Merge tag 'edac_for_4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50
51 #include "i915_params.h"
52 #include "i915_reg.h"
53
54 #include "intel_bios.h"
55 #include "intel_dpll_mgr.h"
56 #include "intel_guc.h"
57 #include "intel_lrc.h"
58 #include "intel_ringbuffer.h"
59
60 #include "i915_gem.h"
61 #include "i915_gem_gtt.h"
62 #include "i915_gem_render_state.h"
63
64 /* General customization:
65 */
66
67 #define DRIVER_NAME "i915"
68 #define DRIVER_DESC "Intel Graphics"
69 #define DRIVER_DATE "20160425"
70
71 #undef WARN_ON
72 /* Many gcc seem to no see through this and fall over :( */
73 #if 0
74 #define WARN_ON(x) ({ \
75 bool __i915_warn_cond = (x); \
76 if (__builtin_constant_p(__i915_warn_cond)) \
77 BUILD_BUG_ON(__i915_warn_cond); \
78 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
79 #else
80 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
81 #endif
82
83 #undef WARN_ON_ONCE
84 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
85
86 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
87 (long) (x), __func__);
88
89 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
90 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
91 * which may not necessarily be a user visible problem. This will either
92 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
93 * enable distros and users to tailor their preferred amount of i915 abrt
94 * spam.
95 */
96 #define I915_STATE_WARN(condition, format...) ({ \
97 int __ret_warn_on = !!(condition); \
98 if (unlikely(__ret_warn_on)) \
99 if (!WARN(i915.verbose_state_checks, format)) \
100 DRM_ERROR(format); \
101 unlikely(__ret_warn_on); \
102 })
103
104 #define I915_STATE_WARN_ON(x) \
105 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
106
107 bool __i915_inject_load_failure(const char *func, int line);
108 #define i915_inject_load_failure() \
109 __i915_inject_load_failure(__func__, __LINE__)
110
111 static inline const char *yesno(bool v)
112 {
113 return v ? "yes" : "no";
114 }
115
116 static inline const char *onoff(bool v)
117 {
118 return v ? "on" : "off";
119 }
120
121 enum pipe {
122 INVALID_PIPE = -1,
123 PIPE_A = 0,
124 PIPE_B,
125 PIPE_C,
126 _PIPE_EDP,
127 I915_MAX_PIPES = _PIPE_EDP
128 };
129 #define pipe_name(p) ((p) + 'A')
130
131 enum transcoder {
132 TRANSCODER_A = 0,
133 TRANSCODER_B,
134 TRANSCODER_C,
135 TRANSCODER_EDP,
136 TRANSCODER_DSI_A,
137 TRANSCODER_DSI_C,
138 I915_MAX_TRANSCODERS
139 };
140
141 static inline const char *transcoder_name(enum transcoder transcoder)
142 {
143 switch (transcoder) {
144 case TRANSCODER_A:
145 return "A";
146 case TRANSCODER_B:
147 return "B";
148 case TRANSCODER_C:
149 return "C";
150 case TRANSCODER_EDP:
151 return "EDP";
152 case TRANSCODER_DSI_A:
153 return "DSI A";
154 case TRANSCODER_DSI_C:
155 return "DSI C";
156 default:
157 return "<invalid>";
158 }
159 }
160
161 static inline bool transcoder_is_dsi(enum transcoder transcoder)
162 {
163 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
164 }
165
166 /*
167 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
168 * number of planes per CRTC. Not all platforms really have this many planes,
169 * which means some arrays of size I915_MAX_PLANES may have unused entries
170 * between the topmost sprite plane and the cursor plane.
171 */
172 enum plane {
173 PLANE_A = 0,
174 PLANE_B,
175 PLANE_C,
176 PLANE_CURSOR,
177 I915_MAX_PLANES,
178 };
179 #define plane_name(p) ((p) + 'A')
180
181 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
182
183 enum port {
184 PORT_A = 0,
185 PORT_B,
186 PORT_C,
187 PORT_D,
188 PORT_E,
189 I915_MAX_PORTS
190 };
191 #define port_name(p) ((p) + 'A')
192
193 #define I915_NUM_PHYS_VLV 2
194
195 enum dpio_channel {
196 DPIO_CH0,
197 DPIO_CH1
198 };
199
200 enum dpio_phy {
201 DPIO_PHY0,
202 DPIO_PHY1
203 };
204
205 enum intel_display_power_domain {
206 POWER_DOMAIN_PIPE_A,
207 POWER_DOMAIN_PIPE_B,
208 POWER_DOMAIN_PIPE_C,
209 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
210 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
211 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
212 POWER_DOMAIN_TRANSCODER_A,
213 POWER_DOMAIN_TRANSCODER_B,
214 POWER_DOMAIN_TRANSCODER_C,
215 POWER_DOMAIN_TRANSCODER_EDP,
216 POWER_DOMAIN_TRANSCODER_DSI_A,
217 POWER_DOMAIN_TRANSCODER_DSI_C,
218 POWER_DOMAIN_PORT_DDI_A_LANES,
219 POWER_DOMAIN_PORT_DDI_B_LANES,
220 POWER_DOMAIN_PORT_DDI_C_LANES,
221 POWER_DOMAIN_PORT_DDI_D_LANES,
222 POWER_DOMAIN_PORT_DDI_E_LANES,
223 POWER_DOMAIN_PORT_DSI,
224 POWER_DOMAIN_PORT_CRT,
225 POWER_DOMAIN_PORT_OTHER,
226 POWER_DOMAIN_VGA,
227 POWER_DOMAIN_AUDIO,
228 POWER_DOMAIN_PLLS,
229 POWER_DOMAIN_AUX_A,
230 POWER_DOMAIN_AUX_B,
231 POWER_DOMAIN_AUX_C,
232 POWER_DOMAIN_AUX_D,
233 POWER_DOMAIN_GMBUS,
234 POWER_DOMAIN_MODESET,
235 POWER_DOMAIN_INIT,
236
237 POWER_DOMAIN_NUM,
238 };
239
240 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
241 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
242 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
243 #define POWER_DOMAIN_TRANSCODER(tran) \
244 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
245 (tran) + POWER_DOMAIN_TRANSCODER_A)
246
247 enum hpd_pin {
248 HPD_NONE = 0,
249 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
250 HPD_CRT,
251 HPD_SDVO_B,
252 HPD_SDVO_C,
253 HPD_PORT_A,
254 HPD_PORT_B,
255 HPD_PORT_C,
256 HPD_PORT_D,
257 HPD_PORT_E,
258 HPD_NUM_PINS
259 };
260
261 #define for_each_hpd_pin(__pin) \
262 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
263
264 struct i915_hotplug {
265 struct work_struct hotplug_work;
266
267 struct {
268 unsigned long last_jiffies;
269 int count;
270 enum {
271 HPD_ENABLED = 0,
272 HPD_DISABLED = 1,
273 HPD_MARK_DISABLED = 2
274 } state;
275 } stats[HPD_NUM_PINS];
276 u32 event_bits;
277 struct delayed_work reenable_work;
278
279 struct intel_digital_port *irq_port[I915_MAX_PORTS];
280 u32 long_port_mask;
281 u32 short_port_mask;
282 struct work_struct dig_port_work;
283
284 /*
285 * if we get a HPD irq from DP and a HPD irq from non-DP
286 * the non-DP HPD could block the workqueue on a mode config
287 * mutex getting, that userspace may have taken. However
288 * userspace is waiting on the DP workqueue to run which is
289 * blocked behind the non-DP one.
290 */
291 struct workqueue_struct *dp_wq;
292 };
293
294 #define I915_GEM_GPU_DOMAINS \
295 (I915_GEM_DOMAIN_RENDER | \
296 I915_GEM_DOMAIN_SAMPLER | \
297 I915_GEM_DOMAIN_COMMAND | \
298 I915_GEM_DOMAIN_INSTRUCTION | \
299 I915_GEM_DOMAIN_VERTEX)
300
301 #define for_each_pipe(__dev_priv, __p) \
302 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
303 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
304 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
305 for_each_if ((__mask) & (1 << (__p)))
306 #define for_each_plane(__dev_priv, __pipe, __p) \
307 for ((__p) = 0; \
308 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
309 (__p)++)
310 #define for_each_sprite(__dev_priv, __p, __s) \
311 for ((__s) = 0; \
312 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
313 (__s)++)
314
315 #define for_each_port_masked(__port, __ports_mask) \
316 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
317 for_each_if ((__ports_mask) & (1 << (__port)))
318
319 #define for_each_crtc(dev, crtc) \
320 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
321
322 #define for_each_intel_plane(dev, intel_plane) \
323 list_for_each_entry(intel_plane, \
324 &dev->mode_config.plane_list, \
325 base.head)
326
327 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
328 list_for_each_entry(intel_plane, \
329 &(dev)->mode_config.plane_list, \
330 base.head) \
331 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
332
333 #define for_each_intel_crtc(dev, intel_crtc) \
334 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
335
336 #define for_each_intel_encoder(dev, intel_encoder) \
337 list_for_each_entry(intel_encoder, \
338 &(dev)->mode_config.encoder_list, \
339 base.head)
340
341 #define for_each_intel_connector(dev, intel_connector) \
342 list_for_each_entry(intel_connector, \
343 &dev->mode_config.connector_list, \
344 base.head)
345
346 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
347 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
348 for_each_if ((intel_encoder)->base.crtc == (__crtc))
349
350 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
351 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
352 for_each_if ((intel_connector)->base.encoder == (__encoder))
353
354 #define for_each_power_domain(domain, mask) \
355 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
356 for_each_if ((1 << (domain)) & (mask))
357
358 struct drm_i915_private;
359 struct i915_mm_struct;
360 struct i915_mmu_object;
361
362 struct drm_i915_file_private {
363 struct drm_i915_private *dev_priv;
364 struct drm_file *file;
365
366 struct {
367 spinlock_t lock;
368 struct list_head request_list;
369 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
370 * chosen to prevent the CPU getting more than a frame ahead of the GPU
371 * (when using lax throttling for the frontbuffer). We also use it to
372 * offer free GPU waitboosts for severely congested workloads.
373 */
374 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
375 } mm;
376 struct idr context_idr;
377
378 struct intel_rps_client {
379 struct list_head link;
380 unsigned boosts;
381 } rps;
382
383 unsigned int bsd_ring;
384 };
385
386 /* Used by dp and fdi links */
387 struct intel_link_m_n {
388 uint32_t tu;
389 uint32_t gmch_m;
390 uint32_t gmch_n;
391 uint32_t link_m;
392 uint32_t link_n;
393 };
394
395 void intel_link_compute_m_n(int bpp, int nlanes,
396 int pixel_clock, int link_clock,
397 struct intel_link_m_n *m_n);
398
399 /* Interface history:
400 *
401 * 1.1: Original.
