drm/i915: more virtual south bridge detection
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <drm/drm_crtc_helper.h>
42
43 static struct drm_driver driver;
44
45 #define GEN_DEFAULT_PIPEOFFSETS \
46 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
47 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
48 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
49 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
50 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
51
52 #define GEN_CHV_PIPEOFFSETS \
53 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
54 CHV_PIPE_C_OFFSET }, \
55 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
56 CHV_TRANSCODER_C_OFFSET, }, \
57 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
58 CHV_PALETTE_C_OFFSET }
59
60 #define CURSOR_OFFSETS \
61 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
62
63 #define IVB_CURSOR_OFFSETS \
64 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
65
66 static const struct intel_device_info intel_i830_info = {
67 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
68 .has_overlay = 1, .overlay_needs_physical = 1,
69 .ring_mask = RENDER_RING,
70 GEN_DEFAULT_PIPEOFFSETS,
71 CURSOR_OFFSETS,
72 };
73
74 static const struct intel_device_info intel_845g_info = {
75 .gen = 2, .num_pipes = 1,
76 .has_overlay = 1, .overlay_needs_physical = 1,
77 .ring_mask = RENDER_RING,
78 GEN_DEFAULT_PIPEOFFSETS,
79 CURSOR_OFFSETS,
80 };
81
82 static const struct intel_device_info intel_i85x_info = {
83 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
84 .cursor_needs_physical = 1,
85 .has_overlay = 1, .overlay_needs_physical = 1,
86 .has_fbc = 1,
87 .ring_mask = RENDER_RING,
88 GEN_DEFAULT_PIPEOFFSETS,
89 CURSOR_OFFSETS,
90 };
91
92 static const struct intel_device_info intel_i865g_info = {
93 .gen = 2, .num_pipes = 1,
94 .has_overlay = 1, .overlay_needs_physical = 1,
95 .ring_mask = RENDER_RING,
96 GEN_DEFAULT_PIPEOFFSETS,
97 CURSOR_OFFSETS,
98 };
99
100 static const struct intel_device_info intel_i915g_info = {
101 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
102 .has_overlay = 1, .overlay_needs_physical = 1,
103 .ring_mask = RENDER_RING,
104 GEN_DEFAULT_PIPEOFFSETS,
105 CURSOR_OFFSETS,
106 };
107 static const struct intel_device_info intel_i915gm_info = {
108 .gen = 3, .is_mobile = 1, .num_pipes = 2,
109 .cursor_needs_physical = 1,
110 .has_overlay = 1, .overlay_needs_physical = 1,
111 .supports_tv = 1,
112 .has_fbc = 1,
113 .ring_mask = RENDER_RING,
114 GEN_DEFAULT_PIPEOFFSETS,
115 CURSOR_OFFSETS,
116 };
117 static const struct intel_device_info intel_i945g_info = {
118 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
119 .has_overlay = 1, .overlay_needs_physical = 1,
120 .ring_mask = RENDER_RING,
121 GEN_DEFAULT_PIPEOFFSETS,
122 CURSOR_OFFSETS,
123 };
124 static const struct intel_device_info intel_i945gm_info = {
125 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
126 .has_hotplug = 1, .cursor_needs_physical = 1,
127 .has_overlay = 1, .overlay_needs_physical = 1,
128 .supports_tv = 1,
129 .has_fbc = 1,
130 .ring_mask = RENDER_RING,
131 GEN_DEFAULT_PIPEOFFSETS,
132 CURSOR_OFFSETS,
133 };
134
135 static const struct intel_device_info intel_i965g_info = {
136 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
137 .has_hotplug = 1,
138 .has_overlay = 1,
139 .ring_mask = RENDER_RING,
140 GEN_DEFAULT_PIPEOFFSETS,
141 CURSOR_OFFSETS,
142 };
143
144 static const struct intel_device_info intel_i965gm_info = {
145 .gen = 4, .is_crestline = 1, .num_pipes = 2,
146 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
147 .has_overlay = 1,
148 .supports_tv = 1,
149 .ring_mask = RENDER_RING,
150 GEN_DEFAULT_PIPEOFFSETS,
151 CURSOR_OFFSETS,
152 };
153
154 static const struct intel_device_info intel_g33_info = {
155 .gen = 3, .is_g33 = 1, .num_pipes = 2,
156 .need_gfx_hws = 1, .has_hotplug = 1,
157 .has_overlay = 1,
158 .ring_mask = RENDER_RING,
159 GEN_DEFAULT_PIPEOFFSETS,
160 CURSOR_OFFSETS,
161 };
162
163 static const struct intel_device_info intel_g45_info = {
164 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
165 .has_pipe_cxsr = 1, .has_hotplug = 1,
166 .ring_mask = RENDER_RING | BSD_RING,
167 GEN_DEFAULT_PIPEOFFSETS,
168 CURSOR_OFFSETS,
169 };
170
171 static const struct intel_device_info intel_gm45_info = {
172 .gen = 4, .is_g4x = 1, .num_pipes = 2,
173 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
174 .has_pipe_cxsr = 1, .has_hotplug = 1,
175 .supports_tv = 1,
176 .ring_mask = RENDER_RING | BSD_RING,
177 GEN_DEFAULT_PIPEOFFSETS,
178 CURSOR_OFFSETS,
179 };
180
181 static const struct intel_device_info intel_pineview_info = {
182 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
183 .need_gfx_hws = 1, .has_hotplug = 1,
184 .has_overlay = 1,
185 GEN_DEFAULT_PIPEOFFSETS,
186 CURSOR_OFFSETS,
187 };
188
189 static const struct intel_device_info intel_ironlake_d_info = {
190 .gen = 5, .num_pipes = 2,
191 .need_gfx_hws = 1, .has_hotplug = 1,
192 .ring_mask = RENDER_RING | BSD_RING,
193 GEN_DEFAULT_PIPEOFFSETS,
194 CURSOR_OFFSETS,
195 };
196
197 static const struct intel_device_info intel_ironlake_m_info = {
198 .gen = 5, .is_mobile = 1, .num_pipes = 2,
199 .need_gfx_hws = 1, .has_hotplug = 1,
200 .has_fbc = 1,
201 .ring_mask = RENDER_RING | BSD_RING,
202 GEN_DEFAULT_PIPEOFFSETS,
203 CURSOR_OFFSETS,
204 };
205
206 static const struct intel_device_info intel_sandybridge_d_info = {
207 .gen = 6, .num_pipes = 2,
208 .need_gfx_hws = 1, .has_hotplug = 1,
209 .has_fbc = 1,
210 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
211 .has_llc = 1,
212 GEN_DEFAULT_PIPEOFFSETS,
213 CURSOR_OFFSETS,
214 };
215
216 static const struct intel_device_info intel_sandybridge_m_info = {
217 .gen = 6, .is_mobile = 1, .num_pipes = 2,
218 .need_gfx_hws = 1, .has_hotplug = 1,
219 .has_fbc = 1,
220 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
221 .has_llc = 1,
222 GEN_DEFAULT_PIPEOFFSETS,
223 CURSOR_OFFSETS,
