drm/i915: Remove stop-rings debugfs interface
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64
65 #include "intel_gvt.h"
66
67 /* General customization:
68 */
69
70 #define DRIVER_NAME "i915"
71 #define DRIVER_DESC "Intel Graphics"
72 #define DRIVER_DATE "20160620"
73
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99 #define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105 })
106
107 #define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114 static inline const char *yesno(bool v)
115 {
116 return v ? "yes" : "no";
117 }
118
119 static inline const char *onoff(bool v)
120 {
121 return v ? "on" : "off";
122 }
123
124 enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133
134 enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142 };
143
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162 }
163
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168
169 /*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175 enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186 enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195
196 #define I915_NUM_PHYS_VLV 2
197
198 enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201 };
202
203 enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206 };
207
208 enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241 };
242
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250 enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262 };
263
264 #define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267 struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 /*
288 * if we get a HPD irq from DP and a HPD irq from non-DP
289 * the non-DP HPD could block the workqueue on a mode config
290 * mutex getting, that userspace may have taken. However
291 * userspace is waiting on the DP workqueue to run which is
292 * blocked behind the non-DP one.
293 */
294 struct workqueue_struct *dp_wq;
295 };
296
297 #define I915_GEM_GPU_DOMAINS \
298 (I915_GEM_DOMAIN_RENDER | \
299 I915_GEM_DOMAIN_SAMPLER | \
300 I915_GEM_DOMAIN_COMMAND | \
301 I915_GEM_DOMAIN_INSTRUCTION | \
302 I915_GEM_DOMAIN_VERTEX)
303
304 #define for_each_pipe(__dev_priv, __p) \
305 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
306 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
307 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
308 for_each_if ((__mask) & (1 << (__p)))
309 #define for_each_plane(__dev_priv, __pipe, __p) \
310 for ((__p) = 0; \
311 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
312 (__p)++)
313 #define for_each_sprite(__dev_priv, __p, __s) \
314 for ((__s) = 0; \
315 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
316 (__s)++)
317
318 #define for_each_port_masked(__port, __ports_mask) \
319 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
320 for_each_if ((__ports_mask) & (1 << (__port)))
321
322 #define for_each_crtc(dev, crtc) \
323 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
324
325 #define for_each_intel_plane(dev, intel_plane) \
326 list_for_each_entry(intel_plane, \
327 &dev->mode_config.plane_list, \
328 base.head)
329
330 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
331 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, \
332 base.head) \
333 for_each_if ((plane_mask) & \
334 (1 << drm_plane_index(&intel_plane->base)))
335
336 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
337 list_for_each_entry(intel_plane, \
338 &(dev)->mode_config.plane_list, \
339 base.head) \
340 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
341
342 #define for_each_intel_crtc(dev, intel_crtc) \
343 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
344
345 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
346 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) \
347 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
348
349 #define for_each_intel_encoder(dev, intel_encoder) \
350 list_for_each_entry(intel_encoder, \
351 &(dev)->mode_config.encoder_list, \
352 base.head)
353
354 #define for_each_intel_connector(dev, intel_connector) \
355 list_for_each_entry(intel_connector, \
356 &dev->mode_config.connector_list, \
357 base.head)
358
359 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
360 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
361 for_each_if ((intel_encoder)->base.crtc == (__crtc))
362
363 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
364 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
365 for_each_if ((intel_connector)->base.encoder == (__encoder))
366
367 #define for_each_power_domain(domain, mask) \
368 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
369 for_each_if ((1 << (domain)) & (mask))
370
371 struct drm_i915_private;
372 struct i915_mm_struct;
373 struct i915_mmu_object;
374
375 struct drm_i915_file_private {
376 struct drm_i915_private *dev_priv;
377 struct drm_file *file;
378
379 struct {
380 spinlock_t lock;
381 struct list_head request_list;
382 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
383 * chosen to prevent the CPU getting more than a frame ahead of the GPU
384 * (when using lax throttling for the frontbuffer). We also use it to
385 * offer free GPU waitboosts for severely congested workloads.
386 */
387 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
388 } mm;
389 struct idr context_idr;
390
391 struct intel_rps_client {
392 struct list_head link;
393 unsigned boosts;
394 } rps;
395
396 unsigned int bsd_ring;
397 };
398
399 /* Used by dp and fdi links */
400 struct intel_link_m_n {
401 uint32_t tu;
402 uint32_t gmch_m;
403 uint32_t gmch_n;
404 uint32_t link_m;
405 uint32_t link_n;
406 };
407
408 void intel_link_compute_m_n(int bpp, int nlanes,
409 int pixel_clock, int link_clock,
410 struct intel_link_m_n *m_n);
411
412 /* Interface history:
413 *
414 * 1.1: Original.
415 * 1.2: Add Power Management
416 * 1.3: Add vblank support
417 * 1.4: Fix cmdbuffer path, add heap destroy
418 * 1.5: Add vblank pipe configuration
419 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
420 * - Support vertical blank on secondary display pipe
421 */
422 #define DRIVER_MAJOR 1
423 #define DRIVER_MINOR 6
424 #define DRIVER_PATCHLEVEL 0
425
426 #define WATCH_LISTS 0
427
428 struct opregion_header;
429 struct opregion_acpi;
430 struct opregion_swsci;
431 struct opregion_asle;
432
433 struct intel_opregion {
434 struct opregion_header *header;
435 struct opregion_acpi *acpi;
436 struct opregion_swsci *swsci;
437 u32 swsci_gbda_sub_functions;
438 u32 swsci_sbcb_sub_functions;
439 struct opregion_asle *asle;
440 void *rvda;
441 const void *vbt;
442 u32 vbt_size;
443 u32 *lid_state;
444 struct work_struct asle_work;
445 };
446 #define OPREGION_SIZE (8*1024)
447
448 struct intel_overlay;
449 struct intel_overlay_error_state;
450
451 #define I915_FENCE_REG_NONE -1
452 #define I915_MAX_NUM_FENCES 32
453 /* 32 fences + sign bit for FENCE_REG_NONE */
454 #define I915_MAX_NUM_FENCE_BITS 6
455
456 struct drm_i915_fence_reg {
457 struct list_head lru_list;
458 struct drm_i915_gem_object *obj;
459 int pin_count;
460 };
461
462 struct sdvo_device_mapping {
463 u8 initialized;
464 u8 dvo_port;
465 u8 slave_addr;
466 u8 dvo_wiring;
467 u8 i2c_pin;
468 u8 ddc_pin;
469 };
470
471 struct intel_display_error_state;
472
473 struct drm_i915_error_state {
474 struct kref ref;
475 struct timeval time;
476
477 char error_msg[128];
478 int iommu;
479 u32 reset_count;
480 u32 suspend_count;
481
482 /* Generic register state */
483 u32 eir;
484 u32 pgtbl_er;
485 u32 ier;
486 u32 gtier[4];
487 u32 ccid;
488 u32 derrmr;
489 u32 forcewake;
490 u32 error; /* gen6+ */
491 u32 err_int; /* gen7 */
492 u32 fault_data0; /* gen8, gen9 */
493 u32 fault_data1; /* gen8, gen9 */
494 u32 done_reg;
495 u32 gac_eco;
496 u32 gam_ecochk;
497 u32 gab_ctl;
498 u32 gfx_mode;
499 u32 extra_instdone[I915_NUM_INSTDONE_REG];
500 u64 fence[I915_MAX_NUM_FENCES];
501 struct intel_overlay_error_state *overlay;
502 struct intel_display_error_state *display;
503 struct drm_i915_error_object *semaphore_obj;
504
505 struct drm_i915_error_ring {
506 bool valid;
507 /* Software tracked state */
508 bool waiting;
509 int num_waiters;
510 int hangcheck_score;
511 enum intel_ring_hangcheck_action hangcheck_action;
512 int num_requests;
513
514 /* our own tracking of ring head and tail */
515 u32 cpu_ring_head;
516 u32 cpu_ring_tail;
517
518 u32 last_seqno;
519 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
520
521 /* Register state */
522 u32 start;
523 u32 tail;
524 u32 head;
525 u32 ctl;
526 u32 hws;
527 u32 ipeir;
528 u32 ipehr;
529 u32 instdone;
530 u32 bbstate;
531 u32 instpm;
532 u32 instps;
533 u32 seqno;
534 u64 bbaddr;
535 u64 acthd;
536 u32 fault_reg;
537 u64 faddr;
538 u32 rc_psmi; /* sleep state */
539 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
540
541 struct drm_i915_error_object {
542 int page_count;
543 u64 gtt_offset;
544 u32 *pages[0];
545 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
546
547 struct drm_i915_error_object *wa_ctx;
548
549 struct drm_i915_error_request {
550 long jiffies;
551 u32 seqno;
552 u32 tail;
553 } *requests;
554
555 struct drm_i915_error_waiter {
556 char comm[TASK_COMM_LEN];
557 pid_t pid;
558 u32 seqno;
559 } *waiters;
560
561 struct {
562 u32 gfx_mode;
563 union {
564 u64 pdp[4];
565 u32 pp_dir_base;
566 };
567 } vm_info;
568
569 pid_t pid;
570 char comm[TASK_COMM_LEN];
571 } ring[I915_NUM_ENGINES];
572
573 struct drm_i915_error_buffer {
574 u32 size;
575 u32 name;
576 u32 rseqno[I915_NUM_ENGINES], wseqno;
577 u64 gtt_offset;
578 u32 read_domains;
579 u32 write_domain;
580 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
581 s32 pinned:2;
582 u32 tiling:2;
583 u32 dirty:1;
584 u32 purgeable:1;
585 u32 userptr:1;
586 s32 ring:4;
587 u32 cache_level:3;
588 } **active_bo, **pinned_bo;
589
590 u32 *active_bo_count, *pinned_bo_count;
591 u32 vm_count;
592 };
593
594 struct intel_connector;
595 struct intel_encoder;
596 struct intel_crtc_state;
597 struct intel_initial_plane_config;
598 struct intel_crtc;
599 struct intel_limit;
600 struct dpll;
601
602 struct drm_i915_display_funcs {
603 int (*get_display_clock_speed)(struct drm_device *dev);
604 int (*get_fifo_size)(struct drm_device *dev, int plane);
605 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
606 int (*compute_intermediate_wm)(struct drm_device *dev,
607 struct intel_crtc *intel_crtc,
608 struct intel_crtc_state *newstate);
609 void (*initial_watermarks)(struct intel_crtc_state *cstate);
610 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
611 int (*compute_global_watermarks)(struct drm_atomic_state *state);
612 void (*update_wm)(struct drm_crtc *crtc);
613 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
614 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
615 /* Returns the active state of the crtc, and if the crtc is active,
616 * fills out the pipe-config with the hw state. */
617 bool (*get_pipe_config)(struct intel_crtc *,
618 struct intel_crtc_state *);
619 void (*get_initial_plane_config)(struct intel_crtc *,
620 struct intel_initial_plane_config *);
621 int (*crtc_compute_clock)(struct intel_crtc *crtc,
622 struct intel_crtc_state *crtc_state);
623 void (*crtc_enable)(struct drm_crtc *crtc);
624 void (*crtc_disable)(struct drm_crtc *crtc);
625 void (*audio_codec_enable)(struct drm_connector *connector,
626 struct intel_encoder *encoder,
627 const struct drm_display_mode *adjusted_mode);
628 void (*audio_codec_disable)(struct intel_encoder *encoder);
629 void (*fdi_link_train)(struct drm_crtc *crtc);
630 void (*init_clock_gating)(struct drm_device *dev);
631 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
632 struct drm_framebuffer *fb,
633 struct drm_i915_gem_object *obj,
634 struct drm_i915_gem_request *req,
635 uint32_t flags);
636 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
637 /* clock updates for mode set */
638 /* cursor updates */
639 /* render clock increase/decrease */
640 /* display clock increase/decrease */
641 /* pll clock increase/decrease */
642
643 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
644 void (*load_luts)(struct drm_crtc_state *crtc_state);
645 };
646
647 enum forcewake_domain_id {
648 FW_DOMAIN_ID_RENDER = 0,
649 FW_DOMAIN_ID_BLITTER,
650 FW_DOMAIN_ID_MEDIA,
651
652 FW_DOMAIN_ID_COUNT
653 };
654
655 enum forcewake_domains {
656 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
657 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
658 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
659 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
660 FORCEWAKE_BLITTER |
661 FORCEWAKE_MEDIA)
662 };
663
664 #define FW_REG_READ (1)
665 #define FW_REG_WRITE (2)
666
667 enum forcewake_domains
668 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
669 i915_reg_t reg, unsigned int op);
670
671 struct intel_uncore_funcs {
672 void (*force_wake_get)(struct drm_i915_private *dev_priv,
673 enum forcewake_domains domains);
674 void (*force_wake_put)(struct drm_i915_private *dev_priv,
675 enum forcewake_domains domains);
676
677 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
678 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
679 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
680 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
681
682 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
683 uint8_t val, bool trace);
684 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
685 uint16_t val, bool trace);
686 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
687 uint32_t val, bool trace);
688 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
689 uint64_t val, bool trace);
690 };
691
692 struct intel_uncore {
693 spinlock_t lock; /** lock is also taken in irq contexts. */
694
695 struct intel_uncore_funcs funcs;
696
697 unsigned fifo_count;
698 enum forcewake_domains fw_domains;
699
700 struct intel_uncore_forcewake_domain {
701 struct drm_i915_private *i915;
702 enum forcewake_domain_id id;
703 enum forcewake_domains mask;
704 unsigned wake_count;
705 struct hrtimer timer;
706 i915_reg_t reg_set;
707 u32 val_set;
708 u32 val_clear;
709 i915_reg_t reg_ack;
710 i915_reg_t reg_post;
711 u32 val_reset;
712 } fw_domain[FW_DOMAIN_ID_COUNT];
713
714 int unclaimed_mmio_check;
715 };
716
717 /* Iterate over initialised fw domains */
718 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
719 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
720 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
721 (domain__)++) \
722 for_each_if ((mask__) & (domain__)->mask)
723
724 #define for_each_fw_domain(domain__, dev_priv__) \
725 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
726
727 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
728 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
729 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
730
731 struct intel_csr {
732 struct work_struct work;
733 const char *fw_path;
734 uint32_t *dmc_payload;
735 uint32_t dmc_fw_size;
736 uint32_t version;
737 uint32_t mmio_count;
738 i915_reg_t mmioaddr[8];
739 uint32_t mmiodata[8];
740 uint32_t dc_state;
741 uint32_t allowed_dc_mask;
742 };
743
744 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
745 func(is_mobile) sep \
746 func(is_i85x) sep \
747 func(is_i915g) sep \
748 func(is_i945gm) sep \
749 func(is_g33) sep \
750 func(need_gfx_hws) sep \
751 func(is_g4x) sep \
752 func(is_pineview) sep \
753 func(is_broadwater) sep \
754 func(is_crestline) sep \
755 func(is_ivybridge) sep \
756 func(is_valleyview) sep \
757 func(is_cherryview) sep \
758 func(is_haswell) sep \
759 func(is_broadwell) sep \
760 func(is_skylake) sep \
761 func(is_broxton) sep \
762 func(is_kabylake) sep \
763 func(is_preliminary) sep \
764 func(has_fbc) sep \
765 func(has_pipe_cxsr) sep \
766 func(has_hotplug) sep \
767 func(cursor_needs_physical) sep \
768 func(has_overlay) sep \
769 func(overlay_needs_physical) sep \
770 func(supports_tv) sep \
771 func(has_llc) sep \
772 func(has_snoop) sep \
773 func(has_ddi) sep \
774 func(has_fpga_dbg) sep \
775 func(has_pooled_eu)
776
777 #define DEFINE_FLAG(name) u8 name:1
778 #define SEP_SEMICOLON ;
779
780 struct intel_device_info {
781 u32 display_mmio_offset;
782 u16 device_id;
783 u8 num_pipes;
784 u8 num_sprites[I915_MAX_PIPES];
785 u8 gen;
786 u16 gen_mask;
787 u8 ring_mask; /* Rings supported by the HW */
788 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
789 /* Register offsets for the various display pipes and transcoders */
790 int pipe_offsets[I915_MAX_TRANSCODERS];
791 int trans_offsets[I915_MAX_TRANSCODERS];
792 int palette_offsets[I915_MAX_PIPES];
793 int cursor_offsets[I915_MAX_PIPES];
794
795 /* Slice/subslice/EU info */
796 u8 slice_total;
797 u8 subslice_total;
798 u8 subslice_per_slice;
799 u8 eu_total;
800 u8 eu_per_subslice;
801 u8 min_eu_in_pool;
802 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
803 u8 subslice_7eu[3];
804 u8 has_slice_pg:1;
805 u8 has_subslice_pg:1;
806 u8 has_eu_pg:1;
807
808 struct color_luts {
809 u16 degamma_lut_size;
810 u16 gamma_lut_size;
811 } color;
812 };
813
814 #undef DEFINE_FLAG
815 #undef SEP_SEMICOLON
816
817 enum i915_cache_level {
818 I915_CACHE_NONE = 0,
819 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
820 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
821 caches, eg sampler/render caches, and the
822 large Last-Level-Cache. LLC is coherent with
823 the CPU, but L3 is only visible to the GPU. */
824 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
825 };
826
827 struct i915_ctx_hang_stats {
828 /* This context had batch pending when hang was declared */
829 unsigned batch_pending;
830
831 /* This context had batch active when hang was declared */
832 unsigned batch_active;
833
834 /* Time when this context was last blamed for a GPU reset */
835 unsigned long guilty_ts;
836
837 /* If the contexts causes a second GPU hang within this time,
838 * it is permanently banned from submitting any more work.
