Merge tag 'v3.6-rc6' into spi-drivers
[deliverable/linux.git] / drivers / gpu / drm / gma500 / psb_intel_display.c
1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31
32 struct psb_intel_clock_t {
33 /* given values */
34 int n;
35 int m1, m2;
36 int p1, p2;
37 /* derived values */
38 int dot;
39 int vco;
40 int m;
41 int p;
42 };
43
44 struct psb_intel_range_t {
45 int min, max;
46 };
47
48 struct psb_intel_p2_t {
49 int dot_limit;
50 int p2_slow, p2_fast;
51 };
52
53 #define INTEL_P2_NUM 2
54
55 struct psb_intel_limit_t {
56 struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57 struct psb_intel_p2_t p2;
58 };
59
60 #define I8XX_DOT_MIN 25000
61 #define I8XX_DOT_MAX 350000
62 #define I8XX_VCO_MIN 930000
63 #define I8XX_VCO_MAX 1400000
64 #define I8XX_N_MIN 3
65 #define I8XX_N_MAX 16
66 #define I8XX_M_MIN 96
67 #define I8XX_M_MAX 140
68 #define I8XX_M1_MIN 18
69 #define I8XX_M1_MAX 26
70 #define I8XX_M2_MIN 6
71 #define I8XX_M2_MAX 16
72 #define I8XX_P_MIN 4
73 #define I8XX_P_MAX 128
74 #define I8XX_P1_MIN 2
75 #define I8XX_P1_MAX 33
76 #define I8XX_P1_LVDS_MIN 1
77 #define I8XX_P1_LVDS_MAX 6
78 #define I8XX_P2_SLOW 4
79 #define I8XX_P2_FAST 2
80 #define I8XX_P2_LVDS_SLOW 14
81 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
82 #define I8XX_P2_SLOW_LIMIT 165000
83
84 #define I9XX_DOT_MIN 20000
85 #define I9XX_DOT_MAX 400000
86 #define I9XX_VCO_MIN 1400000
87 #define I9XX_VCO_MAX 2800000
88 #define I9XX_N_MIN 3
89 #define I9XX_N_MAX 8
90 #define I9XX_M_MIN 70
91 #define I9XX_M_MAX 120
92 #define I9XX_M1_MIN 10
93 #define I9XX_M1_MAX 20
94 #define I9XX_M2_MIN 5
95 #define I9XX_M2_MAX 9
96 #define I9XX_P_SDVO_DAC_MIN 5
97 #define I9XX_P_SDVO_DAC_MAX 80
98 #define I9XX_P_LVDS_MIN 7
99 #define I9XX_P_LVDS_MAX 98
100 #define I9XX_P1_MIN 1
101 #define I9XX_P1_MAX 8
102 #define I9XX_P2_SDVO_DAC_SLOW 10
103 #define I9XX_P2_SDVO_DAC_FAST 5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
105 #define I9XX_P2_LVDS_SLOW 14
106 #define I9XX_P2_LVDS_FAST 7
107 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
108
109 #define INTEL_LIMIT_I8XX_DVO_DAC 0
110 #define INTEL_LIMIT_I8XX_LVDS 1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
112 #define INTEL_LIMIT_I9XX_LVDS 3
113
114 static const struct psb_intel_limit_t psb_intel_limits[] = {
115 { /* INTEL_LIMIT_I8XX_DVO_DAC */
116 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126 },
127 { /* INTEL_LIMIT_I8XX_LVDS */
128 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138 },
139 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
140 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150 I9XX_P2_SDVO_DAC_FAST},
151 },
152 { /* INTEL_LIMIT_I9XX_LVDS */
153 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161 /* The single-channel range is 25-112Mhz, and dual-channel
162 * is 80-224Mhz. Prefer single channel as much as possible.
163 */
164 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166 },
167 };
168
169 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170 {
171 const struct psb_intel_limit_t *limit;
172
173 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175 else
176 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177 return limit;
178 }
179
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181
182 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183 {
184 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185 clock->p = clock->p1 * clock->p2;
186 clock->vco = refclk * clock->m / (clock->n + 2);
187 clock->dot = clock->vco / clock->p;
188 }
189
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191
192 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193 {
194 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195 clock->p = clock->p1 * clock->p2;
196 clock->vco = refclk * clock->m / (clock->n + 2);
197 clock->dot = clock->vco / clock->p;
198 }
199
200 static void psb_intel_clock(struct drm_device *dev, int refclk,
201 struct psb_intel_clock_t *clock)
202 {
203 return i9xx_clock(refclk, clock);
204 }
205
206 /**
207 * Returns whether any output on the specified pipe is of the specified type
208 */
209 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210 {
211 struct drm_device *dev = crtc->dev;
212 struct drm_mode_config *mode_config = &dev->mode_config;
213 struct drm_connector *l_entry;
214
215 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217 struct psb_intel_encoder *psb_intel_encoder =
218 psb_intel_attached_encoder(l_entry);
219 if (psb_intel_encoder->type == type)
220 return true;
221 }
222 }
223 return false;
224 }
225
226 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
227 /**
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
230 */
231
232 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233 struct psb_intel_clock_t *clock)
234 {
235 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236
237 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238 INTELPllInvalid("p1 out of range\n");
239 if (clock->p < limit->p.min || limit->p.max < clock->p)
240 INTELPllInvalid("p out of range\n");
241 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242 INTELPllInvalid("m2 out of range\n");
243 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244 INTELPllInvalid("m1 out of range\n");
245 if (clock->m1 <= clock->m2)
246 INTELPllInvalid("m1 <= m2\n");
247 if (clock->m < limit->m.min || limit->m.max < clock->m)
248 INTELPllInvalid("m out of range\n");
249 if (clock->n < limit->n.min || limit->n.max < clock->n)
250 INTELPllInvalid("n out of range\n");
251 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252 INTELPllInvalid("vco out of range\n");
253 /* XXX: We may need to be checking "Dot clock"
254 * depending on the multiplier, connector, etc.,
255 * rather than just a single range.