224 };
225
226 #define GEN7_FEATURES \
227 .gen = 7, .num_pipes = 3, \
228 .need_gfx_hws = 1, .has_hotplug = 1, \
229 .has_fbc = 1, \
230 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
231 .has_llc = 1
232
233 static const struct intel_device_info intel_ivybridge_d_info = {
234 GEN7_FEATURES,
235 .is_ivybridge = 1,
236 GEN_DEFAULT_PIPEOFFSETS,
237 IVB_CURSOR_OFFSETS,
238 };
239
240 static const struct intel_device_info intel_ivybridge_m_info = {
241 GEN7_FEATURES,
242 .is_ivybridge = 1,
243 .is_mobile = 1,
244 GEN_DEFAULT_PIPEOFFSETS,
245 IVB_CURSOR_OFFSETS,
246 };
247
248 static const struct intel_device_info intel_ivybridge_q_info = {
249 GEN7_FEATURES,
250 .is_ivybridge = 1,
251 .num_pipes = 0, /* legal, last one wins */
252 GEN_DEFAULT_PIPEOFFSETS,
253 IVB_CURSOR_OFFSETS,
254 };
255
256 static const struct intel_device_info intel_valleyview_m_info = {
257 GEN7_FEATURES,
258 .is_mobile = 1,
259 .num_pipes = 2,
260 .is_valleyview = 1,
261 .display_mmio_offset = VLV_DISPLAY_BASE,
262 .has_fbc = 0, /* legal, last one wins */
263 .has_llc = 0, /* legal, last one wins */
264 GEN_DEFAULT_PIPEOFFSETS,
265 CURSOR_OFFSETS,
266 };
267
268 static const struct intel_device_info intel_valleyview_d_info = {
269 GEN7_FEATURES,
270 .num_pipes = 2,
271 .is_valleyview = 1,
272 .display_mmio_offset = VLV_DISPLAY_BASE,
273 .has_fbc = 0, /* legal, last one wins */
274 .has_llc = 0, /* legal, last one wins */
275 GEN_DEFAULT_PIPEOFFSETS,
276 CURSOR_OFFSETS,
277 };
278
279 static const struct intel_device_info intel_haswell_d_info = {
280 GEN7_FEATURES,
281 .is_haswell = 1,
282 .has_ddi = 1,
283 .has_fpga_dbg = 1,
284 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
285 GEN_DEFAULT_PIPEOFFSETS,
286 IVB_CURSOR_OFFSETS,
287 };
288
289 static const struct intel_device_info intel_haswell_m_info = {
290 GEN7_FEATURES,
291 .is_haswell = 1,
292 .is_mobile = 1,
293 .has_ddi = 1,
294 .has_fpga_dbg = 1,
295 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
296 GEN_DEFAULT_PIPEOFFSETS,
297 IVB_CURSOR_OFFSETS,
298 };
299
300 static const struct intel_device_info intel_broadwell_d_info = {
301 .gen = 8, .num_pipes = 3,
302 .need_gfx_hws = 1, .has_hotplug = 1,
303 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
304 .has_llc = 1,
305 .has_ddi = 1,
306 .has_fpga_dbg = 1,
307 .has_fbc = 1,
308 GEN_DEFAULT_PIPEOFFSETS,
309 IVB_CURSOR_OFFSETS,
310 };
311
312 static const struct intel_device_info intel_broadwell_m_info = {
313 .gen = 8, .is_mobile = 1, .num_pipes = 3,
314 .need_gfx_hws = 1, .has_hotplug = 1,
315 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 .has_llc = 1,
317 .has_ddi = 1,
318 .has_fpga_dbg = 1,
319 .has_fbc = 1,
320 GEN_DEFAULT_PIPEOFFSETS,
321 IVB_CURSOR_OFFSETS,
322 };
323
324 static const struct intel_device_info intel_broadwell_gt3d_info = {
325 .gen = 8, .num_pipes = 3,
326 .need_gfx_hws = 1, .has_hotplug = 1,
327 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
328 .has_llc = 1,
329 .has_ddi = 1,
330 .has_fpga_dbg = 1,
331 .has_fbc = 1,
332 GEN_DEFAULT_PIPEOFFSETS,
333 IVB_CURSOR_OFFSETS,
334 };
335
336 static const struct intel_device_info intel_broadwell_gt3m_info = {
337 .gen = 8, .is_mobile = 1, .num_pipes = 3,
338 .need_gfx_hws = 1, .has_hotplug = 1,
339 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 .has_llc = 1,
341 .has_ddi = 1,
342 .has_fpga_dbg = 1,
343 .has_fbc = 1,
344 GEN_DEFAULT_PIPEOFFSETS,
345 IVB_CURSOR_OFFSETS,
346 };
347
348 static const struct intel_device_info intel_cherryview_info = {
349 .gen = 8, .num_pipes = 3,
350 .need_gfx_hws = 1, .has_hotplug = 1,
351 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
352 .is_valleyview = 1,
353 .display_mmio_offset = VLV_DISPLAY_BASE,
354 GEN_CHV_PIPEOFFSETS,
355 CURSOR_OFFSETS,
356 };
357
358 static const struct intel_device_info intel_skylake_info = {
359 .is_skylake = 1,
360 .gen = 9, .num_pipes = 3,
361 .need_gfx_hws = 1, .has_hotplug = 1,
362 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
363 .has_llc = 1,
364 .has_ddi = 1,
365 .has_fpga_dbg = 1,
366 .has_fbc = 1,
367 GEN_DEFAULT_PIPEOFFSETS,
368 IVB_CURSOR_OFFSETS,
369 };
370
371 static const struct intel_device_info intel_skylake_gt3_info = {
372 .is_skylake = 1,
373 .gen = 9, .num_pipes = 3,
374 .need_gfx_hws = 1, .has_hotplug = 1,
375 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
376 .has_llc = 1,
377 .has_ddi = 1,
378 .has_fpga_dbg = 1,
379 .has_fbc = 1,
380 GEN_DEFAULT_PIPEOFFSETS,
381 IVB_CURSOR_OFFSETS,
382 };
383
384 static const struct intel_device_info intel_broxton_info = {
385 .is_preliminary = 1,
386 .is_broxton = 1,
387 .gen = 9,
388 .need_gfx_hws = 1, .has_hotplug = 1,
389 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
390 .num_pipes = 3,
391 .has_ddi = 1,
392 .has_fpga_dbg = 1,
393 .has_fbc = 1,
394 GEN_DEFAULT_PIPEOFFSETS,
395 IVB_CURSOR_OFFSETS,
396 };
397
398 static const struct intel_device_info intel_kabylake_info = {
399 .is_preliminary = 1,
400 .is_kabylake = 1,
401 .gen = 9,
402 .num_pipes = 3,
403 .need_gfx_hws = 1, .has_hotplug = 1,
404 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
405 .has_llc = 1,
406 .has_ddi = 1,
407 .has_fpga_dbg = 1,
408 .has_fbc = 1,
409 GEN_DEFAULT_PIPEOFFSETS,
410 IVB_CURSOR_OFFSETS,
411 };
412
413 static const struct intel_device_info intel_kabylake_gt3_info = {
414 .is_preliminary = 1,
415 .is_kabylake = 1,
416 .gen = 9,
417 .num_pipes = 3,
418 .need_gfx_hws = 1, .has_hotplug = 1,
419 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
420 .has_llc = 1,
421 .has_ddi = 1,
422 .has_fpga_dbg = 1,
423 .has_fbc = 1,
424 GEN_DEFAULT_PIPEOFFSETS,
425 IVB_CURSOR_OFFSETS,
426 };
427
428 /*
429 * Make sure any device matches here are from most specific to most
430 * general. For example, since the Quanta match is based on the subsystem
431 * and subvendor IDs, we need it to come before the more general IVB
432 * PCI ID matches, otherwise we'll use the wrong info struct above.