839 */
840 unsigned long ban_period_seconds;
841
842 /* This context is banned to submit more work */
843 bool banned;
844 };
845
846 /* This must match up with the value previously used for execbuf2.rsvd1. */
847 #define DEFAULT_CONTEXT_HANDLE 0
848
849 /**
850 * struct i915_gem_context - as the name implies, represents a context.
851 * @ref: reference count.
852 * @user_handle: userspace tracking identity for this context.
853 * @remap_slice: l3 row remapping information.
854 * @flags: context specific flags:
855 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
856 * @file_priv: filp associated with this context (NULL for global default
857 * context).
858 * @hang_stats: information about the role of this context in possible GPU
859 * hangs.
860 * @ppgtt: virtual memory space used by this context.
861 * @legacy_hw_ctx: render context backing object and whether it is correctly
862 * initialized (legacy ring submission mechanism only).
863 * @link: link in the global list of contexts.
864 *
865 * Contexts are memory images used by the hardware to store copies of their
866 * internal state.
867 */
868 struct i915_gem_context {
869 struct kref ref;
870 struct drm_i915_private *i915;
871 struct drm_i915_file_private *file_priv;
872 struct i915_hw_ppgtt *ppgtt;
873
874 struct i915_ctx_hang_stats hang_stats;
875
876 /* Unique identifier for this context, used by the hw for tracking */
877 unsigned long flags;
878 unsigned hw_id;
879 u32 user_handle;
880 #define CONTEXT_NO_ZEROMAP (1<<0)
881
882 u32 ggtt_alignment;
883
884 struct intel_context {
885 struct drm_i915_gem_object *state;
886 struct intel_ringbuffer *ringbuf;
887 struct i915_vma *lrc_vma;
888 uint32_t *lrc_reg_state;
889 u64 lrc_desc;
890 int pin_count;
891 bool initialised;
892 } engine[I915_NUM_ENGINES];
893 u32 ring_size;
894 u32 desc_template;
895 struct atomic_notifier_head status_notifier;
896 bool execlists_force_single_submission;
897
898 struct list_head link;
899
900 u8 remap_slice;
901 };
902
903 enum fb_op_origin {
904 ORIGIN_GTT,
905 ORIGIN_CPU,
906 ORIGIN_CS,
907 ORIGIN_FLIP,
908 ORIGIN_DIRTYFB,
909 };
910
911 struct intel_fbc {
912 /* This is always the inner lock when overlapping with struct_mutex and
913 * it's the outer lock when overlapping with stolen_lock. */
914 struct mutex lock;
915 unsigned threshold;
916 unsigned int possible_framebuffer_bits;
917 unsigned int busy_bits;
918 unsigned int visible_pipes_mask;
919 struct intel_crtc *crtc;
920
921 struct drm_mm_node compressed_fb;
922 struct drm_mm_node *compressed_llb;
923
924 bool false_color;
925
926 bool enabled;
927 bool active;
928
929 struct intel_fbc_state_cache {
930 struct {
931 unsigned int mode_flags;
932 uint32_t hsw_bdw_pixel_rate;
933 } crtc;
934
935 struct {
936 unsigned int rotation;
937 int src_w;
938 int src_h;
939 bool visible;
940 } plane;
941
942 struct {
943 u64 ilk_ggtt_offset;
944 uint32_t pixel_format;
945 unsigned int stride;
946 int fence_reg;
947 unsigned int tiling_mode;
948 } fb;
949 } state_cache;
950
951 struct intel_fbc_reg_params {
952 struct {
953 enum pipe pipe;
954 enum plane plane;
955 unsigned int fence_y_offset;
956 } crtc;
957
958 struct {
959 u64 ggtt_offset;
960 uint32_t pixel_format;
961 unsigned int stride;
962 int fence_reg;
963 } fb;
964
965 int cfb_size;
966 } params;
967
968 struct intel_fbc_work {
969 bool scheduled;
970 u32 scheduled_vblank;
971 struct work_struct work;
972 } work;
973
974 const char *no_fbc_reason;
975 };
976
977 /**
978 * HIGH_RR is the highest eDP panel refresh rate read from EDID
979 * LOW_RR is the lowest eDP panel refresh rate found from EDID
980 * parsing for same resolution.
981 */
982 enum drrs_refresh_rate_type {
983 DRRS_HIGH_RR,
984 DRRS_LOW_RR,
985 DRRS_MAX_RR, /* RR count */
986 };
987
988 enum drrs_support_type {
989 DRRS_NOT_SUPPORTED = 0,
990 STATIC_DRRS_SUPPORT = 1,
991 SEAMLESS_DRRS_SUPPORT = 2
992 };
993
994 struct intel_dp;
995 struct i915_drrs {
996 struct mutex mutex;
997 struct delayed_work work;
998 struct intel_dp *dp;
999 unsigned busy_frontbuffer_bits;
1000 enum drrs_refresh_rate_type refresh_rate_type;
1001 enum drrs_support_type type;
1002 };
1003
1004 struct i915_psr {
1005 struct mutex lock;
1006 bool sink_support;
1007 bool source_ok;
1008 struct intel_dp *enabled;
1009 bool active;
1010 struct delayed_work work;
1011 unsigned busy_frontbuffer_bits;
1012 bool psr2_support;
1013 bool aux_frame_sync;
1014 bool link_standby;
1015 };
1016
1017 enum intel_pch {
1018 PCH_NONE = 0, /* No PCH present */
1019 PCH_IBX, /* Ibexpeak PCH */
1020 PCH_CPT, /* Cougarpoint PCH */
1021 PCH_LPT, /* Lynxpoint PCH */
1022 PCH_SPT, /* Sunrisepoint PCH */
1023 PCH_NOP,
1024 };
1025
1026 enum intel_sbi_destination {
1027 SBI_ICLK,
1028 SBI_MPHY,
1029 };
1030
1031 #define QUIRK_PIPEA_FORCE (1<<0)
1032 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1033 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1034 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1035 #define QUIRK_PIPEB_FORCE (1<<4)
1036 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1037
1038 struct intel_fbdev;
1039 struct intel_fbc_work;
1040
1041 struct intel_gmbus {
1042 struct i2c_adapter adapter;
1043 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1044 u32 force_bit;
1045 u32 reg0;
1046 i915_reg_t gpio_reg;
1047 struct i2c_algo_bit_data bit_algo;
1048 struct drm_i915_private *dev_priv;
1049 };
1050
1051 struct i915_suspend_saved_registers {
1052 u32 saveDSPARB;
1053 u32 saveLVDS;
1054 u32 savePP_ON_DELAYS;
1055 u32 savePP_OFF_DELAYS;
1056 u32 savePP_ON;
1057 u32 savePP_OFF;
1058 u32 savePP_CONTROL;
1059 u32 savePP_DIVISOR;
1060 u32 saveFBC_CONTROL;
1061 u32 saveCACHE_MODE_0;
1062 u32 saveMI_ARB_STATE;
1063 u32 saveSWF0[16];
1064 u32 saveSWF1[16];
1065 u32 saveSWF3[3];
1066 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1067 u32 savePCH_PORT_HOTPLUG;
1068 u16 saveGCDGMBUS;
1069 };
1070
1071 struct vlv_s0ix_state {
1072 /* GAM */
1073 u32 wr_watermark;
1074 u32 gfx_prio_ctrl;
1075 u32 arb_mode;
1076 u32 gfx_pend_tlb0;
1077 u32 gfx_pend_tlb1;
1078 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1079 u32 media_max_req_count;
1080 u32 gfx_max_req_count;
1081 u32 render_hwsp;
1082 u32 ecochk;
1083 u32 bsd_hwsp;
1084 u32 blt_hwsp;
1085 u32 tlb_rd_addr;
1086
1087 /* MBC */
1088 u32 g3dctl;
1089 u32 gsckgctl;
1090 u32 mbctl;
1091
1092 /* GCP */
1093 u32 ucgctl1;
1094 u32 ucgctl3;
1095 u32 rcgctl1;
1096 u32 rcgctl2;
1097 u32 rstctl;
1098 u32 misccpctl;
1099
1100 /* GPM */
1101 u32 gfxpause;
1102 u32 rpdeuhwtc;
1103 u32 rpdeuc;
1104 u32 ecobus;
1105 u32 pwrdwnupctl;
1106 u32 rp_down_timeout;
1107 u32 rp_deucsw;
1108 u32 rcubmabdtmr;
1109 u32 rcedata;
1110 u32 spare2gh;
1111
1112 /* Display 1 CZ domain */
1113 u32 gt_imr;
1114 u32 gt_ier;
1115 u32 pm_imr;
1116 u32 pm_ier;
1117 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1118
1119 /* GT SA CZ domain */
1120 u32 tilectl;
1121 u32 gt_fifoctl;
1122 u32 gtlc_wake_ctrl;
1123 u32 gtlc_survive;
1124 u32 pmwgicz;
1125
1126 /* Display 2 CZ domain */
1127 u32 gu_ctl0;
1128 u32 gu_ctl1;
1129 u32 pcbr;
1130 u32 clock_gate_dis2;
1131 };
1132
1133 struct intel_rps_ei {
1134 u32 cz_clock;
1135 u32 render_c0;
1136 u32 media_c0;
1137 };
1138
1139 struct intel_gen6_power_mgmt {
1140 /*
1141 * work, interrupts_enabled and pm_iir are protected by
1142 * dev_priv->irq_lock
1143 */
1144 struct work_struct work;
1145 bool interrupts_enabled;
1146 u32 pm_iir;
1147
1148 u32 pm_intr_keep;
1149
1150 /* Frequencies are stored in potentially platform dependent multiples.
1151 * In other words, *_freq needs to be multiplied by X to be interesting.
