drm/i915: Provide argument names for static stubs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64
65 #include "intel_gvt.h"
66
67 /* General customization:
68 */
69
70 #define DRIVER_NAME "i915"
71 #define DRIVER_DESC "Intel Graphics"
72 #define DRIVER_DATE "20160711"
73
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99 #define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105 })
106
107 #define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114 static inline const char *yesno(bool v)
115 {
116 return v ? "yes" : "no";
117 }
118
119 static inline const char *onoff(bool v)
120 {
121 return v ? "on" : "off";
122 }
123
124 enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133
134 enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142 };
143
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162 }
163
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168
169 /*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175 enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186 enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195
196 #define I915_NUM_PHYS_VLV 2
197
198 enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201 };
202
203 enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206 };
207
208 enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241 };
242
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250 enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262 };
263
264 #define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267 struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 /*
288 * if we get a HPD irq from DP and a HPD irq from non-DP
289 * the non-DP HPD could block the workqueue on a mode config
290 * mutex getting, that userspace may have taken. However
291 * userspace is waiting on the DP workqueue to run which is
292 * blocked behind the non-DP one.
293 */
294 struct workqueue_struct *dp_wq;
295 };
296
297 #define I915_GEM_GPU_DOMAINS \
298 (I915_GEM_DOMAIN_RENDER | \
299 I915_GEM_DOMAIN_SAMPLER | \
300 I915_GEM_DOMAIN_COMMAND | \
301 I915_GEM_DOMAIN_INSTRUCTION | \
302 I915_GEM_DOMAIN_VERTEX)
303
304 #define for_each_pipe(__dev_priv, __p) \
305 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
306 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
307 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
308 for_each_if ((__mask) & (1 << (__p)))
309 #define for_each_plane(__dev_priv, __pipe, __p) \
310 for ((__p) = 0; \
311 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
312 (__p)++)
313 #define for_each_sprite(__dev_priv, __p, __s) \
314 for ((__s) = 0; \
315 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
316 (__s)++)
317
318 #define for_each_port_masked(__port, __ports_mask) \
319 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
320 for_each_if ((__ports_mask) & (1 << (__port)))
321
322 #define for_each_crtc(dev, crtc) \
323 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
324
325 #define for_each_intel_plane(dev, intel_plane) \
326 list_for_each_entry(intel_plane, \
327 &(dev)->mode_config.plane_list, \
328 base.head)
329
330 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
331 list_for_each_entry(intel_plane, \
332 &(dev)->mode_config.plane_list, \
333 base.head) \
334 for_each_if ((plane_mask) & \
335 (1 << drm_plane_index(&intel_plane->base)))
336
337 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
338 list_for_each_entry(intel_plane, \
339 &(dev)->mode_config.plane_list, \
340 base.head) \
341 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
342
343 #define for_each_intel_crtc(dev, intel_crtc) \
344 list_for_each_entry(intel_crtc, \
345 &(dev)->mode_config.crtc_list, \
346 base.head)
347
348 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
349 list_for_each_entry(intel_crtc, \
350 &(dev)->mode_config.crtc_list, \
351 base.head) \
352 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
353
354 #define for_each_intel_encoder(dev, intel_encoder) \
355 list_for_each_entry(intel_encoder, \
356 &(dev)->mode_config.encoder_list, \
357 base.head)
358
359 #define for_each_intel_connector(dev, intel_connector) \
360 list_for_each_entry(intel_connector, \
361 &(dev)->mode_config.connector_list, \
362 base.head)
363
364 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
365 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
366 for_each_if ((intel_encoder)->base.crtc == (__crtc))
367
368 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
369 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
370 for_each_if ((intel_connector)->base.encoder == (__encoder))
371
372 #define for_each_power_domain(domain, mask) \
373 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
374 for_each_if ((1 << (domain)) & (mask))
375
376 struct drm_i915_private;
377 struct i915_mm_struct;
378 struct i915_mmu_object;
379
380 struct drm_i915_file_private {
381 struct drm_i915_private *dev_priv;
382 struct drm_file *file;
383
384 struct {
385 spinlock_t lock;
386 struct list_head request_list;
387 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
388 * chosen to prevent the CPU getting more than a frame ahead of the GPU
389 * (when using lax throttling for the frontbuffer). We also use it to
390 * offer free GPU waitboosts for severely congested workloads.
391 */
392 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
393 } mm;
394 struct idr context_idr;
395
396 struct intel_rps_client {
397 struct list_head link;
398 unsigned boosts;
399 } rps;
400
401 unsigned int bsd_ring;
402 };
403
404 /* Used by dp and fdi links */
405 struct intel_link_m_n {
406 uint32_t tu;
407 uint32_t gmch_m;
408 uint32_t gmch_n;
409 uint32_t link_m;
410 uint32_t link_n;
411 };
412
413 void intel_link_compute_m_n(int bpp, int nlanes,
414 int pixel_clock, int link_clock,
415 struct intel_link_m_n *m_n);
416
417 /* Interface history:
418 *
419 * 1.1: Original.
420 * 1.2: Add Power Management
421 * 1.3: Add vblank support
422 * 1.4: Fix cmdbuffer path, add heap destroy
423 * 1.5: Add vblank pipe configuration
424 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
425 * - Support vertical blank on secondary display pipe
426 */
427 #define DRIVER_MAJOR 1
428 #define DRIVER_MINOR 6
429 #define DRIVER_PATCHLEVEL 0
430
431 #define WATCH_LISTS 0
432
433 struct opregion_header;
434 struct opregion_acpi;
435 struct opregion_swsci;
436 struct opregion_asle;
437
438 struct intel_opregion {
439 struct opregion_header *header;
440 struct opregion_acpi *acpi;
441 struct opregion_swsci *swsci;
442 u32 swsci_gbda_sub_functions;
443 u32 swsci_sbcb_sub_functions;
444 struct opregion_asle *asle;
445 void *rvda;
446 const void *vbt;
447 u32 vbt_size;
448 u32 *lid_state;
449 struct work_struct asle_work;
450 };
451 #define OPREGION_SIZE (8*1024)
452
453 struct intel_overlay;
454 struct intel_overlay_error_state;
455
456 #define I915_FENCE_REG_NONE -1
457 #define I915_MAX_NUM_FENCES 32
458 /* 32 fences + sign bit for FENCE_REG_NONE */
459 #define I915_MAX_NUM_FENCE_BITS 6
460
461 struct drm_i915_fence_reg {
462 struct list_head lru_list;
463 struct drm_i915_gem_object *obj;
464 int pin_count;
465 };
466
467 struct sdvo_device_mapping {
468 u8 initialized;
469 u8 dvo_port;
470 u8 slave_addr;
471 u8 dvo_wiring;
472 u8 i2c_pin;
