2;
3009 else if (multi_present == 2)
3010 multi_len = 4;
3011 else
3012 multi_len = 0;
3013
3014 if (len < (8 + offset + hdmi_3d_len - 1))
3015 goto out;
3016
3017 if (hdmi_3d_len < multi_len)
3018 goto out;
3019
3020 if (multi_present == 1 || multi_present == 2) {
3021 /* 3D_Structure_ALL */
3022 structure_all = (db[8 + offset] << 8) | db[9 + offset];
3023
3024 /* check if 3D_MASK is present */
3025 if (multi_present == 2)
3026 mask = (db[10 + offset] << 8) | db[11 + offset];
3027 else
3028 mask = 0xffff;
3029
3030 for (i = 0; i < 16; i++) {
3031 if (mask & (1 << i))
3032 modes += add_3d_struct_modes(connector,
3033 structure_all,
3034 video_db,
3035 video_len, i);
3036 }
3037 }
3038
3039 offset += multi_len;
3040
3041 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3042 int vic_index;
3043 struct drm_display_mode *newmode = NULL;
3044 unsigned int newflag = 0;
3045 bool detail_present;
3046
3047 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3048
3049 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3050 break;
3051
3052 /* 2D_VIC_order_X */
3053 vic_index = db[8 + offset + i] >> 4;
3054
3055 /* 3D_Structure_X */
3056 switch (db[8 + offset + i] & 0x0f) {
3057 case 0:
3058 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3059 break;
3060 case 6:
3061 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3062 break;
3063 case 8:
3064 /* 3D_Detail_X */
3065 if ((db[9 + offset + i] >> 4) == 1)
3066 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3067 break;
3068 }
3069
3070 if (newflag != 0) {
3071 newmode = drm_display_mode_from_vic_index(connector,
3072 video_db,
3073 video_len,
3074 vic_index);
3075
3076 if (newmode) {
3077 newmode->flags |= newflag;
3078 drm_mode_probed_add(connector, newmode);
3079 modes++;
3080 }
3081 }
3082
3083 if (detail_present)
3084 i++;
3085 }
3086
3087 out:
3088 return modes;
3089 }
3090
3091 static int
3092 cea_db_payload_len(const u8 *db)
3093 {
3094 return db[0] & 0x1f;
3095 }
3096
3097 static int
3098 cea_db_tag(const u8 *db)
3099 {
3100 return db[0] >> 5;
3101 }
3102
3103 static int
3104 cea_revision(const u8 *cea)
3105 {
3106 return cea[1];
3107 }
3108
3109 static int
3110 cea_db_offsets(const u8 *cea, int *start, int *end)
3111 {
3112 /* Data block offset in CEA extension block */
3113 *start = 4;
3114 *end = cea[2];
3115 if (*end == 0)
3116 *end = 127;
3117 if (*end < 4 || *end > 127)
3118 return -ERANGE;
3119 return 0;
3120 }
3121
3122 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3123 {
3124 int hdmi_id;
3125
3126 if (cea_db_tag(db) != VENDOR_BLOCK)
3127 return false;
3128
3129 if (cea_db_payload_len(db) < 5)
3130 return false;
3131
3132 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3133
3134 return hdmi_id == HDMI_IEEE_OUI;
3135 }
3136
3137 #define for_each_cea_db(cea, i, start, end) \
3138 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3139
3140 static int
3141 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3142 {
3143 const u8 *cea = drm_find_cea_extension(edid);
3144 const u8 *db, *hdmi = NULL, *video = NULL;
3145 u8 dbl, hdmi_len, video_len = 0;
3146 int modes = 0;
3147
3148 if (cea && cea_revision(cea) >= 3) {
3149 int i, start, end;
3150
3151 if (cea_db_offsets(cea, &start, &end))
3152 return 0;
3153
3154 for_each_cea_db(cea, i, start, end) {
3155 db = &cea[i];
3156 dbl = cea_db_payload_len(db);
3157
3158 if (cea_db_tag(db) == VIDEO_BLOCK) {
3159 video = db + 1;
3160 video_len = dbl;
3161 modes += do_cea_modes(connector, video, dbl);
3162 }
3163 else if (cea_db_is_hdmi_vsdb(db)) {
3164 hdmi = db;
3165 hdmi_len = dbl;
3166 }
3167 }
3168 }
3169
3170 /*
3171 * We parse the HDMI VSDB after having added the cea modes as we will
3172 * be patching their flags when the sink supports stereo 3D.