433 */
434 static const struct pci_device_id pciidlist[] = {
435 INTEL_I830_IDS(&intel_i830_info),
436 INTEL_I845G_IDS(&intel_845g_info),
437 INTEL_I85X_IDS(&intel_i85x_info),
438 INTEL_I865G_IDS(&intel_i865g_info),
439 INTEL_I915G_IDS(&intel_i915g_info),
440 INTEL_I915GM_IDS(&intel_i915gm_info),
441 INTEL_I945G_IDS(&intel_i945g_info),
442 INTEL_I945GM_IDS(&intel_i945gm_info),
443 INTEL_I965G_IDS(&intel_i965g_info),
444 INTEL_G33_IDS(&intel_g33_info),
445 INTEL_I965GM_IDS(&intel_i965gm_info),
446 INTEL_GM45_IDS(&intel_gm45_info),
447 INTEL_G45_IDS(&intel_g45_info),
448 INTEL_PINEVIEW_IDS(&intel_pineview_info),
449 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
450 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
451 INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
452 INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
453 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
454 INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
455 INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
456 INTEL_HSW_D_IDS(&intel_haswell_d_info),
457 INTEL_HSW_M_IDS(&intel_haswell_m_info),
458 INTEL_VLV_M_IDS(&intel_valleyview_m_info),
459 INTEL_VLV_D_IDS(&intel_valleyview_d_info),
460 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
461 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
462 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
463 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
464 INTEL_CHV_IDS(&intel_cherryview_info),
465 INTEL_SKL_GT1_IDS(&intel_skylake_info),
466 INTEL_SKL_GT2_IDS(&intel_skylake_info),
467 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
468 INTEL_BXT_IDS(&intel_broxton_info),
469 INTEL_KBL_GT1_IDS(&intel_kabylake_info),
470 INTEL_KBL_GT2_IDS(&intel_kabylake_info),
471 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
472 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
473 {0, 0, 0}
474 };
475
476 MODULE_DEVICE_TABLE(pci, pciidlist);
477
478 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
479 {
480 enum intel_pch ret = PCH_NOP;
481
482 /*
483 * In a virtualized passthrough environment we can be in a
484 * setup where the ISA bridge is not able to be passed through.
485 * In this case, a south bridge can be emulated and we have to
486 * make an educated guess as to which PCH is really there.
487 */
488
489 if (IS_GEN5(dev)) {
490 ret = PCH_IBX;
491 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
492 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
493 ret = PCH_CPT;
494 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
495 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
496 ret = PCH_LPT;
497 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
498 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
499 ret = PCH_SPT;
500 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
501 }
502
503 return ret;
504 }
505
506 void intel_detect_pch(struct drm_device *dev)
507 {
508 struct drm_i915_private *dev_priv = dev->dev_private;
509 struct pci_dev *pch = NULL;
510
511 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
512 * (which really amounts to a PCH but no South Display).
513 */
514 if (INTEL_INFO(dev)->num_pipes == 0) {
515 dev_priv->pch_type = PCH_NOP;
516 return;
517 }
518
519 /*
520 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
521 * make graphics device passthrough work easy for VMM, that only
522 * need to expose ISA bridge to let driver know the real hardware
523 * underneath. This is a requirement from virtualization team.
524 *
525 * In some virtualized environments (e.g. XEN), there is irrelevant
526 * ISA bridge in the system. To work reliably, we should scan trhough
527 * all the ISA bridge devices and check for the first match, instead
528 * of only checking the first one.
529 */
530 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
531 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
532 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
533 dev_priv->pch_id = id;
534
535 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
536 dev_priv->pch_type = PCH_IBX;
537 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
538 WARN_ON(!IS_GEN5(dev));
539 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
540 dev_priv->pch_type = PCH_CPT;
541 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
542 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
543 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
544 /* PantherPoint is CPT compatible */
545 dev_priv->pch_type = PCH_CPT;
546 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
547 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
548 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
549 dev_priv->pch_type = PCH_LPT;
550 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
551 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
552 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
553 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
554 dev_priv->pch_type = PCH_LPT;
555 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
556 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
557 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
558 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
559 dev_priv->pch_type = PCH_SPT;
560 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
561 WARN_ON(!IS_SKYLAKE(dev) &&
562 !IS_KABYLAKE(dev));
563 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
564 dev_priv->pch_type = PCH_SPT;
565 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
566 WARN_ON(!IS_SKYLAKE(dev) &&
567 !IS_KABYLAKE(dev));
568 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
569 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE)) {
570 dev_priv->pch_type = intel_virt_detect_pch(dev);
571 } else
572 continue;
573
574 break;
575 }
576 }
577 if (!pch)
578 DRM_DEBUG_KMS("No PCH found.\n");
579
580 pci_dev_put(pch);
581 }
582
583 bool i915_semaphore_is_enabled(struct drm_device *dev)
584 {
585 if (INTEL_INFO(dev)->gen < 6)
586 return false;
587
588 if (i915.semaphores >= 0)
589 return i915.semaphores;
590
591 /* TODO: make semaphores and Execlists play nicely together */
592 if (i915.enable_execlists)
593 return false;
594
595 /* Until we get further testing... */
596 if (IS_GEN8(dev))
597 return false;
598
599 #ifdef CONFIG_INTEL_IOMMU
600 /* Enable semaphores on SNB when IO remapping is off */
601 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
602 return false;
603 #endif
604
605 return true;
606 }
607
608 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
609 {
610 struct drm_device *dev = dev_priv->dev;
611 struct drm_encoder *encoder;
612
613 drm_modeset_lock_all(dev);
614 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
615 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
616
617 if (intel_encoder->suspend)
618 intel_encoder->suspend(intel_encoder);
619 }
620 drm_modeset_unlock_all(dev);
621 }
622
623 static int intel_suspend_complete(struct drm_i915_private *dev_priv);
624 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
625 bool rpm_resume);
626 static int bxt_resume_prepare(struct drm_i915_private *dev_priv);
627
628 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
629 {
630 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
631 if (acpi_target_system_state() < ACPI_STATE_S3)
632 return true;
633 #endif
634 return false;
635 }
636
637 static int i915_drm_suspend(struct drm_device *dev)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 pci_power_t opregion_target_state;
641 int error;
642
643 /* ignore lid events during suspend */
644 mutex_lock(&dev_priv->modeset_restore_lock);
645 dev_priv->modeset_restore = MODESET_SUSPENDED;
646 mutex_unlock(&dev_priv->modeset_restore_lock);
647
648 /* We do a lot of poking in a lot of registers, make sure they work
649 * properly. */
650 intel_display_set_init_power(dev_priv, true);
651
652 drm_kms_helper_poll_disable(dev);
653
654 pci_save_state(dev->pdev);
655
656 error = i915_gem_suspend(dev);
657 if (error) {
658 dev_err(&dev->pdev->dev,
659 "GEM idle failed, resume might fail\n");
660 return error;
661 }
662
663 intel_guc_suspend(dev);
664
665 intel_suspend_gt_powersave(dev);
666
667 /*
668 * Disable CRTCs directly since we want to preserve sw state
669 * for _thaw. Also, power gate the CRTC power wells.