473 u8 ddc_pin;
474 };
475
476 struct intel_display_error_state;
477
478 struct drm_i915_error_state {
479 struct kref ref;
480 struct timeval time;
481
482 char error_msg[128];
483 bool simulated;
484 int iommu;
485 u32 reset_count;
486 u32 suspend_count;
487
488 /* Generic register state */
489 u32 eir;
490 u32 pgtbl_er;
491 u32 ier;
492 u32 gtier[4];
493 u32 ccid;
494 u32 derrmr;
495 u32 forcewake;
496 u32 error; /* gen6+ */
497 u32 err_int; /* gen7 */
498 u32 fault_data0; /* gen8, gen9 */
499 u32 fault_data1; /* gen8, gen9 */
500 u32 done_reg;
501 u32 gac_eco;
502 u32 gam_ecochk;
503 u32 gab_ctl;
504 u32 gfx_mode;
505 u32 extra_instdone[I915_NUM_INSTDONE_REG];
506 u64 fence[I915_MAX_NUM_FENCES];
507 struct intel_overlay_error_state *overlay;
508 struct intel_display_error_state *display;
509 struct drm_i915_error_object *semaphore_obj;
510
511 struct drm_i915_error_ring {
512 bool valid;
513 /* Software tracked state */
514 bool waiting;
515 int num_waiters;
516 int hangcheck_score;
517 enum intel_ring_hangcheck_action hangcheck_action;
518 int num_requests;
519
520 /* our own tracking of ring head and tail */
521 u32 cpu_ring_head;
522 u32 cpu_ring_tail;
523
524 u32 last_seqno;
525 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
526
527 /* Register state */
528 u32 start;
529 u32 tail;
530 u32 head;
531 u32 ctl;
532 u32 hws;
533 u32 ipeir;
534 u32 ipehr;
535 u32 instdone;
536 u32 bbstate;
537 u32 instpm;
538 u32 instps;
539 u32 seqno;
540 u64 bbaddr;
541 u64 acthd;
542 u32 fault_reg;
543 u64 faddr;
544 u32 rc_psmi; /* sleep state */
545 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
546
547 struct drm_i915_error_object {
548 int page_count;
549 u64 gtt_offset;
550 u32 *pages[0];
551 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
552
553 struct drm_i915_error_object *wa_ctx;
554
555 struct drm_i915_error_request {
556 long jiffies;
557 u32 seqno;
558 u32 tail;
559 } *requests;
560
561 struct drm_i915_error_waiter {
562 char comm[TASK_COMM_LEN];
563 pid_t pid;
564 u32 seqno;
565 } *waiters;
566
567 struct {
568 u32 gfx_mode;
569 union {
570 u64 pdp[4];
571 u32 pp_dir_base;
572 };
573 } vm_info;
574
575 pid_t pid;
576 char comm[TASK_COMM_LEN];
577 } ring[I915_NUM_ENGINES];
578
579 struct drm_i915_error_buffer {
580 u32 size;
581 u32 name;
582 u32 rseqno[I915_NUM_ENGINES], wseqno;
583 u64 gtt_offset;
584 u32 read_domains;
585 u32 write_domain;
586 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
587 s32 pinned:2;
588 u32 tiling:2;
589 u32 dirty:1;
590 u32 purgeable:1;
591 u32 userptr:1;
592 s32 ring:4;
593 u32 cache_level:3;
594 } **active_bo, **pinned_bo;
595
596 u32 *active_bo_count, *pinned_bo_count;
597 u32 vm_count;
598 };
599
600 struct intel_connector;
601 struct intel_encoder;
602 struct intel_crtc_state;
603 struct intel_initial_plane_config;
604 struct intel_crtc;
605 struct intel_limit;
606 struct dpll;
607
608 struct drm_i915_display_funcs {
609 int (*get_display_clock_speed)(struct drm_device *dev);
610 int (*get_fifo_size)(struct drm_device *dev, int plane);
611 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
612 int (*compute_intermediate_wm)(struct drm_device *dev,
613 struct intel_crtc *intel_crtc,
614 struct intel_crtc_state *newstate);
615 void (*initial_watermarks)(struct intel_crtc_state *cstate);
616 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
617 int (*compute_global_watermarks)(struct drm_atomic_state *state);
618 void (*update_wm)(struct drm_crtc *crtc);
619 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
620 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
621 /* Returns the active state of the crtc, and if the crtc is active,
622 * fills out the pipe-config with the hw state. */
623 bool (*get_pipe_config)(struct intel_crtc *,
624 struct intel_crtc_state *);
625 void (*get_initial_plane_config)(struct intel_crtc *,
626 struct intel_initial_plane_config *);
627 int (*crtc_compute_clock)(struct intel_crtc *crtc,
628 struct intel_crtc_state *crtc_state);
629 void (*crtc_enable)(struct drm_crtc *crtc);
630 void (*crtc_disable)(struct drm_crtc *crtc);
631 void (*audio_codec_enable)(struct drm_connector *connector,
632 struct intel_encoder *encoder,
633 const struct drm_display_mode *adjusted_mode);
634 void (*audio_codec_disable)(struct intel_encoder *encoder);
635 void (*fdi_link_train)(struct drm_crtc *crtc);
636 void (*init_clock_gating)(struct drm_device *dev);
637 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
638 struct drm_framebuffer *fb,
639 struct drm_i915_gem_object *obj,
640 struct drm_i915_gem_request *req,
641 uint32_t flags);
642 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
643 /* clock updates for mode set */
644 /* cursor updates */
645 /* render clock increase/decrease */
646 /* display clock increase/decrease */
647 /* pll clock increase/decrease */
648
649 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
650 void (*load_luts)(struct drm_crtc_state *crtc_state);
651 };
652
653 enum forcewake_domain_id {
654 FW_DOMAIN_ID_RENDER = 0,
655 FW_DOMAIN_ID_BLITTER,
656 FW_DOMAIN_ID_MEDIA,
657
658 FW_DOMAIN_ID_COUNT
659 };
660
661 enum forcewake_domains {
662 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
663 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
664 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
665 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
666 FORCEWAKE_BLITTER |
667 FORCEWAKE_MEDIA)
668 };
669
670 #define FW_REG_READ (1)
671 #define FW_REG_WRITE (2)
672
673 enum forcewake_domains
674 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
675 i915_reg_t reg, unsigned int op);
676
677 struct intel_uncore_funcs {
678 void (*force_wake_get)(struct drm_i915_private *dev_priv,
679 enum forcewake_domains domains);
680 void (*force_wake_put)(struct drm_i915_private *dev_priv,
681 enum forcewake_domains domains);
682
683 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
684 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
685 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
686 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687
688 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
689 uint8_t val, bool trace);
690 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
691 uint16_t val, bool trace);
692 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint32_t val, bool trace);
694 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint64_t val, bool trace);
696 };
697
698 struct intel_uncore {
699 spinlock_t lock; /** lock is also taken in irq contexts. */
700
701 struct intel_uncore_funcs funcs;
702
703 unsigned fifo_count;
704 enum forcewake_domains fw_domains;
705
706 struct intel_uncore_forcewake_domain {
707 struct drm_i915_private *i915;
708 enum forcewake_domain_id id;
709 enum forcewake_domains mask;
710 unsigned wake_count;
711 struct hrtimer timer;
712 i915_reg_t reg_set;
713 u32 val_set;
714 u32 val_clear;
715 i915_reg_t reg_ack;
716 i915_reg_t reg_post;
717 u32 val_reset;
718 } fw_domain[FW_DOMAIN_ID_COUNT];
719
720 int unclaimed_mmio_check;
721 };
722
723 /* Iterate over initialised fw domains */
724 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
725 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