402 * 1.2: Add Power Management
403 * 1.3: Add vblank support
404 * 1.4: Fix cmdbuffer path, add heap destroy
405 * 1.5: Add vblank pipe configuration
406 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
407 * - Support vertical blank on secondary display pipe
408 */
409 #define DRIVER_MAJOR 1
410 #define DRIVER_MINOR 6
411 #define DRIVER_PATCHLEVEL 0
412
413 #define WATCH_LISTS 0
414
415 struct opregion_header;
416 struct opregion_acpi;
417 struct opregion_swsci;
418 struct opregion_asle;
419
420 struct intel_opregion {
421 struct opregion_header *header;
422 struct opregion_acpi *acpi;
423 struct opregion_swsci *swsci;
424 u32 swsci_gbda_sub_functions;
425 u32 swsci_sbcb_sub_functions;
426 struct opregion_asle *asle;
427 void *rvda;
428 const void *vbt;
429 u32 vbt_size;
430 u32 *lid_state;
431 struct work_struct asle_work;
432 };
433 #define OPREGION_SIZE (8*1024)
434
435 struct intel_overlay;
436 struct intel_overlay_error_state;
437
438 #define I915_FENCE_REG_NONE -1
439 #define I915_MAX_NUM_FENCES 32
440 /* 32 fences + sign bit for FENCE_REG_NONE */
441 #define I915_MAX_NUM_FENCE_BITS 6
442
443 struct drm_i915_fence_reg {
444 struct list_head lru_list;
445 struct drm_i915_gem_object *obj;
446 int pin_count;
447 };
448
449 struct sdvo_device_mapping {
450 u8 initialized;
451 u8 dvo_port;
452 u8 slave_addr;
453 u8 dvo_wiring;
454 u8 i2c_pin;
455 u8 ddc_pin;
456 };
457
458 struct intel_display_error_state;
459
460 struct drm_i915_error_state {
461 struct kref ref;
462 struct timeval time;
463
464 char error_msg[128];
465 int iommu;
466 u32 reset_count;
467 u32 suspend_count;
468
469 /* Generic register state */
470 u32 eir;
471 u32 pgtbl_er;
472 u32 ier;
473 u32 gtier[4];
474 u32 ccid;
475 u32 derrmr;
476 u32 forcewake;
477 u32 error; /* gen6+ */
478 u32 err_int; /* gen7 */
479 u32 fault_data0; /* gen8, gen9 */
480 u32 fault_data1; /* gen8, gen9 */
481 u32 done_reg;
482 u32 gac_eco;
483 u32 gam_ecochk;
484 u32 gab_ctl;
485 u32 gfx_mode;
486 u32 extra_instdone[I915_NUM_INSTDONE_REG];
487 u64 fence[I915_MAX_NUM_FENCES];
488 struct intel_overlay_error_state *overlay;
489 struct intel_display_error_state *display;
490 struct drm_i915_error_object *semaphore_obj;
491
492 struct drm_i915_error_ring {
493 bool valid;
494 /* Software tracked state */
495 bool waiting;
496 int hangcheck_score;
497 enum intel_ring_hangcheck_action hangcheck_action;
498 int num_requests;
499
500 /* our own tracking of ring head and tail */
501 u32 cpu_ring_head;
502 u32 cpu_ring_tail;
503
504 u32 last_seqno;
505 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
506
507 /* Register state */
508 u32 start;
509 u32 tail;
510 u32 head;
511 u32 ctl;
512 u32 hws;
513 u32 ipeir;
514 u32 ipehr;
515 u32 instdone;
516 u32 bbstate;
517 u32 instpm;
518 u32 instps;
519 u32 seqno;
520 u64 bbaddr;
521 u64 acthd;
522 u32 fault_reg;
523 u64 faddr;
524 u32 rc_psmi; /* sleep state */
525 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
526
527 struct drm_i915_error_object {
528 int page_count;
529 u64 gtt_offset;
530 u32 *pages[0];
531 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
532
533 struct drm_i915_error_object *wa_ctx;
534
535 struct drm_i915_error_request {
536 long jiffies;
537 u32 seqno;
538 u32 tail;
539 } *requests;
540
541 struct {
542 u32 gfx_mode;
543 union {
544 u64 pdp[4];
545 u32 pp_dir_base;
546 };
547 } vm_info;
548
549 pid_t pid;
550 char comm[TASK_COMM_LEN];
551 } ring[I915_NUM_ENGINES];
552
553 struct drm_i915_error_buffer {
554 u32 size;
555 u32 name;
556 u32 rseqno[I915_NUM_ENGINES], wseqno;
557 u64 gtt_offset;
558 u32 read_domains;
559 u32 write_domain;
560 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
561 s32 pinned:2;
562 u32 tiling:2;
563 u32 dirty:1;
564 u32 purgeable:1;
565 u32 userptr:1;
566 s32 ring:4;
567 u32 cache_level:3;
568 } **active_bo, **pinned_bo;
569
570 u32 *active_bo_count, *pinned_bo_count;
571 u32 vm_count;
572 };
573
574 struct intel_connector;
575 struct intel_encoder;
576 struct intel_crtc_state;
577 struct intel_initial_plane_config;
578 struct intel_crtc;
579 struct intel_limit;
580 struct dpll;
581
582 struct drm_i915_display_funcs {
583 int (*get_display_clock_speed)(struct drm_device *dev);
584 int (*get_fifo_size)(struct drm_device *dev, int plane);
585 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
586 int (*compute_intermediate_wm)(struct drm_device *dev,
587 struct intel_crtc *intel_crtc,
588 struct intel_crtc_state *newstate);
589 void (*initial_watermarks)(struct intel_crtc_state *cstate);
590 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
591 void (*update_wm)(struct drm_crtc *crtc);
592 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
593 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
594 /* Returns the active state of the crtc, and if the crtc is active,
595 * fills out the pipe-config with the hw state. */
596 bool (*get_pipe_config)(struct intel_crtc *,
597 struct intel_crtc_state *);
598 void (*get_initial_plane_config)(struct intel_crtc *,
599 struct intel_initial_plane_config *);
600 int (*crtc_compute_clock)(struct intel_crtc *crtc,
601 struct intel_crtc_state *crtc_state);
602 void (*crtc_enable)(struct drm_crtc *crtc);
603 void (*crtc_disable)(struct drm_crtc *crtc);
604 void (*audio_codec_enable)(struct drm_connector *connector,
605 struct intel_encoder *encoder,
606 const struct drm_display_mode *adjusted_mode);
607 void (*audio_codec_disable)(struct intel_encoder *encoder);
608 void (*fdi_link_train)(struct drm_crtc *crtc);
609 void (*init_clock_gating)(struct drm_device *dev);
610 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
611 struct drm_framebuffer *fb,
612 struct drm_i915_gem_object *obj,
613 struct drm_i915_gem_request *req,
614 uint32_t flags);
615 void (*hpd_irq_setup)(struct drm_device *dev);
616 /* clock updates for mode set */
617 /* cursor updates */
618 /* render clock increase/decrease */
619 /* display clock increase/decrease */
620 /* pll clock increase/decrease */
621
622 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
623 void (*load_luts)(struct drm_crtc_state *crtc_state);
624 };
625
626 enum forcewake_domain_id {
627 FW_DOMAIN_ID_RENDER = 0,
628 FW_DOMAIN_ID_BLITTER,
629 FW_DOMAIN_ID_MEDIA,
630
631 FW_DOMAIN_ID_COUNT
632 };
633
634 enum forcewake_domains {
635 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
636 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
637 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
638 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
639 FORCEWAKE_BLITTER |
640 FORCEWAKE_MEDIA)
641 };
642
643 #define FW_REG_READ (1)
644 #define FW_REG_WRITE (2)
645
646 enum forcewake_domains
647 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
648 i915_reg_t reg, unsigned int op);
649
650 struct intel_uncore_funcs {
651 void (*force_wake_get)(struct drm_i915_private *dev_priv,
652 enum forcewake_domains domains);
653 void (*force_wake_put)(struct drm_i915_private *dev_priv,
654 enum forcewake_domains domains);
655
656 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
657 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
658 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
659 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
660
661 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
662 uint8_t val, bool trace);
663 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
664 uint16_t val, bool trace);
665 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
666 uint32_t val, bool trace);
667 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
668 uint64_t val, bool trace);
669 };
670
671 struct intel_uncore {
672 spinlock_t lock; /** lock is also taken in irq contexts. */
673
674 struct intel_uncore_funcs funcs;
675
676 unsigned fifo_count;
677 enum forcewake_domains fw_domains;
678
679 struct intel_uncore_forcewake_domain {
680 struct drm_i915_private *i915;
681 enum forcewake_domain_id id;
682 enum forcewake_domains mask;
683 unsigned wake_count;
684 struct hrtimer timer;
685 i915_reg_t reg_set;
686 u32 val_set;
687 u32 val_clear;
688 i915_reg_t reg_ack;
689 i915_reg_t reg_post;
690 u32 val_reset;
691 } fw_domain[FW_DOMAIN_ID_COUNT];
692
693 int unclaimed_mmio_check;
694 };
695
696 /* Iterate over initialised fw domains */
697 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
698 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
699 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
700 (domain__)++) \
701 for_each_if ((mask__) & (domain__)->mask)
702
703 #define for_each_fw_domain(domain__, dev_priv__) \
704 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
705
706 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
707 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
708 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
709
710 struct intel_csr {
711 struct work_struct work;
712 const char *fw_path;
713 uint32_t *dmc_payload;
714 uint32_t dmc_fw_size;
715 uint32_t version;
716 uint32_t mmio_count;
717 i915_reg_t mmioaddr[8];
718 uint32_t mmiodata[8];
719 uint32_t dc_state;
720 uint32_t allowed_dc_mask;
721 };
722
723 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
724 func(is_mobile) sep \
725 func(is_i85x) sep \
726 func(is_i915g) sep \
727 func(is_i945gm) sep \
728 func(is_g33) sep \
729 func(need_gfx_hws) sep \
730 func(is_g4x) sep \
731 func(is_pineview) sep \
732 func(is_broadwater) sep \
733 func(is_crestline) sep \
734 func(is_ivybridge) sep \
735 func(is_valleyview) sep \
736 func(is_cherryview) sep \
737 func(is_haswell) sep \
738 func(is_skylake) sep \
739 func(is_broxton) sep \
740 func(is_kabylake) sep \
741 func(is_preliminary) sep \
742 func(has_fbc) sep \
743 func(has_pipe_cxsr) sep \
744 func(has_hotplug) sep \
745 func(cursor_needs_physical) sep \
746 func(has_overlay) sep \
747 func(overlay_needs_physical) sep \
748 func(supports_tv) sep \
749 func(has_llc) sep \
750 func(has_snoop) sep \
751 func(has_ddi) sep \
752 func(has_fpga_dbg)
753
754 #define DEFINE_FLAG(name) u8 name:1
755 #define SEP_SEMICOLON ;
756
757 struct intel_device_info {
758 u32 display_mmio_offset;
759 u16 device_id;
760 u8 num_pipes:3;
761 u8 num_sprites[I915_MAX_PIPES];
762 u8 gen;
763 u8 ring_mask; /* Rings supported by the HW */
764 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
765 /* Register offsets for the various display pipes and transcoders */
766 int pipe_offsets[I915_MAX_TRANSCODERS];
767 int trans_offsets[I915_MAX_TRANSCODERS];
768 int palette_offsets[I915_MAX_PIPES];
769 int cursor_offsets[I915_MAX_PIPES];
770
771 /* Slice/subslice/EU info */
772 u8 slice_total;
773 u8 subslice_total;
774 u8 subslice_per_slice;
775 u8 eu_total;
776 u8 eu_per_subslice;
777 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
778 u8 subslice_7eu[3];
779 u8 has_slice_pg:1;
780 u8 has_subslice_pg:1;
781 u8 has_eu_pg:1;
782
783 struct color_luts {
784 u16 degamma_lut_size;
785 u16 gamma_lut_size;
786 } color;
787 };
788
789 #undef DEFINE_FLAG
790 #undef SEP_SEMICOLON
791
792 enum i915_cache_level {
793 I915_CACHE_NONE = 0,
794 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
795 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
796 caches, eg sampler/render caches, and the
797 large Last-Level-Cache. LLC is coherent with
798 the CPU, but L3 is only visible to the GPU. */
799 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
800 };
801
802 struct i915_ctx_hang_stats {
803 /* This context had batch pending when hang was declared */
804 unsigned batch_pending;
805
806 /* This context had batch active when hang was declared */
807 unsigned batch_active;
808
809 /* Time when this context was last blamed for a GPU reset */
810 unsigned long guilty_ts;
811
812 /* If the contexts causes a second GPU hang within this time,
813 * it is permanently banned from submitting any more work.
814 */
815 unsigned long ban_period_seconds;
816
817 /* This context is banned to submit more work */
818 bool banned;
819 };
820
821 /* This must match up with the value previously used for execbuf2.rsvd1. */
822 #define DEFAULT_CONTEXT_HANDLE 0
823
824 #define CONTEXT_NO_ZEROMAP (1<<0)
825 /**
826 * struct intel_context - as the name implies, represents a context.
827 * @ref: reference count.
828 * @user_handle: userspace tracking identity for this context.
829 * @remap_slice: l3 row remapping information.
830 * @flags: context specific flags:
831 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
832 * @file_priv: filp associated with this context (NULL for global default
833 * context).
834 * @hang_stats: information about the role of this context in possible GPU
835 * hangs.
836 * @ppgtt: virtual memory space used by this context.
837 * @legacy_hw_ctx: render context backing object and whether it is correctly
838 * initialized (legacy ring submission mechanism only).
839 * @link: link in the global list of contexts.
840 *
841 * Contexts are memory images used by the hardware to store copies of their
842 * internal state.
843 */
844 struct intel_context {
845 struct kref ref;
846 int user_handle;
847 uint8_t remap_slice;
848 struct drm_i915_private *i915;
849 int flags;
850 struct drm_i915_file_private *file_priv;
851 struct i915_ctx_hang_stats hang_stats;
852 struct i915_hw_ppgtt *ppgtt;
853
854 /* Legacy ring buffer submission */
855 struct {
856 struct drm_i915_gem_object *rcs_state;
857 bool initialized;
858 } legacy_hw_ctx;
859
860 /* Execlists */
861 struct {
862 struct drm_i915_gem_object *state;
863 struct intel_ringbuffer *ringbuf;
864 int pin_count;
865 struct i915_vma *lrc_vma;
866 u64 lrc_desc;
867 uint32_t *lrc_reg_state;
868 } engine[I915_NUM_ENGINES];
869
870 struct list_head link;
871 };
872
873 enum fb_op_origin {
874 ORIGIN_GTT,
875 ORIGIN_CPU,
876 ORIGIN_CS,
877 ORIGIN_FLIP,
878 ORIGIN_DIRTYFB,
879 };
880
881 struct intel_fbc {
882 /* This is always the inner lock when overlapping with struct_mutex and
883 * it's the outer lock when overlapping with stolen_lock. */
884 struct mutex lock;
885 unsigned threshold;
886 unsigned int possible_framebuffer_bits;
887 unsigned int busy_bits;
888 unsigned int visible_pipes_mask;
889 struct intel_crtc *crtc;
890
891 struct drm_mm_node compressed_fb;
892 struct drm_mm_node *compressed_llb;
893
894 bool false_color;
895
896 bool enabled;
897 bool active;
898
899 struct intel_fbc_state_cache {
900 struct {
901 unsigned int mode_flags;
902 uint32_t hsw_bdw_pixel_rate;
903 } crtc;
904
905 struct {
906 unsigned int rotation;
907 int src_w;
908 int src_h;
909 bool visible;
910 } plane;
911
912 struct {
913 u64 ilk_ggtt_offset;
914 uint32_t pixel_format;
915 unsigned int stride;
916 int fence_reg;
917 unsigned int tiling_mode;
918 } fb;
919 } state_cache;
920
921 struct intel_fbc_reg_params {
922 struct {
923 enum pipe pipe;
924 enum plane plane;
925 unsigned int fence_y_offset;
926 } crtc;
927
928 struct {
929 u64 ggtt_offset;
930 uint32_t pixel_format;
931 unsigned int stride;
932 int fence_reg;
933 } fb;
934
935 int cfb_size;
936 } params;
937
938 struct intel_fbc_work {
939 bool scheduled;
940 u32 scheduled_vblank;
941 struct work_struct work;
942 } work;
943
944 const char *no_fbc_reason;
945 };
946
947 /**
948 * HIGH_RR is the highest eDP panel refresh rate read from EDID
949 * LOW_RR is the lowest eDP panel refresh rate found from EDID
950 * parsing for same resolution.