256 */
257 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258 INTELPllInvalid("dot out of range\n");
259
260 return true;
261 }
262
263 /**
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE. The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267 */
268 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269 int refclk,
270 struct psb_intel_clock_t *best_clock)
271 {
272 struct drm_device *dev = crtc->dev;
273 struct psb_intel_clock_t clock;
274 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275 int err = target;
276
277 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279 /*
280 * For LVDS, if the panel is on, just rely on its current
281 * settings for dual-channel. We haven't figured out how to
282 * reliably set up different single/dual channel state, if we
283 * even can.
284 */
285 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286 LVDS_CLKB_POWER_UP)
287 clock.p2 = limit->p2.p2_fast;
288 else
289 clock.p2 = limit->p2.p2_slow;
290 } else {
291 if (target < limit->p2.dot_limit)
292 clock.p2 = limit->p2.p2_slow;
293 else
294 clock.p2 = limit->p2.p2_fast;
295 }
296
297 memset(best_clock, 0, sizeof(*best_clock));
298
299 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300 clock.m1++) {
301 for (clock.m2 = limit->m2.min;
302 clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303 clock.m2++) {
304 for (clock.n = limit->n.min;
305 clock.n <= limit->n.max; clock.n++) {
306 for (clock.p1 = limit->p1.min;
307 clock.p1 <= limit->p1.max;
308 clock.p1++) {
309 int this_err;
310
311 psb_intel_clock(dev, refclk, &clock);
312
313 if (!psb_intel_PLL_is_valid
314 (crtc, &clock))
315 continue;
316
317 this_err = abs(clock.dot - target);
318 if (this_err < err) {
319 *best_clock = clock;
320 err = this_err;
321 }
322 }
323 }
324 }
325 }
326
327 return err != target;
328 }
329
330 void psb_intel_wait_for_vblank(struct drm_device *dev)
331 {
332 /* Wait for 20ms, i.e. one cycle at 50hz. */
333 mdelay(20);
334 }
335
336 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337 int x, int y, struct drm_framebuffer *old_fb)
338 {
339 struct drm_device *dev = crtc->dev;
340 struct drm_psb_private *dev_priv = dev->dev_private;
341 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343 int pipe = psb_intel_crtc->pipe;
344 const struct psb_offset *map = &dev_priv->regmap[pipe];
345 unsigned long start, offset;
346 u32 dspcntr;
347 int ret = 0;
348
349 if (!gma_power_begin(dev, true))
350 return 0;
351
352 /* no fb bound */
353 if (!crtc->fb) {
354 dev_dbg(dev->dev, "No FB bound\n");
355 goto psb_intel_pipe_cleaner;
356 }
357
358 /* We are displaying this buffer, make sure it is actually loaded
359 into the GTT */
360 ret = psb_gtt_pin(psbfb->gtt);
361 if (ret < 0)
362 goto psb_intel_pipe_set_base_exit;
363 start = psbfb->gtt->offset;
364
365 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
366
367 REG_WRITE(map->stride, crtc->fb->pitches[0]);
368
369 dspcntr = REG_READ(map->cntr);
370 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
371
372 switch (crtc->fb->bits_per_pixel) {
373 case 8:
374 dspcntr |= DISPPLANE_8BPP;
375 break;
376 case 16:
377 if (crtc->fb->depth == 15)
378 dspcntr |= DISPPLANE_15_16BPP;
379 else
380 dspcntr |= DISPPLANE_16BPP;
381 break;
382 case 24:
383 case 32:
384 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
385 break;
386 default:
387 dev_err(dev->dev, "Unknown color depth\n");
388 ret = -EINVAL;
389 psb_gtt_unpin(psbfb->gtt);
390 goto psb_intel_pipe_set_base_exit;
391 }
392 REG_WRITE(map->cntr, dspcntr);
393
394 REG_WRITE(map->base, start + offset);
395 REG_READ(map->base);
396
397 psb_intel_pipe_cleaner:
398 /* If there was a previous display we can now unpin it */
399 if (old_fb)
400 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
401
402 psb_intel_pipe_set_base_exit:
403 gma_power_end(dev);
404 return ret;
405 }
406
407 /**
408 * Sets the power management mode of the pipe and plane.
409 *
410 * This code should probably grow support for turning the cursor off and back
411 * on appropriately at the same time as we're turning the pipe off/on.