726 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
727 (domain__)++) \
728 for_each_if ((mask__) & (domain__)->mask)
729
730 #define for_each_fw_domain(domain__, dev_priv__) \
731 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
732
733 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
734 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
735 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
736
737 struct intel_csr {
738 struct work_struct work;
739 const char *fw_path;
740 uint32_t *dmc_payload;
741 uint32_t dmc_fw_size;
742 uint32_t version;
743 uint32_t mmio_count;
744 i915_reg_t mmioaddr[8];
745 uint32_t mmiodata[8];
746 uint32_t dc_state;
747 uint32_t allowed_dc_mask;
748 };
749
750 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
751 func(is_mobile) sep \
752 func(is_i85x) sep \
753 func(is_i915g) sep \
754 func(is_i945gm) sep \
755 func(is_g33) sep \
756 func(need_gfx_hws) sep \
757 func(is_g4x) sep \
758 func(is_pineview) sep \
759 func(is_broadwater) sep \
760 func(is_crestline) sep \
761 func(is_ivybridge) sep \
762 func(is_valleyview) sep \
763 func(is_cherryview) sep \
764 func(is_haswell) sep \
765 func(is_broadwell) sep \
766 func(is_skylake) sep \
767 func(is_broxton) sep \
768 func(is_kabylake) sep \
769 func(is_preliminary) sep \
770 func(has_fbc) sep \
771 func(has_pipe_cxsr) sep \
772 func(has_hotplug) sep \
773 func(cursor_needs_physical) sep \
774 func(has_overlay) sep \
775 func(overlay_needs_physical) sep \
776 func(supports_tv) sep \
777 func(has_llc) sep \
778 func(has_snoop) sep \
779 func(has_ddi) sep \
780 func(has_fpga_dbg) sep \
781 func(has_pooled_eu)
782
783 #define DEFINE_FLAG(name) u8 name:1
784 #define SEP_SEMICOLON ;
785
786 struct intel_device_info {
787 u32 display_mmio_offset;
788 u16 device_id;
789 u8 num_pipes;
790 u8 num_sprites[I915_MAX_PIPES];
791 u8 gen;
792 u16 gen_mask;
793 u8 ring_mask; /* Rings supported by the HW */
794 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
795 /* Register offsets for the various display pipes and transcoders */
796 int pipe_offsets[I915_MAX_TRANSCODERS];
797 int trans_offsets[I915_MAX_TRANSCODERS];
798 int palette_offsets[I915_MAX_PIPES];
799 int cursor_offsets[I915_MAX_PIPES];
800
801 /* Slice/subslice/EU info */
802 u8 slice_total;
803 u8 subslice_total;
804 u8 subslice_per_slice;
805 u8 eu_total;
806 u8 eu_per_subslice;
807 u8 min_eu_in_pool;
808 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
809 u8 subslice_7eu[3];
810 u8 has_slice_pg:1;
811 u8 has_subslice_pg:1;
812 u8 has_eu_pg:1;
813
814 struct color_luts {
815 u16 degamma_lut_size;
816 u16 gamma_lut_size;
817 } color;
818 };
819
820 #undef DEFINE_FLAG
821 #undef SEP_SEMICOLON
822
823 enum i915_cache_level {
824 I915_CACHE_NONE = 0,
825 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
826 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
827 caches, eg sampler/render caches, and the
828 large Last-Level-Cache. LLC is coherent with
829 the CPU, but L3 is only visible to the GPU. */
830 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
831 };
832
833 struct i915_ctx_hang_stats {
834 /* This context had batch pending when hang was declared */
835 unsigned batch_pending;
836
837 /* This context had batch active when hang was declared */
838 unsigned batch_active;
839
840 /* Time when this context was last blamed for a GPU reset */
841 unsigned long guilty_ts;
842
843 /* If the contexts causes a second GPU hang within this time,
844 * it is permanently banned from submitting any more work.
845 */
846 unsigned long ban_period_seconds;
847
848 /* This context is banned to submit more work */
849 bool banned;
850 };
851
852 /* This must match up with the value previously used for execbuf2.rsvd1. */
853 #define DEFAULT_CONTEXT_HANDLE 0
854
855 /**
856 * struct i915_gem_context - as the name implies, represents a context.
857 * @ref: reference count.
858 * @user_handle: userspace tracking identity for this context.
859 * @remap_slice: l3 row remapping information.
860 * @flags: context specific flags:
861 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
862 * @file_priv: filp associated with this context (NULL for global default
863 * context).
864 * @hang_stats: information about the role of this context in possible GPU
865 * hangs.
866 * @ppgtt: virtual memory space used by this context.
867 * @legacy_hw_ctx: render context backing object and whether it is correctly
868 * initialized (legacy ring submission mechanism only).
869 * @link: link in the global list of contexts.
870 *
871 * Contexts are memory images used by the hardware to store copies of their
872 * internal state.
873 */
874 struct i915_gem_context {
875 struct kref ref;
876 struct drm_i915_private *i915;
877 struct drm_i915_file_private *file_priv;
878 struct i915_hw_ppgtt *ppgtt;
879
880 struct i915_ctx_hang_stats hang_stats;
881
882 /* Unique identifier for this context, used by the hw for tracking */
883 unsigned long flags;
884 #define CONTEXT_NO_ZEROMAP BIT(0)
885 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
886 unsigned hw_id;
887 u32 user_handle;
888
889 u32 ggtt_alignment;
890
891 struct intel_context {
892 struct drm_i915_gem_object *state;
893 struct intel_ringbuffer *ringbuf;
894 struct i915_vma *lrc_vma;
895 uint32_t *lrc_reg_state;
896 u64 lrc_desc;
897 int pin_count;
898 bool initialised;
899 } engine[I915_NUM_ENGINES];
900 u32 ring_size;
901 u32 desc_template;
902 struct atomic_notifier_head status_notifier;
903 bool execlists_force_single_submission;
904
905 struct list_head link;
906
907 u8 remap_slice;
908 };
909
910 enum fb_op_origin {
911 ORIGIN_GTT,
912 ORIGIN_CPU,
913 ORIGIN_CS,
914 ORIGIN_FLIP,
915 ORIGIN_DIRTYFB,
916 };
917
918 struct intel_fbc {
919 /* This is always the inner lock when overlapping with struct_mutex and
920 * it's the outer lock when overlapping with stolen_lock. */
921 struct mutex lock;
922 unsigned threshold;
923 unsigned int possible_framebuffer_bits;
924 unsigned int busy_bits;
925 unsigned int visible_pipes_mask;
926 struct intel_crtc *crtc;
927
928 struct drm_mm_node compressed_fb;
929 struct drm_mm_node *compressed_llb;
930
931 bool false_color;
932
933 bool enabled;
934 bool active;
935
936 struct intel_fbc_state_cache {
937 struct {
938 unsigned int mode_flags;
939 uint32_t hsw_bdw_pixel_rate;
940 } crtc;
941
942 struct {
943 unsigned int rotation;
944 int src_w;
945 int src_h;
946 bool visible;
947 } plane;
948
949 struct {
950 u64 ilk_ggtt_offset;
951 uint32_t pixel_format;
952 unsigned int stride;
953 int fence_reg;
954 unsigned int tiling_mode;
955 } fb;
956 } state_cache;
957
958 struct intel_fbc_reg_params {
959 struct {
960 enum pipe pipe;
961 enum plane plane;
962 unsigned int fence_y_offset;
963 } crtc;
964
965 struct {
966 u64 ggtt_offset;
967 uint32_t pixel_format;
968 unsigned int stride;
969 int fence_reg;
970 } fb;
971
972 int cfb_size;
973 } params;
974
975 struct intel_fbc_work {
976 bool scheduled;
977 u32 scheduled_vblank;
978 struct work_struct work;
979 } work;
980
981 const char *no_fbc_reason;
982 };
983
984 /**
985 * HIGH_RR is the highest eDP panel refresh rate read from EDID
986 * LOW_RR is the lowest eDP panel refresh rate found from EDID
987 * parsing for same resolution.