670 */
671 drm_modeset_lock_all(dev);
672 intel_display_suspend(dev);
673 drm_modeset_unlock_all(dev);
674
675 intel_dp_mst_suspend(dev);
676
677 intel_runtime_pm_disable_interrupts(dev_priv);
678 intel_hpd_cancel_work(dev_priv);
679
680 intel_suspend_encoders(dev_priv);
681
682 intel_suspend_hw(dev);
683
684 i915_gem_suspend_gtt_mappings(dev);
685
686 i915_save_state(dev);
687
688 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
689 intel_opregion_notify_adapter(dev, opregion_target_state);
690
691 intel_uncore_forcewake_reset(dev, false);
692 intel_opregion_fini(dev);
693
694 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
695
696 dev_priv->suspend_count++;
697
698 intel_display_set_init_power(dev_priv, false);
699
700 if (HAS_CSR(dev_priv))
701 flush_work(&dev_priv->csr.work);
702
703 return 0;
704 }
705
706 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
707 {
708 struct drm_i915_private *dev_priv = drm_dev->dev_private;
709 bool fw_csr;
710 int ret;
711
712 fw_csr = suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
713 /*
714 * In case of firmware assisted context save/restore don't manually
715 * deinit the power domains. This also means the CSR/DMC firmware will
716 * stay active, it will power down any HW resources as required and
717 * also enable deeper system power states that would be blocked if the
718 * firmware was inactive.
719 */
720 if (!fw_csr)
721 intel_power_domains_suspend(dev_priv);
722
723 ret = intel_suspend_complete(dev_priv);
724
725 if (ret) {
726 DRM_ERROR("Suspend complete failed: %d\n", ret);
727 if (!fw_csr)
728 intel_power_domains_init_hw(dev_priv, true);
729
730 return ret;
731 }
732
733 pci_disable_device(drm_dev->pdev);
734 /*
735 * During hibernation on some platforms the BIOS may try to access
736 * the device even though it's already in D3 and hang the machine. So
737 * leave the device in D0 on those platforms and hope the BIOS will
738 * power down the device properly. The issue was seen on multiple old
739 * GENs with different BIOS vendors, so having an explicit blacklist
740 * is inpractical; apply the workaround on everything pre GEN6. The
741 * platforms where the issue was seen:
742 * Lenovo Thinkpad X301, X61s, X60, T60, X41
743 * Fujitsu FSC S7110
744 * Acer Aspire 1830T
745 */
746 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
747 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
748
749 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
750
751 return 0;
752 }
753
754 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
755 {
756 int error;
757
758 if (!dev || !dev->dev_private) {
759 DRM_ERROR("dev: %p\n", dev);
760 DRM_ERROR("DRM not initialized, aborting suspend.\n");
761 return -ENODEV;
762 }
763
764 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
765 state.event != PM_EVENT_FREEZE))
766 return -EINVAL;
767
768 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
769 return 0;
770
771 error = i915_drm_suspend(dev);
772 if (error)
773 return error;
774
775 return i915_drm_suspend_late(dev, false);
776 }
777
778 static int i915_drm_resume(struct drm_device *dev)
779 {
780 struct drm_i915_private *dev_priv = dev->dev_private;
781
782 mutex_lock(&dev->struct_mutex);
783 i915_gem_restore_gtt_mappings(dev);
784 mutex_unlock(&dev->struct_mutex);
785
786 i915_restore_state(dev);
787 intel_opregion_setup(dev);
788
789 intel_init_pch_refclk(dev);
790 drm_mode_config_reset(dev);
791
792 /*
793 * Interrupts have to be enabled before any batches are run. If not the
794 * GPU will hang. i915_gem_init_hw() will initiate batches to
795 * update/restore the context.
796 *
797 * Modeset enabling in intel_modeset_init_hw() also needs working
798 * interrupts.
799 */
800 intel_runtime_pm_enable_interrupts(dev_priv);
801
802 mutex_lock(&dev->struct_mutex);
803 if (i915_gem_init_hw(dev)) {
804 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
805 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
806 }
807 mutex_unlock(&dev->struct_mutex);
808
809 intel_guc_resume(dev);
810
811 intel_modeset_init_hw(dev);
812
813 spin_lock_irq(&dev_priv->irq_lock);
814 if (dev_priv->display.hpd_irq_setup)
815 dev_priv->display.hpd_irq_setup(dev);
816 spin_unlock_irq(&dev_priv->irq_lock);
817
818 drm_modeset_lock_all(dev);
819 intel_display_resume(dev);
820 drm_modeset_unlock_all(dev);
821
822 intel_dp_mst_resume(dev);
823
824 /*
825 * ... but also need to make sure that hotplug processing
826 * doesn't cause havoc. Like in the driver load code we don't
827 * bother with the tiny race here where we might loose hotplug
828 * notifications.
829 * */
830 intel_hpd_init(dev_priv);
831 /* Config may have changed between suspend and resume */
832 drm_helper_hpd_irq_event(dev);
833
834 intel_opregion_init(dev);
835
836 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
837
838 mutex_lock(&dev_priv->modeset_restore_lock);
839 dev_priv->modeset_restore = MODESET_DONE;
840 mutex_unlock(&dev_priv->modeset_restore_lock);
841
842 intel_opregion_notify_adapter(dev, PCI_D0);
843
844 drm_kms_helper_poll_enable(dev);
845
846 return 0;
847 }
848
849 static int i915_drm_resume_early(struct drm_device *dev)
850 {
851 struct drm_i915_private *dev_priv = dev->dev_private;
852 int ret = 0;
853
854 /*
855 * We have a resume ordering issue with the snd-hda driver also
856 * requiring our device to be power up. Due to the lack of a
857 * parent/child relationship we currently solve this with an early
858 * resume hook.