951 */
952 enum drrs_refresh_rate_type {
953 DRRS_HIGH_RR,
954 DRRS_LOW_RR,
955 DRRS_MAX_RR, /* RR count */
956 };
957
958 enum drrs_support_type {
959 DRRS_NOT_SUPPORTED = 0,
960 STATIC_DRRS_SUPPORT = 1,
961 SEAMLESS_DRRS_SUPPORT = 2
962 };
963
964 struct intel_dp;
965 struct i915_drrs {
966 struct mutex mutex;
967 struct delayed_work work;
968 struct intel_dp *dp;
969 unsigned busy_frontbuffer_bits;
970 enum drrs_refresh_rate_type refresh_rate_type;
971 enum drrs_support_type type;
972 };
973
974 struct i915_psr {
975 struct mutex lock;
976 bool sink_support;
977 bool source_ok;
978 struct intel_dp *enabled;
979 bool active;
980 struct delayed_work work;
981 unsigned busy_frontbuffer_bits;
982 bool psr2_support;
983 bool aux_frame_sync;
984 bool link_standby;
985 };
986
987 enum intel_pch {
988 PCH_NONE = 0, /* No PCH present */
989 PCH_IBX, /* Ibexpeak PCH */
990 PCH_CPT, /* Cougarpoint PCH */
991 PCH_LPT, /* Lynxpoint PCH */
992 PCH_SPT, /* Sunrisepoint PCH */
993 PCH_KBP, /* Kabypoint PCH */
994 PCH_NOP,
995 };
996
997 enum intel_sbi_destination {
998 SBI_ICLK,
999 SBI_MPHY,
1000 };
1001
1002 #define QUIRK_PIPEA_FORCE (1<<0)
1003 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1004 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1005 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1006 #define QUIRK_PIPEB_FORCE (1<<4)
1007 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1008
1009 struct intel_fbdev;
1010 struct intel_fbc_work;
1011
1012 struct intel_gmbus {
1013 struct i2c_adapter adapter;
1014 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1015 u32 force_bit;
1016 u32 reg0;
1017 i915_reg_t gpio_reg;
1018 struct i2c_algo_bit_data bit_algo;
1019 struct drm_i915_private *dev_priv;
1020 };
1021
1022 struct i915_suspend_saved_registers {
1023 u32 saveDSPARB;
1024 u32 saveLVDS;
1025 u32 savePP_ON_DELAYS;
1026 u32 savePP_OFF_DELAYS;
1027 u32 savePP_ON;
1028 u32 savePP_OFF;
1029 u32 savePP_CONTROL;
1030 u32 savePP_DIVISOR;
1031 u32 saveFBC_CONTROL;
1032 u32 saveCACHE_MODE_0;
1033 u32 saveMI_ARB_STATE;
1034 u32 saveSWF0[16];
1035 u32 saveSWF1[16];
1036 u32 saveSWF3[3];
1037 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1038 u32 savePCH_PORT_HOTPLUG;
1039 u16 saveGCDGMBUS;
1040 };
1041
1042 struct vlv_s0ix_state {
1043 /* GAM */
1044 u32 wr_watermark;
1045 u32 gfx_prio_ctrl;
1046 u32 arb_mode;
1047 u32 gfx_pend_tlb0;
1048 u32 gfx_pend_tlb1;
1049 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1050 u32 media_max_req_count;
1051 u32 gfx_max_req_count;
1052 u32 render_hwsp;
1053 u32 ecochk;
1054 u32 bsd_hwsp;
1055 u32 blt_hwsp;
1056 u32 tlb_rd_addr;
1057
1058 /* MBC */
1059 u32 g3dctl;
1060 u32 gsckgctl;
1061 u32 mbctl;
1062
1063 /* GCP */
1064 u32 ucgctl1;
1065 u32 ucgctl3;
1066 u32 rcgctl1;
1067 u32 rcgctl2;
1068 u32 rstctl;
1069 u32 misccpctl;
1070
1071 /* GPM */
1072 u32 gfxpause;
1073 u32 rpdeuhwtc;
1074 u32 rpdeuc;
1075 u32 ecobus;
1076 u32 pwrdwnupctl;
1077 u32 rp_down_timeout;
1078 u32 rp_deucsw;
1079 u32 rcubmabdtmr;
1080 u32 rcedata;
1081 u32 spare2gh;
1082
1083 /* Display 1 CZ domain */
1084 u32 gt_imr;
1085 u32 gt_ier;
1086 u32 pm_imr;
1087 u32 pm_ier;
1088 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1089
1090 /* GT SA CZ domain */
1091 u32 tilectl;
1092 u32 gt_fifoctl;
1093 u32 gtlc_wake_ctrl;
1094 u32 gtlc_survive;
1095 u32 pmwgicz;
1096
1097 /* Display 2 CZ domain */
1098 u32 gu_ctl0;
1099 u32 gu_ctl1;
1100 u32 pcbr;
1101 u32 clock_gate_dis2;
1102 };
1103
1104 struct intel_rps_ei {
1105 u32 cz_clock;
1106 u32 render_c0;
1107 u32 media_c0;
1108 };
1109
1110 struct intel_gen6_power_mgmt {
1111 /*
1112 * work, interrupts_enabled and pm_iir are protected by
1113 * dev_priv->irq_lock
1114 */
1115 struct work_struct work;
1116 bool interrupts_enabled;
1117 u32 pm_iir;
1118
1119 /* Frequencies are stored in potentially platform dependent multiples.
1120 * In other words, *_freq needs to be multiplied by X to be interesting.
1121 * Soft limits are those which are used for the dynamic reclocking done
1122 * by the driver (raise frequencies under heavy loads, and lower for
1123 * lighter loads). Hard limits are those imposed by the hardware.
1124 *
1125 * A distinction is made for overclocking, which is never enabled by
1126 * default, and is considered to be above the hard limit if it's
1127 * possible at all.
1128 */
1129 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1130 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1131 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1132 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1133 u8 min_freq; /* AKA RPn. Minimum frequency */
1134 u8 idle_freq; /* Frequency to request when we are idle */
1135 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1136 u8 rp1_freq; /* "less than" RP0 power/freqency */
1137 u8 rp0_freq; /* Non-overclocked max frequency. */
1138 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1139
1140 u8 up_threshold; /* Current %busy required to uplock */
1141 u8 down_threshold; /* Current %busy required to downclock */
1142
1143 int last_adj;
1144 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1145
1146 spinlock_t client_lock;
1147 struct list_head clients;
1148 bool client_boost;
1149
1150 bool enabled;
1151 struct delayed_work delayed_resume_work;
1152 unsigned boosts;
1153
1154 struct intel_rps_client semaphores, mmioflips;
1155
1156 /* manual wa residency calculations */
1157 struct intel_rps_ei up_ei, down_ei;
1158
1159 /*
1160 * Protects RPS/RC6 register access and PCU communication.
1161 * Must be taken after struct_mutex if nested. Note that
1162 * this lock may be held for long periods of time when
1163 * talking to hw - so only take it when talking to hw!
1164 */
1165 struct mutex hw_lock;
1166 };
1167
1168 /* defined intel_pm.c */
1169 extern spinlock_t mchdev_lock;
1170
1171 struct intel_ilk_power_mgmt {
1172 u8 cur_delay;
1173 u8 min_delay;
1174 u8 max_delay;
1175 u8 fmax;
1176 u8 fstart;
1177
1178 u64 last_count1;
1179 unsigned long last_time1;
1180 unsigned long chipset_power;
1181 u64 last_count2;
1182 u64 last_time2;
1183 unsigned long gfx_power;
1184 u8 corr;
1185
1186 int c_m;
1187 int r_t;
1188 };
1189
1190 struct drm_i915_private;
1191 struct i915_power_well;
1192
1193 struct i915_power_well_ops {
1194 /*
1195 * Synchronize the well's hw state to match the current sw state, for
1196 * example enable/disable it based on the current refcount. Called
1197 * during driver init and resume time, possibly after first calling
1198 * the enable/disable handlers.
1199 */
1200 void (*sync_hw)(struct drm_i915_private *dev_priv,
1201 struct i915_power_well *power_well);
1202 /*
1203 * Enable the well and resources that depend on it (for example
1204 * interrupts located on the well). Called after the 0->1 refcount
1205 * transition.
1206 */
1207 void (*enable)(struct drm_i915_private *dev_priv,
1208 struct i915_power_well *power_well);
1209 /*
1210 * Disable the well and resources that depend on it. Called after
1211 * the 1->0 refcount transition.
1212 */
1213 void (*disable)(struct drm_i915_private *dev_priv,
1214 struct i915_power_well *power_well);
1215 /* Returns the hw enabled state. */
1216 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1217 struct i915_power_well *power_well);
1218 };
1219
1220 /* Power well structure for haswell */
1221 struct i915_power_well {
1222 const char *name;
1223 bool always_on;
1224 /* power well enable/disable usage count */
1225 int count;
1226 /* cached hw enabled state */
1227 bool hw_enabled;
1228 unsigned long domains;
1229 unsigned long data;
1230 const struct i915_power_well_ops *ops;
1231 };
1232
1233 struct i915_power_domains {
1234 /*
1235 * Power wells needed for initialization at driver init and suspend
1236 * time are on. They are kept on until after the first modeset.
1237 */
1238 bool init_power_on;
1239 bool initializing;
1240 int power_well_count;
1241
1242 struct mutex lock;
1243 int domain_use_count[POWER_DOMAIN_NUM];
1244 struct i915_power_well *power_wells;
1245 };
1246
1247 #define MAX_L3_SLICES 2
1248 struct intel_l3_parity {
1249 u32 *remap_info[MAX_L3_SLICES];
1250 struct work_struct error_work;
1251 int which_slice;
1252 };
1253
1254 struct i915_gem_mm {
1255 /** Memory allocator for GTT stolen memory */
1256 struct drm_mm stolen;
1257 /** Protects the usage of the GTT stolen memory allocator. This is
1258 * always the inner lock when overlapping with struct_mutex. */
1259 struct mutex stolen_lock;
1260
1261 /** List of all objects in gtt_space. Used to restore gtt
1262 * mappings on resume */
1263 struct list_head bound_list;
1264 /**
1265 * List of objects which are not bound to the GTT (thus
1266 * are idle and not used by the GPU) but still have
1267 * (presumably uncached) pages still attached.
1268 */
1269 struct list_head unbound_list;
1270
1271 /** Usable portion of the GTT for GEM */
1272 unsigned long stolen_base; /* limited to low memory (32-bit) */
1273
1274 /** PPGTT used for aliasing the PPGTT with the GTT */
1275 struct i915_hw_ppgtt *aliasing_ppgtt;
1276
1277 struct notifier_block oom_notifier;
1278 struct notifier_block vmap_notifier;
1279 struct shrinker shrinker;
1280 bool shrinker_no_lock_stealing;
1281
1282 /** LRU list of objects with fence regs on them. */
1283 struct list_head fence_list;
1284
1285 /**
1286 * We leave the user IRQ off as much as possible,
1287 * but this means that requests will finish and never
1288 * be retired once the system goes idle. Set a timer to
1289 * fire periodically while the ring is running. When it
1290 * fires, go retire requests.
1291 */
1292 struct delayed_work retire_work;
1293
1294 /**
1295 * When we detect an idle GPU, we want to turn on
1296 * powersaving features. So once we see that there
1297 * are no more requests outstanding and no more
1298 * arrive within a small period of time, we fire
1299 * off the idle_work.
1300 */
1301 struct delayed_work idle_work;
1302
1303 /**
1304 * Are we in a non-interruptible section of code like
1305 * modesetting?
1306 */
1307 bool interruptible;
1308
1309 /**
1310 * Is the GPU currently considered idle, or busy executing userspace
1311 * requests? Whilst idle, we attempt to power down the hardware and
1312 * display clocks. In order to reduce the effect on performance, there
1313 * is a slight delay before we do so.
1314 */
1315 bool busy;
1316
1317 /* the indicator for dispatch video commands on two BSD rings */
1318 unsigned int bsd_ring_dispatch_index;
1319
1320 /** Bit 6 swizzling required for X tiling */
1321 uint32_t bit_6_swizzle_x;
1322 /** Bit 6 swizzling required for Y tiling */
1323 uint32_t bit_6_swizzle_y;
1324
1325 /* accounting, useful for userland debugging */
1326 spinlock_t object_stat_lock;
1327 size_t object_memory;
1328 u32 object_count;
1329 };
1330
1331 struct drm_i915_error_state_buf {
1332 struct drm_i915_private *i915;
1333 unsigned bytes;
1334 unsigned size;
1335 int err;
1336 u8 *buf;
1337 loff_t start;
1338 loff_t pos;
1339 };
1340
1341 struct i915_error_state_file_priv {
1342 struct drm_device *dev;
1343 struct drm_i915_error_state *error;
1344 };
1345
1346 struct i915_gpu_error {
1347 /* For hangcheck timer */
1348 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1349 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1350 /* Hang gpu twice in this window and your context gets banned */
1351 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1352
1353 struct workqueue_struct *hangcheck_wq;
1354 struct delayed_work hangcheck_work;
1355
1356 /* For reset and error_state handling. */
1357 spinlock_t lock;
1358 /* Protected by the above dev->gpu_error.lock. */
1359 struct drm_i915_error_state *first_error;
1360
1361 unsigned long missed_irq_rings;
1362
1363 /**
1364 * State variable controlling the reset flow and count
1365 *
1366 * This is a counter which gets incremented when reset is triggered,
1367 * and again when reset has been handled. So odd values (lowest bit set)
1368 * means that reset is in progress and even values that
1369 * (reset_counter >> 1):th reset was successfully completed.