1152 * Soft limits are those which are used for the dynamic reclocking done
1153 * by the driver (raise frequencies under heavy loads, and lower for
1154 * lighter loads). Hard limits are those imposed by the hardware.
1155 *
1156 * A distinction is made for overclocking, which is never enabled by
1157 * default, and is considered to be above the hard limit if it's
1158 * possible at all.
1159 */
1160 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1161 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1162 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1163 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1164 u8 min_freq; /* AKA RPn. Minimum frequency */
1165 u8 idle_freq; /* Frequency to request when we are idle */
1166 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1167 u8 rp1_freq; /* "less than" RP0 power/freqency */
1168 u8 rp0_freq; /* Non-overclocked max frequency. */
1169 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1170
1171 u8 up_threshold; /* Current %busy required to uplock */
1172 u8 down_threshold; /* Current %busy required to downclock */
1173
1174 int last_adj;
1175 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1176
1177 spinlock_t client_lock;
1178 struct list_head clients;
1179 bool client_boost;
1180
1181 bool enabled;
1182 struct delayed_work delayed_resume_work;
1183 unsigned boosts;
1184
1185 struct intel_rps_client semaphores, mmioflips;
1186
1187 /* manual wa residency calculations */
1188 struct intel_rps_ei up_ei, down_ei;
1189
1190 /*
1191 * Protects RPS/RC6 register access and PCU communication.
1192 * Must be taken after struct_mutex if nested. Note that
1193 * this lock may be held for long periods of time when
1194 * talking to hw - so only take it when talking to hw!
1195 */
1196 struct mutex hw_lock;
1197 };
1198
1199 /* defined intel_pm.c */
1200 extern spinlock_t mchdev_lock;
1201
1202 struct intel_ilk_power_mgmt {
1203 u8 cur_delay;
1204 u8 min_delay;
1205 u8 max_delay;
1206 u8 fmax;
1207 u8 fstart;
1208
1209 u64 last_count1;
1210 unsigned long last_time1;
1211 unsigned long chipset_power;
1212 u64 last_count2;
1213 u64 last_time2;
1214 unsigned long gfx_power;
1215 u8 corr;
1216
1217 int c_m;
1218 int r_t;
1219 };
1220
1221 struct drm_i915_private;
1222 struct i915_power_well;
1223
1224 struct i915_power_well_ops {
1225 /*
1226 * Synchronize the well's hw state to match the current sw state, for
1227 * example enable/disable it based on the current refcount. Called
1228 * during driver init and resume time, possibly after first calling
1229 * the enable/disable handlers.
1230 */
1231 void (*sync_hw)(struct drm_i915_private *dev_priv,
1232 struct i915_power_well *power_well);
1233 /*
1234 * Enable the well and resources that depend on it (for example
1235 * interrupts located on the well). Called after the 0->1 refcount
1236 * transition.
1237 */
1238 void (*enable)(struct drm_i915_private *dev_priv,
1239 struct i915_power_well *power_well);
1240 /*
1241 * Disable the well and resources that depend on it. Called after
1242 * the 1->0 refcount transition.
1243 */
1244 void (*disable)(struct drm_i915_private *dev_priv,
1245 struct i915_power_well *power_well);
1246 /* Returns the hw enabled state. */
1247 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1248 struct i915_power_well *power_well);
1249 };
1250
1251 /* Power well structure for haswell */
1252 struct i915_power_well {
1253 const char *name;
1254 bool always_on;
1255 /* power well enable/disable usage count */
1256 int count;
1257 /* cached hw enabled state */
1258 bool hw_enabled;
1259 unsigned long domains;
1260 unsigned long data;
1261 const struct i915_power_well_ops *ops;
1262 };
1263
1264 struct i915_power_domains {
1265 /*
1266 * Power wells needed for initialization at driver init and suspend
1267 * time are on. They are kept on until after the first modeset.
1268 */
1269 bool init_power_on;
1270 bool initializing;
1271 int power_well_count;
1272
1273 struct mutex lock;
1274 int domain_use_count[POWER_DOMAIN_NUM];
1275 struct i915_power_well *power_wells;
1276 };
1277
1278 #define MAX_L3_SLICES 2
1279 struct intel_l3_parity {
1280 u32 *remap_info[MAX_L3_SLICES];
1281 struct work_struct error_work;
1282 int which_slice;
1283 };
1284
1285 struct i915_gem_mm {
1286 /** Memory allocator for GTT stolen memory */
1287 struct drm_mm stolen;
1288 /** Protects the usage of the GTT stolen memory allocator. This is
1289 * always the inner lock when overlapping with struct_mutex. */
1290 struct mutex stolen_lock;
1291
1292 /** List of all objects in gtt_space. Used to restore gtt
1293 * mappings on resume */
1294 struct list_head bound_list;
1295 /**
1296 * List of objects which are not bound to the GTT (thus
1297 * are idle and not used by the GPU) but still have
1298 * (presumably uncached) pages still attached.
1299 */
1300 struct list_head unbound_list;
1301
1302 /** Usable portion of the GTT for GEM */
1303 unsigned long stolen_base; /* limited to low memory (32-bit) */
1304
1305 /** PPGTT used for aliasing the PPGTT with the GTT */
1306 struct i915_hw_ppgtt *aliasing_ppgtt;
1307
1308 struct notifier_block oom_notifier;
1309 struct notifier_block vmap_notifier;
1310 struct shrinker shrinker;
1311 bool shrinker_no_lock_stealing;
1312
1313 /** LRU list of objects with fence regs on them. */
1314 struct list_head fence_list;
1315
1316 /**
1317 * Are we in a non-interruptible section of code like
1318 * modesetting?
1319 */
1320 bool interruptible;
1321
1322 /* the indicator for dispatch video commands on two BSD rings */
1323 unsigned int bsd_ring_dispatch_index;
1324
1325 /** Bit 6 swizzling required for X tiling */
1326 uint32_t bit_6_swizzle_x;
1327 /** Bit 6 swizzling required for Y tiling */
1328 uint32_t bit_6_swizzle_y;
1329
1330 /* accounting, useful for userland debugging */
1331 spinlock_t object_stat_lock;
1332 size_t object_memory;
1333 u32 object_count;
1334 };
1335
1336 struct drm_i915_error_state_buf {
1337 struct drm_i915_private *i915;
1338 unsigned bytes;
1339 unsigned size;
1340 int err;
1341 u8 *buf;
1342 loff_t start;
1343 loff_t pos;
1344 };
1345
1346 struct i915_error_state_file_priv {
1347 struct drm_device *dev;
1348 struct drm_i915_error_state *error;
1349 };
1350
1351 struct i915_gpu_error {
1352 /* For hangcheck timer */
1353 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1354 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1355 /* Hang gpu twice in this window and your context gets banned */
1356 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1357
1358 struct delayed_work hangcheck_work;
1359
1360 /* For reset and error_state handling. */
1361 spinlock_t lock;
1362 /* Protected by the above dev->gpu_error.lock. */
1363 struct drm_i915_error_state *first_error;
1364
1365 unsigned long missed_irq_rings;
1366
1367 /**
1368 * State variable controlling the reset flow and count
1369 *
1370 * This is a counter which gets incremented when reset is triggered,
1371 * and again when reset has been handled. So odd values (lowest bit set)
1372 * means that reset is in progress and even values that
1373 * (reset_counter >> 1):th reset was successfully completed.
1374 *
1375 * If reset is not completed succesfully, the I915_WEDGE bit is
1376 * set meaning that hardware is terminally sour and there is no
1377 * recovery. All waiters on the reset_queue will be woken when
1378 * that happens.
1379 *
1380 * This counter is used by the wait_seqno code to notice that reset
1381 * event happened and it needs to restart the entire ioctl (since most
1382 * likely the seqno it waited for won't ever signal anytime soon).
1383 *
1384 * This is important for lock-free wait paths, where no contended lock
1385 * naturally enforces the correct ordering between the bail-out of the
1386 * waiter and the gpu reset work code.
1387 */
1388 atomic_t reset_counter;
1389
1390 #define I915_RESET_IN_PROGRESS_FLAG 1
1391 #define I915_WEDGED (1 << 31)
1392
1393 /**
1394 * Waitqueue to signal when a hang is detected. Used to for waiters
1395 * to release the struct_mutex for the reset to procede.
1396 */
1397 wait_queue_head_t wait_queue;
1398
1399 /**
1400 * Waitqueue to signal when the reset has completed. Used by clients
1401 * that wait for dev_priv->mm.wedged to settle.
1402 */
1403 wait_queue_head_t reset_queue;
1404
1405 /* For missed irq/seqno simulation. */
1406 unsigned long test_irq_rings;
1407 };
1408
1409 enum modeset_restore {
1410 MODESET_ON_LID_OPEN,
1411 MODESET_DONE,
1412 MODESET_SUSPENDED,
1413 };
1414
1415 #define DP_AUX_A 0x40
1416 #define DP_AUX_B 0x10
1417 #define DP_AUX_C 0x20
1418 #define DP_AUX_D 0x30
1419
1420 #define DDC_PIN_B 0x05
1421 #define DDC_PIN_C 0x04
1422 #define DDC_PIN_D 0x06
1423
1424 struct ddi_vbt_port_info {
1425 /*
1426 * This is an index in the HDMI/DVI DDI buffer translation table.
1427 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1428 * populate this field.
1429 */
1430 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1431 uint8_t hdmi_level_shift;
1432
1433 uint8_t supports_dvi:1;
1434 uint8_t supports_hdmi:1;
1435 uint8_t supports_dp:1;
1436
1437 uint8_t alternate_aux_channel;
1438 uint8_t alternate_ddc_pin;
1439
1440 uint8_t dp_boost_level;
1441 uint8_t hdmi_boost_level;
1442 };
1443
1444 enum psr_lines_to_wait {
1445 PSR_0_LINES_TO_WAIT = 0,
1446 PSR_1_LINE_TO_WAIT,
1447 PSR_4_LINES_TO_WAIT,
1448 PSR_8_LINES_TO_WAIT
1449 };
1450
1451 struct intel_vbt_data {
1452 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1453 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1454
1455 /* Feature bits */
1456 unsigned int int_tv_support:1;
1457 unsigned int lvds_dither:1;
1458 unsigned int lvds_vbt:1;
1459 unsigned int int_crt_support:1;
1460 unsigned int lvds_use_ssc:1;
1461 unsigned int display_clock_mode:1;
1462 unsigned int fdi_rx_polarity_inverted:1;
1463 unsigned int panel_type:4;
1464 int lvds_ssc_freq;
1465 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1466
1467 enum drrs_support_type drrs_type;
1468
1469 struct {
1470 int rate;
1471 int lanes;
1472 int preemphasis;
1473 int vswing;
1474 bool low_vswing;
1475 bool initialized;
1476 bool support;
1477 int bpp;
1478 struct edp_power_seq pps;
1479 } edp;
1480
1481 struct {
1482 bool full_link;
1483 bool require_aux_wakeup;
1484 int idle_frames;
1485 enum psr_lines_to_wait lines_to_wait;
1486 int tp1_wakeup_time;
1487 int tp2_tp3_wakeup_time;
1488 } psr;
1489
1490 struct {
1491 u16 pwm_freq_hz;
1492 bool present;
1493 bool active_low_pwm;
1494 u8 min_brightness; /* min_brightness/255 of max */
1495 enum intel_backlight_type type;
1496 } backlight;
1497
1498 /* MIPI DSI */
1499 struct {
1500 u16 panel_id;
1501 struct mipi_config *config;
1502 struct mipi_pps_data *pps;
1503 u8 seq_version;
1504 u32 size;
1505 u8 *data;
1506 const u8 *sequence[MIPI_SEQ_MAX];
1507 } dsi;
1508
1509 int crt_ddc_pin;
1510
1511 int child_dev_num;
1512 union child_device_config *child_dev;
1513
1514 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1515 struct sdvo_device_mapping sdvo_mappings[2];
1516 };
1517
1518 enum intel_ddb_partitioning {
1519 INTEL_DDB_PART_1_2,
1520 INTEL_DDB_PART_5_6, /* IVB+ */
1521 };
1522
1523 struct intel_wm_level {
1524 bool enable;
1525 uint32_t pri_val;
1526 uint32_t spr_val;
1527 uint32_t cur_val;
1528 uint32_t fbc_val;
1529 };
1530
1531 struct ilk_wm_values {
1532 uint32_t wm_pipe[3];
1533 uint32_t wm_lp[3];
1534 uint32_t wm_lp_spr[3];
1535 uint32_t wm_linetime[3];
1536 bool enable_fbc_wm;
1537 enum intel_ddb_partitioning partitioning;
1538 };
1539
1540 struct vlv_pipe_wm {
1541 uint16_t primary;
1542 uint16_t sprite[2];
1543 uint8_t cursor;
1544 };
1545
1546 struct vlv_sr_wm {
1547 uint16_t plane;
1548 uint8_t cursor;
1549 };
1550
1551 struct vlv_wm_values {
1552 struct vlv_pipe_wm pipe[3];
1553 struct vlv_sr_wm sr;
1554 struct {
1555 uint8_t cursor;
1556 uint8_t sprite[2];
1557 uint8_t primary;
1558 } ddl[3];
1559 uint8_t level;
1560 bool cxsr;
1561 };
1562
1563 struct skl_ddb_entry {
1564 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1565 };
1566
1567 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1568 {
1569 return entry->end - entry->start;
1570 }
1571
1572 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1573 const struct skl_ddb_entry *e2)
1574 {
1575 if (e1->start == e2->start && e1->end == e2->end)
1576 return true;
1577
1578 return false;
1579 }
1580
1581 struct skl_ddb_allocation {
1582 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1583 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1584 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1585 };
1586
1587 struct skl_wm_values {
1588 unsigned dirty_pipes;
1589 struct skl_ddb_allocation ddb;
1590 uint32_t wm_linetime[I915_MAX_PIPES];
1591 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1592 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1593 };
1594
1595 struct skl_wm_level {
1596 bool plane_en[I915_MAX_PLANES];
1597 uint16_t plane_res_b[I915_MAX_PLANES];
1598 uint8_t plane_res_l[I915_MAX_PLANES];
1599 };
1600
1601 /*
1602 * This struct helps tracking the state needed for runtime PM, which puts the
1603 * device in PCI D3 state. Notice that when this happens, nothing on the
1604 * graphics device works, even register access, so we don't get interrupts nor
1605 * anything else.