412 */
413 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
414 {
415 struct drm_device *dev = crtc->dev;
416 struct drm_psb_private *dev_priv = dev->dev_private;
417 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
418 int pipe = psb_intel_crtc->pipe;
419 const struct psb_offset *map = &dev_priv->regmap[pipe];
420 u32 temp;
421
422 /* XXX: When our outputs are all unaware of DPMS modes other than off
423 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
424 */
425 switch (mode) {
426 case DRM_MODE_DPMS_ON:
427 case DRM_MODE_DPMS_STANDBY:
428 case DRM_MODE_DPMS_SUSPEND:
429 /* Enable the DPLL */
430 temp = REG_READ(map->dpll);
431 if ((temp & DPLL_VCO_ENABLE) == 0) {
432 REG_WRITE(map->dpll, temp);
433 REG_READ(map->dpll);
434 /* Wait for the clocks to stabilize. */
435 udelay(150);
436 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
437 REG_READ(map->dpll);
438 /* Wait for the clocks to stabilize. */
439 udelay(150);
440 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
441 REG_READ(map->dpll);
442 /* Wait for the clocks to stabilize. */
443 udelay(150);
444 }
445
446 /* Enable the pipe */
447 temp = REG_READ(map->conf);
448 if ((temp & PIPEACONF_ENABLE) == 0)
449 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
450
451 /* Enable the plane */
452 temp = REG_READ(map->cntr);
453 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
454 REG_WRITE(map->cntr,
455 temp | DISPLAY_PLANE_ENABLE);
456 /* Flush the plane changes */
457 REG_WRITE(map->base, REG_READ(map->base));
458 }
459
460 psb_intel_crtc_load_lut(crtc);
461
462 /* Give the overlay scaler a chance to enable
463 * if it's on this pipe */
464 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
465 break;
466 case DRM_MODE_DPMS_OFF:
467 /* Give the overlay scaler a chance to disable
468 * if it's on this pipe */
469 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
470
471 /* Disable the VGA plane that we never use */
472 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
473
474 /* Disable display plane */
475 temp = REG_READ(map->cntr);
476 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
477 REG_WRITE(map->cntr,
478 temp & ~DISPLAY_PLANE_ENABLE);
479 /* Flush the plane changes */
480 REG_WRITE(map->base, REG_READ(map->base));
481 REG_READ(map->base);
482 }
483
484 /* Next, disable display pipes */
485 temp = REG_READ(map->conf);
486 if ((temp & PIPEACONF_ENABLE) != 0) {
487 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
488 REG_READ(map->conf);
489 }
490
491 /* Wait for vblank for the disable to take effect. */
492 psb_intel_wait_for_vblank(dev);
493
494 temp = REG_READ(map->dpll);
495 if ((temp & DPLL_VCO_ENABLE) != 0) {
496 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
497 REG_READ(map->dpll);
498 }
499
500 /* Wait for the clocks to turn off. */
501 udelay(150);
502 break;
503 }
504
505 /*Set FIFO Watermarks*/
506 REG_WRITE(DSPARB, 0x3F3E);
507 }
508
509 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
510 {
511 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
512 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
513 }
514
515 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
516 {
517 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
518 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
519 }
520
521 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
522 {
523 struct drm_encoder_helper_funcs *encoder_funcs =
524 encoder->helper_private;
525 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
526 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
527 }
528
529 void psb_intel_encoder_commit(struct drm_encoder *encoder)
530 {
531 struct drm_encoder_helper_funcs *encoder_funcs =
532 encoder->helper_private;
533 /* lvds has its own version of commit see psb_intel_lvds_commit */
534 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
535 }
536
537 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
538 {
539 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
540
541 drm_encoder_cleanup(encoder);
542 kfree(intel_encoder);
543 }
544
545 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
546 const struct drm_display_mode *mode,
547 struct drm_display_mode *adjusted_mode)
548 {
549 return true;
550 }
551
552
553 /**
554 * Return the pipe currently connected to the panel fitter,
555 * or -1 if the panel fitter is not present or not in use
556 */
557 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
558 {
559 u32 pfit_control;
560
561 pfit_control = REG_READ(PFIT_CONTROL);
562
563 /* See if the panel fitter is in use */
564 if ((pfit_control & PFIT_ENABLE) == 0)
565 return -1;
566 /* Must be on PIPE 1 for PSB */
567 return 1;
568 }
569
570 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
571 struct drm_display_mode *mode,
572 struct drm_display_mode *adjusted_mode,
573 int x, int y,
574 struct drm_framebuffer *old_fb)
575 {
576 struct drm_device *dev = crtc->dev;
577 struct drm_psb_private *dev_priv = dev->dev_private;
578 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