3173 */
3174 if (hdmi)
3175 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3176 video_len);
3177
3178 return modes;
3179 }
3180
3181 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3182 {
3183 const struct drm_display_mode *cea_mode;
3184 int clock1, clock2, clock;
3185 u8 vic;
3186 const char *type;
3187
3188 /*
3189 * allow 5kHz clock difference either way to account for
3190 * the 10kHz clock resolution limit of detailed timings.
3191 */
3192 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3193 if (drm_valid_cea_vic(vic)) {
3194 type = "CEA";
3195 cea_mode = &edid_cea_modes[vic];
3196 clock1 = cea_mode->clock;
3197 clock2 = cea_mode_alternate_clock(cea_mode);
3198 } else {
3199 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3200 if (drm_valid_hdmi_vic(vic)) {
3201 type = "HDMI";
3202 cea_mode = &edid_4k_modes[vic];
3203 clock1 = cea_mode->clock;
3204 clock2 = hdmi_mode_alternate_clock(cea_mode);
3205 } else {
3206 return;
3207 }
3208 }
3209
3210 /* pick whichever is closest */
3211 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3212 clock = clock1;
3213 else
3214 clock = clock2;
3215
3216 if (mode->clock == clock)
3217 return;
3218
3219 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3220 type, vic, mode->clock, clock);
3221 mode->clock = clock;
3222 }
3223
3224 static void
3225 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3226 {
3227 u8 len = cea_db_payload_len(db);
3228
3229 if (len >= 6) {
3230 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3231 connector->dvi_dual = db[6] & 1;
3232 }
3233 if (len >= 7)
3234 connector->max_tmds_clock = db[7] * 5;
3235 if (len >= 8) {
3236 connector->latency_present[0] = db[8] >> 7;
3237 connector->latency_present[1] = (db[8] >> 6) & 1;
3238 }
3239 if (len >= 9)
3240 connector->video_latency[0] = db[9];
3241 if (len >= 10)
3242 connector->audio_latency[0] = db[10];
3243 if (len >= 11)
3244 connector->video_latency[1] = db[11];
3245 if (len >= 12)
3246 connector->audio_latency[1] = db[12];
3247
3248 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3249 "max TMDS clock %d, "
3250 "latency present %d %d, "
3251 "video latency %d %d, "
3252 "audio latency %d %d\n",
3253 connector->dvi_dual,
3254 connector->max_tmds_clock,
3255 (int) connector->latency_present[0],
3256 (int) connector->latency_present[1],
3257 connector->video_latency[0],
3258 connector->video_latency[1],
3259 connector->audio_latency[0],
3260 connector->audio_latency[1]);
3261 }
3262
3263 static void
3264 monitor_name(struct detailed_timing *t, void *data)
3265 {
3266 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3267 *(u8 **)data = t->data.other_data.data.str.str;
3268 }
3269
3270 /**
3271 * drm_edid_to_eld - build ELD from EDID
3272 * @connector: connector corresponding to the HDMI/DP sink
3273 * @edid: EDID to parse
3274 *
3275 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3276 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3277 * fill in.