1606 *
1607 * Every piece of our code that needs to actually touch the hardware needs to
1608 * either call intel_runtime_pm_get or call intel_display_power_get with the
1609 * appropriate power domain.
1610 *
1611 * Our driver uses the autosuspend delay feature, which means we'll only really
1612 * suspend if we stay with zero refcount for a certain amount of time. The
1613 * default value is currently very conservative (see intel_runtime_pm_enable), but
1614 * it can be changed with the standard runtime PM files from sysfs.
1615 *
1616 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1617 * goes back to false exactly before we reenable the IRQs. We use this variable
1618 * to check if someone is trying to enable/disable IRQs while they're supposed
1619 * to be disabled. This shouldn't happen and we'll print some error messages in
1620 * case it happens.
1621 *
1622 * For more, read the Documentation/power/runtime_pm.txt.
1623 */
1624 struct i915_runtime_pm {
1625 atomic_t wakeref_count;
1626 atomic_t atomic_seq;
1627 bool suspended;
1628 bool irqs_enabled;
1629 };
1630
1631 enum intel_pipe_crc_source {
1632 INTEL_PIPE_CRC_SOURCE_NONE,
1633 INTEL_PIPE_CRC_SOURCE_PLANE1,
1634 INTEL_PIPE_CRC_SOURCE_PLANE2,
1635 INTEL_PIPE_CRC_SOURCE_PF,
1636 INTEL_PIPE_CRC_SOURCE_PIPE,
1637 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1638 INTEL_PIPE_CRC_SOURCE_TV,
1639 INTEL_PIPE_CRC_SOURCE_DP_B,
1640 INTEL_PIPE_CRC_SOURCE_DP_C,
1641 INTEL_PIPE_CRC_SOURCE_DP_D,
1642 INTEL_PIPE_CRC_SOURCE_AUTO,
1643 INTEL_PIPE_CRC_SOURCE_MAX,
1644 };
1645
1646 struct intel_pipe_crc_entry {
1647 uint32_t frame;
1648 uint32_t crc[5];
1649 };
1650
1651 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1652 struct intel_pipe_crc {
1653 spinlock_t lock;
1654 bool opened; /* exclusive access to the result file */
1655 struct intel_pipe_crc_entry *entries;
1656 enum intel_pipe_crc_source source;
1657 int head, tail;
1658 wait_queue_head_t wq;
1659 };
1660
1661 struct i915_frontbuffer_tracking {
1662 struct mutex lock;
1663
1664 /*
1665 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1666 * scheduled flips.
1667 */
1668 unsigned busy_bits;
1669 unsigned flip_bits;
1670 };
1671
1672 struct i915_wa_reg {
1673 i915_reg_t addr;
1674 u32 value;
1675 /* bitmask representing WA bits */
1676 u32 mask;
1677 };
1678
1679 /*
1680 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1681 * allowing it for RCS as we don't foresee any requirement of having
1682 * a whitelist for other engines. When it is really required for
1683 * other engines then the limit need to be increased.
1684 */
1685 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1686
1687 struct i915_workarounds {
1688 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1689 u32 count;
1690 u32 hw_whitelist_count[I915_NUM_ENGINES];
1691 };
1692
1693 struct i915_virtual_gpu {
1694 bool active;
1695 };
1696
1697 struct i915_execbuffer_params {
1698 struct drm_device *dev;
1699 struct drm_file *file;
1700 uint32_t dispatch_flags;
1701 uint32_t args_batch_start_offset;
1702 uint64_t batch_obj_vm_offset;
1703 struct intel_engine_cs *engine;
1704 struct drm_i915_gem_object *batch_obj;
1705 struct i915_gem_context *ctx;
1706 struct drm_i915_gem_request *request;
1707 };
1708
1709 /* used in computing the new watermarks state */
1710 struct intel_wm_config {
1711 unsigned int num_pipes_active;
1712 bool sprites_enabled;
1713 bool sprites_scaled;
1714 };
1715
1716 struct drm_i915_private {
1717 struct drm_device drm;
1718
1719 struct drm_device *dev;
1720 struct kmem_cache *objects;
1721 struct kmem_cache *vmas;
1722 struct kmem_cache *requests;
1723
1724 const struct intel_device_info info;
1725
1726 int relative_constants_mode;
1727
1728 void __iomem *regs;
1729
1730 struct intel_uncore uncore;
1731
1732 struct i915_virtual_gpu vgpu;
1733
1734 struct intel_gvt gvt;
1735
1736 struct intel_guc guc;
1737
1738 struct intel_csr csr;
1739
1740 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1741
1742 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1743 * controller on different i2c buses. */
1744 struct mutex gmbus_mutex;
1745
1746 /**
1747 * Base address of the gmbus and gpio block.
1748 */
1749 uint32_t gpio_mmio_base;
1750
1751 /* MMIO base address for MIPI regs */
1752 uint32_t mipi_mmio_base;
1753
1754 uint32_t psr_mmio_base;
1755
1756 wait_queue_head_t gmbus_wait_queue;
1757
1758 struct pci_dev *bridge_dev;
1759 struct i915_gem_context *kernel_context;
1760 struct intel_engine_cs engine[I915_NUM_ENGINES];
1761 struct drm_i915_gem_object *semaphore_obj;
1762 uint32_t last_seqno, next_seqno;
1763
1764 struct drm_dma_handle *status_page_dmah;
1765 struct resource mch_res;
1766
1767 /* protects the irq masks */
1768 spinlock_t irq_lock;
1769
1770 /* protects the mmio flip data */
1771 spinlock_t mmio_flip_lock;
1772
1773 bool display_irqs_enabled;
1774
1775 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1776 struct pm_qos_request pm_qos;
1777
1778 /* Sideband mailbox protection */
1779 struct mutex sb_lock;
1780
1781 /** Cached value of IMR to avoid reads in updating the bitfield */
1782 union {
1783 u32 irq_mask;
1784 u32 de_irq_mask[I915_MAX_PIPES];
1785 };
1786 u32 gt_irq_mask;
1787 u32 pm_irq_mask;
1788 u32 pm_rps_events;
1789 u32 pipestat_irq_mask[I915_MAX_PIPES];
1790
1791 struct i915_hotplug hotplug;
1792 struct intel_fbc fbc;
1793 struct i915_drrs drrs;
1794 struct intel_opregion opregion;
1795 struct intel_vbt_data vbt;
1796
1797 bool preserve_bios_swizzle;
1798
1799 /* overlay */
1800 struct intel_overlay *overlay;
1801
1802 /* backlight registers and fields in struct intel_panel */
1803 struct mutex backlight_lock;
1804
1805 /* LVDS info */
1806 bool no_aux_handshake;
1807
1808 /* protects panel power sequencer state */
1809 struct mutex pps_mutex;
1810
1811 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1812 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1813
1814 unsigned int fsb_freq, mem_freq, is_ddr3;
1815 unsigned int skl_preferred_vco_freq;
1816 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1817 unsigned int max_dotclk_freq;
1818 unsigned int rawclk_freq;
1819 unsigned int hpll_freq;
1820 unsigned int czclk_freq;
1821
1822 struct {
1823 unsigned int vco, ref;
1824 } cdclk_pll;
1825
1826 /**
1827 * wq - Driver workqueue for GEM.
1828 *
1829 * NOTE: Work items scheduled here are not allowed to grab any modeset
1830 * locks, for otherwise the flushing done in the pageflip code will
1831 * result in deadlocks.
1832 */
1833 struct workqueue_struct *wq;
1834
1835 /* Display functions */
1836 struct drm_i915_display_funcs display;
1837
1838 /* PCH chipset type */
1839 enum intel_pch pch_type;
1840 unsigned short pch_id;
1841
1842 unsigned long quirks;
1843
1844 enum modeset_restore modeset_restore;
1845 struct mutex modeset_restore_lock;
1846 struct drm_atomic_state *modeset_restore_state;
1847
1848 struct list_head vm_list; /* Global list of all address spaces */
1849 struct i915_ggtt ggtt; /* VM representing the global address space */
1850
1851 struct i915_gem_mm mm;
1852 DECLARE_HASHTABLE(mm_structs, 7);
1853 struct mutex mm_lock;
1854
1855 /* The hw wants to have a stable context identifier for the lifetime
1856 * of the context (for OA, PASID, faults, etc). This is limited
1857 * in execlists to 21 bits.
1858 */
1859 struct ida context_hw_ida;
1860 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1861
1862 /* Kernel Modesetting */
1863
1864 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1865 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1866 wait_queue_head_t pending_flip_queue;
1867
1868 #ifdef CONFIG_DEBUG_FS
1869 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1870 #endif
1871
1872 /* dpll and cdclk state is protected by connection_mutex */
1873 int num_shared_dpll;
1874 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1875 const struct intel_dpll_mgr *dpll_mgr;
1876
1877 /*
1878 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1879 * Must be global rather than per dpll, because on some platforms
1880 * plls share registers.
1881 */
1882 struct mutex dpll_lock;
1883
1884 unsigned int active_crtcs;
1885 unsigned int min_pixclk[I915_MAX_PIPES];
1886
1887 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1888
1889 struct i915_workarounds workarounds;
1890
1891 struct i915_frontbuffer_tracking fb_tracking;
1892
1893 u16 orig_clock;
1894
1895 bool mchbar_need_disable;
1896
1897 struct intel_l3_parity l3_parity;
1898
1899 /* Cannot be determined by PCIID. You must always read a register. */
1900 u32 edram_cap;
1901
1902 /* gen6+ rps state */
1903 struct intel_gen6_power_mgmt rps;
1904
1905 /* ilk-only ips/rps state. Everything in here is protected by the global
1906 * mchdev_lock in intel_pm.c */
1907 struct intel_ilk_power_mgmt ips;
1908
1909 struct i915_power_domains power_domains;
1910
1911 struct i915_psr psr;
1912
1913 struct i915_gpu_error gpu_error;
1914
1915 struct drm_i915_gem_object *vlv_pctx;
1916
1917 #ifdef CONFIG_DRM_FBDEV_EMULATION
1918 /* list of fbdev register on this device */
1919 struct intel_fbdev *fbdev;
1920 struct work_struct fbdev_suspend_work;
1921 #endif
1922
1923 struct drm_property *broadcast_rgb_property;
1924 struct drm_property *force_audio_property;
1925
1926 /* hda/i915 audio component */
1927 struct i915_audio_component *audio_component;
1928 bool audio_component_registered;
1929 /**
1930 * av_mutex - mutex for audio/video sync
1931 *
1932 */
1933 struct mutex av_mutex;
1934
1935 uint32_t hw_context_size;
1936 struct list_head context_list;
1937
1938 u32 fdi_rx_config;
1939
1940 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1941 u32 chv_phy_control;
1942 /*
1943 * Shadows for CHV DPLL_MD regs to keep the state
1944 * checker somewhat working in the presence hardware
1945 * crappiness (can't read out DPLL_MD for pipes B & C).
1946 */
1947 u32 chv_dpll_md[I915_MAX_PIPES];
1948 u32 bxt_phy_grc;
1949
1950 u32 suspend_count;
1951 bool suspended_to_idle;
1952 struct i915_suspend_saved_registers regfile;
1953 struct vlv_s0ix_state vlv_s0ix_state;
1954
1955 struct {
1956 /*
1957 * Raw watermark latency values:
1958 * in 0.1us units for WM0,
1959 * in 0.5us units for WM1+.
1960 */
1961 /* primary */
1962 uint16_t pri_latency[5];
1963 /* sprite */
1964 uint16_t spr_latency[5];
1965 /* cursor */
1966 uint16_t cur_latency[5];
1967 /*
1968 * Raw watermark memory latency values
1969 * for SKL for all 8 levels
1970 * in 1us units.
1971 */
1972 uint16_t skl_latency[8];
1973
1974 /*
1975 * The skl_wm_values structure is a bit too big for stack
1976 * allocation, so we keep the staging struct where we store
1977 * intermediate results here instead.
1978 */
1979 struct skl_wm_values skl_results;
1980
1981 /* current hardware state */
1982 union {
1983 struct ilk_wm_values hw;
1984 struct skl_wm_values skl_hw;
1985 struct vlv_wm_values vlv;
1986 };
1987
1988 uint8_t max_level;
1989
1990 /*
1991 * Should be held around atomic WM register writing; also
1992 * protects * intel_crtc->wm.active and
1993 * cstate->wm.need_postvbl_update.
1994 */
1995 struct mutex wm_mutex;
1996
1997 /*
1998 * Set during HW readout of watermarks/DDB. Some platforms
1999 * need to know when we're still using BIOS-provided values
2000 * (which we don't fully trust).
2001 */
2002 bool distrust_bios_wm;
2003 } wm;
2004
2005 struct i915_runtime_pm pm;
2006
2007 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2008 struct {
2009 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2010 struct drm_i915_gem_execbuffer2 *args,
2011 struct list_head *vmas);
2012 int (*init_engines)(struct drm_device *dev);
2013 void (*cleanup_engine)(struct intel_engine_cs *engine);
2014 void (*stop_engine)(struct intel_engine_cs *engine);
2015
2016 /**
2017 * Is the GPU currently considered idle, or busy executing
2018 * userspace requests? Whilst idle, we allow runtime power
2019 * management to power down the hardware and display clocks.