859 *
860 * FIXME: This should be solved with a special hdmi sink device or
861 * similar so that power domains can be employed.
862 */
863 if (pci_enable_device(dev->pdev)) {
864 ret = -EIO;
865 goto out;
866 }
867
868 pci_set_master(dev->pdev);
869
870 if (IS_VALLEYVIEW(dev_priv))
871 ret = vlv_resume_prepare(dev_priv, false);
872 if (ret)
873 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
874 ret);
875
876 intel_uncore_early_sanitize(dev, true);
877
878 if (IS_BROXTON(dev))
879 ret = bxt_resume_prepare(dev_priv);
880 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
881 hsw_disable_pc8(dev_priv);
882
883 intel_uncore_sanitize(dev);
884
885 if (!(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
886 intel_power_domains_init_hw(dev_priv, true);
887
888 out:
889 dev_priv->suspended_to_idle = false;
890
891 return ret;
892 }
893
894 int i915_resume_switcheroo(struct drm_device *dev)
895 {
896 int ret;
897
898 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
899 return 0;
900
901 ret = i915_drm_resume_early(dev);
902 if (ret)
903 return ret;
904
905 return i915_drm_resume(dev);
906 }
907
908 /**
909 * i915_reset - reset chip after a hang
910 * @dev: drm device to reset
911 *
912 * Reset the chip. Useful if a hang is detected. Returns zero on successful
913 * reset or otherwise an error code.
914 *
915 * Procedure is fairly simple:
916 * - reset the chip using the reset reg
917 * - re-init context state
918 * - re-init hardware status page
919 * - re-init ring buffer
920 * - re-init interrupt state
921 * - re-init display
922 */
923 int i915_reset(struct drm_device *dev)
924 {
925 struct drm_i915_private *dev_priv = dev->dev_private;
926 bool simulated;
927 int ret;
928
929 intel_reset_gt_powersave(dev);
930
931 mutex_lock(&dev->struct_mutex);
932
933 i915_gem_reset(dev);
934
935 simulated = dev_priv->gpu_error.stop_rings != 0;
936
937 ret = intel_gpu_reset(dev);
938
939 /* Also reset the gpu hangman. */
940 if (simulated) {
941 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
942 dev_priv->gpu_error.stop_rings = 0;
943 if (ret == -ENODEV) {
944 DRM_INFO("Reset not implemented, but ignoring "
945 "error for simulated gpu hangs\n");
946 ret = 0;
947 }
948 }
949
950 if (i915_stop_ring_allow_warn(dev_priv))
951 pr_notice("drm/i915: Resetting chip after gpu hang\n");
952
953 if (ret) {
954 DRM_ERROR("Failed to reset chip: %i\n", ret);
955 mutex_unlock(&dev->struct_mutex);
956 return ret;
957 }
958
959 intel_overlay_reset(dev_priv);
960
961 /* Ok, now get things going again... */
962
963 /*
964 * Everything depends on having the GTT running, so we need to start
965 * there. Fortunately we don't need to do this unless we reset the
966 * chip at a PCI level.
967 *
968 * Next we need to restore the context, but we don't use those
969 * yet either...
970 *
971 * Ring buffer needs to be re-initialized in the KMS case, or if X
972 * was running at the time of the reset (i.e. we weren't VT
973 * switched away).
974 */
975
976 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
977 dev_priv->gpu_error.reload_in_reset = true;
978
979 ret = i915_gem_init_hw(dev);
980
981 dev_priv->gpu_error.reload_in_reset = false;
982
983 mutex_unlock(&dev->struct_mutex);
984 if (ret) {
985 DRM_ERROR("Failed hw init on reset %d\n", ret);
986 return ret;
987 }
988
989 /*
990 * rps/rc6 re-init is necessary to restore state lost after the
991 * reset and the re-install of gt irqs. Skip for ironlake per
992 * previous concerns that it doesn't respond well to some forms
993 * of re-init after reset.
994 */
995 if (INTEL_INFO(dev)->gen > 5)
996 intel_enable_gt_powersave(dev);
997
998 return 0;
999 }
1000
1001 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1002 {
1003 struct intel_device_info *intel_info =
1004 (struct intel_device_info *) ent->driver_data;
1005
1006 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1007 DRM_INFO("This hardware requires preliminary hardware support.\n"
1008 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1009 return -ENODEV;
1010 }
1011
1012 /* Only bind to function 0 of the device. Early generations
1013 * used function 1 as a placeholder for multi-head. This causes
1014 * us confusion instead, especially on the systems where both
1015 * functions have the same PCI-ID!
1016 */
1017 if (PCI_FUNC(pdev->devfn))
1018 return -ENODEV;
1019
1020 return drm_get_pci_dev(pdev, ent, &driver);
1021 }
1022
1023 static void
1024 i915_pci_remove(struct pci_dev *pdev)
1025 {
1026 struct drm_device *dev = pci_get_drvdata(pdev);
1027
1028 drm_put_dev(dev);
1029 }
1030
1031 static int i915_pm_suspend(struct device *dev)
1032 {
1033 struct pci_dev *pdev = to_pci_dev(dev);
1034 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1035
1036 if (!drm_dev || !drm_dev->dev_private) {
1037 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1038 return -ENODEV;
1039 }
1040
1041 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1042 return 0;
1043
1044 return i915_drm_suspend(drm_dev);
1045 }
1046
1047 static int i915_pm_suspend_late(struct device *dev)
1048 {
1049 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1050
1051 /*
1052 * We have a suspend ordering issue with the snd-hda driver also
1053 * requiring our device to be power up. Due to the lack of a
1054 * parent/child relationship we currently solve this with an late
1055 * suspend hook.
1056 *
1057 * FIXME: This should be solved with a special hdmi sink device or
1058 * similar so that power domains can be employed.
1059 */
1060 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1061 return 0;
1062
1063 return i915_drm_suspend_late(drm_dev, false);
1064 }
1065
1066 static int i915_pm_poweroff_late(struct device *dev)
1067 {
1068 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1069
1070 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1071 return 0;
1072
1073 return i915_drm_suspend_late(drm_dev, true);
1074 }
1075
1076 static int i915_pm_resume_early(struct device *dev)
1077 {
1078 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1079
1080 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1081 return 0;
1082
1083 return i915_drm_resume_early(drm_dev);
1084 }
1085
1086 static int i915_pm_resume(struct device *dev)
1087 {
1088 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1089
1090 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1091 return 0;
1092
1093 return i915_drm_resume(drm_dev);
1094 }
1095
1096 static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
1097 {
1098 hsw_enable_pc8(dev_priv);
1099
1100 return 0;
1101 }
1102
1103 static int bxt_suspend_complete(struct drm_i915_private *dev_priv)
1104 {
1105 struct drm_device *dev = dev_priv->dev;
1106
1107 /* TODO: when DC5 support is added disable DC5 here. */
1108
1109 broxton_ddi_phy_uninit(dev);
1110 broxton_uninit_cdclk(dev);
1111 bxt_enable_dc9(dev_priv);
1112
1113 return 0;
1114 }
1115
1116 static int bxt_resume_prepare(struct drm_i915_private *dev_priv)
1117 {
1118 struct drm_device *dev = dev_priv->dev;
1119
1120 /* TODO: when CSR FW support is added make sure the FW is loaded */
1121
1122 bxt_disable_dc9(dev_priv);
1123
1124 /*
1125 * TODO: when DC5 support is added enable DC5 here if the CSR FW
1126 * is available.