579 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
580 int pipe = psb_intel_crtc->pipe;
581 const struct psb_offset *map = &dev_priv->regmap[pipe];
582 int refclk;
583 struct psb_intel_clock_t clock;
584 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
585 bool ok, is_sdvo = false;
586 bool is_lvds = false, is_tv = false;
587 struct drm_mode_config *mode_config = &dev->mode_config;
588 struct drm_connector *connector;
589
590 /* No scan out no play */
591 if (crtc->fb == NULL) {
592 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
593 return 0;
594 }
595
596 list_for_each_entry(connector, &mode_config->connector_list, head) {
597 struct psb_intel_encoder *psb_intel_encoder =
598 psb_intel_attached_encoder(connector);
599
600 if (!connector->encoder
601 || connector->encoder->crtc != crtc)
602 continue;
603
604 switch (psb_intel_encoder->type) {
605 case INTEL_OUTPUT_LVDS:
606 is_lvds = true;
607 break;
608 case INTEL_OUTPUT_SDVO:
609 is_sdvo = true;
610 break;
611 case INTEL_OUTPUT_TVOUT:
612 is_tv = true;
613 break;
614 }
615 }
616
617 refclk = 96000;
618
619 ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
620 &clock);
621 if (!ok) {
622 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
623 return 0;
624 }
625
626 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
627
628 dpll = DPLL_VGA_MODE_DIS;
629 if (is_lvds) {
630 dpll |= DPLLB_MODE_LVDS;
631 dpll |= DPLL_DVO_HIGH_SPEED;
632 } else
633 dpll |= DPLLB_MODE_DAC_SERIAL;
634 if (is_sdvo) {
635 int sdvo_pixel_multiply =
636 adjusted_mode->clock / mode->clock;
637 dpll |= DPLL_DVO_HIGH_SPEED;
638 dpll |=
639 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
640 }
641
642 /* compute bitmask from p1 value */
643 dpll |= (1 << (clock.p1 - 1)) << 16;
644 switch (clock.p2) {
645 case 5:
646 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
647 break;
648 case 7:
649 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
650 break;
651 case 10:
652 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
653 break;
654 case 14:
655 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
656 break;
657 }
658
659 if (is_tv) {
660 /* XXX: just matching BIOS for now */
661 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
662 dpll |= 3;
663 }
664 dpll |= PLL_REF_INPUT_DREFCLK;
665
666 /* setup pipeconf */
667 pipeconf = REG_READ(map->conf);
668
669 /* Set up the display plane register */
670 dspcntr = DISPPLANE_GAMMA_ENABLE;
671
672 if (pipe == 0)
673 dspcntr |= DISPPLANE_SEL_PIPE_A;
674 else
675 dspcntr |= DISPPLANE_SEL_PIPE_B;
676
677 dspcntr |= DISPLAY_PLANE_ENABLE;
678 pipeconf |= PIPEACONF_ENABLE;
679 dpll |= DPLL_VCO_ENABLE;
680
681
682 /* Disable the panel fitter if it was on our pipe */
683 if (psb_intel_panel_fitter_pipe(dev) == pipe)
684 REG_WRITE(PFIT_CONTROL, 0);
685
686 drm_mode_debug_printmodeline(mode);
687
688 if (dpll & DPLL_VCO_ENABLE) {
689 REG_WRITE(map->fp0, fp);
690 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
691 REG_READ(map->dpll);
692 udelay(150);
693 }
694
695 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
696 * This is an exception to the general rule that mode_set doesn't turn
697 * things on.
698 */
699 if (is_lvds) {
700 u32 lvds = REG_READ(LVDS);
701
702 lvds &= ~LVDS_PIPEB_SELECT;
703 if (pipe == 1)
704 lvds |= LVDS_PIPEB_SELECT;
705
706 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
707 /* Set the B0-B3 data pairs corresponding to
708 * whether we're going to
709 * set the DPLLs for dual-channel mode or not.
710 */
711 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
712 if (clock.p2 == 7)
713 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
714
715 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
716 * appropriately here, but we need to look more
717 * thoroughly into how panels behave in the two modes.
718 */
719
720 REG_WRITE(LVDS, lvds);
721 REG_READ(LVDS);
722 }
723
724 REG_WRITE(map->fp0, fp);
725 REG_WRITE(map->dpll, dpll);
726 REG_READ(map->dpll);
727 /* Wait for the clocks to stabilize. */
728 udelay(150);
729
730 /* write it again -- the BIOS does, after all */
731 REG_WRITE(map->dpll, dpll);
732
733 REG_READ(map->dpll);
734 /* Wait for the clocks to stabilize. */
735 udelay(150);
736
737 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
738 ((adjusted_mode->crtc_htotal - 1) << 16));
739 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
740 ((adjusted_mode->crtc_hblank_end - 1) << 16));
741 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
742 ((adjusted_mode->crtc_hsync_end - 1) << 16));
743 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
744 ((adjusted_mode->crtc_vtotal - 1) << 16));
745 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
746 ((adjusted_mode->crtc_vblank_end - 1) << 16));
747 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
748 ((adjusted_mode->crtc_vsync_end - 1) << 16));
749 /* pipesrc and dspsize control the size that is scaled from,
750 * which should always be the user's requested size.