2020 * In order to reduce the effect on performance, there
2021 * is a slight delay before we do so.
2022 */
2023 unsigned int active_engines;
2024 bool awake;
2025
2026 /**
2027 * We leave the user IRQ off as much as possible,
2028 * but this means that requests will finish and never
2029 * be retired once the system goes idle. Set a timer to
2030 * fire periodically while the ring is running. When it
2031 * fires, go retire requests.
2032 */
2033 struct delayed_work retire_work;
2034
2035 /**
2036 * When we detect an idle GPU, we want to turn on
2037 * powersaving features. So once we see that there
2038 * are no more requests outstanding and no more
2039 * arrive within a small period of time, we fire
2040 * off the idle_work.
2041 */
2042 struct delayed_work idle_work;
2043 } gt;
2044
2045 /* perform PHY state sanity checks? */
2046 bool chv_phy_assert[2];
2047
2048 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2049
2050 /*
2051 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2052 * will be rejected. Instead look for a better place.
2053 */
2054 };
2055
2056 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2057 {
2058 return container_of(dev, struct drm_i915_private, drm);
2059 }
2060
2061 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2062 {
2063 return to_i915(dev_get_drvdata(dev));
2064 }
2065
2066 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2067 {
2068 return container_of(guc, struct drm_i915_private, guc);
2069 }
2070
2071 /* Simple iterator over all initialised engines */
2072 #define for_each_engine(engine__, dev_priv__) \
2073 for ((engine__) = &(dev_priv__)->engine[0]; \
2074 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2075 (engine__)++) \
2076 for_each_if (intel_engine_initialized(engine__))
2077
2078 /* Iterator with engine_id */
2079 #define for_each_engine_id(engine__, dev_priv__, id__) \
2080 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2081 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2082 (engine__)++) \
2083 for_each_if (((id__) = (engine__)->id, \
2084 intel_engine_initialized(engine__)))
2085
2086 /* Iterator over subset of engines selected by mask */
2087 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2088 for ((engine__) = &(dev_priv__)->engine[0]; \
2089 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2090 (engine__)++) \
2091 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2092 intel_engine_initialized(engine__))
2093
2094 enum hdmi_force_audio {
2095 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2096 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2097 HDMI_AUDIO_AUTO, /* trust EDID */
2098 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2099 };
2100
2101 #define I915_GTT_OFFSET_NONE ((u32)-1)
2102
2103 struct drm_i915_gem_object_ops {
2104 unsigned int flags;
2105 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2106
2107 /* Interface between the GEM object and its backing storage.
2108 * get_pages() is called once prior to the use of the associated set
2109 * of pages before to binding them into the GTT, and put_pages() is
2110 * called after we no longer need them. As we expect there to be
2111 * associated cost with migrating pages between the backing storage
2112 * and making them available for the GPU (e.g. clflush), we may hold
2113 * onto the pages after they are no longer referenced by the GPU
2114 * in case they may be used again shortly (for example migrating the
2115 * pages to a different memory domain within the GTT). put_pages()
2116 * will therefore most likely be called when the object itself is
2117 * being released or under memory pressure (where we attempt to
2118 * reap pages for the shrinker).
2119 */
2120 int (*get_pages)(struct drm_i915_gem_object *);
2121 void (*put_pages)(struct drm_i915_gem_object *);
2122
2123 int (*dmabuf_export)(struct drm_i915_gem_object *);
2124 void (*release)(struct drm_i915_gem_object *);
2125 };
2126
2127 /*
2128 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2129 * considered to be the frontbuffer for the given plane interface-wise. This
2130 * doesn't mean that the hw necessarily already scans it out, but that any
2131 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2132 *
2133 * We have one bit per pipe and per scanout plane type.
2134 */
2135 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2136 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2137 #define INTEL_FRONTBUFFER_BITS \
2138 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2139 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2140 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2141 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2142 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2143 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2144 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2145 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2146 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2147 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2148 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2149
2150 struct drm_i915_gem_object {
2151 struct drm_gem_object base;
2152
2153 const struct drm_i915_gem_object_ops *ops;
2154
2155 /** List of VMAs backed by this object */
2156 struct list_head vma_list;
2157
2158 /** Stolen memory for this object, instead of being backed by shmem. */
2159 struct drm_mm_node *stolen;
2160 struct list_head global_list;
2161
2162 struct list_head engine_list[I915_NUM_ENGINES];
2163 /** Used in execbuf to temporarily hold a ref */
2164 struct list_head obj_exec_link;
2165
2166 struct list_head batch_pool_link;
2167
2168 /**
2169 * This is set if the object is on the active lists (has pending
2170 * rendering and so a non-zero seqno), and is not set if it i s on
2171 * inactive (ready to be unbound) list.
2172 */
2173 unsigned int active:I915_NUM_ENGINES;
2174
2175 /**
2176 * This is set if the object has been written to since last bound
2177 * to the GTT
2178 */
2179 unsigned int dirty:1;
2180
2181 /**
2182 * Fence register bits (if any) for this object. Will be set
2183 * as needed when mapped into the GTT.
2184 * Protected by dev->struct_mutex.
2185 */
2186 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2187
2188 /**
2189 * Advice: are the backing pages purgeable?
2190 */
2191 unsigned int madv:2;
2192
2193 /**
2194 * Current tiling mode for the object.
2195 */
2196 unsigned int tiling_mode:2;
2197 /**
2198 * Whether the tiling parameters for the currently associated fence
2199 * register have changed. Note that for the purposes of tracking
2200 * tiling changes we also treat the unfenced register, the register
2201 * slot that the object occupies whilst it executes a fenced
2202 * command (such as BLT on gen2/3), as a "fence".
2203 */
2204 unsigned int fence_dirty:1;
2205
2206 /**
2207 * Is the object at the current location in the gtt mappable and
2208 * fenceable? Used to avoid costly recalculations.
2209 */
2210 unsigned int map_and_fenceable:1;
2211
2212 /**
2213 * Whether the current gtt mapping needs to be mappable (and isn't just
2214 * mappable by accident). Track pin and fault separate for a more
2215 * accurate mappable working set.
2216 */
2217 unsigned int fault_mappable:1;
2218
2219 /*
2220 * Is the object to be mapped as read-only to the GPU
2221 * Only honoured if hardware has relevant pte bit
2222 */
2223 unsigned long gt_ro:1;
2224 unsigned int cache_level:3;
2225 unsigned int cache_dirty:1;
2226
2227 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2228
2229 unsigned int has_wc_mmap;
2230 unsigned int pin_display;
2231
2232 struct sg_table *pages;
2233 int pages_pin_count;
2234 struct get_page {
2235 struct scatterlist *sg;
2236 int last;
2237 } get_page;
2238 void *mapping;
2239
2240 /** Breadcrumb of last rendering to the buffer.
2241 * There can only be one writer, but we allow for multiple readers.
2242 * If there is a writer that necessarily implies that all other
2243 * read requests are complete - but we may only be lazily clearing
2244 * the read requests. A read request is naturally the most recent
2245 * request on a ring, so we may have two different write and read
2246 * requests on one ring where the write request is older than the
2247 * read request. This allows for the CPU to read from an active
2248 * buffer by only waiting for the write to complete.
2249 * */
2250 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2251 struct drm_i915_gem_request *last_write_req;
2252 /** Breadcrumb of last fenced GPU access to the buffer. */
2253 struct drm_i915_gem_request *last_fenced_req;
2254
2255 /** Current tiling stride for the object, if it's tiled. */
2256 uint32_t stride;
2257
2258 /** References from framebuffers, locks out tiling changes. */
2259 unsigned long framebuffer_references;
2260
2261 /** Record of address bit 17 of each page at last unbind. */
2262 unsigned long *bit_17;
2263
2264 union {
2265 /** for phy allocated objects */
2266 struct drm_dma_handle *phys_handle;
2267
2268 struct i915_gem_userptr {
2269 uintptr_t ptr;
2270 unsigned read_only :1;
2271 unsigned workers :4;
2272 #define I915_GEM_USERPTR_MAX_WORKERS 15
2273
2274 struct i915_mm_struct *mm;
2275 struct i915_mmu_object *mmu_object;
2276 struct work_struct *work;
2277 } userptr;
2278 };
2279 };
2280 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2281
2282 static inline bool
2283 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2284 {
2285 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2286 }
2287
2288 /*
2289 * Optimised SGL iterator for GEM objects
2290 */
2291 static __always_inline struct sgt_iter {
2292 struct scatterlist *sgp;
2293 union {
2294 unsigned long pfn;
2295 dma_addr_t dma;
2296 };
2297 unsigned int curr;
2298 unsigned int max;
2299 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2300 struct sgt_iter s = { .sgp = sgl };
2301
2302 if (s.sgp) {
2303 s.max = s.curr = s.sgp->offset;
2304 s.max += s.sgp->length;
2305 if (dma)
2306 s.dma = sg_dma_address(s.sgp);
2307 else
2308 s.pfn = page_to_pfn(sg_page(s.sgp));
2309 }
2310
2311 return s;
2312 }
2313
2314 /**
2315 * __sg_next - return the next scatterlist entry in a list
2316 * @sg: The current sg entry
2317 *
2318 * Description:
2319 * If the entry is the last, return NULL; otherwise, step to the next
2320 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2321 * otherwise just return the pointer to the current element.
2322 **/
2323 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2324 {
2325 #ifdef CONFIG_DEBUG_SG
2326 BUG_ON(sg->sg_magic != SG_MAGIC);
2327 #endif
2328 return sg_is_last(sg) ? NULL :
2329 likely(!sg_is_chain(++sg)) ? sg :
2330 sg_chain_ptr(sg);
2331 }
2332
2333 /**
2334 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2335 * @__dmap: DMA address (output)
2336 * @__iter: 'struct sgt_iter' (iterator state, internal)
2337 * @__sgt: sg_table to iterate over (input)
2338 */
2339 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2340 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2341 ((__dmap) = (__iter).dma + (__iter).curr); \
2342 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2343 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2344
2345 /**
2346 * for_each_sgt_page - iterate over the pages of the given sg_table
2347 * @__pp: page pointer (output)
2348 * @__iter: 'struct sgt_iter' (iterator state, internal)
2349 * @__sgt: sg_table to iterate over (input)
2350 */
2351 #define for_each_sgt_page(__pp, __iter, __sgt) \
2352 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2353 ((__pp) = (__iter).pfn == 0 ? NULL : \
2354 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2355 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2356 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2357
2358 /**
2359 * Request queue structure.
2360 *
2361 * The request queue allows us to note sequence numbers that have been emitted
2362 * and may be associated with active buffers to be retired.
2363 *
2364 * By keeping this list, we can avoid having to do questionable sequence
2365 * number comparisons on buffer last_read|write_seqno. It also allows an
2366 * emission time to be associated with the request for tracking how far ahead
2367 * of the GPU the submission is.
2368 *
2369 * The requests are reference counted, so upon creation they should have an
2370 * initial reference taken using kref_init
2371 */
2372 struct drm_i915_gem_request {
2373 struct kref ref;
2374
2375 /** On Which ring this request was generated */
2376 struct drm_i915_private *i915;
2377 struct intel_engine_cs *engine;
2378 struct intel_signal_node signaling;
2379
2380 /** GEM sequence number associated with the previous request,
2381 * when the HWS breadcrumb is equal to this the GPU is processing
2382 * this request.
2383 */
2384 u32 previous_seqno;
2385
2386 /** GEM sequence number associated with this request,
2387 * when the HWS breadcrumb is equal or greater than this the GPU
2388 * has finished processing this request.
2389 */
2390 u32 seqno;
2391
2392 /** Position in the ringbuffer of the start of the request */
2393 u32 head;
2394
2395 /**
2396 * Position in the ringbuffer of the start of the postfix.
2397 * This is required to calculate the maximum available ringbuffer
2398 * space without overwriting the postfix.
2399 */
2400 u32 postfix;
2401
2402 /** Position in the ringbuffer of the end of the whole request */
2403 u32 tail;
2404
2405 /** Preallocate space in the ringbuffer for the emitting the request */
2406 u32 reserved_space;
2407
2408 /**
2409 * Context and ring buffer related to this request
2410 * Contexts are refcounted, so when this request is associated with a
2411 * context, we must increment the context's refcount, to guarantee that
2412 * it persists while any request is linked to it. Requests themselves
2413 * are also refcounted, so the request will only be freed when the last
2414 * reference to it is dismissed, and the code in
2415 * i915_gem_request_free() will then decrement the refcount on the
2416 * context.
2417 */
2418 struct i915_gem_context *ctx;
2419 struct intel_ringbuffer *ringbuf;
2420
2421 /**
2422 * Context related to the previous request.
2423 * As the contexts are accessed by the hardware until the switch is
2424 * completed to a new context, the hardware may still be writing
2425 * to the context object after the breadcrumb is visible. We must
2426 * not unpin/unbind/prune that object whilst still active and so
2427 * we keep the previous context pinned until the following (this)
2428 * request is retired.
2429 */
2430 struct i915_gem_context *previous_context;
2431
2432 /** Batch buffer related to this request if any (used for
2433 error state dump only) */
2434 struct drm_i915_gem_object *batch_obj;
2435
2436 /** Time at which this request was emitted, in jiffies. */
2437 unsigned long emitted_jiffies;
2438
2439 /** global list entry for this request */
2440 struct list_head list;
2441
2442 struct drm_i915_file_private *file_priv;
2443 /** file_priv list entry for this request */
2444 struct list_head client_list;
2445
2446 /** process identifier submitting this request */
2447 struct pid *pid;
2448
2449 /**
2450 * The ELSP only accepts two elements at a time, so we queue
2451 * context/tail pairs on a given queue (ring->execlist_queue) until the
2452 * hardware is available. The queue serves a double purpose: we also use
2453 * it to keep track of the up to 2 contexts currently in the hardware
2454 * (usually one in execution and the other queued up by the GPU): We
2455 * only remove elements from the head of the queue when the hardware
2456 * informs us that an element has been completed.