1370 *
1371 * If reset is not completed succesfully, the I915_WEDGE bit is
1372 * set meaning that hardware is terminally sour and there is no
1373 * recovery. All waiters on the reset_queue will be woken when
1374 * that happens.
1375 *
1376 * This counter is used by the wait_seqno code to notice that reset
1377 * event happened and it needs to restart the entire ioctl (since most
1378 * likely the seqno it waited for won't ever signal anytime soon).
1379 *
1380 * This is important for lock-free wait paths, where no contended lock
1381 * naturally enforces the correct ordering between the bail-out of the
1382 * waiter and the gpu reset work code.
1383 */
1384 atomic_t reset_counter;
1385
1386 #define I915_RESET_IN_PROGRESS_FLAG 1
1387 #define I915_WEDGED (1 << 31)
1388
1389 /**
1390 * Waitqueue to signal when the reset has completed. Used by clients
1391 * that wait for dev_priv->mm.wedged to settle.
1392 */
1393 wait_queue_head_t reset_queue;
1394
1395 /* Userspace knobs for gpu hang simulation;
1396 * combines both a ring mask, and extra flags
1397 */
1398 u32 stop_rings;
1399 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1400 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1401
1402 /* For missed irq/seqno simulation. */
1403 unsigned int test_irq_rings;
1404 };
1405
1406 enum modeset_restore {
1407 MODESET_ON_LID_OPEN,
1408 MODESET_DONE,
1409 MODESET_SUSPENDED,
1410 };
1411
1412 #define DP_AUX_A 0x40
1413 #define DP_AUX_B 0x10
1414 #define DP_AUX_C 0x20
1415 #define DP_AUX_D 0x30
1416
1417 #define DDC_PIN_B 0x05
1418 #define DDC_PIN_C 0x04
1419 #define DDC_PIN_D 0x06
1420
1421 struct ddi_vbt_port_info {
1422 /*
1423 * This is an index in the HDMI/DVI DDI buffer translation table.
1424 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1425 * populate this field.
1426 */
1427 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1428 uint8_t hdmi_level_shift;
1429
1430 uint8_t supports_dvi:1;
1431 uint8_t supports_hdmi:1;
1432 uint8_t supports_dp:1;
1433
1434 uint8_t alternate_aux_channel;
1435 uint8_t alternate_ddc_pin;
1436
1437 uint8_t dp_boost_level;
1438 uint8_t hdmi_boost_level;
1439 };
1440
1441 enum psr_lines_to_wait {
1442 PSR_0_LINES_TO_WAIT = 0,
1443 PSR_1_LINE_TO_WAIT,
1444 PSR_4_LINES_TO_WAIT,
1445 PSR_8_LINES_TO_WAIT
1446 };
1447
1448 struct intel_vbt_data {
1449 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1450 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1451
1452 /* Feature bits */
1453 unsigned int int_tv_support:1;
1454 unsigned int lvds_dither:1;
1455 unsigned int lvds_vbt:1;
1456 unsigned int int_crt_support:1;
1457 unsigned int lvds_use_ssc:1;
1458 unsigned int display_clock_mode:1;
1459 unsigned int fdi_rx_polarity_inverted:1;
1460 unsigned int panel_type:4;
1461 int lvds_ssc_freq;
1462 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1463
1464 enum drrs_support_type drrs_type;
1465
1466 struct {
1467 int rate;
1468 int lanes;
1469 int preemphasis;
1470 int vswing;
1471 bool low_vswing;
1472 bool initialized;
1473 bool support;
1474 int bpp;
1475 struct edp_power_seq pps;
1476 } edp;
1477
1478 struct {
1479 bool full_link;
1480 bool require_aux_wakeup;
1481 int idle_frames;
1482 enum psr_lines_to_wait lines_to_wait;
1483 int tp1_wakeup_time;
1484 int tp2_tp3_wakeup_time;
1485 } psr;
1486
1487 struct {
1488 u16 pwm_freq_hz;
1489 bool present;
1490 bool active_low_pwm;
1491 u8 min_brightness; /* min_brightness/255 of max */
1492 } backlight;
1493
1494 /* MIPI DSI */
1495 struct {
1496 u16 panel_id;
1497 struct mipi_config *config;
1498 struct mipi_pps_data *pps;
1499 u8 seq_version;
1500 u32 size;
1501 u8 *data;
1502 const u8 *sequence[MIPI_SEQ_MAX];
1503 } dsi;
1504
1505 int crt_ddc_pin;
1506
1507 int child_dev_num;
1508 union child_device_config *child_dev;
1509
1510 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1511 struct sdvo_device_mapping sdvo_mappings[2];
1512 };
1513
1514 enum intel_ddb_partitioning {
1515 INTEL_DDB_PART_1_2,
1516 INTEL_DDB_PART_5_6, /* IVB+ */
1517 };
1518
1519 struct intel_wm_level {
1520 bool enable;
1521 uint32_t pri_val;
1522 uint32_t spr_val;
1523 uint32_t cur_val;
1524 uint32_t fbc_val;
1525 };
1526
1527 struct ilk_wm_values {
1528 uint32_t wm_pipe[3];
1529 uint32_t wm_lp[3];
1530 uint32_t wm_lp_spr[3];
1531 uint32_t wm_linetime[3];
1532 bool enable_fbc_wm;
1533 enum intel_ddb_partitioning partitioning;
1534 };
1535
1536 struct vlv_pipe_wm {
1537 uint16_t primary;
1538 uint16_t sprite[2];
1539 uint8_t cursor;
1540 };
1541
1542 struct vlv_sr_wm {
1543 uint16_t plane;
1544 uint8_t cursor;
1545 };
1546
1547 struct vlv_wm_values {
1548 struct vlv_pipe_wm pipe[3];
1549 struct vlv_sr_wm sr;
1550 struct {
1551 uint8_t cursor;
1552 uint8_t sprite[2];
1553 uint8_t primary;
1554 } ddl[3];
1555 uint8_t level;
1556 bool cxsr;
1557 };
1558
1559 struct skl_ddb_entry {
1560 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1561 };
1562
1563 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1564 {
1565 return entry->end - entry->start;
1566 }
1567
1568 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1569 const struct skl_ddb_entry *e2)
1570 {
1571 if (e1->start == e2->start && e1->end == e2->end)
1572 return true;
1573
1574 return false;
1575 }
1576
1577 struct skl_ddb_allocation {
1578 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1579 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1580 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1581 };
1582
1583 struct skl_wm_values {
1584 bool dirty[I915_MAX_PIPES];
1585 struct skl_ddb_allocation ddb;
1586 uint32_t wm_linetime[I915_MAX_PIPES];
1587 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1588 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1589 };
1590
1591 struct skl_wm_level {
1592 bool plane_en[I915_MAX_PLANES];
1593 uint16_t plane_res_b[I915_MAX_PLANES];
1594 uint8_t plane_res_l[I915_MAX_PLANES];
1595 };
1596
1597 /*
1598 * This struct helps tracking the state needed for runtime PM, which puts the
1599 * device in PCI D3 state. Notice that when this happens, nothing on the
1600 * graphics device works, even register access, so we don't get interrupts nor
1601 * anything else.
1602 *
1603 * Every piece of our code that needs to actually touch the hardware needs to
1604 * either call intel_runtime_pm_get or call intel_display_power_get with the
1605 * appropriate power domain.
1606 *
1607 * Our driver uses the autosuspend delay feature, which means we'll only really
1608 * suspend if we stay with zero refcount for a certain amount of time. The
1609 * default value is currently very conservative (see intel_runtime_pm_enable), but
1610 * it can be changed with the standard runtime PM files from sysfs.
1611 *
1612 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1613 * goes back to false exactly before we reenable the IRQs. We use this variable
1614 * to check if someone is trying to enable/disable IRQs while they're supposed
1615 * to be disabled. This shouldn't happen and we'll print some error messages in
1616 * case it happens.
1617 *
1618 * For more, read the Documentation/power/runtime_pm.txt.
1619 */
1620 struct i915_runtime_pm {
1621 atomic_t wakeref_count;
1622 atomic_t atomic_seq;
1623 bool suspended;
1624 bool irqs_enabled;
1625 };
1626
1627 enum intel_pipe_crc_source {
1628 INTEL_PIPE_CRC_SOURCE_NONE,
1629 INTEL_PIPE_CRC_SOURCE_PLANE1,
1630 INTEL_PIPE_CRC_SOURCE_PLANE2,
1631 INTEL_PIPE_CRC_SOURCE_PF,
1632 INTEL_PIPE_CRC_SOURCE_PIPE,
1633 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1634 INTEL_PIPE_CRC_SOURCE_TV,
1635 INTEL_PIPE_CRC_SOURCE_DP_B,
1636 INTEL_PIPE_CRC_SOURCE_DP_C,
1637 INTEL_PIPE_CRC_SOURCE_DP_D,
1638 INTEL_PIPE_CRC_SOURCE_AUTO,
1639 INTEL_PIPE_CRC_SOURCE_MAX,
1640 };
1641
1642 struct intel_pipe_crc_entry {
1643 uint32_t frame;
1644 uint32_t crc[5];
1645 };
1646
1647 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1648 struct intel_pipe_crc {
1649 spinlock_t lock;
1650 bool opened; /* exclusive access to the result file */
1651 struct intel_pipe_crc_entry *entries;
1652 enum intel_pipe_crc_source source;
1653 int head, tail;
1654 wait_queue_head_t wq;
1655 };
1656
1657 struct i915_frontbuffer_tracking {
1658 struct mutex lock;
1659
1660 /*
1661 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1662 * scheduled flips.
1663 */
1664 unsigned busy_bits;
1665 unsigned flip_bits;
1666 };
1667
1668 struct i915_wa_reg {
1669 i915_reg_t addr;
1670 u32 value;
1671 /* bitmask representing WA bits */
1672 u32 mask;
1673 };
1674
1675 /*
1676 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1677 * allowing it for RCS as we don't foresee any requirement of having
1678 * a whitelist for other engines. When it is really required for
1679 * other engines then the limit need to be increased.
1680 */
1681 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1682
1683 struct i915_workarounds {
1684 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1685 u32 count;
1686 u32 hw_whitelist_count[I915_NUM_ENGINES];
1687 };
1688
1689 struct i915_virtual_gpu {
1690 bool active;
1691 };
1692
1693 struct i915_execbuffer_params {
1694 struct drm_device *dev;
1695 struct drm_file *file;
1696 uint32_t dispatch_flags;
1697 uint32_t args_batch_start_offset;
1698 uint64_t batch_obj_vm_offset;
1699 struct intel_engine_cs *engine;
1700 struct drm_i915_gem_object *batch_obj;
1701 struct intel_context *ctx;
1702 struct drm_i915_gem_request *request;
1703 };
1704
1705 /* used in computing the new watermarks state */
1706 struct intel_wm_config {
1707 unsigned int num_pipes_active;
1708 bool sprites_enabled;
1709 bool sprites_scaled;
1710 };
1711
1712 struct drm_i915_private {
1713 struct drm_device *dev;
1714 struct kmem_cache *objects;
1715 struct kmem_cache *vmas;
1716 struct kmem_cache *requests;
1717
1718 const struct intel_device_info info;
1719
1720 int relative_constants_mode;
1721
1722 void __iomem *regs;
1723
1724 struct intel_uncore uncore;
1725
1726 struct i915_virtual_gpu vgpu;
1727
1728 struct intel_guc guc;
1729
1730 struct intel_csr csr;
1731
1732 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1733
1734 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1735 * controller on different i2c buses. */
1736 struct mutex gmbus_mutex;
1737
1738 /**
1739 * Base address of the gmbus and gpio block.
1740 */
1741 uint32_t gpio_mmio_base;
1742
1743 /* MMIO base address for MIPI regs */
1744 uint32_t mipi_mmio_base;
1745
1746 uint32_t psr_mmio_base;
1747
1748 wait_queue_head_t gmbus_wait_queue;
1749
1750 struct pci_dev *bridge_dev;
1751 struct intel_engine_cs engine[I915_NUM_ENGINES];
1752 struct drm_i915_gem_object *semaphore_obj;
1753 uint32_t last_seqno, next_seqno;
1754
1755 struct drm_dma_handle *status_page_dmah;
1756 struct resource mch_res;
1757
1758 /* protects the irq masks */
1759 spinlock_t irq_lock;
1760
1761 /* protects the mmio flip data */
1762 spinlock_t mmio_flip_lock;
1763
1764 bool display_irqs_enabled;
1765
1766 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1767 struct pm_qos_request pm_qos;
1768
1769 /* Sideband mailbox protection */
1770 struct mutex sb_lock;
1771
1772 /** Cached value of IMR to avoid reads in updating the bitfield */
1773 union {
1774 u32 irq_mask;
1775 u32 de_irq_mask[I915_MAX_PIPES];
1776 };
1777 u32 gt_irq_mask;
1778 u32 pm_irq_mask;
1779 u32 pm_rps_events;
1780 u32 pipestat_irq_mask[I915_MAX_PIPES];
1781
1782 struct i915_hotplug hotplug;
1783 struct intel_fbc fbc;
1784 struct i915_drrs drrs;
1785 struct intel_opregion opregion;
1786 struct intel_vbt_data vbt;
1787
1788 bool preserve_bios_swizzle;
1789
1790 /* overlay */
1791 struct intel_overlay *overlay;
1792
1793 /* backlight registers and fields in struct intel_panel */
1794 struct mutex backlight_lock;
1795
1796 /* LVDS info */
1797 bool no_aux_handshake;
1798
1799 /* protects panel power sequencer state */
1800 struct mutex pps_mutex;
1801
1802 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1803 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1804
1805 unsigned int fsb_freq, mem_freq, is_ddr3;
1806 unsigned int skl_boot_cdclk;
1807 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1808 unsigned int max_dotclk_freq;
1809 unsigned int rawclk_freq;
1810 unsigned int hpll_freq;
1811 unsigned int czclk_freq;
1812
1813 /**
1814 * wq - Driver workqueue for GEM.