1127 */
1128 broxton_init_cdclk(dev);
1129 broxton_ddi_phy_init(dev);
1130 intel_prepare_ddi(dev);
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Save all Gunit registers that may be lost after a D3 and a subsequent
1137 * S0i[R123] transition. The list of registers needing a save/restore is
1138 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1139 * registers in the following way:
1140 * - Driver: saved/restored by the driver
1141 * - Punit : saved/restored by the Punit firmware
1142 * - No, w/o marking: no need to save/restore, since the register is R/O or
1143 * used internally by the HW in a way that doesn't depend
1144 * keeping the content across a suspend/resume.
1145 * - Debug : used for debugging
1146 *
1147 * We save/restore all registers marked with 'Driver', with the following
1148 * exceptions:
1149 * - Registers out of use, including also registers marked with 'Debug'.
1150 * These have no effect on the driver's operation, so we don't save/restore
1151 * them to reduce the overhead.
1152 * - Registers that are fully setup by an initialization function called from
1153 * the resume path. For example many clock gating and RPS/RC6 registers.
1154 * - Registers that provide the right functionality with their reset defaults.
1155 *
1156 * TODO: Except for registers that based on the above 3 criteria can be safely
1157 * ignored, we save/restore all others, practically treating the HW context as
1158 * a black-box for the driver. Further investigation is needed to reduce the
1159 * saved/restored registers even further, by following the same 3 criteria.
1160 */
1161 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1162 {
1163 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1164 int i;
1165
1166 /* GAM 0x4000-0x4770 */
1167 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1168 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1169 s->arb_mode = I915_READ(ARB_MODE);
1170 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1171 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1172
1173 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1174 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1175
1176 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1177 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1178
1179 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1180 s->ecochk = I915_READ(GAM_ECOCHK);
1181 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1182 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1183
1184 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1185
1186 /* MBC 0x9024-0x91D0, 0x8500 */
1187 s->g3dctl = I915_READ(VLV_G3DCTL);
1188 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1189 s->mbctl = I915_READ(GEN6_MBCTL);
1190
1191 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1192 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1193 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1194 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1195 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1196 s->rstctl = I915_READ(GEN6_RSTCTL);
1197 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1198
1199 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1200 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1201 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1202 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1203 s->ecobus = I915_READ(ECOBUS);
1204 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1205 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1206 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1207 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1208 s->rcedata = I915_READ(VLV_RCEDATA);
1209 s->spare2gh = I915_READ(VLV_SPAREG2H);
1210
1211 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1212 s->gt_imr = I915_READ(GTIMR);
1213 s->gt_ier = I915_READ(GTIER);
1214 s->pm_imr = I915_READ(GEN6_PMIMR);
1215 s->pm_ier = I915_READ(GEN6_PMIER);
1216
1217 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1218 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1219
1220 /* GT SA CZ domain, 0x100000-0x138124 */
1221 s->tilectl = I915_READ(TILECTL);
1222 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1223 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1224 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1225 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1226
1227 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1228 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1229 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1230 s->pcbr = I915_READ(VLV_PCBR);
1231 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1232
1233 /*
1234 * Not saving any of:
1235 * DFT, 0x9800-0x9EC0
1236 * SARB, 0xB000-0xB1FC
1237 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1238 * PCI CFG
1239 */
1240 }
1241
1242 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1243 {
1244 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1245 u32 val;
1246 int i;
1247
1248 /* GAM 0x4000-0x4770 */
1249 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1250 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1251 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1252 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1253 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1254
1255 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1256 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1257
1258 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1259 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1260
1261 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1262 I915_WRITE(GAM_ECOCHK, s->ecochk);
1263 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1264 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1265
1266 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1267
1268 /* MBC 0x9024-0x91D0, 0x8500 */
1269 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1270 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1271 I915_WRITE(GEN6_MBCTL, s->mbctl);
1272
1273 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1274 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1275 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1276 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1277 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1278 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1279 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1280
1281 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1282 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1283 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1284 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1285 I915_WRITE(ECOBUS, s->ecobus);
1286 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1287 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1288 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1289 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1290 I915_WRITE(VLV_RCEDATA, s->rcedata);
1291 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1292
1293 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1294 I915_WRITE(GTIMR, s->gt_imr);
1295 I915_WRITE(GTIER, s->gt_ier);
1296 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1297 I915_WRITE(GEN6_PMIER, s->pm_ier);
1298
1299 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1300 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1301
1302 /* GT SA CZ domain, 0x100000-0x138124 */
1303 I915_WRITE(TILECTL, s->tilectl);
1304 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1305 /*
1306 * Preserve the GT allow wake and GFX force clock bit, they are not
1307 * be restored, as they are used to control the s0ix suspend/resume
1308 * sequence by the caller.
1309 */
1310 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1311 val &= VLV_GTLC_ALLOWWAKEREQ;
1312 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1313 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1314
1315 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1316 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1317 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1318 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1319
1320 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1321
1322 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1323 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1324 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1325 I915_WRITE(VLV_PCBR, s->pcbr);
1326 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1327 }
1328
1329 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1330 {
1331 u32 val;
1332 int err;
1333
1334 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1335
1336 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1337 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1338 if (force_on)
1339 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1340 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1341
1342 if (!force_on)
1343 return 0;
1344
1345 err = wait_for(COND, 20);
1346 if (err)
1347 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1348 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1349
1350 return err;
1351 #undef COND
1352 }
1353
1354 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1355 {
1356 u32 val;
1357 int err = 0;
1358
1359 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1360 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1361 if (allow)
1362 val |= VLV_GTLC_ALLOWWAKEREQ;
1363 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1364 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1365
1366 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1367 allow)
1368 err = wait_for(COND, 1);
1369 if (err)
1370 DRM_ERROR("timeout disabling GT waking\n");
1371 return err;
1372 #undef COND
1373 }
1374
1375 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1376 bool wait_for_on)
1377 {
1378 u32 mask;
1379 u32 val;
1380 int err;
1381
1382 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1383 val = wait_for_on ? mask : 0;
1384 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1385 if (COND)
1386 return 0;
1387
1388 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1389 wait_for_on ? "on" : "off",
1390 I915_READ(VLV_GTLC_PW_STATUS));
1391
1392 /*
1393 * RC6 transitioning can be delayed up to 2 msec (see
1394 * valleyview_enable_rps), use 3 msec for safety.