2457 *
2458 * All accesses to the queue are mediated by a spinlock
2459 * (ring->execlist_lock).
2460 */
2461
2462 /** Execlist link in the submission queue.*/
2463 struct list_head execlist_link;
2464
2465 /** Execlists no. of times this request has been sent to the ELSP */
2466 int elsp_submitted;
2467
2468 /** Execlists context hardware id. */
2469 unsigned ctx_hw_id;
2470 };
2471
2472 struct drm_i915_gem_request * __must_check
2473 i915_gem_request_alloc(struct intel_engine_cs *engine,
2474 struct i915_gem_context *ctx);
2475 void i915_gem_request_free(struct kref *req_ref);
2476 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2477 struct drm_file *file);
2478
2479 static inline uint32_t
2480 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2481 {
2482 return req ? req->seqno : 0;
2483 }
2484
2485 static inline struct intel_engine_cs *
2486 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2487 {
2488 return req ? req->engine : NULL;
2489 }
2490
2491 static inline struct drm_i915_gem_request *
2492 i915_gem_request_reference(struct drm_i915_gem_request *req)
2493 {
2494 if (req)
2495 kref_get(&req->ref);
2496 return req;
2497 }
2498
2499 static inline void
2500 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2501 {
2502 kref_put(&req->ref, i915_gem_request_free);
2503 }
2504
2505 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2506 struct drm_i915_gem_request *src)
2507 {
2508 if (src)
2509 i915_gem_request_reference(src);
2510
2511 if (*pdst)
2512 i915_gem_request_unreference(*pdst);
2513
2514 *pdst = src;
2515 }
2516
2517 /*
2518 * XXX: i915_gem_request_completed should be here but currently needs the
2519 * definition of i915_seqno_passed() which is below. It will be moved in
2520 * a later patch when the call to i915_seqno_passed() is obsoleted...
2521 */
2522
2523 /*
2524 * A command that requires special handling by the command parser.
2525 */
2526 struct drm_i915_cmd_descriptor {
2527 /*
2528 * Flags describing how the command parser processes the command.
2529 *
2530 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2531 * a length mask if not set
2532 * CMD_DESC_SKIP: The command is allowed but does not follow the
2533 * standard length encoding for the opcode range in
2534 * which it falls
2535 * CMD_DESC_REJECT: The command is never allowed
2536 * CMD_DESC_REGISTER: The command should be checked against the
2537 * register whitelist for the appropriate ring
2538 * CMD_DESC_MASTER: The command is allowed if the submitting process
2539 * is the DRM master
2540 */
2541 u32 flags;
2542 #define CMD_DESC_FIXED (1<<0)
2543 #define CMD_DESC_SKIP (1<<1)
2544 #define CMD_DESC_REJECT (1<<2)
2545 #define CMD_DESC_REGISTER (1<<3)
2546 #define CMD_DESC_BITMASK (1<<4)
2547 #define CMD_DESC_MASTER (1<<5)
2548
2549 /*
2550 * The command's unique identification bits and the bitmask to get them.
2551 * This isn't strictly the opcode field as defined in the spec and may
2552 * also include type, subtype, and/or subop fields.
2553 */
2554 struct {
2555 u32 value;
2556 u32 mask;
2557 } cmd;
2558
2559 /*
2560 * The command's length. The command is either fixed length (i.e. does
2561 * not include a length field) or has a length field mask. The flag
2562 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2563 * a length mask. All command entries in a command table must include
2564 * length information.
2565 */
2566 union {
2567 u32 fixed;
2568 u32 mask;
2569 } length;
2570
2571 /*
2572 * Describes where to find a register address in the command to check
2573 * against the ring's register whitelist. Only valid if flags has the
2574 * CMD_DESC_REGISTER bit set.
2575 *
2576 * A non-zero step value implies that the command may access multiple
2577 * registers in sequence (e.g. LRI), in that case step gives the
2578 * distance in dwords between individual offset fields.
2579 */
2580 struct {
2581 u32 offset;
2582 u32 mask;
2583 u32 step;
2584 } reg;
2585
2586 #define MAX_CMD_DESC_BITMASKS 3
2587 /*
2588 * Describes command checks where a particular dword is masked and
2589 * compared against an expected value. If the command does not match
2590 * the expected value, the parser rejects it. Only valid if flags has
2591 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2592 * are valid.
2593 *
2594 * If the check specifies a non-zero condition_mask then the parser
2595 * only performs the check when the bits specified by condition_mask
2596 * are non-zero.
2597 */
2598 struct {
2599 u32 offset;
2600 u32 mask;
2601 u32 expected;
2602 u32 condition_offset;
2603 u32 condition_mask;
2604 } bits[MAX_CMD_DESC_BITMASKS];
2605 };
2606
2607 /*
2608 * A table of commands requiring special handling by the command parser.
2609 *
2610 * Each ring has an array of tables. Each table consists of an array of command
2611 * descriptors, which must be sorted with command opcodes in ascending order.
2612 */
2613 struct drm_i915_cmd_table {
2614 const struct drm_i915_cmd_descriptor *table;
2615 int count;
2616 };
2617
2618 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2619 #define __I915__(p) ({ \
2620 struct drm_i915_private *__p; \
2621 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2622 __p = (struct drm_i915_private *)p; \
2623 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2624 __p = to_i915((struct drm_device *)p); \
2625 else \
2626 BUILD_BUG(); \
2627 __p; \
2628 })
2629 #define INTEL_INFO(p) (&__I915__(p)->info)
2630 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2631 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2632
2633 #define REVID_FOREVER 0xff
2634 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2635
2636 #define GEN_FOREVER (0)
2637 /*
2638 * Returns true if Gen is in inclusive range [Start, End].
2639 *
2640 * Use GEN_FOREVER for unbound start and or end.
2641 */
2642 #define IS_GEN(p, s, e) ({ \
2643 unsigned int __s = (s), __e = (e); \
2644 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2645 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2646 if ((__s) != GEN_FOREVER) \
2647 __s = (s) - 1; \
2648 if ((__e) == GEN_FOREVER) \
2649 __e = BITS_PER_LONG - 1; \
2650 else \
2651 __e = (e) - 1; \
2652 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2653 })
2654
2655 /*
2656 * Return true if revision is in range [since,until] inclusive.
2657 *
2658 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2659 */
2660 #define IS_REVID(p, since, until) \
2661 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2662
2663 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2664 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2665 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2666 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2667 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2668 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2669 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2670 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2671 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2672 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2673 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2674 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2675 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2676 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2677 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2678 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2679 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2680 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2681 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2682 INTEL_DEVID(dev) == 0x0152 || \
2683 INTEL_DEVID(dev) == 0x015a)
2684 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2685 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2686 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2687 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2688 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2689 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2690 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2691 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2692 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2693 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2694 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2695 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2696 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2697 (INTEL_DEVID(dev) & 0xf) == 0xe))
2698 /* ULX machines are also considered ULT. */
2699 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2700 (INTEL_DEVID(dev) & 0xf) == 0xe)
2701 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2702 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2703 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2704 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2705 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2706 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2707 /* ULX machines are also considered ULT. */
2708 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2709 INTEL_DEVID(dev) == 0x0A1E)
2710 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2711 INTEL_DEVID(dev) == 0x1913 || \
2712 INTEL_DEVID(dev) == 0x1916 || \
2713 INTEL_DEVID(dev) == 0x1921 || \
2714 INTEL_DEVID(dev) == 0x1926)
2715 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2716 INTEL_DEVID(dev) == 0x1915 || \
2717 INTEL_DEVID(dev) == 0x191E)
2718 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2719 INTEL_DEVID(dev) == 0x5913 || \
2720 INTEL_DEVID(dev) == 0x5916 || \
2721 INTEL_DEVID(dev) == 0x5921 || \
2722 INTEL_DEVID(dev) == 0x5926)
2723 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2724 INTEL_DEVID(dev) == 0x5915 || \
2725 INTEL_DEVID(dev) == 0x591E)
2726 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2727 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2728 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2729 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2730
2731 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2732
2733 #define SKL_REVID_A0 0x0
2734 #define SKL_REVID_B0 0x1
2735 #define SKL_REVID_C0 0x2
2736 #define SKL_REVID_D0 0x3
2737 #define SKL_REVID_E0 0x4
2738 #define SKL_REVID_F0 0x5
2739
2740 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2741
2742 #define BXT_REVID_A0 0x0
2743 #define BXT_REVID_A1 0x1
2744 #define BXT_REVID_B0 0x3
2745 #define BXT_REVID_C0 0x9
2746
2747 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2748
2749 #define KBL_REVID_A0 0x0
2750 #define KBL_REVID_B0 0x1
2751 #define KBL_REVID_C0 0x2
2752 #define KBL_REVID_D0 0x3
2753 #define KBL_REVID_E0 0x4
2754
2755 #define IS_KBL_REVID(p, since, until) \
2756 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2757
2758 /*
2759 * The genX designation typically refers to the render engine, so render
2760 * capability related checks should use IS_GEN, while display and other checks
2761 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2762 * chips, etc.).
2763 */
2764 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen_mask & BIT(1))
2765 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen_mask & BIT(2))
2766 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen_mask & BIT(3))
2767 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen_mask & BIT(4))
2768 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen_mask & BIT(5))
2769 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen_mask & BIT(6))
2770 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen_mask & BIT(7))
2771 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen_mask & BIT(8))
2772
2773 #define ENGINE_MASK(id) BIT(id)
2774 #define RENDER_RING ENGINE_MASK(RCS)
2775 #define BSD_RING ENGINE_MASK(VCS)
2776 #define BLT_RING ENGINE_MASK(BCS)
2777 #define VEBOX_RING ENGINE_MASK(VECS)
2778 #define BSD2_RING ENGINE_MASK(VCS2)
2779 #define ALL_ENGINES (~0)
2780
2781 #define HAS_ENGINE(dev_priv, id) \
2782 (INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))
2783
2784 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2785 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2786 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2787 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2788
2789 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2790 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2791 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
2792 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2793 HAS_EDRAM(dev))
2794 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2795
2796 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2797 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2798 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2799 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2800 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2801
2802 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2803 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2804
2805 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2806 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2807
2808 /* WaRsDisableCoarsePowerGating:skl,bxt */
2809 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2810 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2811 IS_SKL_GT3(dev_priv) || \
2812 IS_SKL_GT4(dev_priv))
2813
2814 /*
2815 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2816 * even when in MSI mode. This results in spurious interrupt warnings if the
2817 * legacy irq no. is shared with another device. The kernel then disables that
2818 * interrupt source and so prevents the other device from working properly.
2819 */
2820 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2821 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2822
2823 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2824 * rows, which changed the alignment requirements and fence programming.
2825 */
2826 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2827 IS_I915GM(dev)))
2828 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2829 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2830
2831 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2832 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2833 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2834
2835 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2836
2837 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2838 INTEL_INFO(dev)->gen >= 9)
2839
2840 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2841 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2842 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2843 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2844 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2845 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2846 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2847 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2848 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2849 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2850 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2851
2852 #define HAS_CSR(dev) (IS_GEN9(dev))
2853
2854 /*
2855 * For now, anything with a GuC requires uCode loading, and then supports
2856 * command submission once loaded. But these are logically independent
2857 * properties, so we have separate macros to test them.
2858 */
2859 #define HAS_GUC(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2860 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2861 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2862
2863 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2864 INTEL_INFO(dev)->gen >= 8)
2865
2866 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2867 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2868 !IS_BROXTON(dev))
2869
2870 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2871
2872 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2873 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2874 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2875 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2876 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2877 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2878 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2879 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2880 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2881 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2882 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2883
2884 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2885 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2886 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2887 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2888 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2889 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2890 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2891 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2892 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2893
2894 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2895 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2896
2897 /* DPF == dynamic parity feature */
2898 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2899 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2900
2901 #define GT_FREQUENCY_MULTIPLIER 50
2902 #define GEN9_FREQ_SCALER 3
2903
2904 #include "i915_trace.h"
2905
2906 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2907 extern int i915_resume_switcheroo(struct drm_device *dev);
2908
2909 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2910 int enable_ppgtt);
2911
2912 /* i915_drv.c */
2913 void __printf(3, 4)
2914 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2915 const char *fmt, ...);
2916
2917 #define i915_report_error(dev_priv, fmt, ...) \
2918 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2919
2920 #ifdef CONFIG_COMPAT
2921 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2922 unsigned long arg);
2923 #endif
2924 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2925 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2926 extern int i915_reset(struct drm_i915_private *dev_priv);
2927 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2928 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2929 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2930 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2931 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2932 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2933 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2934
2935 /* intel_hotplug.c */
2936 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2937 u32 pin_mask, u32 long_mask);
2938 void intel_hpd_init(struct drm_i915_private *dev_priv);
2939 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2940 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2941 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2942
2943 /* i915_irq.c */
2944 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2945 {
2946 unsigned long delay;
2947
2948 if (unlikely(!i915.enable_hangcheck))
2949 return;
2950
2951 /* Don't continually defer the hangcheck so that it is always run at
2952 * least once after work has been scheduled on any ring. Otherwise,
2953 * we will ignore a hung ring if a second ring is kept busy.