3278 */
3279 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3280 {
3281 uint8_t *eld = connector->eld;
3282 u8 *cea;
3283 u8 *name;
3284 u8 *db;
3285 int sad_count = 0;
3286 int mnl;
3287 int dbl;
3288
3289 memset(eld, 0, sizeof(connector->eld));
3290
3291 cea = drm_find_cea_extension(edid);
3292 if (!cea) {
3293 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3294 return;
3295 }
3296
3297 name = NULL;
3298 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3299 for (mnl = 0; name && mnl < 13; mnl++) {
3300 if (name[mnl] == 0x0a)
3301 break;
3302 eld[20 + mnl] = name[mnl];
3303 }
3304 eld[4] = (cea[1] << 5) | mnl;
3305 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3306
3307 eld[0] = 2 << 3; /* ELD version: 2 */
3308
3309 eld[16] = edid->mfg_id[0];
3310 eld[17] = edid->mfg_id[1];
3311 eld[18] = edid->prod_code[0];
3312 eld[19] = edid->prod_code[1];
3313
3314 if (cea_revision(cea) >= 3) {
3315 int i, start, end;
3316
3317 if (cea_db_offsets(cea, &start, &end)) {
3318 start = 0;
3319 end = 0;
3320 }
3321
3322 for_each_cea_db(cea, i, start, end) {
3323 db = &cea[i];
3324 dbl = cea_db_payload_len(db);
3325
3326 switch (cea_db_tag(db)) {
3327 case AUDIO_BLOCK:
3328 /* Audio Data Block, contains SADs */
3329 sad_count = dbl / 3;
3330 if (dbl >= 1)
3331 memcpy(eld + 20 + mnl, &db[1], dbl);
3332 break;
3333 case SPEAKER_BLOCK:
3334 /* Speaker Allocation Data Block */
3335 if (dbl >= 1)
3336 eld[7] = db[1];
3337 break;
3338 case VENDOR_BLOCK:
3339 /* HDMI Vendor-Specific Data Block */
3340 if (cea_db_is_hdmi_vsdb(db))
3341 parse_hdmi_vsdb(connector, db);
3342 break;
3343 default:
3344 break;
3345 }
3346 }
3347 }
3348 eld[5] |= sad_count << 4;
3349
3350 eld[DRM_ELD_BASELINE_ELD_LEN] =
3351 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3352
3353 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3354 drm_eld_size(eld), sad_count);
3355 }
3356 EXPORT_SYMBOL(drm_edid_to_eld);
3357
3358 /**
3359 * drm_edid_to_sad - extracts SADs from EDID
3360 * @edid: EDID to parse
3361 * @sads: pointer that will be set to the extracted SADs
3362 *
3363 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3364 *
3365 * Note: The returned pointer needs to be freed using kfree().
3366 *
3367 * Return: The number of found SADs or negative number on error.
3368 */
3369 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3370 {
3371 int count = 0;
3372 int i, start, end, dbl;
3373 u8 *cea;
3374
3375 cea = drm_find_cea_extension(edid);
3376 if (!cea) {
3377 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3378 return -ENOENT;
3379 }
3380
3381 if (cea_revision(cea) < 3) {
3382 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3383 return -ENOTSUPP;
3384 }
3385
3386 if (cea_db_offsets(cea, &start, &end)) {
3387 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3388 return -EPROTO;
3389 }
3390
3391 for_each_cea_db(cea, i, start, end) {
3392 u8 *db = &cea[i];
3393
3394 if (cea_db_tag(db) == AUDIO_BLOCK) {
3395 int j;
3396 dbl = cea_db_payload_len(db);
3397
3398 count = dbl / 3; /* SAD is 3B */
3399 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3400 if (!*sads)
3401 return -ENOMEM;
3402 for (j = 0; j < count; j++) {
3403 u8 *sad = &db[1 + j * 3];
3404
3405 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3406 (*sads)[j].channels = sad[0] & 0x7;
3407 (*sads)[j].freq = sad[1] & 0x7F;
3408 (*sads)[j].byte2 = sad[2];
3409 }
3410 break;
3411 }
3412 }
3413
3414 return count;
3415 }
3416 EXPORT_SYMBOL(drm_edid_to_sad);
3417
3418 /**
3419 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3420 * @edid: EDID to parse
3421 * @sadb: pointer to the speaker block
3422 *
3423 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3424 *
3425 * Note: The returned pointer needs to be freed using kfree().
3426 *
3427 * Return: The number of found Speaker Allocation Blocks or negative number on
3428 * error.
3429 */
3430 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3431 {
3432 int count = 0;
3433 int i, start, end, dbl;
3434 const u8 *cea;
3435
3436 cea = drm_find_cea_extension(edid);
3437 if (!cea) {
3438 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3439 return -ENOENT;
3440 }
3441
3442 if (cea_revision(cea) < 3) {
3443 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3444 return -ENOTSUPP;
3445 }
3446
3447 if (cea_db_offsets(cea, &start, &end)) {
3448 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3449 return -EPROTO;
3450 }
3451
3452 for_each_cea_db(cea, i, start, end) {
3453 const u8 *db = &cea[i];
3454
3455 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3456 dbl = cea_db_payload_len(db);
3457
3458 /* Speaker Allocation Data Block */
3459 if (dbl == 3) {
3460 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3461 if (!*sadb)
3462 return -ENOMEM;
3463 count = dbl;
3464 break;
3465 }
3466 }
3467 }
3468
3469 return count;
3470 }
3471 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3472
3473 /**
3474 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3475 * @connector: connector associated with the HDMI/DP sink
3476 * @mode: the display mode
3477 *
3478 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3479 * the sink doesn't support audio or video.