988 */
989 enum drrs_refresh_rate_type {
990 DRRS_HIGH_RR,
991 DRRS_LOW_RR,
992 DRRS_MAX_RR, /* RR count */
993 };
994
995 enum drrs_support_type {
996 DRRS_NOT_SUPPORTED = 0,
997 STATIC_DRRS_SUPPORT = 1,
998 SEAMLESS_DRRS_SUPPORT = 2
999 };
1000
1001 struct intel_dp;
1002 struct i915_drrs {
1003 struct mutex mutex;
1004 struct delayed_work work;
1005 struct intel_dp *dp;
1006 unsigned busy_frontbuffer_bits;
1007 enum drrs_refresh_rate_type refresh_rate_type;
1008 enum drrs_support_type type;
1009 };
1010
1011 struct i915_psr {
1012 struct mutex lock;
1013 bool sink_support;
1014 bool source_ok;
1015 struct intel_dp *enabled;
1016 bool active;
1017 struct delayed_work work;
1018 unsigned busy_frontbuffer_bits;
1019 bool psr2_support;
1020 bool aux_frame_sync;
1021 bool link_standby;
1022 };
1023
1024 enum intel_pch {
1025 PCH_NONE = 0, /* No PCH present */
1026 PCH_IBX, /* Ibexpeak PCH */
1027 PCH_CPT, /* Cougarpoint PCH */
1028 PCH_LPT, /* Lynxpoint PCH */
1029 PCH_SPT, /* Sunrisepoint PCH */
1030 PCH_KBP, /* Kabypoint PCH */
1031 PCH_NOP,
1032 };
1033
1034 enum intel_sbi_destination {
1035 SBI_ICLK,
1036 SBI_MPHY,
1037 };
1038
1039 #define QUIRK_PIPEA_FORCE (1<<0)
1040 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1041 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1042 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1043 #define QUIRK_PIPEB_FORCE (1<<4)
1044 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1045
1046 struct intel_fbdev;
1047 struct intel_fbc_work;
1048
1049 struct intel_gmbus {
1050 struct i2c_adapter adapter;
1051 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1052 u32 force_bit;
1053 u32 reg0;
1054 i915_reg_t gpio_reg;
1055 struct i2c_algo_bit_data bit_algo;
1056 struct drm_i915_private *dev_priv;
1057 };
1058
1059 struct i915_suspend_saved_registers {
1060 u32 saveDSPARB;
1061 u32 saveLVDS;
1062 u32 savePP_ON_DELAYS;
1063 u32 savePP_OFF_DELAYS;
1064 u32 savePP_ON;
1065 u32 savePP_OFF;
1066 u32 savePP_CONTROL;
1067 u32 savePP_DIVISOR;
1068 u32 saveFBC_CONTROL;
1069 u32 saveCACHE_MODE_0;
1070 u32 saveMI_ARB_STATE;
1071 u32 saveSWF0[16];
1072 u32 saveSWF1[16];
1073 u32 saveSWF3[3];
1074 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1075 u32 savePCH_PORT_HOTPLUG;
1076 u16 saveGCDGMBUS;
1077 };
1078
1079 struct vlv_s0ix_state {
1080 /* GAM */
1081 u32 wr_watermark;
1082 u32 gfx_prio_ctrl;
1083 u32 arb_mode;
1084 u32 gfx_pend_tlb0;
1085 u32 gfx_pend_tlb1;
1086 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1087 u32 media_max_req_count;
1088 u32 gfx_max_req_count;
1089 u32 render_hwsp;
1090 u32 ecochk;
1091 u32 bsd_hwsp;
1092 u32 blt_hwsp;
1093 u32 tlb_rd_addr;
1094
1095 /* MBC */
1096 u32 g3dctl;
1097 u32 gsckgctl;
1098 u32 mbctl;
1099
1100 /* GCP */
1101 u32 ucgctl1;
1102 u32 ucgctl3;
1103 u32 rcgctl1;
1104 u32 rcgctl2;
1105 u32 rstctl;
1106 u32 misccpctl;
1107
1108 /* GPM */
1109 u32 gfxpause;
1110 u32 rpdeuhwtc;
1111 u32 rpdeuc;
1112 u32 ecobus;
1113 u32 pwrdwnupctl;
1114 u32 rp_down_timeout;
1115 u32 rp_deucsw;
1116 u32 rcubmabdtmr;
1117 u32 rcedata;
1118 u32 spare2gh;
1119
1120 /* Display 1 CZ domain */
1121 u32 gt_imr;
1122 u32 gt_ier;
1123 u32 pm_imr;
1124 u32 pm_ier;
1125 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1126
1127 /* GT SA CZ domain */
1128 u32 tilectl;
1129 u32 gt_fifoctl;
1130 u32 gtlc_wake_ctrl;
1131 u32 gtlc_survive;
1132 u32 pmwgicz;
1133
1134 /* Display 2 CZ domain */
1135 u32 gu_ctl0;
1136 u32 gu_ctl1;
1137 u32 pcbr;
1138 u32 clock_gate_dis2;
1139 };
1140
1141 struct intel_rps_ei {
1142 u32 cz_clock;
1143 u32 render_c0;
1144 u32 media_c0;
1145 };
1146
1147 struct intel_gen6_power_mgmt {
1148 /*
1149 * work, interrupts_enabled and pm_iir are protected by
1150 * dev_priv->irq_lock
1151 */
1152 struct work_struct work;
1153 bool interrupts_enabled;
1154 u32 pm_iir;
1155
1156 u32 pm_intr_keep;
1157
1158 /* Frequencies are stored in potentially platform dependent multiples.
1159 * In other words, *_freq needs to be multiplied by X to be interesting.
1160 * Soft limits are those which are used for the dynamic reclocking done
1161 * by the driver (raise frequencies under heavy loads, and lower for
1162 * lighter loads). Hard limits are those imposed by the hardware.
1163 *
1164 * A distinction is made for overclocking, which is never enabled by
1165 * default, and is considered to be above the hard limit if it's
1166 * possible at all.