2954 */
2955
2956 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2957 queue_delayed_work(system_long_wq,
2958 &dev_priv->gpu_error.hangcheck_work, delay);
2959 }
2960
2961 __printf(3, 4)
2962 void i915_handle_error(struct drm_i915_private *dev_priv,
2963 u32 engine_mask,
2964 const char *fmt, ...);
2965
2966 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2967 int intel_irq_install(struct drm_i915_private *dev_priv);
2968 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2969
2970 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2971 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2972 bool restore_forcewake);
2973 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2974 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2975 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2976 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2977 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2978 bool restore);
2979 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2980 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2981 enum forcewake_domains domains);
2982 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2983 enum forcewake_domains domains);
2984 /* Like above but the caller must manage the uncore.lock itself.
2985 * Must be used with I915_READ_FW and friends.
2986 */
2987 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2988 enum forcewake_domains domains);
2989 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2990 enum forcewake_domains domains);
2991 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2992
2993 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2994
2995 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2996 i915_reg_t reg,
2997 const u32 mask,
2998 const u32 value,
2999 const unsigned long timeout_ms);
3000 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3001 i915_reg_t reg,
3002 const u32 mask,
3003 const u32 value,
3004 const unsigned long timeout_ms);
3005
3006 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3007 {
3008 return dev_priv->gvt.initialized;
3009 }
3010
3011 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3012 {
3013 return dev_priv->vgpu.active;
3014 }
3015
3016 void
3017 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3018 u32 status_mask);
3019
3020 void
3021 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3022 u32 status_mask);
3023
3024 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3025 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3026 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3027 uint32_t mask,
3028 uint32_t bits);
3029 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3030 uint32_t interrupt_mask,
3031 uint32_t enabled_irq_mask);
3032 static inline void
3033 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3034 {
3035 ilk_update_display_irq(dev_priv, bits, bits);
3036 }
3037 static inline void
3038 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3039 {
3040 ilk_update_display_irq(dev_priv, bits, 0);
3041 }
3042 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3043 enum pipe pipe,
3044 uint32_t interrupt_mask,
3045 uint32_t enabled_irq_mask);
3046 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3047 enum pipe pipe, uint32_t bits)
3048 {
3049 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3050 }
3051 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3052 enum pipe pipe, uint32_t bits)
3053 {
3054 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3055 }
3056 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3057 uint32_t interrupt_mask,
3058 uint32_t enabled_irq_mask);
3059 static inline void
3060 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3061 {
3062 ibx_display_interrupt_update(dev_priv, bits, bits);
3063 }
3064 static inline void
3065 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3066 {
3067 ibx_display_interrupt_update(dev_priv, bits, 0);
3068 }
3069
3070 /* i915_gem.c */
3071 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3072 struct drm_file *file_priv);
3073 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3074 struct drm_file *file_priv);
3075 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3076 struct drm_file *file_priv);
3077 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3078 struct drm_file *file_priv);
3079 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3080 struct drm_file *file_priv);
3081 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3082 struct drm_file *file_priv);
3083 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3084 struct drm_file *file_priv);
3085 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3086 struct drm_i915_gem_request *req);
3087 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3088 struct drm_i915_gem_execbuffer2 *args,
3089 struct list_head *vmas);
3090 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3091 struct drm_file *file_priv);
3092 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3093 struct drm_file *file_priv);
3094 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3095 struct drm_file *file_priv);
3096 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file);
3098 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file);
3100 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file_priv);
3102 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file_priv);
3104 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3109 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3110 struct drm_file *file);
3111 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3112 struct drm_file *file_priv);
3113 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3114 struct drm_file *file_priv);
3115 void i915_gem_load_init(struct drm_device *dev);
3116 void i915_gem_load_cleanup(struct drm_device *dev);
3117 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3118 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3119
3120 void *i915_gem_object_alloc(struct drm_device *dev);
3121 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3122 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3123 const struct drm_i915_gem_object_ops *ops);
3124 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3125 size_t size);
3126 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3127 struct drm_device *dev, const void *data, size_t size);
3128 void i915_gem_free_object(struct drm_gem_object *obj);
3129 void i915_gem_vma_destroy(struct i915_vma *vma);
3130
3131 /* Flags used by pin/bind&friends. */
3132 #define PIN_MAPPABLE (1<<0)
3133 #define PIN_NONBLOCK (1<<1)
3134 #define PIN_GLOBAL (1<<2)
3135 #define PIN_OFFSET_BIAS (1<<3)
3136 #define PIN_USER (1<<4)
3137 #define PIN_UPDATE (1<<5)
3138 #define PIN_ZONE_4G (1<<6)
3139 #define PIN_HIGH (1<<7)
3140 #define PIN_OFFSET_FIXED (1<<8)
3141 #define PIN_OFFSET_MASK (~4095)
3142 int __must_check
3143 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3144 struct i915_address_space *vm,
3145 uint32_t alignment,
3146 uint64_t flags);
3147 int __must_check
3148 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3149 const struct i915_ggtt_view *view,
3150 uint32_t alignment,
3151 uint64_t flags);
3152
3153 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3154 u32 flags);
3155 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3156 int __must_check i915_vma_unbind(struct i915_vma *vma);
3157 /*
3158 * BEWARE: Do not use the function below unless you can _absolutely_
3159 * _guarantee_ VMA in question is _not in use_ anywhere.
3160 */
3161 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3162 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3163 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3164 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3165
3166 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3167 int *needs_clflush);
3168
3169 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3170
3171 static inline int __sg_page_count(struct scatterlist *sg)
3172 {
3173 return sg->length >> PAGE_SHIFT;
3174 }
3175
3176 struct page *
3177 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3178
3179 static inline dma_addr_t
3180 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3181 {
3182 if (n < obj->get_page.last) {
3183 obj->get_page.sg = obj->pages->sgl;
3184 obj->get_page.last = 0;
3185 }
3186
3187 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3188 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3189 if (unlikely(sg_is_chain(obj->get_page.sg)))
3190 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3191 }
3192
3193 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3194 }
3195
3196 static inline struct page *
3197 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3198 {
3199 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3200 return NULL;
3201
3202 if (n < obj->get_page.last) {
3203 obj->get_page.sg = obj->pages->sgl;
3204 obj->get_page.last = 0;
3205 }
3206
3207 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3208 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3209 if (unlikely(sg_is_chain(obj->get_page.sg)))
3210 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3211 }
3212
3213 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3214 }
3215
3216 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3217 {
3218 BUG_ON(obj->pages == NULL);
3219 obj->pages_pin_count++;
3220 }
3221
3222 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3223 {
3224 BUG_ON(obj->pages_pin_count == 0);
3225 obj->pages_pin_count--;
3226 }
3227
3228 /**
3229 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3230 * @obj - the object to map into kernel address space
3231 *
3232 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3233 * pages and then returns a contiguous mapping of the backing storage into
3234 * the kernel address space.
3235 *
3236 * The caller must hold the struct_mutex, and is responsible for calling
3237 * i915_gem_object_unpin_map() when the mapping is no longer required.
3238 *
3239 * Returns the pointer through which to access the mapped object, or an
3240 * ERR_PTR() on error.
3241 */
3242 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3243
3244 /**
3245 * i915_gem_object_unpin_map - releases an earlier mapping
3246 * @obj - the object to unmap
3247 *
3248 * After pinning the object and mapping its pages, once you are finished
3249 * with your access, call i915_gem_object_unpin_map() to release the pin
3250 * upon the mapping. Once the pin count reaches zero, that mapping may be
3251 * removed.
3252 *
3253 * The caller must hold the struct_mutex.
3254 */
3255 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3256 {
3257 lockdep_assert_held(&obj->base.dev->struct_mutex);
3258 i915_gem_object_unpin_pages(obj);
3259 }
3260
3261 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3262 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3263 struct intel_engine_cs *to,
3264 struct drm_i915_gem_request **to_req);
3265 void i915_vma_move_to_active(struct i915_vma *vma,
3266 struct drm_i915_gem_request *req);
3267 int i915_gem_dumb_create(struct drm_file *file_priv,
3268 struct drm_device *dev,
3269 struct drm_mode_create_dumb *args);
3270 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3271 uint32_t handle, uint64_t *offset);
3272
3273 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3274 struct drm_i915_gem_object *new,
3275 unsigned frontbuffer_bits);
3276
3277 /**
3278 * Returns true if seq1 is later than seq2.
3279 */
3280 static inline bool
3281 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3282 {
3283 return (int32_t)(seq1 - seq2) >= 0;
3284 }
3285
3286 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3287 {
3288 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3289 req->previous_seqno);
3290 }
3291
3292 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3293 {
3294 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3295 req->seqno);
3296 }
3297
3298 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3299 int state, unsigned long timeout_us);
3300 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3301 int state, unsigned long timeout_us)
3302 {
3303 return (i915_gem_request_started(request) &&
3304 __i915_spin_request(request, state, timeout_us));
3305 }
3306
3307 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3308 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3309
3310 struct drm_i915_gem_request *
3311 i915_gem_find_active_request(struct intel_engine_cs *engine);
3312
3313 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3314 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3315
3316 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3317 {
3318 return atomic_read(&error->reset_counter);
3319 }
3320
3321 static inline bool __i915_reset_in_progress(u32 reset)
3322 {
3323 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3324 }
3325
3326 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3327 {
3328 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3329 }
3330
3331 static inline bool __i915_terminally_wedged(u32 reset)
3332 {
3333 return unlikely(reset & I915_WEDGED);
3334 }
3335
3336 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3337 {
3338 return __i915_reset_in_progress(i915_reset_counter(error));
3339 }
3340
3341 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3342 {
3343 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3344 }
3345
3346 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3347 {
3348 return __i915_terminally_wedged(i915_reset_counter(error));
3349 }
3350
3351 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3352 {
3353 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3354 }
3355
3356 void i915_gem_reset(struct drm_device *dev);
3357 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3358 int __must_check i915_gem_init(struct drm_device *dev);
3359 int i915_gem_init_engines(struct drm_device *dev);
3360 int __must_check i915_gem_init_hw(struct drm_device *dev);
3361 void i915_gem_init_swizzling(struct drm_device *dev);
3362 void i915_gem_cleanup_engines(struct drm_device *dev);
3363 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3364 int __must_check i915_gem_suspend(struct drm_device *dev);
3365 void __i915_add_request(struct drm_i915_gem_request *req,
3366 struct drm_i915_gem_object *batch_obj,
3367 bool flush_caches);
3368 #define i915_add_request(req) \
3369 __i915_add_request(req, NULL, true)
3370 #define i915_add_request_no_flush(req) \
3371 __i915_add_request(req, NULL, false)
3372 int __i915_wait_request(struct drm_i915_gem_request *req,
3373 bool interruptible,
3374 s64 *timeout,
3375 struct intel_rps_client *rps);
3376 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3377 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3378 int __must_check
3379 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3380 bool readonly);
3381 int __must_check
3382 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3383 bool write);
3384 int __must_check
3385 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3386 int __must_check
3387 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3388 u32 alignment,
3389 const struct i915_ggtt_view *view);
3390 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3391 const struct i915_ggtt_view *view);
3392 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3393 int align);
3394 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3395 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3396
3397 uint32_t
3398 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3399 uint32_t
3400 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3401 int tiling_mode, bool fenced);
3402
3403 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3404 enum i915_cache_level cache_level);
3405
3406 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3407 struct dma_buf *dma_buf);
3408
3409 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3410 struct drm_gem_object *gem_obj, int flags);
3411
3412 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3413 const struct i915_ggtt_view *view);
3414 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3415 struct i915_address_space *vm);
3416 static inline u64
3417 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3418 {
3419 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3420 }
3421
3422 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3423 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3424 const struct i915_ggtt_view *view);
3425 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3426 struct i915_address_space *vm);
3427
3428 struct i915_vma *
3429 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3430 struct i915_address_space *vm);
3431 struct i915_vma *
3432 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3433 const struct i915_ggtt_view *view);
3434
3435 struct i915_vma *
3436 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3437 struct i915_address_space *vm);
3438 struct i915_vma *
3439 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3440 const struct i915_ggtt_view *view);
3441
3442 static inline struct i915_vma *
3443 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3444 {
3445 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3446 }
3447 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3448
3449 /* Some GGTT VM helpers */
3450 static inline struct i915_hw_ppgtt *
3451 i915_vm_to_ppgtt(struct i915_address_space *vm)
3452 {
3453 return container_of(vm, struct i915_hw_ppgtt, base);
3454 }
3455
3456
3457 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3458 {
3459 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3460 }
3461
3462 unsigned long
3463 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3464
3465 static inline int __must_check
3466 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3467 uint32_t alignment,
3468 unsigned flags)
3469 {
3470 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3471 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3472
3473 return i915_gem_object_pin(obj, &ggtt->base,
3474 alignment, flags | PIN_GLOBAL);
3475 }
3476
3477 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3478 const struct i915_ggtt_view *view);
3479 static inline void
3480 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3481 {
3482 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3483 }
3484
3485 /* i915_gem_fence.c */
3486 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3487 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3488
3489 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3490 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3491
3492 void i915_gem_restore_fences(struct drm_device *dev);
3493
3494 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3495 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3496 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3497
3498 /* i915_gem_context.c */
3499 int __must_check i915_gem_context_init(struct drm_device *dev);
3500 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3501 void i915_gem_context_fini(struct drm_device *dev);
3502 void i915_gem_context_reset(struct drm_device *dev);
3503 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3504 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3505 int i915_switch_context(struct drm_i915_gem_request *req);