1815 *
1816 * NOTE: Work items scheduled here are not allowed to grab any modeset
1817 * locks, for otherwise the flushing done in the pageflip code will
1818 * result in deadlocks.
1819 */
1820 struct workqueue_struct *wq;
1821
1822 /* Display functions */
1823 struct drm_i915_display_funcs display;
1824
1825 /* PCH chipset type */
1826 enum intel_pch pch_type;
1827 unsigned short pch_id;
1828
1829 unsigned long quirks;
1830
1831 enum modeset_restore modeset_restore;
1832 struct mutex modeset_restore_lock;
1833 struct drm_atomic_state *modeset_restore_state;
1834
1835 struct list_head vm_list; /* Global list of all address spaces */
1836 struct i915_ggtt ggtt; /* VM representing the global address space */
1837
1838 struct i915_gem_mm mm;
1839 DECLARE_HASHTABLE(mm_structs, 7);
1840 struct mutex mm_lock;
1841
1842 /* Kernel Modesetting */
1843
1844 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1845 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1846 wait_queue_head_t pending_flip_queue;
1847
1848 #ifdef CONFIG_DEBUG_FS
1849 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1850 #endif
1851
1852 /* dpll and cdclk state is protected by connection_mutex */
1853 int num_shared_dpll;
1854 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1855 const struct intel_dpll_mgr *dpll_mgr;
1856
1857 /*
1858 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1859 * Must be global rather than per dpll, because on some platforms
1860 * plls share registers.
1861 */
1862 struct mutex dpll_lock;
1863
1864 unsigned int active_crtcs;
1865 unsigned int min_pixclk[I915_MAX_PIPES];
1866
1867 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1868
1869 struct i915_workarounds workarounds;
1870
1871 struct i915_frontbuffer_tracking fb_tracking;
1872
1873 u16 orig_clock;
1874
1875 bool mchbar_need_disable;
1876
1877 struct intel_l3_parity l3_parity;
1878
1879 /* Cannot be determined by PCIID. You must always read a register. */
1880 u32 edram_cap;
1881
1882 /* gen6+ rps state */
1883 struct intel_gen6_power_mgmt rps;
1884
1885 /* ilk-only ips/rps state. Everything in here is protected by the global
1886 * mchdev_lock in intel_pm.c */
1887 struct intel_ilk_power_mgmt ips;
1888
1889 struct i915_power_domains power_domains;
1890
1891 struct i915_psr psr;
1892
1893 struct i915_gpu_error gpu_error;
1894
1895 struct drm_i915_gem_object *vlv_pctx;
1896
1897 #ifdef CONFIG_DRM_FBDEV_EMULATION
1898 /* list of fbdev register on this device */
1899 struct intel_fbdev *fbdev;
1900 struct work_struct fbdev_suspend_work;
1901 #endif
1902
1903 struct drm_property *broadcast_rgb_property;
1904 struct drm_property *force_audio_property;
1905
1906 /* hda/i915 audio component */
1907 struct i915_audio_component *audio_component;
1908 bool audio_component_registered;
1909 /**
1910 * av_mutex - mutex for audio/video sync
1911 *
1912 */
1913 struct mutex av_mutex;
1914
1915 uint32_t hw_context_size;
1916 struct list_head context_list;
1917
1918 u32 fdi_rx_config;
1919
1920 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1921 u32 chv_phy_control;
1922 /*
1923 * Shadows for CHV DPLL_MD regs to keep the state
1924 * checker somewhat working in the presence hardware
1925 * crappiness (can't read out DPLL_MD for pipes B & C).
1926 */
1927 u32 chv_dpll_md[I915_MAX_PIPES];
1928 u32 bxt_phy_grc;
1929
1930 u32 suspend_count;
1931 bool suspended_to_idle;
1932 struct i915_suspend_saved_registers regfile;
1933 struct vlv_s0ix_state vlv_s0ix_state;
1934
1935 struct {
1936 /*
1937 * Raw watermark latency values:
1938 * in 0.1us units for WM0,
1939 * in 0.5us units for WM1+.
1940 */
1941 /* primary */
1942 uint16_t pri_latency[5];
1943 /* sprite */
1944 uint16_t spr_latency[5];
1945 /* cursor */
1946 uint16_t cur_latency[5];
1947 /*
1948 * Raw watermark memory latency values
1949 * for SKL for all 8 levels
1950 * in 1us units.
1951 */
1952 uint16_t skl_latency[8];
1953
1954 /* Committed wm config */
1955 struct intel_wm_config config;
1956
1957 /*
1958 * The skl_wm_values structure is a bit too big for stack
1959 * allocation, so we keep the staging struct where we store
1960 * intermediate results here instead.
1961 */
1962 struct skl_wm_values skl_results;
1963
1964 /* current hardware state */
1965 union {
1966 struct ilk_wm_values hw;
1967 struct skl_wm_values skl_hw;
1968 struct vlv_wm_values vlv;
1969 };
1970
1971 uint8_t max_level;
1972
1973 /*
1974 * Should be held around atomic WM register writing; also
1975 * protects * intel_crtc->wm.active and
1976 * cstate->wm.need_postvbl_update.
1977 */
1978 struct mutex wm_mutex;
1979 } wm;
1980
1981 struct i915_runtime_pm pm;
1982
1983 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1984 struct {
1985 int (*execbuf_submit)(struct i915_execbuffer_params *params,
1986 struct drm_i915_gem_execbuffer2 *args,
1987 struct list_head *vmas);
1988 int (*init_engines)(struct drm_device *dev);
1989 void (*cleanup_engine)(struct intel_engine_cs *engine);
1990 void (*stop_engine)(struct intel_engine_cs *engine);
1991 } gt;
1992
1993 struct intel_context *kernel_context;
1994
1995 /* perform PHY state sanity checks? */
1996 bool chv_phy_assert[2];
1997
1998 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
1999
2000 /*
2001 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2002 * will be rejected. Instead look for a better place.
2003 */
2004 };
2005
2006 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2007 {
2008 return dev->dev_private;
2009 }
2010
2011 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2012 {
2013 return to_i915(dev_get_drvdata(dev));
2014 }
2015
2016 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2017 {
2018 return container_of(guc, struct drm_i915_private, guc);
2019 }
2020
2021 /* Simple iterator over all initialised engines */
2022 #define for_each_engine(engine__, dev_priv__) \
2023 for ((engine__) = &(dev_priv__)->engine[0]; \
2024 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2025 (engine__)++) \
2026 for_each_if (intel_engine_initialized(engine__))
2027
2028 /* Iterator with engine_id */
2029 #define for_each_engine_id(engine__, dev_priv__, id__) \
2030 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2031 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2032 (engine__)++) \
2033 for_each_if (((id__) = (engine__)->id, \
2034 intel_engine_initialized(engine__)))
2035
2036 /* Iterator over subset of engines selected by mask */
2037 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2038 for ((engine__) = &(dev_priv__)->engine[0]; \
2039 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2040 (engine__)++) \
2041 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2042 intel_engine_initialized(engine__))
2043
2044 enum hdmi_force_audio {
2045 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2046 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2047 HDMI_AUDIO_AUTO, /* trust EDID */
2048 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2049 };
2050
2051 #define I915_GTT_OFFSET_NONE ((u32)-1)
2052
2053 struct drm_i915_gem_object_ops {
2054 unsigned int flags;
2055 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2056
2057 /* Interface between the GEM object and its backing storage.
2058 * get_pages() is called once prior to the use of the associated set
2059 * of pages before to binding them into the GTT, and put_pages() is
2060 * called after we no longer need them. As we expect there to be
2061 * associated cost with migrating pages between the backing storage
2062 * and making them available for the GPU (e.g. clflush), we may hold
2063 * onto the pages after they are no longer referenced by the GPU
2064 * in case they may be used again shortly (for example migrating the
2065 * pages to a different memory domain within the GTT). put_pages()
2066 * will therefore most likely be called when the object itself is
2067 * being released or under memory pressure (where we attempt to
2068 * reap pages for the shrinker).
2069 */
2070 int (*get_pages)(struct drm_i915_gem_object *);
2071 void (*put_pages)(struct drm_i915_gem_object *);
2072
2073 int (*dmabuf_export)(struct drm_i915_gem_object *);
2074 void (*release)(struct drm_i915_gem_object *);
2075 };
2076
2077 /*
2078 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2079 * considered to be the frontbuffer for the given plane interface-wise. This
2080 * doesn't mean that the hw necessarily already scans it out, but that any
2081 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2082 *
2083 * We have one bit per pipe and per scanout plane type.
2084 */
2085 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2086 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2087 #define INTEL_FRONTBUFFER_BITS \
2088 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2089 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2090 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2091 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2092 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2093 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2094 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2095 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2096 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2097 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2098 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2099
2100 struct drm_i915_gem_object {
2101 struct drm_gem_object base;
2102
2103 const struct drm_i915_gem_object_ops *ops;
2104
2105 /** List of VMAs backed by this object */
2106 struct list_head vma_list;
2107
2108 /** Stolen memory for this object, instead of being backed by shmem. */
2109 struct drm_mm_node *stolen;
2110 struct list_head global_list;
2111
2112 struct list_head engine_list[I915_NUM_ENGINES];
2113 /** Used in execbuf to temporarily hold a ref */
2114 struct list_head obj_exec_link;
2115
2116 struct list_head batch_pool_link;
2117
2118 /**
2119 * This is set if the object is on the active lists (has pending
2120 * rendering and so a non-zero seqno), and is not set if it i s on
2121 * inactive (ready to be unbound) list.
2122 */
2123 unsigned int active:I915_NUM_ENGINES;
2124
2125 /**
2126 * This is set if the object has been written to since last bound
2127 * to the GTT
2128 */
2129 unsigned int dirty:1;
2130
2131 /**
2132 * Fence register bits (if any) for this object. Will be set
2133 * as needed when mapped into the GTT.
2134 * Protected by dev->struct_mutex.
2135 */
2136 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2137
2138 /**
2139 * Advice: are the backing pages purgeable?
2140 */
2141 unsigned int madv:2;
2142
2143 /**
2144 * Current tiling mode for the object.
2145 */
2146 unsigned int tiling_mode:2;
2147 /**
2148 * Whether the tiling parameters for the currently associated fence
2149 * register have changed. Note that for the purposes of tracking
2150 * tiling changes we also treat the unfenced register, the register
2151 * slot that the object occupies whilst it executes a fenced
2152 * command (such as BLT on gen2/3), as a "fence".
2153 */
2154 unsigned int fence_dirty:1;
2155
2156 /**
2157 * Is the object at the current location in the gtt mappable and
2158 * fenceable? Used to avoid costly recalculations.
2159 */
2160 unsigned int map_and_fenceable:1;
2161
2162 /**
2163 * Whether the current gtt mapping needs to be mappable (and isn't just
2164 * mappable by accident). Track pin and fault separate for a more
2165 * accurate mappable working set.
2166 */
2167 unsigned int fault_mappable:1;
2168
2169 /*
2170 * Is the object to be mapped as read-only to the GPU
2171 * Only honoured if hardware has relevant pte bit
2172 */
2173 unsigned long gt_ro:1;
2174 unsigned int cache_level:3;
2175 unsigned int cache_dirty:1;
2176
2177 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2178
2179 unsigned int pin_display;
2180
2181 struct sg_table *pages;
2182 int pages_pin_count;
2183 struct get_page {
2184 struct scatterlist *sg;
2185 int last;
2186 } get_page;
2187 void *mapping;
2188
2189 /** Breadcrumb of last rendering to the buffer.
2190 * There can only be one writer, but we allow for multiple readers.
2191 * If there is a writer that necessarily implies that all other
2192 * read requests are complete - but we may only be lazily clearing
2193 * the read requests. A read request is naturally the most recent
2194 * request on a ring, so we may have two different write and read
2195 * requests on one ring where the write request is older than the
2196 * read request. This allows for the CPU to read from an active
2197 * buffer by only waiting for the write to complete.
2198 * */
2199 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2200 struct drm_i915_gem_request *last_write_req;
2201 /** Breadcrumb of last fenced GPU access to the buffer. */
2202 struct drm_i915_gem_request *last_fenced_req;
2203
2204 /** Current tiling stride for the object, if it's tiled. */
2205 uint32_t stride;
2206
2207 /** References from framebuffers, locks out tiling changes. */
2208 unsigned long framebuffer_references;
2209
2210 /** Record of address bit 17 of each page at last unbind. */
2211 unsigned long *bit_17;
2212
2213 union {
2214 /** for phy allocated objects */
2215 struct drm_dma_handle *phys_handle;
2216
2217 struct i915_gem_userptr {
2218 uintptr_t ptr;
2219 unsigned read_only :1;
2220 unsigned workers :4;
2221 #define I915_GEM_USERPTR_MAX_WORKERS 15
2222
2223 struct i915_mm_struct *mm;
2224 struct i915_mmu_object *mmu_object;
2225 struct work_struct *work;
2226 } userptr;
2227 };
2228 };
2229 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2230
2231 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2232 struct drm_i915_gem_object *new,
2233 unsigned frontbuffer_bits);
2234
2235 /**
2236 * Request queue structure.
2237 *
2238 * The request queue allows us to note sequence numbers that have been emitted
2239 * and may be associated with active buffers to be retired.