1167 */
1168 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1169 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1170 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1171 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1172 u8 min_freq; /* AKA RPn. Minimum frequency */
1173 u8 idle_freq; /* Frequency to request when we are idle */
1174 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1175 u8 rp1_freq; /* "less than" RP0 power/freqency */
1176 u8 rp0_freq; /* Non-overclocked max frequency. */
1177 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1178
1179 u8 up_threshold; /* Current %busy required to uplock */
1180 u8 down_threshold; /* Current %busy required to downclock */
1181
1182 int last_adj;
1183 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1184
1185 spinlock_t client_lock;
1186 struct list_head clients;
1187 bool client_boost;
1188
1189 bool enabled;
1190 struct delayed_work delayed_resume_work;
1191 unsigned boosts;
1192
1193 struct intel_rps_client semaphores, mmioflips;
1194
1195 /* manual wa residency calculations */
1196 struct intel_rps_ei up_ei, down_ei;
1197
1198 /*
1199 * Protects RPS/RC6 register access and PCU communication.
1200 * Must be taken after struct_mutex if nested. Note that
1201 * this lock may be held for long periods of time when
1202 * talking to hw - so only take it when talking to hw!
1203 */
1204 struct mutex hw_lock;
1205 };
1206
1207 /* defined intel_pm.c */
1208 extern spinlock_t mchdev_lock;
1209
1210 struct intel_ilk_power_mgmt {
1211 u8 cur_delay;
1212 u8 min_delay;
1213 u8 max_delay;
1214 u8 fmax;
1215 u8 fstart;
1216
1217 u64 last_count1;
1218 unsigned long last_time1;
1219 unsigned long chipset_power;
1220 u64 last_count2;
1221 u64 last_time2;
1222 unsigned long gfx_power;
1223 u8 corr;
1224
1225 int c_m;
1226 int r_t;
1227 };
1228
1229 struct drm_i915_private;
1230 struct i915_power_well;
1231
1232 struct i915_power_well_ops {
1233 /*
1234 * Synchronize the well's hw state to match the current sw state, for
1235 * example enable/disable it based on the current refcount. Called
1236 * during driver init and resume time, possibly after first calling
1237 * the enable/disable handlers.
1238 */
1239 void (*sync_hw)(struct drm_i915_private *dev_priv,
1240 struct i915_power_well *power_well);
1241 /*
1242 * Enable the well and resources that depend on it (for example
1243 * interrupts located on the well). Called after the 0->1 refcount
1244 * transition.
1245 */
1246 void (*enable)(struct drm_i915_private *dev_priv,
1247 struct i915_power_well *power_well);
1248 /*
1249 * Disable the well and resources that depend on it. Called after
1250 * the 1->0 refcount transition.
1251 */
1252 void (*disable)(struct drm_i915_private *dev_priv,
1253 struct i915_power_well *power_well);
1254 /* Returns the hw enabled state. */
1255 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1256 struct i915_power_well *power_well);
1257 };
1258
1259 /* Power well structure for haswell */
1260 struct i915_power_well {
1261 const char *name;
1262 bool always_on;
1263 /* power well enable/disable usage count */
1264 int count;
1265 /* cached hw enabled state */
1266 bool hw_enabled;
1267 unsigned long domains;
1268 unsigned long data;
1269 const struct i915_power_well_ops *ops;
1270 };
1271
1272 struct i915_power_domains {
1273 /*
1274 * Power wells needed for initialization at driver init and suspend
1275 * time are on. They are kept on until after the first modeset.
1276 */
1277 bool init_power_on;
1278 bool initializing;
1279 int power_well_count;
1280
1281 struct mutex lock;
1282 int domain_use_count[POWER_DOMAIN_NUM];
1283 struct i915_power_well *power_wells;
1284 };
1285
1286 #define MAX_L3_SLICES 2
1287 struct intel_l3_parity {
1288 u32 *remap_info[MAX_L3_SLICES];
1289 struct work_struct error_work;
1290 int which_slice;
1291 };
1292
1293 struct i915_gem_mm {
1294 /** Memory allocator for GTT stolen memory */
1295 struct drm_mm stolen;
1296 /** Protects the usage of the GTT stolen memory allocator. This is
1297 * always the inner lock when overlapping with struct_mutex. */
1298 struct mutex stolen_lock;
1299
1300 /** List of all objects in gtt_space. Used to restore gtt
1301 * mappings on resume */
1302 struct list_head bound_list;
1303 /**
1304 * List of objects which are not bound to the GTT (thus
1305 * are idle and not used by the GPU) but still have
1306 * (presumably uncached) pages still attached.
1307 */
1308 struct list_head unbound_list;
1309
1310 /** Usable portion of the GTT for GEM */
1311 unsigned long stolen_base; /* limited to low memory (32-bit) */
1312
1313 /** PPGTT used for aliasing the PPGTT with the GTT */
1314 struct i915_hw_ppgtt *aliasing_ppgtt;
1315
1316 struct notifier_block oom_notifier;
1317 struct notifier_block vmap_notifier;
1318 struct shrinker shrinker;
1319 bool shrinker_no_lock_stealing;
1320
1321 /** LRU list of objects with fence regs on them. */
1322 struct list_head fence_list;
1323
1324 /**
1325 * Are we in a non-interruptible section of code like
1326 * modesetting?
1327 */
1328 bool interruptible;
1329
1330 /* the indicator for dispatch video commands on two BSD rings */
1331 unsigned int bsd_ring_dispatch_index;
1332
1333 /** Bit 6 swizzling required for X tiling */
1334 uint32_t bit_6_swizzle_x;
1335 /** Bit 6 swizzling required for Y tiling */
1336 uint32_t bit_6_swizzle_y;
1337
1338 /* accounting, useful for userland debugging */
1339 spinlock_t object_stat_lock;
1340 size_t object_memory;
1341 u32 object_count;
1342 };
1343
1344 struct drm_i915_error_state_buf {
1345 struct drm_i915_private *i915;
1346 unsigned bytes;
1347 unsigned size;
1348 int err;
1349 u8 *buf;
1350 loff_t start;
1351 loff_t pos;
1352 };
1353
1354 struct i915_error_state_file_priv {
1355 struct drm_device *dev;
1356 struct drm_i915_error_state *error;
1357 };
1358
1359 struct i915_gpu_error {
1360 /* For hangcheck timer */
1361 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1362 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1363 /* Hang gpu twice in this window and your context gets banned */
1364 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1365
1366 struct delayed_work hangcheck_work;
1367
1368 /* For reset and error_state handling. */
1369 spinlock_t lock;
1370 /* Protected by the above dev->gpu_error.lock. */
1371 struct drm_i915_error_state *first_error;
1372
1373 unsigned long missed_irq_rings;
1374
1375 /**
1376 * State variable controlling the reset flow and count
1377 *
1378 * This is a counter which gets incremented when reset is triggered,
1379 * and again when reset has been handled. So odd values (lowest bit set)
1380 * means that reset is in progress and even values that
1381 * (reset_counter >> 1):th reset was successfully completed.
1382 *
1383 * If reset is not completed succesfully, the I915_WEDGE bit is
1384 * set meaning that hardware is terminally sour and there is no
1385 * recovery. All waiters on the reset_queue will be woken when
1386 * that happens.
1387 *
1388 * This counter is used by the wait_seqno code to notice that reset
1389 * event happened and it needs to restart the entire ioctl (since most
1390 * likely the seqno it waited for won't ever signal anytime soon).
1391 *
1392 * This is important for lock-free wait paths, where no contended lock
1393 * naturally enforces the correct ordering between the bail-out of the
1394 * waiter and the gpu reset work code.