3480 */
3481 int drm_av_sync_delay(struct drm_connector *connector,
3482 const struct drm_display_mode *mode)
3483 {
3484 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3485 int a, v;
3486
3487 if (!connector->latency_present[0])
3488 return 0;
3489 if (!connector->latency_present[1])
3490 i = 0;
3491
3492 a = connector->audio_latency[i];
3493 v = connector->video_latency[i];
3494
3495 /*
3496 * HDMI/DP sink doesn't support audio or video?
3497 */
3498 if (a == 255 || v == 255)
3499 return 0;
3500
3501 /*
3502 * Convert raw EDID values to millisecond.
3503 * Treat unknown latency as 0ms.
3504 */
3505 if (a)
3506 a = min(2 * (a - 1), 500);
3507 if (v)
3508 v = min(2 * (v - 1), 500);
3509
3510 return max(v - a, 0);
3511 }
3512 EXPORT_SYMBOL(drm_av_sync_delay);
3513
3514 /**
3515 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3516 * @encoder: the encoder just changed display mode
3517 *
3518 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3519 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3520 *
3521 * Return: The connector associated with the first HDMI/DP sink that has ELD
3522 * attached to it.
3523 */
3524 struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3525 {
3526 struct drm_connector *connector;
3527 struct drm_device *dev = encoder->dev;
3528
3529 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3530 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3531
3532 drm_for_each_connector(connector, dev)
3533 if (connector->encoder == encoder && connector->eld[0])
3534 return connector;
3535
3536 return NULL;
3537 }
3538 EXPORT_SYMBOL(drm_select_eld);
3539
3540 /**
3541 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3542 * @edid: monitor EDID information
3543 *
3544 * Parse the CEA extension according to CEA-861-B.
3545 *
3546 * Return: True if the monitor is HDMI, false if not or unknown.
3547 */
3548 bool drm_detect_hdmi_monitor(struct edid *edid)
3549 {
3550 u8 *edid_ext;
3551 int i;
3552 int start_offset, end_offset;
3553
3554 edid_ext = drm_find_cea_extension(edid);
3555 if (!edid_ext)
3556 return false;
3557
3558 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3559 return false;
3560
3561 /*
3562 * Because HDMI identifier is in Vendor Specific Block,
3563 * search it from all data blocks of CEA extension.
3564 */
3565 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3566 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3567 return true;
3568 }
3569
3570 return false;
3571 }
3572 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3573
3574 /**
3575 * drm_detect_monitor_audio - check monitor audio capability
3576 * @edid: EDID block to scan
3577 *
3578 * Monitor should have CEA extension block.
3579 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3580 * audio' only. If there is any audio extension block and supported
3581 * audio format, assume at least 'basic audio' support, even if 'basic
3582 * audio' is not defined in EDID.
3583 *
3584 * Return: True if the monitor supports audio, false otherwise.
3585 */
3586 bool drm_detect_monitor_audio(struct edid *edid)
3587 {
3588 u8 *edid_ext;
3589 int i, j;
3590 bool has_audio = false;
3591 int start_offset, end_offset;
3592
3593 edid_ext = drm_find_cea_extension(edid);
3594 if (!edid_ext)
3595 goto end;
3596
3597 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3598
3599 if (has_audio) {
3600 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3601 goto end;
3602 }
3603
3604 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3605 goto end;
3606
3607 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3608 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3609 has_audio = true;
3610 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3611 DRM_DEBUG_KMS("CEA audio format %d\n",
3612 (edid_ext[i + j] >> 3) & 0xf);
3613 goto end;
3614 }
3615 }
3616 end:
3617 return has_audio;
3618 }
3619 EXPORT_SYMBOL(drm_detect_monitor_audio);
3620
3621 /**
3622 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3623 * @edid: EDID block to scan
3624 *
3625 * Check whether the monitor reports the RGB quantization range selection
3626 * as supported. The AVI infoframe can then be used to inform the monitor
3627 * which quantization range (full or limited) is used.