751 */
752 REG_WRITE(map->size,
753 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
754 REG_WRITE(map->pos, 0);
755 REG_WRITE(map->src,
756 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
757 REG_WRITE(map->conf, pipeconf);
758 REG_READ(map->conf);
759
760 psb_intel_wait_for_vblank(dev);
761
762 REG_WRITE(map->cntr, dspcntr);
763
764 /* Flush the plane changes */
765 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
766
767 psb_intel_wait_for_vblank(dev);
768
769 return 0;
770 }
771
772 /** Loads the palette/gamma unit for the CRTC with the prepared values */
773 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
774 {
775 struct drm_device *dev = crtc->dev;
776 struct drm_psb_private *dev_priv = dev->dev_private;
777 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
778 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
779 int palreg = map->palette;
780 int i;
781
782 /* The clocks have to be on to load the palette. */
783 if (!crtc->enabled)
784 return;
785
786 switch (psb_intel_crtc->pipe) {
787 case 0:
788 case 1:
789 break;
790 default:
791 dev_err(dev->dev, "Illegal Pipe Number.\n");
792 return;
793 }
794
795 if (gma_power_begin(dev, false)) {
796 for (i = 0; i < 256; i++) {
797 REG_WRITE(palreg + 4 * i,
798 ((psb_intel_crtc->lut_r[i] +
799 psb_intel_crtc->lut_adj[i]) << 16) |
800 ((psb_intel_crtc->lut_g[i] +
801 psb_intel_crtc->lut_adj[i]) << 8) |
802 (psb_intel_crtc->lut_b[i] +
803 psb_intel_crtc->lut_adj[i]));
804 }
805 gma_power_end(dev);
806 } else {
807 for (i = 0; i < 256; i++) {
808 dev_priv->regs.pipe[0].palette[i] =
809 ((psb_intel_crtc->lut_r[i] +
810 psb_intel_crtc->lut_adj[i]) << 16) |
811 ((psb_intel_crtc->lut_g[i] +
812 psb_intel_crtc->lut_adj[i]) << 8) |
813 (psb_intel_crtc->lut_b[i] +
814 psb_intel_crtc->lut_adj[i]);
815 }
816
817 }
818 }
819
820 /**
821 * Save HW states of giving crtc
822 */
823 static void psb_intel_crtc_save(struct drm_crtc *crtc)
824 {
825 struct drm_device *dev = crtc->dev;
826 struct drm_psb_private *dev_priv = dev->dev_private;
827 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
828 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
829 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
830 uint32_t paletteReg;
831 int i;
832
833 if (!crtc_state) {
834 dev_err(dev->dev, "No CRTC state found\n");
835 return;
836 }
837
838 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
839 crtc_state->savePIPECONF = REG_READ(map->conf);
840 crtc_state->savePIPESRC = REG_READ(map->src);
841 crtc_state->saveFP0 = REG_READ(map->fp0);
842 crtc_state->saveFP1 = REG_READ(map->fp1);
843 crtc_state->saveDPLL = REG_READ(map->dpll);
844 crtc_state->saveHTOTAL = REG_READ(map->htotal);
845 crtc_state->saveHBLANK = REG_READ(map->hblank);
846 crtc_state->saveHSYNC = REG_READ(map->hsync);
847 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
848 crtc_state->saveVBLANK = REG_READ(map->vblank);
849 crtc_state->saveVSYNC = REG_READ(map->vsync);
850 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
851
852 /*NOTE: DSPSIZE DSPPOS only for psb*/
853 crtc_state->saveDSPSIZE = REG_READ(map->size);
854 crtc_state->saveDSPPOS = REG_READ(map->pos);
855
856 crtc_state->saveDSPBASE = REG_READ(map->base);
857
858 paletteReg = map->palette;
859 for (i = 0; i < 256; ++i)
860 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
861 }
862
863 /**
864 * Restore HW states of giving crtc
865 */
866 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
867 {
868 struct drm_device *dev = crtc->dev;
869 struct drm_psb_private *dev_priv = dev->dev_private;
870 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
871 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
872 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
873 uint32_t paletteReg;
874 int i;
875
876 if (!crtc_state) {
877 dev_err(dev->dev, "No crtc state\n");
878 return;
879 }
880
881 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
882 REG_WRITE(map->dpll,
883 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
884 REG_READ(map->dpll);
885 udelay(150);
886 }
887
888 REG_WRITE(map->fp0, crtc_state->saveFP0);
889 REG_READ(map->fp0);
890
891 REG_WRITE(map->fp1, crtc_state->saveFP1);
892 REG_READ(map->fp1);
893
894 REG_WRITE(map->dpll, crtc_state->saveDPLL);
895 REG_READ(map->dpll);
896 udelay(150);
897
898 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
899 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
900 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
901 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
902 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
903 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
904 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
905
906 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
907 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
908
909 REG_WRITE(map->src, crtc_state->savePIPESRC);
910 REG_WRITE(map->base, crtc_state->saveDSPBASE);
911 REG_WRITE(map->conf, crtc_state->savePIPECONF);
912
913 psb_intel_wait_for_vblank(dev);
914
915 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
916 REG_WRITE(map->base, crtc_state->saveDSPBASE);
917
918 psb_intel_wait_for_vblank(dev);
919
920 paletteReg = map->palette;
921 for (i = 0; i < 256; ++i)
922 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
923 }
924
925 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
926 struct drm_file *file_priv,
927 uint32_t handle,
928 uint32_t width, uint32_t height)
929 {
930 struct drm_device *dev = crtc->dev;
931 struct drm_psb_private *dev_priv = dev->dev_private;
932 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
933 int pipe = psb_intel_crtc->pipe;
934 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
935 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
936 uint32_t temp;
937 size_t addr = 0;
938 struct gtt_range *gt;
939 struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
940 struct drm_gem_object *obj;
941 void *tmp_dst, *tmp_src;
942 int ret, i, cursor_pages;
943
944 /* if we want to turn of the cursor ignore width and height */
945 if (!handle) {
946 /* turn off the cursor */
947 temp = CURSOR_MODE_DISABLE;
948
949 if (gma_power_begin(dev, false)) {
950 REG_WRITE(control, temp);
951 REG_WRITE(base, 0);