1395 */
1396 atomic_t reset_counter;
1397
1398 #define I915_RESET_IN_PROGRESS_FLAG 1
1399 #define I915_WEDGED (1 << 31)
1400
1401 /**
1402 * Waitqueue to signal when a hang is detected. Used to for waiters
1403 * to release the struct_mutex for the reset to procede.
1404 */
1405 wait_queue_head_t wait_queue;
1406
1407 /**
1408 * Waitqueue to signal when the reset has completed. Used by clients
1409 * that wait for dev_priv->mm.wedged to settle.
1410 */
1411 wait_queue_head_t reset_queue;
1412
1413 /* For missed irq/seqno simulation. */
1414 unsigned long test_irq_rings;
1415 };
1416
1417 enum modeset_restore {
1418 MODESET_ON_LID_OPEN,
1419 MODESET_DONE,
1420 MODESET_SUSPENDED,
1421 };
1422
1423 #define DP_AUX_A 0x40
1424 #define DP_AUX_B 0x10
1425 #define DP_AUX_C 0x20
1426 #define DP_AUX_D 0x30
1427
1428 #define DDC_PIN_B 0x05
1429 #define DDC_PIN_C 0x04
1430 #define DDC_PIN_D 0x06
1431
1432 struct ddi_vbt_port_info {
1433 /*
1434 * This is an index in the HDMI/DVI DDI buffer translation table.
1435 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1436 * populate this field.
1437 */
1438 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1439 uint8_t hdmi_level_shift;
1440
1441 uint8_t supports_dvi:1;
1442 uint8_t supports_hdmi:1;
1443 uint8_t supports_dp:1;
1444
1445 uint8_t alternate_aux_channel;
1446 uint8_t alternate_ddc_pin;
1447
1448 uint8_t dp_boost_level;
1449 uint8_t hdmi_boost_level;
1450 };
1451
1452 enum psr_lines_to_wait {
1453 PSR_0_LINES_TO_WAIT = 0,
1454 PSR_1_LINE_TO_WAIT,
1455 PSR_4_LINES_TO_WAIT,
1456 PSR_8_LINES_TO_WAIT
1457 };
1458
1459 struct intel_vbt_data {
1460 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1461 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1462
1463 /* Feature bits */
1464 unsigned int int_tv_support:1;
1465 unsigned int lvds_dither:1;
1466 unsigned int lvds_vbt:1;
1467 unsigned int int_crt_support:1;
1468 unsigned int lvds_use_ssc:1;
1469 unsigned int display_clock_mode:1;
1470 unsigned int fdi_rx_polarity_inverted:1;
1471 unsigned int panel_type:4;
1472 int lvds_ssc_freq;
1473 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1474
1475 enum drrs_support_type drrs_type;
1476
1477 struct {
1478 int rate;
1479 int lanes;
1480 int preemphasis;
1481 int vswing;
1482 bool low_vswing;
1483 bool initialized;
1484 bool support;
1485 int bpp;
1486 struct edp_power_seq pps;
1487 } edp;
1488
1489 struct {
1490 bool full_link;
1491 bool require_aux_wakeup;
1492 int idle_frames;
1493 enum psr_lines_to_wait lines_to_wait;
1494 int tp1_wakeup_time;
1495 int tp2_tp3_wakeup_time;
1496 } psr;
1497
1498 struct {
1499 u16 pwm_freq_hz;
1500 bool present;
1501 bool active_low_pwm;
1502 u8 min_brightness; /* min_brightness/255 of max */
1503 enum intel_backlight_type type;
1504 } backlight;
1505
1506 /* MIPI DSI */
1507 struct {
1508 u16 panel_id;
1509 struct mipi_config *config;
1510 struct mipi_pps_data *pps;
1511 u8 seq_version;
1512 u32 size;
1513 u8 *data;
1514 const u8 *sequence[MIPI_SEQ_MAX];
1515 } dsi;
1516
1517 int crt_ddc_pin;
1518
1519 int child_dev_num;
1520 union child_device_config *child_dev;
1521
1522 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1523 struct sdvo_device_mapping sdvo_mappings[2];
1524 };
1525
1526 enum intel_ddb_partitioning {
1527 INTEL_DDB_PART_1_2,
1528 INTEL_DDB_PART_5_6, /* IVB+ */
1529 };
1530
1531 struct intel_wm_level {
1532 bool enable;
1533 uint32_t pri_val;
1534 uint32_t spr_val;
1535 uint32_t cur_val;
1536 uint32_t fbc_val;
1537 };
1538
1539 struct ilk_wm_values {
1540 uint32_t wm_pipe[3];
1541 uint32_t wm_lp[3];
1542 uint32_t wm_lp_spr[3];
1543 uint32_t wm_linetime[3];
1544 bool enable_fbc_wm;
1545 enum intel_ddb_partitioning partitioning;
1546 };
1547
1548 struct vlv_pipe_wm {
1549 uint16_t primary;
1550 uint16_t sprite[2];
1551 uint8_t cursor;
1552 };
1553
1554 struct vlv_sr_wm {
1555 uint16_t plane;
1556 uint8_t cursor;
1557 };
1558
1559 struct vlv_wm_values {
1560 struct vlv_pipe_wm pipe[3];
1561 struct vlv_sr_wm sr;
1562 struct {
1563 uint8_t cursor;
1564 uint8_t sprite[2];
1565 uint8_t primary;
1566 } ddl[3];
1567 uint8_t level;
1568 bool cxsr;
1569 };
1570
1571 struct skl_ddb_entry {
1572 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1573 };
1574
1575 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1576 {
1577 return entry->end - entry->start;
1578 }
1579
1580 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1581 const struct skl_ddb_entry *e2)
1582 {
1583 if (e1->start == e2->start && e1->end == e2->end)
1584 return true;
1585
1586 return false;
1587 }
1588
1589 struct skl_ddb_allocation {
1590 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1591 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1592 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1593 };
1594
1595 struct skl_wm_values {
1596 unsigned dirty_pipes;
1597 struct skl_ddb_allocation ddb;
1598 uint32_t wm_linetime[I915_MAX_PIPES];
1599 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1600 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1601 };
1602
1603 struct skl_wm_level {
1604 bool plane_en[I915_MAX_PLANES];
1605 uint16_t plane_res_b[I915_MAX_PLANES];
1606 uint8_t plane_res_l[I915_MAX_PLANES];
1607 };
1608
1609 /*
1610 * This struct helps tracking the state needed for runtime PM, which puts the
1611 * device in PCI D3 state. Notice that when this happens, nothing on the
1612 * graphics device works, even register access, so we don't get interrupts nor
1613 * anything else.
1614 *
1615 * Every piece of our code that needs to actually touch the hardware needs to
1616 * either call intel_runtime_pm_get or call intel_display_power_get with the
1617 * appropriate power domain.
1618 *
1619 * Our driver uses the autosuspend delay feature, which means we'll only really
1620 * suspend if we stay with zero refcount for a certain amount of time. The
1621 * default value is currently very conservative (see intel_runtime_pm_enable), but
1622 * it can be changed with the standard runtime PM files from sysfs.
1623 *
1624 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1625 * goes back to false exactly before we reenable the IRQs. We use this variable
1626 * to check if someone is trying to enable/disable IRQs while they're supposed
1627 * to be disabled. This shouldn't happen and we'll print some error messages in
1628 * case it happens.