3628 *
3629 * Return: True if the RGB quantization range is selectable, false otherwise.
3630 */
3631 bool drm_rgb_quant_range_selectable(struct edid *edid)
3632 {
3633 u8 *edid_ext;
3634 int i, start, end;
3635
3636 edid_ext = drm_find_cea_extension(edid);
3637 if (!edid_ext)
3638 return false;
3639
3640 if (cea_db_offsets(edid_ext, &start, &end))
3641 return false;
3642
3643 for_each_cea_db(edid_ext, i, start, end) {
3644 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3645 cea_db_payload_len(&edid_ext[i]) == 2) {
3646 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3647 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3648 }
3649 }
3650
3651 return false;
3652 }
3653 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3654
3655 /**
3656 * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3657 * hdmi deep color modes and update drm_display_info if so.
3658 * @edid: monitor EDID information
3659 * @info: Updated with maximum supported deep color bpc and color format
3660 * if deep color supported.
3661 * @connector: DRM connector, used only for debug output
3662 *
3663 * Parse the CEA extension according to CEA-861-B.
3664 * Return true if HDMI deep color supported, false if not or unknown.
3665 */
3666 static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3667 struct drm_display_info *info,
3668 struct drm_connector *connector)
3669 {
3670 u8 *edid_ext, *hdmi;
3671 int i;
3672 int start_offset, end_offset;
3673 unsigned int dc_bpc = 0;
3674
3675 edid_ext = drm_find_cea_extension(edid);
3676 if (!edid_ext)
3677 return false;
3678
3679 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3680 return false;
3681
3682 /*
3683 * Because HDMI identifier is in Vendor Specific Block,
3684 * search it from all data blocks of CEA extension.
3685 */
3686 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3687 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3688 /* HDMI supports at least 8 bpc */
3689 info->bpc = 8;
3690
3691 hdmi = &edid_ext[i];
3692 if (cea_db_payload_len(hdmi) < 6)
3693 return false;
3694
3695 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3696 dc_bpc = 10;
3697 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3698 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3699 connector->name);
3700 }
3701
3702 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3703 dc_bpc = 12;
3704 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3705 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3706 connector->name);
3707 }
3708
3709 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3710 dc_bpc = 16;
3711 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3712 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3713 connector->name);
3714 }
3715
3716 if (dc_bpc > 0) {
3717 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3718 connector->name, dc_bpc);
3719 info->bpc = dc_bpc;
3720
3721 /*
3722 * Deep color support mandates RGB444 support for all video
3723 * modes and forbids YCRCB422 support for all video modes per
3724 * HDMI 1.3 spec.
3725 */
3726 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3727
3728 /* YCRCB444 is optional according to spec. */
3729 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3730 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3731 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3732 connector->name);
3733 }
3734
3735 /*
3736 * Spec says that if any deep color mode is supported at all,
3737 * then deep color 36 bit must be supported.
3738 */
3739 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3740 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3741 connector->name);
3742 }
3743
3744 return true;
3745 }
3746 else {
3747 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3748 connector->name);
3749 }
3750 }
3751 }
3752
3753 return false;
3754 }
3755
3756 /**
3757 * drm_add_display_info - pull display info out if present
3758 * @edid: EDID data
3759 * @info: display info (attached to connector)
3760 * @connector: connector whose edid is used to build display info
3761 *
3762 * Grab any available display info and stuff it into the drm_display_info
3763 * structure that's part of the connector. Useful for tracking bpp and
3764 * color spaces.