1395 */
1396 err = wait_for(COND, 3);
1397 if (err)
1398 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1399 wait_for_on ? "on" : "off");
1400
1401 return err;
1402 #undef COND
1403 }
1404
1405 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1406 {
1407 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1408 return;
1409
1410 DRM_ERROR("GT register access while GT waking disabled\n");
1411 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1412 }
1413
1414 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1415 {
1416 u32 mask;
1417 int err;
1418
1419 /*
1420 * Bspec defines the following GT well on flags as debug only, so
1421 * don't treat them as hard failures.
1422 */
1423 (void)vlv_wait_for_gt_wells(dev_priv, false);
1424
1425 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1426 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1427
1428 vlv_check_no_gt_access(dev_priv);
1429
1430 err = vlv_force_gfx_clock(dev_priv, true);
1431 if (err)
1432 goto err1;
1433
1434 err = vlv_allow_gt_wake(dev_priv, false);
1435 if (err)
1436 goto err2;
1437
1438 if (!IS_CHERRYVIEW(dev_priv->dev))
1439 vlv_save_gunit_s0ix_state(dev_priv);
1440
1441 err = vlv_force_gfx_clock(dev_priv, false);
1442 if (err)
1443 goto err2;
1444
1445 return 0;
1446
1447 err2:
1448 /* For safety always re-enable waking and disable gfx clock forcing */
1449 vlv_allow_gt_wake(dev_priv, true);
1450 err1:
1451 vlv_force_gfx_clock(dev_priv, false);
1452
1453 return err;
1454 }
1455
1456 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1457 bool rpm_resume)
1458 {
1459 struct drm_device *dev = dev_priv->dev;
1460 int err;
1461 int ret;
1462
1463 /*
1464 * If any of the steps fail just try to continue, that's the best we
1465 * can do at this point. Return the first error code (which will also
1466 * leave RPM permanently disabled).
1467 */
1468 ret = vlv_force_gfx_clock(dev_priv, true);
1469
1470 if (!IS_CHERRYVIEW(dev_priv->dev))
1471 vlv_restore_gunit_s0ix_state(dev_priv);
1472
1473 err = vlv_allow_gt_wake(dev_priv, true);
1474 if (!ret)
1475 ret = err;
1476
1477 err = vlv_force_gfx_clock(dev_priv, false);
1478 if (!ret)
1479 ret = err;
1480
1481 vlv_check_no_gt_access(dev_priv);
1482
1483 if (rpm_resume) {
1484 intel_init_clock_gating(dev);
1485 i915_gem_restore_fences(dev);
1486 }
1487
1488 return ret;
1489 }
1490
1491 static int intel_runtime_suspend(struct device *device)
1492 {
1493 struct pci_dev *pdev = to_pci_dev(device);
1494 struct drm_device *dev = pci_get_drvdata(pdev);
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496 int ret;
1497
1498 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1499 return -ENODEV;
1500
1501 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1502 return -ENODEV;
1503
1504 DRM_DEBUG_KMS("Suspending device\n");
1505
1506 /*
1507 * We could deadlock here in case another thread holding struct_mutex
1508 * calls RPM suspend concurrently, since the RPM suspend will wait
1509 * first for this RPM suspend to finish. In this case the concurrent
1510 * RPM resume will be followed by its RPM suspend counterpart. Still
1511 * for consistency return -EAGAIN, which will reschedule this suspend.
1512 */
1513 if (!mutex_trylock(&dev->struct_mutex)) {
1514 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1515 /*
1516 * Bump the expiration timestamp, otherwise the suspend won't
1517 * be rescheduled.
1518 */
1519 pm_runtime_mark_last_busy(device);
1520
1521 return -EAGAIN;
1522 }
1523 /*
1524 * We are safe here against re-faults, since the fault handler takes
1525 * an RPM reference.
1526 */
1527 i915_gem_release_all_mmaps(dev_priv);
1528 mutex_unlock(&dev->struct_mutex);
1529
1530 intel_guc_suspend(dev);
1531
1532 intel_suspend_gt_powersave(dev);
1533 intel_runtime_pm_disable_interrupts(dev_priv);
1534
1535 ret = intel_suspend_complete(dev_priv);
1536 if (ret) {
1537 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1538 intel_runtime_pm_enable_interrupts(dev_priv);
1539
1540 return ret;
1541 }
1542
1543 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1544 intel_uncore_forcewake_reset(dev, false);
1545 dev_priv->pm.suspended = true;
1546
1547 /*
1548 * FIXME: We really should find a document that references the arguments
1549 * used below!
1550 */
1551 if (IS_BROADWELL(dev)) {
1552 /*
1553 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1554 * being detected, and the call we do at intel_runtime_resume()
1555 * won't be able to restore them. Since PCI_D3hot matches the
1556 * actual specification and appears to be working, use it.
1557 */
1558 intel_opregion_notify_adapter(dev, PCI_D3hot);
1559 } else {
1560 /*
1561 * current versions of firmware which depend on this opregion
1562 * notification have repurposed the D1 definition to mean
1563 * "runtime suspended" vs. what you would normally expect (D3)
1564 * to distinguish it from notifications that might be sent via
1565 * the suspend path.
1566 */
1567 intel_opregion_notify_adapter(dev, PCI_D1);
1568 }
1569
1570 assert_forcewakes_inactive(dev_priv);
1571
1572 DRM_DEBUG_KMS("Device suspended\n");
1573 return 0;
1574 }
1575
1576 static int intel_runtime_resume(struct device *device)
1577 {
1578 struct pci_dev *pdev = to_pci_dev(device);
1579 struct drm_device *dev = pci_get_drvdata(pdev);
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int ret = 0;
1582
1583 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1584 return -ENODEV;
1585
1586 DRM_DEBUG_KMS("Resuming device\n");
1587
1588 intel_opregion_notify_adapter(dev, PCI_D0);
1589 dev_priv->pm.suspended = false;
1590
1591 intel_guc_resume(dev);
1592
1593 if (IS_GEN6(dev_priv))
1594 intel_init_pch_refclk(dev);
1595
1596 if (IS_BROXTON(dev))
1597 ret = bxt_resume_prepare(dev_priv);
1598 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1599 hsw_disable_pc8(dev_priv);
1600 else if (IS_VALLEYVIEW(dev_priv))
1601 ret = vlv_resume_prepare(dev_priv, true);
1602
1603 /*
1604 * No point of rolling back things in case of an error, as the best
1605 * we can do is to hope that things will still work (and disable RPM).
1606 */
1607 i915_gem_init_swizzling(dev);
1608 gen6_update_ring_freq(dev);
1609
1610 intel_runtime_pm_enable_interrupts(dev_priv);
1611
1612 /*
1613 * On VLV/CHV display interrupts are part of the display
1614 * power well, so hpd is reinitialized from there. For
1615 * everyone else do it here.