952 gma_power_end(dev);
953 }
954
955 /* Unpin the old GEM object */
956 if (psb_intel_crtc->cursor_obj) {
957 gt = container_of(psb_intel_crtc->cursor_obj,
958 struct gtt_range, gem);
959 psb_gtt_unpin(gt);
960 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
961 psb_intel_crtc->cursor_obj = NULL;
962 }
963
964 return 0;
965 }
966
967 /* Currently we only support 64x64 cursors */
968 if (width != 64 || height != 64) {
969 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
970 return -EINVAL;
971 }
972
973 obj = drm_gem_object_lookup(dev, file_priv, handle);
974 if (!obj)
975 return -ENOENT;
976
977 if (obj->size < width * height * 4) {
978 dev_dbg(dev->dev, "buffer is to small\n");
979 return -ENOMEM;
980 }
981
982 gt = container_of(obj, struct gtt_range, gem);
983
984 /* Pin the memory into the GTT */
985 ret = psb_gtt_pin(gt);
986 if (ret) {
987 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
988 return ret;
989 }
990
991 if (dev_priv->ops->cursor_needs_phys) {
992 if (cursor_gt == NULL) {
993 dev_err(dev->dev, "No hardware cursor mem available");
994 return -ENOMEM;
995 }
996
997 /* Prevent overflow */
998 if (gt->npage > 4)
999 cursor_pages = 4;
1000 else
1001 cursor_pages = gt->npage;
1002
1003 /* Copy the cursor to cursor mem */
1004 tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
1005 for (i = 0; i < cursor_pages; i++) {
1006 tmp_src = kmap(gt->pages[i]);
1007 memcpy(tmp_dst, tmp_src, PAGE_SIZE);
1008 kunmap(gt->pages[i]);
1009 tmp_dst += PAGE_SIZE;
1010 }
1011
1012 addr = psb_intel_crtc->cursor_addr;
1013 } else {
1014 addr = gt->offset; /* Or resource.start ??? */
1015 psb_intel_crtc->cursor_addr = addr;
1016 }
1017
1018 temp = 0;
1019 /* set the pipe for the cursor */
1020 temp |= (pipe << 28);
1021 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1022
1023 if (gma_power_begin(dev, false)) {
1024 REG_WRITE(control, temp);
1025 REG_WRITE(base, addr);
1026 gma_power_end(dev);
1027 }
1028
1029 /* unpin the old bo */
1030 if (psb_intel_crtc->cursor_obj) {
1031 gt = container_of(psb_intel_crtc->cursor_obj,
1032 struct gtt_range, gem);
1033 psb_gtt_unpin(gt);
1034 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1035 psb_intel_crtc->cursor_obj = obj;
1036 }
1037 return 0;
1038 }
1039
1040 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1041 {
1042 struct drm_device *dev = crtc->dev;
1043 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1044 int pipe = psb_intel_crtc->pipe;
1045 uint32_t temp = 0;
1046 uint32_t addr;
1047
1048
1049 if (x < 0) {
1050 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1051 x = -x;
1052 }
1053 if (y < 0) {
1054 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1055 y = -y;
1056 }
1057
1058 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1059 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1060
1061 addr = psb_intel_crtc->cursor_addr;
1062
1063 if (gma_power_begin(dev, false)) {
1064 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1065 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1066 gma_power_end(dev);
1067 }
1068 return 0;
1069 }
1070
1071 void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1072 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1073 {
1074 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1075 int i;
1076
1077 if (size != 256)
1078 return;
1079
1080 for (i = 0; i < 256; i++) {
1081 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1082 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1083 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1084 }
1085
1086 psb_intel_crtc_load_lut(crtc);
1087 }
1088
1089 static int psb_crtc_set_config(struct drm_mode_set *set)
1090 {
1091 int ret;
1092 struct drm_device *dev = set->crtc->dev;
1093 struct drm_psb_private *dev_priv = dev->dev_private;
1094
1095 if (!dev_priv->rpm_enabled)
1096 return drm_crtc_helper_set_config(set);
1097
1098 pm_runtime_forbid(&dev->pdev->dev);
1099 ret = drm_crtc_helper_set_config(set);
1100 pm_runtime_allow(&dev->pdev->dev);
1101 return ret;
1102 }
1103
1104 /* Returns the clock of the currently programmed mode of the given pipe. */
1105 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1106 struct drm_crtc *crtc)
1107 {
1108 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1109 struct drm_psb_private *dev_priv = dev->dev_private;
1110 int pipe = psb_intel_crtc->pipe;
1111 const struct psb_offset *map = &dev_priv->regmap[pipe];
1112 u32 dpll;
1113 u32 fp;
1114 struct psb_intel_clock_t clock;
1115 bool is_lvds;
1116 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1117
1118 if (gma_power_begin(dev, false)) {
1119 dpll = REG_READ(map->dpll);
1120 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1121 fp = REG_READ(map->fp0);
1122 else
1123 fp = REG_READ(map->fp1);
1124 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1125 gma_power_end(dev);
1126 } else {
1127 dpll = p->dpll;
1128
1129 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1130 fp = p->fp0;
1131 else
1132 fp = p->fp1;
1133
1134 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1135 LVDS_PORT_EN);
1136 }
1137
1138 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1139 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1140 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1141
1142 if (is_lvds) {
1143 clock.p1 =
1144 ffs((dpll &
1145 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1146 DPLL_FPA01_P1_POST_DIV_SHIFT);
1147 clock.p2 = 14;
1148
1149 if ((dpll & PLL_REF_INPUT_MASK) ==
1150 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1151 /* XXX: might not be 66MHz */
1152 i8xx_clock(66000, &clock);
1153 } else
1154 i8xx_clock(48000, &clock);
1155 } else {
1156 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1157 clock.p1 = 2;
1158 else {
1159 clock.p1 =
1160 ((dpll &
1161 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1162 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1163 }
1164 if (dpll & PLL_P2_DIVIDE_BY_4)
1165 clock.p2 = 4;
1166 else
1167 clock.p2 = 2;
1168
1169 i8xx_clock(48000, &clock);
1170 }
1171
1172 /* XXX: It would be nice to validate the clocks, but we can't reuse
1173 * i830PllIsValid() because it relies on the xf86_config connector
1174 * configuration being accurate, which it isn't necessarily.