3765 */
3766 static void drm_add_display_info(struct edid *edid,
3767 struct drm_display_info *info,
3768 struct drm_connector *connector)
3769 {
3770 u8 *edid_ext;
3771
3772 info->width_mm = edid->width_cm * 10;
3773 info->height_mm = edid->height_cm * 10;
3774
3775 /* driver figures it out in this case */
3776 info->bpc = 0;
3777 info->color_formats = 0;
3778
3779 if (edid->revision < 3)
3780 return;
3781
3782 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3783 return;
3784
3785 /* Get data from CEA blocks if present */
3786 edid_ext = drm_find_cea_extension(edid);
3787 if (edid_ext) {
3788 info->cea_rev = edid_ext[1];
3789
3790 /* The existence of a CEA block should imply RGB support */
3791 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3792 if (edid_ext[3] & EDID_CEA_YCRCB444)
3793 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3794 if (edid_ext[3] & EDID_CEA_YCRCB422)
3795 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3796 }
3797
3798 /* HDMI deep color modes supported? Assign to info, if so */
3799 drm_assign_hdmi_deep_color_info(edid, info, connector);
3800
3801 /* Only defined for 1.4 with digital displays */
3802 if (edid->revision < 4)
3803 return;
3804
3805 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3806 case DRM_EDID_DIGITAL_DEPTH_6:
3807 info->bpc = 6;
3808 break;
3809 case DRM_EDID_DIGITAL_DEPTH_8:
3810 info->bpc = 8;
3811 break;
3812 case DRM_EDID_DIGITAL_DEPTH_10:
3813 info->bpc = 10;
3814 break;
3815 case DRM_EDID_DIGITAL_DEPTH_12:
3816 info->bpc = 12;
3817 break;
3818 case DRM_EDID_DIGITAL_DEPTH_14:
3819 info->bpc = 14;
3820 break;
3821 case DRM_EDID_DIGITAL_DEPTH_16:
3822 info->bpc = 16;
3823 break;
3824 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3825 default:
3826 info->bpc = 0;
3827 break;
3828 }
3829
3830 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3831 connector->name, info->bpc);
3832
3833 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3834 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3835 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3836 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3837 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3838 }
3839
3840 /**
3841 * drm_add_edid_modes - add modes from EDID data, if available
3842 * @connector: connector we're probing
3843 * @edid: EDID data
3844 *
3845 * Add the specified modes to the connector's mode list.
3846 *
3847 * Return: The number of modes added or 0 if we couldn't find any.
3848 */
3849 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3850 {
3851 int num_modes = 0;
3852 u32 quirks;
3853
3854 if (edid == NULL) {
3855 return 0;
3856 }
3857 if (!drm_edid_is_valid(edid)) {
3858 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3859 connector->name);
3860 return 0;
3861 }
3862
3863 quirks = edid_get_quirks(edid);
3864
3865 /*
3866 * EDID spec says modes should be preferred in this order:
3867 * - preferred detailed mode
3868 * - other detailed modes from base block
3869 * - detailed modes from extension blocks
3870 * - CVT 3-byte code modes
3871 * - standard timing codes
3872 * - established timing codes
3873 * - modes inferred from GTF or CVT range information
3874 *
3875 * We get this pretty much right.
3876 *
3877 * XXX order for additional mode types in extension blocks?
3878 */
3879 num_modes += add_detailed_modes(connector, edid, quirks);
3880 num_modes += add_cvt_modes(connector, edid);
3881 num_modes += add_standard_modes(connector, edid);
3882 num_modes += add_established_modes(connector, edid);
3883 num_modes += add_cea_modes(connector, edid);
3884 num_modes += add_alternate_cea_modes(connector, edid);
3885 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3886 num_modes += add_inferred_modes(connector, edid);
3887
3888 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3889 edid_fixup_preferred(connector, quirks);
3890
3891 drm_add_display_info(edid, &connector->display_info, connector);
3892
3893 if (quirks & EDID_QUIRK_FORCE_8BPC)
3894 connector->display_info.bpc = 8;
3895
3896 if (quirks & EDID_QUIRK_FORCE_12BPC)
3897 connector->display_info.bpc = 12;
3898
3899 return num_modes;
3900 }
3901 EXPORT_SYMBOL(drm_add_edid_modes);
3902
3903 /**
3904 * drm_add_modes_noedid - add modes for the connectors without EDID
3905 * @connector: connector we're probing
3906 * @hdisplay: the horizontal display limit
3907 * @vdisplay: the vertical display limit
3908 *
3909 * Add the specified modes to the connector's mode list. Only when the
3910 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3911 *
3912 * Return: The number of modes added or 0 if we couldn't find any.