2240 *
2241 * By keeping this list, we can avoid having to do questionable sequence
2242 * number comparisons on buffer last_read|write_seqno. It also allows an
2243 * emission time to be associated with the request for tracking how far ahead
2244 * of the GPU the submission is.
2245 *
2246 * The requests are reference counted, so upon creation they should have an
2247 * initial reference taken using kref_init
2248 */
2249 struct drm_i915_gem_request {
2250 struct kref ref;
2251
2252 /** On Which ring this request was generated */
2253 struct drm_i915_private *i915;
2254 struct intel_engine_cs *engine;
2255 unsigned reset_counter;
2256
2257 /** GEM sequence number associated with the previous request,
2258 * when the HWS breadcrumb is equal to this the GPU is processing
2259 * this request.
2260 */
2261 u32 previous_seqno;
2262
2263 /** GEM sequence number associated with this request,
2264 * when the HWS breadcrumb is equal or greater than this the GPU
2265 * has finished processing this request.
2266 */
2267 u32 seqno;
2268
2269 /** Position in the ringbuffer of the start of the request */
2270 u32 head;
2271
2272 /**
2273 * Position in the ringbuffer of the start of the postfix.
2274 * This is required to calculate the maximum available ringbuffer
2275 * space without overwriting the postfix.
2276 */
2277 u32 postfix;
2278
2279 /** Position in the ringbuffer of the end of the whole request */
2280 u32 tail;
2281
2282 /**
2283 * Context and ring buffer related to this request
2284 * Contexts are refcounted, so when this request is associated with a
2285 * context, we must increment the context's refcount, to guarantee that
2286 * it persists while any request is linked to it. Requests themselves
2287 * are also refcounted, so the request will only be freed when the last
2288 * reference to it is dismissed, and the code in
2289 * i915_gem_request_free() will then decrement the refcount on the
2290 * context.
2291 */
2292 struct intel_context *ctx;
2293 struct intel_ringbuffer *ringbuf;
2294
2295 /** Batch buffer related to this request if any (used for
2296 error state dump only) */
2297 struct drm_i915_gem_object *batch_obj;
2298
2299 /** Time at which this request was emitted, in jiffies. */
2300 unsigned long emitted_jiffies;
2301
2302 /** global list entry for this request */
2303 struct list_head list;
2304
2305 struct drm_i915_file_private *file_priv;
2306 /** file_priv list entry for this request */
2307 struct list_head client_list;
2308
2309 /** process identifier submitting this request */
2310 struct pid *pid;
2311
2312 /**
2313 * The ELSP only accepts two elements at a time, so we queue
2314 * context/tail pairs on a given queue (ring->execlist_queue) until the
2315 * hardware is available. The queue serves a double purpose: we also use
2316 * it to keep track of the up to 2 contexts currently in the hardware
2317 * (usually one in execution and the other queued up by the GPU): We
2318 * only remove elements from the head of the queue when the hardware
2319 * informs us that an element has been completed.
2320 *
2321 * All accesses to the queue are mediated by a spinlock
2322 * (ring->execlist_lock).
2323 */
2324
2325 /** Execlist link in the submission queue.*/
2326 struct list_head execlist_link;
2327
2328 /** Execlists no. of times this request has been sent to the ELSP */
2329 int elsp_submitted;
2330
2331 };
2332
2333 struct drm_i915_gem_request * __must_check
2334 i915_gem_request_alloc(struct intel_engine_cs *engine,
2335 struct intel_context *ctx);
2336 void i915_gem_request_free(struct kref *req_ref);
2337 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2338 struct drm_file *file);
2339
2340 static inline uint32_t
2341 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2342 {
2343 return req ? req->seqno : 0;
2344 }
2345
2346 static inline struct intel_engine_cs *
2347 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2348 {
2349 return req ? req->engine : NULL;
2350 }
2351
2352 static inline struct drm_i915_gem_request *
2353 i915_gem_request_reference(struct drm_i915_gem_request *req)
2354 {
2355 if (req)
2356 kref_get(&req->ref);
2357 return req;
2358 }
2359
2360 static inline void
2361 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2362 {
2363 WARN_ON(!mutex_is_locked(&req->engine->dev->struct_mutex));
2364 kref_put(&req->ref, i915_gem_request_free);
2365 }
2366
2367 static inline void
2368 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
2369 {
2370 struct drm_device *dev;
2371
2372 if (!req)
2373 return;
2374
2375 dev = req->engine->dev;
2376 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
2377 mutex_unlock(&dev->struct_mutex);
2378 }
2379
2380 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2381 struct drm_i915_gem_request *src)
2382 {
2383 if (src)
2384 i915_gem_request_reference(src);
2385
2386 if (*pdst)
2387 i915_gem_request_unreference(*pdst);
2388
2389 *pdst = src;
2390 }
2391
2392 /*
2393 * XXX: i915_gem_request_completed should be here but currently needs the
2394 * definition of i915_seqno_passed() which is below. It will be moved in
2395 * a later patch when the call to i915_seqno_passed() is obsoleted...
2396 */
2397
2398 /*
2399 * A command that requires special handling by the command parser.
2400 */
2401 struct drm_i915_cmd_descriptor {
2402 /*
2403 * Flags describing how the command parser processes the command.
2404 *
2405 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2406 * a length mask if not set
2407 * CMD_DESC_SKIP: The command is allowed but does not follow the
2408 * standard length encoding for the opcode range in
2409 * which it falls
2410 * CMD_DESC_REJECT: The command is never allowed
2411 * CMD_DESC_REGISTER: The command should be checked against the
2412 * register whitelist for the appropriate ring
2413 * CMD_DESC_MASTER: The command is allowed if the submitting process
2414 * is the DRM master
2415 */
2416 u32 flags;
2417 #define CMD_DESC_FIXED (1<<0)
2418 #define CMD_DESC_SKIP (1<<1)
2419 #define CMD_DESC_REJECT (1<<2)
2420 #define CMD_DESC_REGISTER (1<<3)
2421 #define CMD_DESC_BITMASK (1<<4)
2422 #define CMD_DESC_MASTER (1<<5)
2423
2424 /*
2425 * The command's unique identification bits and the bitmask to get them.
2426 * This isn't strictly the opcode field as defined in the spec and may
2427 * also include type, subtype, and/or subop fields.
2428 */
2429 struct {
2430 u32 value;
2431 u32 mask;
2432 } cmd;
2433
2434 /*
2435 * The command's length. The command is either fixed length (i.e. does
2436 * not include a length field) or has a length field mask. The flag
2437 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2438 * a length mask. All command entries in a command table must include
2439 * length information.
2440 */
2441 union {
2442 u32 fixed;
2443 u32 mask;
2444 } length;
2445
2446 /*
2447 * Describes where to find a register address in the command to check
2448 * against the ring's register whitelist. Only valid if flags has the
2449 * CMD_DESC_REGISTER bit set.
2450 *
2451 * A non-zero step value implies that the command may access multiple
2452 * registers in sequence (e.g. LRI), in that case step gives the
2453 * distance in dwords between individual offset fields.
2454 */
2455 struct {
2456 u32 offset;
2457 u32 mask;
2458 u32 step;
2459 } reg;
2460
2461 #define MAX_CMD_DESC_BITMASKS 3
2462 /*
2463 * Describes command checks where a particular dword is masked and
2464 * compared against an expected value. If the command does not match
2465 * the expected value, the parser rejects it. Only valid if flags has
2466 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2467 * are valid.
2468 *
2469 * If the check specifies a non-zero condition_mask then the parser
2470 * only performs the check when the bits specified by condition_mask
2471 * are non-zero.
2472 */
2473 struct {
2474 u32 offset;
2475 u32 mask;
2476 u32 expected;
2477 u32 condition_offset;
2478 u32 condition_mask;
2479 } bits[MAX_CMD_DESC_BITMASKS];
2480 };
2481
2482 /*
2483 * A table of commands requiring special handling by the command parser.
2484 *
2485 * Each ring has an array of tables. Each table consists of an array of command
2486 * descriptors, which must be sorted with command opcodes in ascending order.
2487 */
2488 struct drm_i915_cmd_table {
2489 const struct drm_i915_cmd_descriptor *table;
2490 int count;
2491 };
2492
2493 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2494 #define __I915__(p) ({ \
2495 struct drm_i915_private *__p; \
2496 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2497 __p = (struct drm_i915_private *)p; \
2498 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2499 __p = to_i915((struct drm_device *)p); \
2500 else \
2501 BUILD_BUG(); \
2502 __p; \
2503 })
2504 #define INTEL_INFO(p) (&__I915__(p)->info)
2505 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2506 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2507 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2508
2509 #define REVID_FOREVER 0xff
2510 /*
2511 * Return true if revision is in range [since,until] inclusive.
2512 *
2513 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2514 */
2515 #define IS_REVID(p, since, until) \
2516 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2517
2518 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2519 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2520 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2521 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2522 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2523 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2524 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2525 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2526 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2527 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2528 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2529 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2530 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2531 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2532 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2533 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2534 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2535 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2536 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2537 INTEL_DEVID(dev) == 0x0152 || \
2538 INTEL_DEVID(dev) == 0x015a)
2539 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2540 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2541 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2542 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev))
2543 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2544 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2545 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2546 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2547 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2548 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2549 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2550 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2551 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2552 (INTEL_DEVID(dev) & 0xf) == 0xe))
2553 /* ULX machines are also considered ULT. */
2554 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2555 (INTEL_DEVID(dev) & 0xf) == 0xe)
2556 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2557 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2558 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2559 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2560 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2561 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2562 /* ULX machines are also considered ULT. */
2563 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2564 INTEL_DEVID(dev) == 0x0A1E)
2565 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2566 INTEL_DEVID(dev) == 0x1913 || \
2567 INTEL_DEVID(dev) == 0x1916 || \
2568 INTEL_DEVID(dev) == 0x1921 || \
2569 INTEL_DEVID(dev) == 0x1926)
2570 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2571 INTEL_DEVID(dev) == 0x1915 || \
2572 INTEL_DEVID(dev) == 0x191E)
2573 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2574 INTEL_DEVID(dev) == 0x5913 || \
2575 INTEL_DEVID(dev) == 0x5916 || \
2576 INTEL_DEVID(dev) == 0x5921 || \
2577 INTEL_DEVID(dev) == 0x5926)
2578 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2579 INTEL_DEVID(dev) == 0x5915 || \
2580 INTEL_DEVID(dev) == 0x591E)
2581 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2582 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2583 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2584 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2585
2586 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2587
2588 #define SKL_REVID_A0 0x0
2589 #define SKL_REVID_B0 0x1
2590 #define SKL_REVID_C0 0x2
2591 #define SKL_REVID_D0 0x3
2592 #define SKL_REVID_E0 0x4
2593 #define SKL_REVID_F0 0x5
2594
2595 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2596
2597 #define BXT_REVID_A0 0x0
2598 #define BXT_REVID_A1 0x1
2599 #define BXT_REVID_B0 0x3
2600 #define BXT_REVID_C0 0x9
2601
2602 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2603
2604 #define KBL_REVID_A0 0x0
2605 #define KBL_REVID_B0 0x1
2606 #define KBL_REVID_C0 0x2
2607 #define KBL_REVID_D0 0x3
2608 #define KBL_REVID_E0 0x4
2609
2610 #define IS_KBL_REVID(p, since, until) \
2611 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2612
2613 /*
2614 * The genX designation typically refers to the render engine, so render
2615 * capability related checks should use IS_GEN, while display and other checks
2616 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2617 * chips, etc.).
2618 */
2619 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2620 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2621 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2622 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2623 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2624 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2625 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2626 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2627
2628 #define RENDER_RING (1<<RCS)
2629 #define BSD_RING (1<<VCS)
2630 #define BLT_RING (1<<BCS)
2631 #define VEBOX_RING (1<<VECS)
2632 #define BSD2_RING (1<<VCS2)
2633 #define ALL_ENGINES (~0)
2634
2635 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2636 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2637 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2638 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2639 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2640 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2641 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
2642 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2643 HAS_EDRAM(dev))
2644 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2645
2646 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2647 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2648 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2649 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2650 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2651
2652 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2653 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2654
2655 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2656 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2657
2658 /* WaRsDisableCoarsePowerGating:skl,bxt */
2659 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \
2660 IS_SKL_GT3(dev) || \
2661 IS_SKL_GT4(dev))
2662
2663 /*
2664 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2665 * even when in MSI mode. This results in spurious interrupt warnings if the
2666 * legacy irq no. is shared with another device. The kernel then disables that
2667 * interrupt source and so prevents the other device from working properly.
2668 */
2669 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2670 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2671
2672 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2673 * rows, which changed the alignment requirements and fence programming.