1629 *
1630 * For more, read the Documentation/power/runtime_pm.txt.
1631 */
1632 struct i915_runtime_pm {
1633 atomic_t wakeref_count;
1634 atomic_t atomic_seq;
1635 bool suspended;
1636 bool irqs_enabled;
1637 };
1638
1639 enum intel_pipe_crc_source {
1640 INTEL_PIPE_CRC_SOURCE_NONE,
1641 INTEL_PIPE_CRC_SOURCE_PLANE1,
1642 INTEL_PIPE_CRC_SOURCE_PLANE2,
1643 INTEL_PIPE_CRC_SOURCE_PF,
1644 INTEL_PIPE_CRC_SOURCE_PIPE,
1645 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1646 INTEL_PIPE_CRC_SOURCE_TV,
1647 INTEL_PIPE_CRC_SOURCE_DP_B,
1648 INTEL_PIPE_CRC_SOURCE_DP_C,
1649 INTEL_PIPE_CRC_SOURCE_DP_D,
1650 INTEL_PIPE_CRC_SOURCE_AUTO,
1651 INTEL_PIPE_CRC_SOURCE_MAX,
1652 };
1653
1654 struct intel_pipe_crc_entry {
1655 uint32_t frame;
1656 uint32_t crc[5];
1657 };
1658
1659 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1660 struct intel_pipe_crc {
1661 spinlock_t lock;
1662 bool opened; /* exclusive access to the result file */
1663 struct intel_pipe_crc_entry *entries;
1664 enum intel_pipe_crc_source source;
1665 int head, tail;
1666 wait_queue_head_t wq;
1667 };
1668
1669 struct i915_frontbuffer_tracking {
1670 struct mutex lock;
1671
1672 /*
1673 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1674 * scheduled flips.
1675 */
1676 unsigned busy_bits;
1677 unsigned flip_bits;
1678 };
1679
1680 struct i915_wa_reg {
1681 i915_reg_t addr;
1682 u32 value;
1683 /* bitmask representing WA bits */
1684 u32 mask;
1685 };
1686
1687 /*
1688 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1689 * allowing it for RCS as we don't foresee any requirement of having
1690 * a whitelist for other engines. When it is really required for
1691 * other engines then the limit need to be increased.
1692 */
1693 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1694
1695 struct i915_workarounds {
1696 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1697 u32 count;
1698 u32 hw_whitelist_count[I915_NUM_ENGINES];
1699 };
1700
1701 struct i915_virtual_gpu {
1702 bool active;
1703 };
1704
1705 struct i915_execbuffer_params {
1706 struct drm_device *dev;
1707 struct drm_file *file;
1708 uint32_t dispatch_flags;
1709 uint32_t args_batch_start_offset;
1710 uint64_t batch_obj_vm_offset;
1711 struct intel_engine_cs *engine;
1712 struct drm_i915_gem_object *batch_obj;
1713 struct i915_gem_context *ctx;
1714 struct drm_i915_gem_request *request;
1715 };
1716
1717 /* used in computing the new watermarks state */
1718 struct intel_wm_config {
1719 unsigned int num_pipes_active;
1720 bool sprites_enabled;
1721 bool sprites_scaled;
1722 };
1723
1724 struct drm_i915_private {
1725 struct drm_device drm;
1726
1727 struct kmem_cache *objects;
1728 struct kmem_cache *vmas;
1729 struct kmem_cache *requests;
1730
1731 const struct intel_device_info info;
1732
1733 int relative_constants_mode;
1734
1735 void __iomem *regs;
1736
1737 struct intel_uncore uncore;
1738
1739 struct i915_virtual_gpu vgpu;
1740
1741 struct intel_gvt gvt;
1742
1743 struct intel_guc guc;
1744
1745 struct intel_csr csr;
1746
1747 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1748
1749 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1750 * controller on different i2c buses. */
1751 struct mutex gmbus_mutex;
1752
1753 /**
1754 * Base address of the gmbus and gpio block.
1755 */
1756 uint32_t gpio_mmio_base;
1757
1758 /* MMIO base address for MIPI regs */
1759 uint32_t mipi_mmio_base;
1760
1761 uint32_t psr_mmio_base;
1762
1763 wait_queue_head_t gmbus_wait_queue;
1764
1765 struct pci_dev *bridge_dev;
1766 struct i915_gem_context *kernel_context;
1767 struct intel_engine_cs engine[I915_NUM_ENGINES];
1768 struct drm_i915_gem_object *semaphore_obj;
1769 uint32_t last_seqno, next_seqno;
1770
1771 struct drm_dma_handle *status_page_dmah;
1772 struct resource mch_res;
1773
1774 /* protects the irq masks */
1775 spinlock_t irq_lock;
1776
1777 /* protects the mmio flip data */
1778 spinlock_t mmio_flip_lock;
1779
1780 bool display_irqs_enabled;
1781
1782 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1783 struct pm_qos_request pm_qos;
1784
1785 /* Sideband mailbox protection */
1786 struct mutex sb_lock;
1787
1788 /** Cached value of IMR to avoid reads in updating the bitfield */
1789 union {
1790 u32 irq_mask;
1791 u32 de_irq_mask[I915_MAX_PIPES];
1792 };
1793 u32 gt_irq_mask;
1794 u32 pm_irq_mask;
1795 u32 pm_rps_events;
1796 u32 pipestat_irq_mask[I915_MAX_PIPES];
1797
1798 struct i915_hotplug hotplug;
1799 struct intel_fbc fbc;
1800 struct i915_drrs drrs;
1801 struct intel_opregion opregion;
1802 struct intel_vbt_data vbt;
1803
1804 bool preserve_bios_swizzle;
1805
1806 /* overlay */
1807 struct intel_overlay *overlay;
1808
1809 /* backlight registers and fields in struct intel_panel */
1810 struct mutex backlight_lock;
1811
1812 /* LVDS info */
1813 bool no_aux_handshake;
1814
1815 /* protects panel power sequencer state */
1816 struct mutex pps_mutex;
1817
1818 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1819 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1820
1821 unsigned int fsb_freq, mem_freq, is_ddr3;
1822 unsigned int skl_preferred_vco_freq;
1823 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1824 unsigned int max_dotclk_freq;
1825 unsigned int rawclk_freq;
1826 unsigned int hpll_freq;
1827 unsigned int czclk_freq;
1828
1829 struct {
1830 unsigned int vco, ref;
1831 } cdclk_pll;
1832
1833 /**
1834 * wq - Driver workqueue for GEM.
1835 *
1836 * NOTE: Work items scheduled here are not allowed to grab any modeset
1837 * locks, for otherwise the flushing done in the pageflip code will
1838 * result in deadlocks.
1839 */
1840 struct workqueue_struct *wq;
1841
1842 /* Display functions */
1843 struct drm_i915_display_funcs display;
1844
1845 /* PCH chipset type */
1846 enum intel_pch pch_type;
1847 unsigned short pch_id;
1848
1849 unsigned long quirks;
1850
1851 enum modeset_restore modeset_restore;
1852 struct mutex modeset_restore_lock;
1853 struct drm_atomic_state *modeset_restore_state;
1854
1855 struct list_head vm_list; /* Global list of all address spaces */
1856 struct i915_ggtt ggtt; /* VM representing the global address space */
1857
1858 struct i915_gem_mm mm;
1859 DECLARE_HASHTABLE(mm_structs, 7);
1860 struct mutex mm_lock;
1861
1862 /* The hw wants to have a stable context identifier for the lifetime
1863 * of the context (for OA, PASID, faults, etc). This is limited
1864 * in execlists to 21 bits.