1175 */
1176
1177 return clock.dot;
1178 }
1179
1180 /** Returns the currently programmed mode of the given pipe. */
1181 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1182 struct drm_crtc *crtc)
1183 {
1184 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1185 int pipe = psb_intel_crtc->pipe;
1186 struct drm_display_mode *mode;
1187 int htot;
1188 int hsync;
1189 int vtot;
1190 int vsync;
1191 struct drm_psb_private *dev_priv = dev->dev_private;
1192 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1193 const struct psb_offset *map = &dev_priv->regmap[pipe];
1194
1195 if (gma_power_begin(dev, false)) {
1196 htot = REG_READ(map->htotal);
1197 hsync = REG_READ(map->hsync);
1198 vtot = REG_READ(map->vtotal);
1199 vsync = REG_READ(map->vsync);
1200 gma_power_end(dev);
1201 } else {
1202 htot = p->htotal;
1203 hsync = p->hsync;
1204 vtot = p->vtotal;
1205 vsync = p->vsync;
1206 }
1207
1208 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1209 if (!mode)
1210 return NULL;
1211
1212 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1213 mode->hdisplay = (htot & 0xffff) + 1;
1214 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1215 mode->hsync_start = (hsync & 0xffff) + 1;
1216 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1217 mode->vdisplay = (vtot & 0xffff) + 1;
1218 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1219 mode->vsync_start = (vsync & 0xffff) + 1;
1220 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1221
1222 drm_mode_set_name(mode);
1223 drm_mode_set_crtcinfo(mode, 0);
1224
1225 return mode;
1226 }
1227
1228 void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1229 {
1230 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1231 struct gtt_range *gt;
1232
1233 /* Unpin the old GEM object */
1234 if (psb_intel_crtc->cursor_obj) {
1235 gt = container_of(psb_intel_crtc->cursor_obj,
1236 struct gtt_range, gem);
1237 psb_gtt_unpin(gt);
1238 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1239 psb_intel_crtc->cursor_obj = NULL;
1240 }
1241
1242 if (psb_intel_crtc->cursor_gt != NULL)
1243 psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1244 kfree(psb_intel_crtc->crtc_state);
1245 drm_crtc_cleanup(crtc);
1246 kfree(psb_intel_crtc);
1247 }
1248
1249 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1250 .dpms = psb_intel_crtc_dpms,
1251 .mode_fixup = psb_intel_crtc_mode_fixup,
1252 .mode_set = psb_intel_crtc_mode_set,
1253 .mode_set_base = psb_intel_pipe_set_base,
1254 .prepare = psb_intel_crtc_prepare,
1255 .commit = psb_intel_crtc_commit,
1256 };
1257
1258 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1259 .save = psb_intel_crtc_save,
1260 .restore = psb_intel_crtc_restore,
1261 .cursor_set = psb_intel_crtc_cursor_set,
1262 .cursor_move = psb_intel_crtc_cursor_move,
1263 .gamma_set = psb_intel_crtc_gamma_set,
1264 .set_config = psb_crtc_set_config,
1265 .destroy = psb_intel_crtc_destroy,
1266 };
1267
1268 /*
1269 * Set the default value of cursor control and base register
1270 * to zero. This is a workaround for h/w defect on Oaktrail
1271 */
1272 static void psb_intel_cursor_init(struct drm_device *dev,
1273 struct psb_intel_crtc *psb_intel_crtc)
1274 {
1275 struct drm_psb_private *dev_priv = dev->dev_private;
1276 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1277 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1278 struct gtt_range *cursor_gt;
1279
1280 if (dev_priv->ops->cursor_needs_phys) {
1281 /* Allocate 4 pages of stolen mem for a hardware cursor. That
1282 * is enough for the 64 x 64 ARGB cursors we support.