2674 */
2675 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2676 IS_I915GM(dev)))
2677 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2678 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2679
2680 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2681 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2682 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2683
2684 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2685
2686 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2687 INTEL_INFO(dev)->gen >= 9)
2688
2689 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2690 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2691 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2692 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2693 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2694 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2695 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2696 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2697 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2698 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2699 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2700
2701 #define HAS_CSR(dev) (IS_GEN9(dev))
2702
2703 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2704 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2705
2706 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2707 INTEL_INFO(dev)->gen >= 8)
2708
2709 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2710 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2711 !IS_BROXTON(dev))
2712
2713 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2714 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2715 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2716 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2717 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2718 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2719 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2720 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2721 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2722 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2723 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2724 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2725
2726 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2727 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2728 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2729 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2730 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2731 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2732 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2733 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2734 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2735 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2736
2737 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2738 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2739
2740 /* DPF == dynamic parity feature */
2741 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2742 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2743
2744 #define GT_FREQUENCY_MULTIPLIER 50
2745 #define GEN9_FREQ_SCALER 3
2746
2747 #include "i915_trace.h"
2748
2749 extern const struct drm_ioctl_desc i915_ioctls[];
2750 extern int i915_max_ioctl;
2751
2752 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2753 extern int i915_resume_switcheroo(struct drm_device *dev);
2754
2755 /* i915_dma.c */
2756 void __printf(3, 4)
2757 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2758 const char *fmt, ...);
2759
2760 #define i915_report_error(dev_priv, fmt, ...) \
2761 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2762
2763 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2764 extern int i915_driver_unload(struct drm_device *);
2765 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2766 extern void i915_driver_lastclose(struct drm_device * dev);
2767 extern void i915_driver_preclose(struct drm_device *dev,
2768 struct drm_file *file);
2769 extern void i915_driver_postclose(struct drm_device *dev,
2770 struct drm_file *file);
2771 #ifdef CONFIG_COMPAT
2772 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2773 unsigned long arg);
2774 #endif
2775 extern int intel_gpu_reset(struct drm_device *dev, u32 engine_mask);
2776 extern bool intel_has_gpu_reset(struct drm_device *dev);
2777 extern int i915_reset(struct drm_device *dev);
2778 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2779 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2780 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2781 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2782 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2783 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2784 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2785
2786 /* intel_hotplug.c */
2787 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
2788 void intel_hpd_init(struct drm_i915_private *dev_priv);
2789 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2790 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2791 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2792
2793 /* i915_irq.c */
2794 void i915_queue_hangcheck(struct drm_device *dev);
2795 __printf(3, 4)
2796 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2797 const char *fmt, ...);
2798
2799 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2800 int intel_irq_install(struct drm_i915_private *dev_priv);
2801 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2802
2803 extern void intel_uncore_sanitize(struct drm_device *dev);
2804 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2805 bool restore_forcewake);
2806 extern void intel_uncore_init(struct drm_device *dev);
2807 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2808 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2809 extern void intel_uncore_fini(struct drm_device *dev);
2810 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2811 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2812 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2813 enum forcewake_domains domains);
2814 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2815 enum forcewake_domains domains);
2816 /* Like above but the caller must manage the uncore.lock itself.
2817 * Must be used with I915_READ_FW and friends.
2818 */
2819 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2820 enum forcewake_domains domains);
2821 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2822 enum forcewake_domains domains);
2823 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2824
2825 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2826 static inline bool intel_vgpu_active(struct drm_device *dev)
2827 {
2828 return to_i915(dev)->vgpu.active;
2829 }
2830
2831 void
2832 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2833 u32 status_mask);
2834
2835 void
2836 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2837 u32 status_mask);
2838
2839 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2840 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2841 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2842 uint32_t mask,
2843 uint32_t bits);
2844 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2845 uint32_t interrupt_mask,
2846 uint32_t enabled_irq_mask);
2847 static inline void
2848 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2849 {
2850 ilk_update_display_irq(dev_priv, bits, bits);
2851 }
2852 static inline void
2853 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2854 {
2855 ilk_update_display_irq(dev_priv, bits, 0);
2856 }
2857 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2858 enum pipe pipe,
2859 uint32_t interrupt_mask,
2860 uint32_t enabled_irq_mask);
2861 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2862 enum pipe pipe, uint32_t bits)
2863 {
2864 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2865 }
2866 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2867 enum pipe pipe, uint32_t bits)
2868 {
2869 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2870 }
2871 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2872 uint32_t interrupt_mask,
2873 uint32_t enabled_irq_mask);
2874 static inline void
2875 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2876 {
2877 ibx_display_interrupt_update(dev_priv, bits, bits);
2878 }
2879 static inline void
2880 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2881 {
2882 ibx_display_interrupt_update(dev_priv, bits, 0);
2883 }
2884
2885
2886 /* i915_gem.c */
2887 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2888 struct drm_file *file_priv);
2889 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2890 struct drm_file *file_priv);
2891 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2892 struct drm_file *file_priv);
2893 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2894 struct drm_file *file_priv);
2895 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2896 struct drm_file *file_priv);
2897 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2898 struct drm_file *file_priv);
2899 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2900 struct drm_file *file_priv);
2901 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2902 struct drm_i915_gem_request *req);
2903 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2904 struct drm_i915_gem_execbuffer2 *args,
2905 struct list_head *vmas);
2906 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2907 struct drm_file *file_priv);
2908 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2909 struct drm_file *file_priv);
2910 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2911 struct drm_file *file_priv);
2912 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2913 struct drm_file *file);
2914 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2915 struct drm_file *file);
2916 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2917 struct drm_file *file_priv);
2918 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2919 struct drm_file *file_priv);
2920 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2921 struct drm_file *file_priv);
2922 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2923 struct drm_file *file_priv);
2924 int i915_gem_init_userptr(struct drm_device *dev);
2925 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2926 struct drm_file *file);
2927 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2928 struct drm_file *file_priv);
2929 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2930 struct drm_file *file_priv);
2931 void i915_gem_load_init(struct drm_device *dev);
2932 void i915_gem_load_cleanup(struct drm_device *dev);
2933 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2934 void *i915_gem_object_alloc(struct drm_device *dev);
2935 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2936 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2937 const struct drm_i915_gem_object_ops *ops);
2938 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2939 size_t size);
2940 struct drm_i915_gem_object *i915_gem_object_create_from_data(
2941 struct drm_device *dev, const void *data, size_t size);
2942 void i915_gem_free_object(struct drm_gem_object *obj);
2943 void i915_gem_vma_destroy(struct i915_vma *vma);
2944
2945 /* Flags used by pin/bind&friends. */
2946 #define PIN_MAPPABLE (1<<0)
2947 #define PIN_NONBLOCK (1<<1)
2948 #define PIN_GLOBAL (1<<2)
2949 #define PIN_OFFSET_BIAS (1<<3)
2950 #define PIN_USER (1<<4)
2951 #define PIN_UPDATE (1<<5)
2952 #define PIN_ZONE_4G (1<<6)
2953 #define PIN_HIGH (1<<7)
2954 #define PIN_OFFSET_FIXED (1<<8)
2955 #define PIN_OFFSET_MASK (~4095)
2956 int __must_check
2957 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2958 struct i915_address_space *vm,
2959 uint32_t alignment,
2960 uint64_t flags);
2961 int __must_check
2962 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2963 const struct i915_ggtt_view *view,
2964 uint32_t alignment,
2965 uint64_t flags);
2966
2967 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2968 u32 flags);
2969 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
2970 int __must_check i915_vma_unbind(struct i915_vma *vma);
2971 /*
2972 * BEWARE: Do not use the function below unless you can _absolutely_
2973 * _guarantee_ VMA in question is _not in use_ anywhere.
2974 */
2975 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
2976 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2977 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2978 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2979
2980 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2981 int *needs_clflush);
2982
2983 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2984
2985 static inline int __sg_page_count(struct scatterlist *sg)
2986 {
2987 return sg->length >> PAGE_SHIFT;
2988 }
2989
2990 struct page *
2991 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
2992
2993 static inline struct page *
2994 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2995 {
2996 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
2997 return NULL;
2998
2999 if (n < obj->get_page.last) {
3000 obj->get_page.sg = obj->pages->sgl;
3001 obj->get_page.last = 0;
3002 }
3003
3004 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3005 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3006 if (unlikely(sg_is_chain(obj->get_page.sg)))
3007 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3008 }
3009
3010 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3011 }
3012
3013 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3014 {
3015 BUG_ON(obj->pages == NULL);
3016 obj->pages_pin_count++;
3017 }
3018
3019 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3020 {
3021 BUG_ON(obj->pages_pin_count == 0);
3022 obj->pages_pin_count--;
3023 }
3024
3025 /**
3026 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3027 * @obj - the object to map into kernel address space
3028 *
3029 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3030 * pages and then returns a contiguous mapping of the backing storage into
3031 * the kernel address space.
3032 *
3033 * The caller must hold the struct_mutex, and is responsible for calling
3034 * i915_gem_object_unpin_map() when the mapping is no longer required.
3035 *
3036 * Returns the pointer through which to access the mapped object, or an
3037 * ERR_PTR() on error.
3038 */
3039 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3040
3041 /**
3042 * i915_gem_object_unpin_map - releases an earlier mapping
3043 * @obj - the object to unmap
3044 *
3045 * After pinning the object and mapping its pages, once you are finished
3046 * with your access, call i915_gem_object_unpin_map() to release the pin
3047 * upon the mapping. Once the pin count reaches zero, that mapping may be
3048 * removed.
3049 *
3050 * The caller must hold the struct_mutex.
3051 */
3052 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3053 {
3054 lockdep_assert_held(&obj->base.dev->struct_mutex);
3055 i915_gem_object_unpin_pages(obj);
3056 }
3057
3058 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3059 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3060 struct intel_engine_cs *to,
3061 struct drm_i915_gem_request **to_req);
3062 void i915_vma_move_to_active(struct i915_vma *vma,
3063 struct drm_i915_gem_request *req);
3064 int i915_gem_dumb_create(struct drm_file *file_priv,
3065 struct drm_device *dev,
3066 struct drm_mode_create_dumb *args);
3067 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3068 uint32_t handle, uint64_t *offset);
3069 /**
3070 * Returns true if seq1 is later than seq2.
3071 */
3072 static inline bool
3073 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3074 {
3075 return (int32_t)(seq1 - seq2) >= 0;
3076 }
3077
3078 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req,
3079 bool lazy_coherency)
3080 {
3081 if (!lazy_coherency && req->engine->irq_seqno_barrier)
3082 req->engine->irq_seqno_barrier(req->engine);
3083 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3084 req->previous_seqno);
3085 }
3086
3087 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
3088 bool lazy_coherency)
3089 {
3090 if (!lazy_coherency && req->engine->irq_seqno_barrier)
3091 req->engine->irq_seqno_barrier(req->engine);
3092 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3093 req->seqno);
3094 }
3095
3096 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
3097 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3098
3099 struct drm_i915_gem_request *
3100 i915_gem_find_active_request(struct intel_engine_cs *engine);
3101
3102 bool i915_gem_retire_requests(struct drm_device *dev);
3103 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3104
3105 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3106 {
3107 return atomic_read(&error->reset_counter);
3108 }
3109
3110 static inline bool __i915_reset_in_progress(u32 reset)
3111 {
3112 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3113 }
3114
3115 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3116 {
3117 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3118 }
3119
3120 static inline bool __i915_terminally_wedged(u32 reset)
3121 {
3122 return unlikely(reset & I915_WEDGED);
3123 }
3124
3125 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3126 {
3127 return __i915_reset_in_progress(i915_reset_counter(error));
3128 }
3129
3130 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3131 {
3132 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3133 }
3134
3135 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3136 {
3137 return __i915_terminally_wedged(i915_reset_counter(error));
3138 }
3139
3140 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3141 {
3142 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3143 }
3144
3145 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
3146 {
3147 return dev_priv->gpu_error.stop_rings == 0 ||
3148 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
3149 }
3150
3151 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
3152 {
3153 return dev_priv->gpu_error.stop_rings == 0 ||
3154 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
3155 }
3156
3157 void i915_gem_reset(struct drm_device *dev);
3158 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3159 int __must_check i915_gem_init(struct drm_device *dev);
3160 int i915_gem_init_engines(struct drm_device *dev);
3161 int __must_check i915_gem_init_hw(struct drm_device *dev);
3162 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
3163 void i915_gem_init_swizzling(struct drm_device *dev);
3164 void i915_gem_cleanup_engines(struct drm_device *dev);
3165 int __must_check i915_gpu_idle(struct drm_device *dev);
3166 int __must_check i915_gem_suspend(struct drm_device *dev);
3167 void __i915_add_request(struct drm_i915_gem_request *req,
3168 struct drm_i915_gem_object *batch_obj,
3169 bool flush_caches);
3170 #define i915_add_request(req) \
3171 __i915_add_request(req, NULL, true)
3172 #define i915_add_request_no_flush(req) \
3173 __i915_add_request(req, NULL, false)
3174 int __i915_wait_request(struct drm_i915_gem_request *req,
3175 bool interruptible,
3176 s64 *timeout,
3177 struct intel_rps_client *rps);
3178 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3179 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3180 int __must_check
3181 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3182 bool readonly);
3183 int __must_check
3184 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3185 bool write);
3186 int __must_check
3187 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3188 int __must_check
3189 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3190 u32 alignment,
3191 const struct i915_ggtt_view *view);
3192 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3193 const struct i915_ggtt_view *view);
3194 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3195 int align);
3196 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3197 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3198
3199 uint32_t
3200 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3201 uint32_t
3202 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3203 int tiling_mode, bool fenced);