3506 void i915_gem_context_free(struct kref *ctx_ref);
3507 struct drm_i915_gem_object *
3508 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3509 struct i915_gem_context *
3510 i915_gem_context_create_gvt(struct drm_device *dev);
3511
3512 static inline struct i915_gem_context *
3513 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3514 {
3515 struct i915_gem_context *ctx;
3516
3517 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3518
3519 ctx = idr_find(&file_priv->context_idr, id);
3520 if (!ctx)
3521 return ERR_PTR(-ENOENT);
3522
3523 return ctx;
3524 }
3525
3526 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3527 {
3528 kref_get(&ctx->ref);
3529 }
3530
3531 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3532 {
3533 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3534 kref_put(&ctx->ref, i915_gem_context_free);
3535 }
3536
3537 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3538 {
3539 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3540 }
3541
3542 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file);
3544 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file);
3546 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3547 struct drm_file *file_priv);
3548 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3549 struct drm_file *file_priv);
3550 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3551 struct drm_file *file);
3552
3553 /* i915_gem_evict.c */
3554 int __must_check i915_gem_evict_something(struct drm_device *dev,
3555 struct i915_address_space *vm,
3556 int min_size,
3557 unsigned alignment,
3558 unsigned cache_level,
3559 unsigned long start,
3560 unsigned long end,
3561 unsigned flags);
3562 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3563 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3564
3565 /* belongs in i915_gem_gtt.h */
3566 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3567 {
3568 if (INTEL_GEN(dev_priv) < 6)
3569 intel_gtt_chipset_flush();
3570 }
3571
3572 /* i915_gem_stolen.c */
3573 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3574 struct drm_mm_node *node, u64 size,
3575 unsigned alignment);
3576 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3577 struct drm_mm_node *node, u64 size,
3578 unsigned alignment, u64 start,
3579 u64 end);
3580 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3581 struct drm_mm_node *node);
3582 int i915_gem_init_stolen(struct drm_device *dev);
3583 void i915_gem_cleanup_stolen(struct drm_device *dev);
3584 struct drm_i915_gem_object *
3585 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3586 struct drm_i915_gem_object *
3587 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3588 u32 stolen_offset,
3589 u32 gtt_offset,
3590 u32 size);
3591
3592 /* i915_gem_shrinker.c */
3593 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3594 unsigned long target,
3595 unsigned flags);
3596 #define I915_SHRINK_PURGEABLE 0x1
3597 #define I915_SHRINK_UNBOUND 0x2
3598 #define I915_SHRINK_BOUND 0x4
3599 #define I915_SHRINK_ACTIVE 0x8
3600 #define I915_SHRINK_VMAPS 0x10
3601 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3602 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3603 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3604
3605
3606 /* i915_gem_tiling.c */
3607 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3608 {
3609 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3610
3611 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3612 obj->tiling_mode != I915_TILING_NONE;
3613 }
3614
3615 /* i915_gem_debug.c */
3616 #if WATCH_LISTS
3617 int i915_verify_lists(struct drm_device *dev);
3618 #else
3619 #define i915_verify_lists(dev) 0
3620 #endif
3621
3622 /* i915_debugfs.c */
3623 #ifdef CONFIG_DEBUG_FS
3624 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3625 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3626 int i915_debugfs_connector_add(struct drm_connector *connector);
3627 void intel_display_crc_init(struct drm_device *dev);
3628 #else
3629 static inline int i915_debugfs_register(struct drm_i915_private *) {return 0;}
3630 static inline void i915_debugfs_unregister(struct drm_i915_private *) {}
3631 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3632 { return 0; }
3633 static inline void intel_display_crc_init(struct drm_device *dev) {}
3634 #endif
3635
3636 /* i915_gpu_error.c */
3637 __printf(2, 3)
3638 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3639 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3640 const struct i915_error_state_file_priv *error);
3641 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3642 struct drm_i915_private *i915,
3643 size_t count, loff_t pos);
3644 static inline void i915_error_state_buf_release(
3645 struct drm_i915_error_state_buf *eb)
3646 {
3647 kfree(eb->buf);
3648 }
3649 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3650 u32 engine_mask,
3651 const char *error_msg);
3652 void i915_error_state_get(struct drm_device *dev,
3653 struct i915_error_state_file_priv *error_priv);
3654 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3655 void i915_destroy_error_state(struct drm_device *dev);
3656
3657 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3658 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3659
3660 /* i915_cmd_parser.c */
3661 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3662 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3663 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3664 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3665 int i915_parse_cmds(struct intel_engine_cs *engine,
3666 struct drm_i915_gem_object *batch_obj,
3667 struct drm_i915_gem_object *shadow_batch_obj,
3668 u32 batch_start_offset,
3669 u32 batch_len,
3670 bool is_master);
3671
3672 /* i915_suspend.c */
3673 extern int i915_save_state(struct drm_device *dev);
3674 extern int i915_restore_state(struct drm_device *dev);
3675
3676 /* i915_sysfs.c */
3677 void i915_setup_sysfs(struct drm_device *dev_priv);
3678 void i915_teardown_sysfs(struct drm_device *dev_priv);
3679
3680 /* intel_i2c.c */
3681 extern int intel_setup_gmbus(struct drm_device *dev);
3682 extern void intel_teardown_gmbus(struct drm_device *dev);
3683 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3684 unsigned int pin);
3685
3686 extern struct i2c_adapter *
3687 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3688 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3689 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3690 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3691 {
3692 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3693 }
3694 extern void intel_i2c_reset(struct drm_device *dev);
3695
3696 /* intel_bios.c */
3697 int intel_bios_init(struct drm_i915_private *dev_priv);
3698 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3699 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3700 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3701 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3702 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3703 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3704 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3705 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3706 enum port port);
3707
3708 /* intel_opregion.c */
3709 #ifdef CONFIG_ACPI
3710 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3711 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3712 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3713 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3714 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3715 bool enable);
3716 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3717 pci_power_t state);
3718 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3719 #else
3720 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3721 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3722 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3723 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3724 {
3725 }
3726 static inline int
3727 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3728 {
3729 return 0;
3730 }
3731 static inline int
3732 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3733 {
3734 return 0;
3735 }
3736 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3737 {
3738 return -ENODEV;
3739 }
3740 #endif
3741
3742 /* intel_acpi.c */
3743 #ifdef CONFIG_ACPI
3744 extern void intel_register_dsm_handler(void);
3745 extern void intel_unregister_dsm_handler(void);
3746 #else
3747 static inline void intel_register_dsm_handler(void) { return; }
3748 static inline void intel_unregister_dsm_handler(void) { return; }
3749 #endif /* CONFIG_ACPI */
3750
3751 /* modesetting */
3752 extern void intel_modeset_init_hw(struct drm_device *dev);
3753 extern void intel_modeset_init(struct drm_device *dev);
3754 extern void intel_modeset_gem_init(struct drm_device *dev);
3755 extern void intel_modeset_cleanup(struct drm_device *dev);
3756 extern int intel_connector_register(struct drm_connector *);
3757 extern void intel_connector_unregister(struct drm_connector *);
3758 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3759 extern void intel_display_resume(struct drm_device *dev);
3760 extern void i915_redisable_vga(struct drm_device *dev);
3761 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3762 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3763 extern void intel_init_pch_refclk(struct drm_device *dev);
3764 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3765 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3766 bool enable);
3767
3768 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3769 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3770 struct drm_file *file);
3771
3772 /* overlay */
3773 extern struct intel_overlay_error_state *
3774 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3775 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3776 struct intel_overlay_error_state *error);
3777
3778 extern struct intel_display_error_state *
3779 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3780 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3781 struct drm_device *dev,
3782 struct intel_display_error_state *error);
3783
3784 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3785 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3786
3787 /* intel_sideband.c */
3788 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3789 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3790 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3791 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3792 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3793 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3794 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3795 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3796 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3797 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3798 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3799 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3800 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3801 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3802 enum intel_sbi_destination destination);
3803 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3804 enum intel_sbi_destination destination);
3805 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3806 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3807
3808 /* intel_dpio_phy.c */
3809 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3810 u32 deemph_reg_value, u32 margin_reg_value,
3811 bool uniq_trans_scale);
3812 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3813 bool reset);
3814 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3815 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3816 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3817 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3818
3819 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3820 u32 demph_reg_value, u32 preemph_reg_value,
3821 u32 uniqtranscale_reg_value, u32 tx3_demph);
3822 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3823 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3824 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3825
3826 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3827 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3828
3829 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3830 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3831
3832 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3833 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3834 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3835 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3836
3837 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3838 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3839 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3840 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3841
3842 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3843 * will be implemented using 2 32-bit writes in an arbitrary order with
3844 * an arbitrary delay between them. This can cause the hardware to
3845 * act upon the intermediate value, possibly leading to corruption and
3846 * machine death. You have been warned.
3847 */
3848 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3849 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3850
3851 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3852 u32 upper, lower, old_upper, loop = 0; \
3853 upper = I915_READ(upper_reg); \
3854 do { \
3855 old_upper = upper; \
3856 lower = I915_READ(lower_reg); \
3857 upper = I915_READ(upper_reg); \
3858 } while (upper != old_upper && loop++ < 2); \
3859 (u64)upper << 32 | lower; })
3860
3861 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3862 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3863
3864 #define __raw_read(x, s) \
3865 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3866 i915_reg_t reg) \
3867 { \
3868 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3869 }
3870
3871 #define __raw_write(x, s) \
3872 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3873 i915_reg_t reg, uint##x##_t val) \
3874 { \
3875 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3876 }
3877 __raw_read(8, b)
3878 __raw_read(16, w)
3879 __raw_read(32, l)
3880 __raw_read(64, q)
3881
3882 __raw_write(8, b)
3883 __raw_write(16, w)
3884 __raw_write(32, l)
3885 __raw_write(64, q)
3886
3887 #undef __raw_read
3888 #undef __raw_write
3889
3890 /* These are untraced mmio-accessors that are only valid to be used inside
3891 * criticial sections inside IRQ handlers where forcewake is explicitly
3892 * controlled.
3893 * Think twice, and think again, before using these.
3894 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3895 * intel_uncore_forcewake_irqunlock().
3896 */
3897 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3898 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3899 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3900 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3901
3902 /* "Broadcast RGB" property */
3903 #define INTEL_BROADCAST_RGB_AUTO 0
3904 #define INTEL_BROADCAST_RGB_FULL 1
3905 #define INTEL_BROADCAST_RGB_LIMITED 2
3906
3907 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3908 {
3909 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3910 return VLV_VGACNTRL;
3911 else if (INTEL_INFO(dev)->gen >= 5)
3912 return CPU_VGACNTRL;
3913 else
3914 return VGACNTRL;
3915 }
3916
3917 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3918 {
3919 unsigned long j = msecs_to_jiffies(m);
3920
3921 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3922 }
3923
3924 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3925 {
3926 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3927 }
3928
3929 static inline unsigned long
3930 timespec_to_jiffies_timeout(const struct timespec *value)
3931 {
3932 unsigned long j = timespec_to_jiffies(value);
3933
3934 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3935 }
3936
3937 /*
3938 * If you need to wait X milliseconds between events A and B, but event B
3939 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3940 * when event A happened, then just before event B you call this function and
3941 * pass the timestamp as the first argument, and X as the second argument.
3942 */
3943 static inline void
3944 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3945 {
3946 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3947
3948 /*
3949 * Don't re-read the value of "jiffies" every time since it may change
3950 * behind our back and break the math.
3951 */
3952 tmp_jiffies = jiffies;
3953 target_jiffies = timestamp_jiffies +
3954 msecs_to_jiffies_timeout(to_wait_ms);
3955
3956 if (time_after(target_jiffies, tmp_jiffies)) {
3957 remaining_jiffies = target_jiffies - tmp_jiffies;
3958 while (remaining_jiffies)
3959 remaining_jiffies =
3960 schedule_timeout_uninterruptible(remaining_jiffies);
3961 }
3962 }
3963 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3964 {
3965 struct intel_engine_cs *engine = req->engine;
3966
3967 /* Before we do the heavier coherent read of the seqno,
3968 * check the value (hopefully) in the CPU cacheline.
3969 */
3970 if (i915_gem_request_completed(req))
3971 return true;
3972
3973 /* Ensure our read of the seqno is coherent so that we
3974 * do not "miss an interrupt" (i.e. if this is the last
3975 * request and the seqno write from the GPU is not visible
3976 * by the time the interrupt fires, we will see that the
3977 * request is incomplete and go back to sleep awaiting
3978 * another interrupt that will never come.)
3979 *
3980 * Strictly, we only need to do this once after an interrupt,
3981 * but it is easier and safer to do it every time the waiter
3982 * is woken.
3983 */
3984 if (engine->irq_seqno_barrier &&
3985 cmpxchg_relaxed(&engine->irq_posted, 1, 0)) {
3986 /* The ordering of irq_posted versus applying the barrier
3987 * is crucial. The clearing of the current irq_posted must
3988 * be visible before we perform the barrier operation,
3989 * such that if a subsequent interrupt arrives, irq_posted
3990 * is reasserted and our task rewoken (which causes us to
3991 * do another __i915_request_irq_complete() immediately
3992 * and reapply the barrier). Conversely, if the clear
3993 * occurs after the barrier, then an interrupt that arrived
3994 * whilst we waited on the barrier would not trigger a
3995 * barrier on the next pass, and the read may not see the
3996 * seqno update.
3997 */
3998 engine->irq_seqno_barrier(engine);
3999 if (i915_gem_request_completed(req))
4000 return true;
4001 }
4002
4003 /* We need to check whether any gpu reset happened in between
4004 * the request being submitted and now. If a reset has occurred,
4005 * the seqno will have been advance past ours and our request
4006 * is complete. If we are in the process of handling a reset,
4007 * the request is effectively complete as the rendering will
4008 * be discarded, but we need to return in order to drop the
4009 * struct_mutex.
4010 */
4011 if (i915_reset_in_progress(&req->i915->gpu_error))
4012 return true;
4013
4014 return false;
4015 }
4016
4017 #endif
This page took 0.106805 seconds and 6 git commands to generate.