1283 */
1284 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1285 if (!cursor_gt) {
1286 psb_intel_crtc->cursor_gt = NULL;
1287 goto out;
1288 }
1289 psb_intel_crtc->cursor_gt = cursor_gt;
1290 psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1291 cursor_gt->offset;
1292 } else {
1293 psb_intel_crtc->cursor_gt = NULL;
1294 }
1295
1296 out:
1297 REG_WRITE(control[psb_intel_crtc->pipe], 0);
1298 REG_WRITE(base[psb_intel_crtc->pipe], 0);
1299 }
1300
1301 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1302 struct psb_intel_mode_device *mode_dev)
1303 {
1304 struct drm_psb_private *dev_priv = dev->dev_private;
1305 struct psb_intel_crtc *psb_intel_crtc;
1306 int i;
1307 uint16_t *r_base, *g_base, *b_base;
1308
1309 /* We allocate a extra array of drm_connector pointers
1310 * for fbdev after the crtc */
1311 psb_intel_crtc =
1312 kzalloc(sizeof(struct psb_intel_crtc) +
1313 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1314 GFP_KERNEL);
1315 if (psb_intel_crtc == NULL)
1316 return;
1317
1318 psb_intel_crtc->crtc_state =
1319 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1320 if (!psb_intel_crtc->crtc_state) {
1321 dev_err(dev->dev, "Crtc state error: No memory\n");
1322 kfree(psb_intel_crtc);
1323 return;
1324 }
1325
1326 /* Set the CRTC operations from the chip specific data */
1327 drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1328
1329 drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1330 psb_intel_crtc->pipe = pipe;
1331 psb_intel_crtc->plane = pipe;
1332
1333 r_base = psb_intel_crtc->base.gamma_store;
1334 g_base = r_base + 256;
1335 b_base = g_base + 256;
1336 for (i = 0; i < 256; i++) {
1337 psb_intel_crtc->lut_r[i] = i;
1338 psb_intel_crtc->lut_g[i] = i;
1339 psb_intel_crtc->lut_b[i] = i;
1340 r_base[i] = i << 8;
1341 g_base[i] = i << 8;
1342 b_base[i] = i << 8;
1343
1344 psb_intel_crtc->lut_adj[i] = 0;
1345 }
1346
1347 psb_intel_crtc->mode_dev = mode_dev;
1348 psb_intel_crtc->cursor_addr = 0;
1349
1350 drm_crtc_helper_add(&psb_intel_crtc->base,
1351 dev_priv->ops->crtc_helper);
1352
1353 /* Setup the array of drm_connector pointer array */
1354 psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1355 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1356 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1357 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1358 &psb_intel_crtc->base;
1359 dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1360 &psb_intel_crtc->base;
1361 psb_intel_crtc->mode_set.connectors =
1362 (struct drm_connector **) (psb_intel_crtc + 1);
1363 psb_intel_crtc->mode_set.num_connectors = 0;
1364 psb_intel_cursor_init(dev, psb_intel_crtc);
1365
1366 /* Set to true so that the pipe is forced off on initial config. */
1367 psb_intel_crtc->active = true;
1368 }
1369
1370 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1371 struct drm_file *file_priv)
1372 {
1373 struct drm_psb_private *dev_priv = dev->dev_private;
1374 struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1375 struct drm_mode_object *drmmode_obj;
1376 struct psb_intel_crtc *crtc;
1377
1378 if (!dev_priv) {
1379 dev_err(dev->dev, "called with no initialization\n");
1380 return -EINVAL;
1381 }
1382
1383 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1384 DRM_MODE_OBJECT_CRTC);
1385
1386 if (!drmmode_obj) {
1387 dev_err(dev->dev, "no such CRTC id\n");
1388 return -EINVAL;
1389 }
1390
1391 crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1392 pipe_from_crtc_id->pipe = crtc->pipe;
1393
1394 return 0;
1395 }
1396
1397 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1398 {
1399 struct drm_crtc *crtc = NULL;
1400
1401 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1402 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1403 if (psb_intel_crtc->pipe == pipe)
1404 break;
1405 }
1406 return crtc;
1407 }
1408
1409 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1410 {
1411 int index_mask = 0;
1412 struct drm_connector *connector;
1413 int entry = 0;
1414
1415 list_for_each_entry(connector, &dev->mode_config.connector_list,
1416 head) {
1417 struct psb_intel_encoder *psb_intel_encoder =
1418 psb_intel_attached_encoder(connector);
1419 if (type_mask & (1 << psb_intel_encoder->type))
1420 index_mask |= (1 << entry);
1421 entry++;
1422 }
1423 return index_mask;
1424 }
1425
1426 /* current intel driver doesn't take advantage of encoders
1427 always give back the encoder for the connector
1428 */
1429 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1430 {
1431 struct psb_intel_encoder *psb_intel_encoder =
1432 psb_intel_attached_encoder(connector);
1433
1434 return &psb_intel_encoder->base;
1435 }
1436
1437 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1438 struct psb_intel_encoder *encoder)
1439 {
1440 connector->encoder = encoder;
1441 drm_mode_connector_attach_encoder(&connector->base,
1442 &encoder->base);
1443 }
This page took 0.073789 seconds and 6 git commands to generate.