3204
3205 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3206 enum i915_cache_level cache_level);
3207
3208 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3209 struct dma_buf *dma_buf);
3210
3211 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3212 struct drm_gem_object *gem_obj, int flags);
3213
3214 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3215 const struct i915_ggtt_view *view);
3216 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3217 struct i915_address_space *vm);
3218 static inline u64
3219 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3220 {
3221 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3222 }
3223
3224 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3225 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3226 const struct i915_ggtt_view *view);
3227 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3228 struct i915_address_space *vm);
3229
3230 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
3231 struct i915_address_space *vm);
3232 struct i915_vma *
3233 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3234 struct i915_address_space *vm);
3235 struct i915_vma *
3236 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3237 const struct i915_ggtt_view *view);
3238
3239 struct i915_vma *
3240 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3241 struct i915_address_space *vm);
3242 struct i915_vma *
3243 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3244 const struct i915_ggtt_view *view);
3245
3246 static inline struct i915_vma *
3247 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3248 {
3249 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3250 }
3251 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3252
3253 /* Some GGTT VM helpers */
3254 static inline struct i915_hw_ppgtt *
3255 i915_vm_to_ppgtt(struct i915_address_space *vm)
3256 {
3257 return container_of(vm, struct i915_hw_ppgtt, base);
3258 }
3259
3260
3261 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3262 {
3263 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3264 }
3265
3266 static inline unsigned long
3267 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
3268 {
3269 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3270 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3271
3272 return i915_gem_obj_size(obj, &ggtt->base);
3273 }
3274
3275 static inline int __must_check
3276 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3277 uint32_t alignment,
3278 unsigned flags)
3279 {
3280 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3281 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3282
3283 return i915_gem_object_pin(obj, &ggtt->base,
3284 alignment, flags | PIN_GLOBAL);
3285 }
3286
3287 static inline int
3288 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
3289 {
3290 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
3291 }
3292
3293 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3294 const struct i915_ggtt_view *view);
3295 static inline void
3296 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3297 {
3298 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3299 }
3300
3301 /* i915_gem_fence.c */
3302 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3303 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3304
3305 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3306 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3307
3308 void i915_gem_restore_fences(struct drm_device *dev);
3309
3310 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3311 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3312 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3313
3314 /* i915_gem_context.c */
3315 int __must_check i915_gem_context_init(struct drm_device *dev);
3316 void i915_gem_context_fini(struct drm_device *dev);
3317 void i915_gem_context_reset(struct drm_device *dev);
3318 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3319 int i915_gem_context_enable(struct drm_i915_gem_request *req);
3320 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3321 int i915_switch_context(struct drm_i915_gem_request *req);
3322 struct intel_context *
3323 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
3324 void i915_gem_context_free(struct kref *ctx_ref);
3325 struct drm_i915_gem_object *
3326 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3327 static inline void i915_gem_context_reference(struct intel_context *ctx)
3328 {
3329 kref_get(&ctx->ref);
3330 }
3331
3332 static inline void i915_gem_context_unreference(struct intel_context *ctx)
3333 {
3334 kref_put(&ctx->ref, i915_gem_context_free);
3335 }
3336
3337 static inline bool i915_gem_context_is_default(const struct intel_context *c)
3338 {
3339 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3340 }
3341
3342 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3343 struct drm_file *file);
3344 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3345 struct drm_file *file);
3346 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3347 struct drm_file *file_priv);
3348 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3349 struct drm_file *file_priv);
3350
3351 /* i915_gem_evict.c */
3352 int __must_check i915_gem_evict_something(struct drm_device *dev,
3353 struct i915_address_space *vm,
3354 int min_size,
3355 unsigned alignment,
3356 unsigned cache_level,
3357 unsigned long start,
3358 unsigned long end,
3359 unsigned flags);
3360 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3361 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3362
3363 /* belongs in i915_gem_gtt.h */
3364 static inline void i915_gem_chipset_flush(struct drm_device *dev)
3365 {
3366 if (INTEL_INFO(dev)->gen < 6)
3367 intel_gtt_chipset_flush();
3368 }
3369
3370 /* i915_gem_stolen.c */
3371 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3372 struct drm_mm_node *node, u64 size,
3373 unsigned alignment);
3374 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3375 struct drm_mm_node *node, u64 size,
3376 unsigned alignment, u64 start,
3377 u64 end);
3378 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3379 struct drm_mm_node *node);
3380 int i915_gem_init_stolen(struct drm_device *dev);
3381 void i915_gem_cleanup_stolen(struct drm_device *dev);
3382 struct drm_i915_gem_object *
3383 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3384 struct drm_i915_gem_object *
3385 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3386 u32 stolen_offset,
3387 u32 gtt_offset,
3388 u32 size);
3389
3390 /* i915_gem_shrinker.c */
3391 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3392 unsigned long target,
3393 unsigned flags);
3394 #define I915_SHRINK_PURGEABLE 0x1
3395 #define I915_SHRINK_UNBOUND 0x2
3396 #define I915_SHRINK_BOUND 0x4
3397 #define I915_SHRINK_ACTIVE 0x8
3398 #define I915_SHRINK_VMAPS 0x10
3399 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3400 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3401 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3402
3403
3404 /* i915_gem_tiling.c */
3405 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3406 {
3407 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3408
3409 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3410 obj->tiling_mode != I915_TILING_NONE;
3411 }
3412
3413 /* i915_gem_debug.c */
3414 #if WATCH_LISTS
3415 int i915_verify_lists(struct drm_device *dev);
3416 #else
3417 #define i915_verify_lists(dev) 0
3418 #endif
3419
3420 /* i915_debugfs.c */
3421 int i915_debugfs_init(struct drm_minor *minor);
3422 void i915_debugfs_cleanup(struct drm_minor *minor);
3423 #ifdef CONFIG_DEBUG_FS
3424 int i915_debugfs_connector_add(struct drm_connector *connector);
3425 void intel_display_crc_init(struct drm_device *dev);
3426 #else
3427 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3428 { return 0; }
3429 static inline void intel_display_crc_init(struct drm_device *dev) {}
3430 #endif
3431
3432 /* i915_gpu_error.c */
3433 __printf(2, 3)
3434 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3435 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3436 const struct i915_error_state_file_priv *error);
3437 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3438 struct drm_i915_private *i915,
3439 size_t count, loff_t pos);
3440 static inline void i915_error_state_buf_release(
3441 struct drm_i915_error_state_buf *eb)
3442 {
3443 kfree(eb->buf);
3444 }
3445 void i915_capture_error_state(struct drm_device *dev, u32 engine_mask,
3446 const char *error_msg);
3447 void i915_error_state_get(struct drm_device *dev,
3448 struct i915_error_state_file_priv *error_priv);
3449 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3450 void i915_destroy_error_state(struct drm_device *dev);
3451
3452 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3453 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3454
3455 /* i915_cmd_parser.c */
3456 int i915_cmd_parser_get_version(void);
3457 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3458 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3459 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3460 int i915_parse_cmds(struct intel_engine_cs *engine,
3461 struct drm_i915_gem_object *batch_obj,
3462 struct drm_i915_gem_object *shadow_batch_obj,
3463 u32 batch_start_offset,
3464 u32 batch_len,
3465 bool is_master);
3466
3467 /* i915_suspend.c */
3468 extern int i915_save_state(struct drm_device *dev);
3469 extern int i915_restore_state(struct drm_device *dev);
3470
3471 /* i915_sysfs.c */
3472 void i915_setup_sysfs(struct drm_device *dev_priv);
3473 void i915_teardown_sysfs(struct drm_device *dev_priv);
3474
3475 /* intel_i2c.c */
3476 extern int intel_setup_gmbus(struct drm_device *dev);
3477 extern void intel_teardown_gmbus(struct drm_device *dev);
3478 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3479 unsigned int pin);
3480
3481 extern struct i2c_adapter *
3482 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3483 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3484 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3485 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3486 {
3487 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3488 }
3489 extern void intel_i2c_reset(struct drm_device *dev);
3490
3491 /* intel_bios.c */
3492 int intel_bios_init(struct drm_i915_private *dev_priv);
3493 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3494 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3495 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3496 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3497 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3498 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3499 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3500 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3501 enum port port);
3502
3503 /* intel_opregion.c */
3504 #ifdef CONFIG_ACPI
3505 extern int intel_opregion_setup(struct drm_device *dev);
3506 extern void intel_opregion_init(struct drm_device *dev);
3507 extern void intel_opregion_fini(struct drm_device *dev);
3508 extern void intel_opregion_asle_intr(struct drm_device *dev);
3509 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3510 bool enable);
3511 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3512 pci_power_t state);
3513 extern int intel_opregion_get_panel_type(struct drm_device *dev);
3514 #else
3515 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3516 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3517 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3518 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3519 static inline int
3520 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3521 {
3522 return 0;
3523 }
3524 static inline int
3525 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3526 {
3527 return 0;
3528 }
3529 static inline int intel_opregion_get_panel_type(struct drm_device *dev)
3530 {
3531 return -ENODEV;
3532 }
3533 #endif
3534
3535 /* intel_acpi.c */
3536 #ifdef CONFIG_ACPI
3537 extern void intel_register_dsm_handler(void);
3538 extern void intel_unregister_dsm_handler(void);
3539 #else
3540 static inline void intel_register_dsm_handler(void) { return; }
3541 static inline void intel_unregister_dsm_handler(void) { return; }
3542 #endif /* CONFIG_ACPI */
3543
3544 /* modesetting */
3545 extern void intel_modeset_init_hw(struct drm_device *dev);
3546 extern void intel_modeset_init(struct drm_device *dev);
3547 extern void intel_modeset_gem_init(struct drm_device *dev);
3548 extern void intel_modeset_cleanup(struct drm_device *dev);
3549 extern void intel_connector_unregister(struct intel_connector *);
3550 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3551 extern void intel_display_resume(struct drm_device *dev);
3552 extern void i915_redisable_vga(struct drm_device *dev);
3553 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3554 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3555 extern void intel_init_pch_refclk(struct drm_device *dev);
3556 extern void intel_set_rps(struct drm_device *dev, u8 val);
3557 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3558 bool enable);
3559 extern void intel_detect_pch(struct drm_device *dev);
3560 extern int intel_enable_rc6(const struct drm_device *dev);
3561
3562 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3563 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3564 struct drm_file *file);
3565 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3566 struct drm_file *file);
3567
3568 /* overlay */
3569 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3570 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3571 struct intel_overlay_error_state *error);
3572
3573 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3574 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3575 struct drm_device *dev,
3576 struct intel_display_error_state *error);
3577
3578 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3579 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3580
3581 /* intel_sideband.c */
3582 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3583 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3584 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3585 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3586 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3587 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3588 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3589 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3590 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3591 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3592 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3593 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3594 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3595 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3596 enum intel_sbi_destination destination);
3597 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3598 enum intel_sbi_destination destination);
3599 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3600 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3601
3602 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3603 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3604
3605 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3606 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3607
3608 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3609 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3610 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3611 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3612
3613 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3614 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3615 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3616 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3617
3618 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3619 * will be implemented using 2 32-bit writes in an arbitrary order with
3620 * an arbitrary delay between them. This can cause the hardware to
3621 * act upon the intermediate value, possibly leading to corruption and
3622 * machine death. You have been warned.
3623 */
3624 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3625 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3626
3627 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3628 u32 upper, lower, old_upper, loop = 0; \
3629 upper = I915_READ(upper_reg); \
3630 do { \
3631 old_upper = upper; \
3632 lower = I915_READ(lower_reg); \
3633 upper = I915_READ(upper_reg); \
3634 } while (upper != old_upper && loop++ < 2); \
3635 (u64)upper << 32 | lower; })
3636
3637 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3638 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3639
3640 #define __raw_read(x, s) \
3641 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3642 i915_reg_t reg) \
3643 { \
3644 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3645 }
3646
3647 #define __raw_write(x, s) \
3648 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3649 i915_reg_t reg, uint##x##_t val) \
3650 { \
3651 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3652 }
3653 __raw_read(8, b)
3654 __raw_read(16, w)
3655 __raw_read(32, l)
3656 __raw_read(64, q)
3657
3658 __raw_write(8, b)
3659 __raw_write(16, w)
3660 __raw_write(32, l)
3661 __raw_write(64, q)
3662
3663 #undef __raw_read
3664 #undef __raw_write
3665
3666 /* These are untraced mmio-accessors that are only valid to be used inside
3667 * criticial sections inside IRQ handlers where forcewake is explicitly
3668 * controlled.
3669 * Think twice, and think again, before using these.
3670 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3671 * intel_uncore_forcewake_irqunlock().
3672 */
3673 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3674 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3675 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3676
3677 /* "Broadcast RGB" property */
3678 #define INTEL_BROADCAST_RGB_AUTO 0
3679 #define INTEL_BROADCAST_RGB_FULL 1
3680 #define INTEL_BROADCAST_RGB_LIMITED 2
3681
3682 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3683 {
3684 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3685 return VLV_VGACNTRL;
3686 else if (INTEL_INFO(dev)->gen >= 5)
3687 return CPU_VGACNTRL;
3688 else
3689 return VGACNTRL;
3690 }
3691
3692 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3693 {
3694 unsigned long j = msecs_to_jiffies(m);
3695
3696 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3697 }
3698
3699 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3700 {
3701 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3702 }
3703
3704 static inline unsigned long
3705 timespec_to_jiffies_timeout(const struct timespec *value)
3706 {
3707 unsigned long j = timespec_to_jiffies(value);
3708
3709 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3710 }
3711
3712 /*
3713 * If you need to wait X milliseconds between events A and B, but event B
3714 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3715 * when event A happened, then just before event B you call this function and
3716 * pass the timestamp as the first argument, and X as the second argument.
3717 */
3718 static inline void
3719 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3720 {
3721 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3722
3723 /*
3724 * Don't re-read the value of "jiffies" every time since it may change
3725 * behind our back and break the math.
3726 */
3727 tmp_jiffies = jiffies;
3728 target_jiffies = timestamp_jiffies +
3729 msecs_to_jiffies_timeout(to_wait_ms);
3730
3731 if (time_after(target_jiffies, tmp_jiffies)) {
3732 remaining_jiffies = target_jiffies - tmp_jiffies;
3733 while (remaining_jiffies)
3734 remaining_jiffies =
3735 schedule_timeout_uninterruptible(remaining_jiffies);
3736 }
3737 }
3738
3739 static inline void i915_trace_irq_get(struct intel_engine_cs *engine,
3740 struct drm_i915_gem_request *req)
3741 {
3742 if (engine->trace_irq_req == NULL && engine->irq_get(engine))
3743 i915_gem_request_assign(&engine->trace_irq_req, req);
3744 }
3745
3746 #endif
This page took 0.16646 seconds and 5 git commands to generate.