3913 */
3914 int drm_add_modes_noedid(struct drm_connector *connector,
3915 int hdisplay, int vdisplay)
3916 {
3917 int i, count, num_modes = 0;
3918 struct drm_display_mode *mode;
3919 struct drm_device *dev = connector->dev;
3920
3921 count = ARRAY_SIZE(drm_dmt_modes);
3922 if (hdisplay < 0)
3923 hdisplay = 0;
3924 if (vdisplay < 0)
3925 vdisplay = 0;
3926
3927 for (i = 0; i < count; i++) {
3928 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3929 if (hdisplay && vdisplay) {
3930 /*
3931 * Only when two are valid, they will be used to check
3932 * whether the mode should be added to the mode list of
3933 * the connector.
3934 */
3935 if (ptr->hdisplay > hdisplay ||
3936 ptr->vdisplay > vdisplay)
3937 continue;
3938 }
3939 if (drm_mode_vrefresh(ptr) > 61)
3940 continue;
3941 mode = drm_mode_duplicate(dev, ptr);
3942 if (mode) {
3943 drm_mode_probed_add(connector, mode);
3944 num_modes++;
3945 }
3946 }
3947 return num_modes;
3948 }
3949 EXPORT_SYMBOL(drm_add_modes_noedid);
3950
3951 /**
3952 * drm_set_preferred_mode - Sets the preferred mode of a connector
3953 * @connector: connector whose mode list should be processed
3954 * @hpref: horizontal resolution of preferred mode
3955 * @vpref: vertical resolution of preferred mode
3956 *
3957 * Marks a mode as preferred if it matches the resolution specified by @hpref
3958 * and @vpref.
3959 */
3960 void drm_set_preferred_mode(struct drm_connector *connector,
3961 int hpref, int vpref)
3962 {
3963 struct drm_display_mode *mode;
3964
3965 list_for_each_entry(mode, &connector->probed_modes, head) {
3966 if (mode->hdisplay == hpref &&
3967 mode->vdisplay == vpref)
3968 mode->type |= DRM_MODE_TYPE_PREFERRED;
3969 }
3970 }
3971 EXPORT_SYMBOL(drm_set_preferred_mode);
3972
3973 /**
3974 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3975 * data from a DRM display mode
3976 * @frame: HDMI AVI infoframe
3977 * @mode: DRM display mode
3978 *
3979 * Return: 0 on success or a negative error code on failure.
3980 */
3981 int
3982 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3983 const struct drm_display_mode *mode)
3984 {
3985 int err;
3986
3987 if (!frame || !mode)
3988 return -EINVAL;
3989
3990 err = hdmi_avi_infoframe_init(frame);
3991 if (err < 0)
3992 return err;
3993
3994 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3995 frame->pixel_repeat = 1;
3996
3997 frame->video_code = drm_match_cea_mode(mode);
3998
3999 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
4000
4001 /*
4002 * Populate picture aspect ratio from either
4003 * user input (if specified) or from the CEA mode list.
4004 */
4005 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
4006 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
4007 frame->picture_aspect = mode->picture_aspect_ratio;
4008 else if (frame->video_code > 0)
4009 frame->picture_aspect = drm_get_cea_aspect_ratio(
4010 frame->video_code);
4011
4012 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
4013 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
4014
4015 return 0;
4016 }
4017 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
4018
4019 static enum hdmi_3d_structure
4020 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
4021 {
4022 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
4023
4024 switch (layout) {
4025 case DRM_MODE_FLAG_3D_FRAME_PACKING:
4026 return HDMI_3D_STRUCTURE_FRAME_PACKING;
4027 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4028 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4029 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4030 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4031 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4032 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4033 case DRM_MODE_FLAG_3D_L_DEPTH:
4034 return HDMI_3D_STRUCTURE_L_DEPTH;
4035 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4036 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4037 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4038 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4039 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4040 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4041 default:
4042 return HDMI_3D_STRUCTURE_INVALID;
4043 }
4044 }
4045
4046 /**
4047 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4048 * data from a DRM display mode
4049 * @frame: HDMI vendor infoframe
4050 * @mode: DRM display mode
4051 *
4052 * Note that there's is a need to send HDMI vendor infoframes only when using a
4053 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4054 * function will return -EINVAL, error that can be safely ignored.
4055 *
4056 * Return: 0 on success or a negative error code on failure.