1616 */
1617 if (!IS_VALLEYVIEW(dev_priv))
1618 intel_hpd_init(dev_priv);
1619
1620 intel_enable_gt_powersave(dev);
1621
1622 if (ret)
1623 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1624 else
1625 DRM_DEBUG_KMS("Device resumed\n");
1626
1627 return ret;
1628 }
1629
1630 /*
1631 * This function implements common functionality of runtime and system
1632 * suspend sequence.
1633 */
1634 static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1635 {
1636 int ret;
1637
1638 if (IS_BROXTON(dev_priv))
1639 ret = bxt_suspend_complete(dev_priv);
1640 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1641 ret = hsw_suspend_complete(dev_priv);
1642 else if (IS_VALLEYVIEW(dev_priv))
1643 ret = vlv_suspend_complete(dev_priv);
1644 else
1645 ret = 0;
1646
1647 return ret;
1648 }
1649
1650 static const struct dev_pm_ops i915_pm_ops = {
1651 /*
1652 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1653 * PMSG_RESUME]
1654 */
1655 .suspend = i915_pm_suspend,
1656 .suspend_late = i915_pm_suspend_late,
1657 .resume_early = i915_pm_resume_early,
1658 .resume = i915_pm_resume,
1659
1660 /*
1661 * S4 event handlers
1662 * @freeze, @freeze_late : called (1) before creating the
1663 * hibernation image [PMSG_FREEZE] and
1664 * (2) after rebooting, before restoring
1665 * the image [PMSG_QUIESCE]
1666 * @thaw, @thaw_early : called (1) after creating the hibernation
1667 * image, before writing it [PMSG_THAW]
1668 * and (2) after failing to create or
1669 * restore the image [PMSG_RECOVER]
1670 * @poweroff, @poweroff_late: called after writing the hibernation
1671 * image, before rebooting [PMSG_HIBERNATE]
1672 * @restore, @restore_early : called after rebooting and restoring the
1673 * hibernation image [PMSG_RESTORE]
1674 */
1675 .freeze = i915_pm_suspend,
1676 .freeze_late = i915_pm_suspend_late,
1677 .thaw_early = i915_pm_resume_early,
1678 .thaw = i915_pm_resume,
1679 .poweroff = i915_pm_suspend,
1680 .poweroff_late = i915_pm_poweroff_late,
1681 .restore_early = i915_pm_resume_early,
1682 .restore = i915_pm_resume,
1683
1684 /* S0ix (via runtime suspend) event handlers */
1685 .runtime_suspend = intel_runtime_suspend,
1686 .runtime_resume = intel_runtime_resume,
1687 };
1688
1689 static const struct vm_operations_struct i915_gem_vm_ops = {
1690 .fault = i915_gem_fault,
1691 .open = drm_gem_vm_open,
1692 .close = drm_gem_vm_close,
1693 };
1694
1695 static const struct file_operations i915_driver_fops = {
1696 .owner = THIS_MODULE,
1697 .open = drm_open,
1698 .release = drm_release,
1699 .unlocked_ioctl = drm_ioctl,
1700 .mmap = drm_gem_mmap,
1701 .poll = drm_poll,
1702 .read = drm_read,
1703 #ifdef CONFIG_COMPAT
1704 .compat_ioctl = i915_compat_ioctl,
1705 #endif
1706 .llseek = noop_llseek,
1707 };
1708
1709 static struct drm_driver driver = {
1710 /* Don't use MTRRs here; the Xserver or userspace app should
1711 * deal with them for Intel hardware.
1712 */
1713 .driver_features =
1714 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1715 DRIVER_RENDER | DRIVER_MODESET,
1716 .load = i915_driver_load,
1717 .unload = i915_driver_unload,
1718 .open = i915_driver_open,
1719 .lastclose = i915_driver_lastclose,
1720 .preclose = i915_driver_preclose,
1721 .postclose = i915_driver_postclose,
1722 .set_busid = drm_pci_set_busid,
1723
1724 #if defined(CONFIG_DEBUG_FS)
1725 .debugfs_init = i915_debugfs_init,
1726 .debugfs_cleanup = i915_debugfs_cleanup,
1727 #endif
1728 .gem_free_object = i915_gem_free_object,
1729 .gem_vm_ops = &i915_gem_vm_ops,
1730
1731 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1732 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1733 .gem_prime_export = i915_gem_prime_export,
1734 .gem_prime_import = i915_gem_prime_import,
1735
1736 .dumb_create = i915_gem_dumb_create,
1737 .dumb_map_offset = i915_gem_mmap_gtt,
1738 .dumb_destroy = drm_gem_dumb_destroy,
1739 .ioctls = i915_ioctls,
1740 .fops = &i915_driver_fops,
1741 .name = DRIVER_NAME,
1742 .desc = DRIVER_DESC,
1743 .date = DRIVER_DATE,
1744 .major = DRIVER_MAJOR,
1745 .minor = DRIVER_MINOR,
1746 .patchlevel = DRIVER_PATCHLEVEL,
1747 };
1748
1749 static struct pci_driver i915_pci_driver = {
1750 .name = DRIVER_NAME,
1751 .id_table = pciidlist,
1752 .probe = i915_pci_probe,
1753 .remove = i915_pci_remove,
1754 .driver.pm = &i915_pm_ops,
1755 };
1756
1757 static int __init i915_init(void)
1758 {
1759 driver.num_ioctls = i915_max_ioctl;
1760
1761 /*
1762 * Enable KMS by default, unless explicitly overriden by
1763 * either the i915.modeset prarameter or by the
1764 * vga_text_mode_force boot option.
1765 */
1766
1767 if (i915.modeset == 0)
1768 driver.driver_features &= ~DRIVER_MODESET;
1769
1770 #ifdef CONFIG_VGA_CONSOLE
1771 if (vgacon_text_force() && i915.modeset == -1)
1772 driver.driver_features &= ~DRIVER_MODESET;
1773 #endif
1774
1775 if (!(driver.driver_features & DRIVER_MODESET)) {
1776 /* Silently fail loading to not upset userspace. */
1777 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1778 return 0;
1779 }
1780
1781 if (i915.nuclear_pageflip)
1782 driver.driver_features |= DRIVER_ATOMIC;
1783
1784 return drm_pci_init(&driver, &i915_pci_driver);
1785 }
1786
1787 static void __exit i915_exit(void)
1788 {
1789 if (!(driver.driver_features & DRIVER_MODESET))
1790 return; /* Never loaded a driver. */
1791
1792 drm_pci_exit(&driver, &i915_pci_driver);
1793 }
1794
1795 module_init(i915_init);
1796 module_exit(i915_exit);
1797
1798 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1799 MODULE_AUTHOR("Intel Corporation");
1800
1801 MODULE_DESCRIPTION(DRIVER_DESC);
1802 MODULE_LICENSE("GPL and additional rights");
This page took 0.080985 seconds and 5 git commands to generate.