4057 */
4058 int
4059 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4060 const struct drm_display_mode *mode)
4061 {
4062 int err;
4063 u32 s3d_flags;
4064 u8 vic;
4065
4066 if (!frame || !mode)
4067 return -EINVAL;
4068
4069 vic = drm_match_hdmi_mode(mode);
4070 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4071
4072 if (!vic && !s3d_flags)
4073 return -EINVAL;
4074
4075 if (vic && s3d_flags)
4076 return -EINVAL;
4077
4078 err = hdmi_vendor_infoframe_init(frame);
4079 if (err < 0)
4080 return err;
4081
4082 if (vic)
4083 frame->vic = vic;
4084 else
4085 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4086
4087 return 0;
4088 }
4089 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4090
4091 static int drm_parse_display_id(struct drm_connector *connector,
4092 u8 *displayid, int length,
4093 bool is_edid_extension)
4094 {
4095 /* if this is an EDID extension the first byte will be 0x70 */
4096 int idx = 0;
4097 struct displayid_hdr *base;
4098 struct displayid_block *block;
4099 u8 csum = 0;
4100 int i;
4101
4102 if (is_edid_extension)
4103 idx = 1;
4104
4105 base = (struct displayid_hdr *)&displayid[idx];
4106
4107 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4108 base->rev, base->bytes, base->prod_id, base->ext_count);
4109
4110 if (base->bytes + 5 > length - idx)
4111 return -EINVAL;
4112
4113 for (i = idx; i <= base->bytes + 5; i++) {
4114 csum += displayid[i];
4115 }
4116 if (csum) {
4117 DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4118 return -EINVAL;
4119 }
4120
4121 block = (struct displayid_block *)&displayid[idx + 4];
4122 DRM_DEBUG_KMS("block id %d, rev %d, len %d\n",
4123 block->tag, block->rev, block->num_bytes);
4124
4125 switch (block->tag) {
4126 case DATA_BLOCK_TILED_DISPLAY: {
4127 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4128
4129 u16 w, h;
4130 u8 tile_v_loc, tile_h_loc;
4131 u8 num_v_tile, num_h_tile;
4132 struct drm_tile_group *tg;
4133
4134 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4135 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4136
4137 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4138 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4139 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4140 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4141
4142 connector->has_tile = true;
4143 if (tile->tile_cap & 0x80)
4144 connector->tile_is_single_monitor = true;
4145
4146 connector->num_h_tile = num_h_tile + 1;
4147 connector->num_v_tile = num_v_tile + 1;
4148 connector->tile_h_loc = tile_h_loc;
4149 connector->tile_v_loc = tile_v_loc;
4150 connector->tile_h_size = w + 1;
4151 connector->tile_v_size = h + 1;
4152
4153 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4154 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4155 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4156 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4157 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4158
4159 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4160 if (!tg) {
4161 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4162 }
4163 if (!tg)
4164 return -ENOMEM;
4165
4166 if (connector->tile_group != tg) {
4167 /* if we haven't got a pointer,
4168 take the reference, drop ref to old tile group */
4169 if (connector->tile_group) {
4170 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4171 }
4172 connector->tile_group = tg;
4173 } else
4174 /* if same tile group, then release the ref we just took. */
4175 drm_mode_put_tile_group(connector->dev, tg);
4176 }
4177 break;
4178 default:
4179 printk("unknown displayid tag %d\n", block->tag);
4180 break;
4181 }
4182 return 0;
4183 }
4184
4185 static void drm_get_displayid(struct drm_connector *connector,
4186 struct edid *edid)
4187 {
4188 void *displayid = NULL;
4189 int ret;
4190 connector->has_tile = false;
4191 displayid = drm_find_displayid_extension(edid);
4192 if (!displayid) {
4193 /* drop reference to any tile group we had */
4194 goto out_drop_ref;
4195 }
4196
4197 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4198 if (ret < 0)
4199 goto out_drop_ref;
4200 if (!connector->has_tile)
4201 goto out_drop_ref;
4202 return;
4203 out_drop_ref:
4204 if (connector->tile_group) {
4205 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4206 connector->tile_group = NULL;
4207 }
4208 return;
4209 }
This page took 0.134605 seconds and 5 git commands to generate.