1865 */
1866 struct ida context_hw_ida;
1867 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1868
1869 /* Kernel Modesetting */
1870
1871 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1872 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1873 wait_queue_head_t pending_flip_queue;
1874
1875 #ifdef CONFIG_DEBUG_FS
1876 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1877 #endif
1878
1879 /* dpll and cdclk state is protected by connection_mutex */
1880 int num_shared_dpll;
1881 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1882 const struct intel_dpll_mgr *dpll_mgr;
1883
1884 /*
1885 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1886 * Must be global rather than per dpll, because on some platforms
1887 * plls share registers.
1888 */
1889 struct mutex dpll_lock;
1890
1891 unsigned int active_crtcs;
1892 unsigned int min_pixclk[I915_MAX_PIPES];
1893
1894 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1895
1896 struct i915_workarounds workarounds;
1897
1898 struct i915_frontbuffer_tracking fb_tracking;
1899
1900 u16 orig_clock;
1901
1902 bool mchbar_need_disable;
1903
1904 struct intel_l3_parity l3_parity;
1905
1906 /* Cannot be determined by PCIID. You must always read a register. */
1907 u32 edram_cap;
1908
1909 /* gen6+ rps state */
1910 struct intel_gen6_power_mgmt rps;
1911
1912 /* ilk-only ips/rps state. Everything in here is protected by the global
1913 * mchdev_lock in intel_pm.c */
1914 struct intel_ilk_power_mgmt ips;
1915
1916 struct i915_power_domains power_domains;
1917
1918 struct i915_psr psr;
1919
1920 struct i915_gpu_error gpu_error;
1921
1922 struct drm_i915_gem_object *vlv_pctx;
1923
1924 #ifdef CONFIG_DRM_FBDEV_EMULATION
1925 /* list of fbdev register on this device */
1926 struct intel_fbdev *fbdev;
1927 struct work_struct fbdev_suspend_work;
1928 #endif
1929
1930 struct drm_property *broadcast_rgb_property;
1931 struct drm_property *force_audio_property;
1932
1933 /* hda/i915 audio component */
1934 struct i915_audio_component *audio_component;
1935 bool audio_component_registered;
1936 /**
1937 * av_mutex - mutex for audio/video sync
1938 *
1939 */
1940 struct mutex av_mutex;
1941
1942 uint32_t hw_context_size;
1943 struct list_head context_list;
1944
1945 u32 fdi_rx_config;
1946
1947 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1948 u32 chv_phy_control;
1949 /*
1950 * Shadows for CHV DPLL_MD regs to keep the state
1951 * checker somewhat working in the presence hardware
1952 * crappiness (can't read out DPLL_MD for pipes B & C).
1953 */
1954 u32 chv_dpll_md[I915_MAX_PIPES];
1955 u32 bxt_phy_grc;
1956
1957 u32 suspend_count;
1958 bool suspended_to_idle;
1959 struct i915_suspend_saved_registers regfile;
1960 struct vlv_s0ix_state vlv_s0ix_state;
1961
1962 struct {
1963 /*
1964 * Raw watermark latency values:
1965 * in 0.1us units for WM0,
1966 * in 0.5us units for WM1+.
1967 */
1968 /* primary */
1969 uint16_t pri_latency[5];
1970 /* sprite */
1971 uint16_t spr_latency[5];
1972 /* cursor */
1973 uint16_t cur_latency[5];
1974 /*
1975 * Raw watermark memory latency values
1976 * for SKL for all 8 levels
1977 * in 1us units.
1978 */
1979 uint16_t skl_latency[8];
1980
1981 /*
1982 * The skl_wm_values structure is a bit too big for stack
1983 * allocation, so we keep the staging struct where we store
1984 * intermediate results here instead.
1985 */
1986 struct skl_wm_values skl_results;
1987
1988 /* current hardware state */
1989 union {
1990 struct ilk_wm_values hw;
1991 struct skl_wm_values skl_hw;
1992 struct vlv_wm_values vlv;
1993 };
1994
1995 uint8_t max_level;
1996
1997 /*
1998 * Should be held around atomic WM register writing; also
1999 * protects * intel_crtc->wm.active and
2000 * cstate->wm.need_postvbl_update.
2001 */
2002 struct mutex wm_mutex;
2003
2004 /*
2005 * Set during HW readout of watermarks/DDB. Some platforms
2006 * need to know when we're still using BIOS-provided values
2007 * (which we don't fully trust).
2008 */
2009 bool distrust_bios_wm;
2010 } wm;
2011
2012 struct i915_runtime_pm pm;
2013
2014 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2015 struct {
2016 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2017 struct drm_i915_gem_execbuffer2 *args,
2018 struct list_head *vmas);
2019 int (*init_engines)(struct drm_device *dev);
2020 void (*cleanup_engine)(struct intel_engine_cs *engine);
2021 void (*stop_engine)(struct intel_engine_cs *engine);
2022
2023 /**
2024 * Is the GPU currently considered idle, or busy executing
2025 * userspace requests? Whilst idle, we allow runtime power
2026 * management to power down the hardware and display clocks.
2027 * In order to reduce the effect on performance, there
2028 * is a slight delay before we do so.
2029 */
2030 unsigned int active_engines;
2031 bool awake;
2032
2033 /**
2034 * We leave the user IRQ off as much as possible,
2035 * but this means that requests will finish and never
2036 * be retired once the system goes idle. Set a timer to
2037 * fire periodically while the ring is running. When it
2038 * fires, go retire requests.
2039 */
2040 struct delayed_work retire_work;
2041
2042 /**
2043 * When we detect an idle GPU, we want to turn on
2044 * powersaving features. So once we see that there
2045 * are no more requests outstanding and no more
2046 * arrive within a small period of time, we fire
2047 * off the idle_work.
2048 */
2049 struct delayed_work idle_work;
2050 } gt;
2051
2052 /* perform PHY state sanity checks? */
2053 bool chv_phy_assert[2];
2054
2055 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2056
2057 /*
2058 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2059 * will be rejected. Instead look for a better place.
2060 */
2061 };
2062
2063 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2064 {
2065 return container_of(dev, struct drm_i915_private, drm);
2066 }
2067
2068 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2069 {
2070 return to_i915(dev_get_drvdata(dev));
2071 }
2072
2073 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2074 {
2075 return container_of(guc, struct drm_i915_private, guc);
2076 }
2077
2078 /* Simple iterator over all initialised engines */
2079 #define for_each_engine(engine__, dev_priv__) \
2080 for ((engine__) = &(dev_priv__)->engine[0]; \
2081 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2082 (engine__)++) \
2083 for_each_if (intel_engine_initialized(engine__))
2084
2085 /* Iterator with engine_id */
2086 #define for_each_engine_id(engine__, dev_priv__, id__) \
2087 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2088 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2089 (engine__)++) \
2090 for_each_if (((id__) = (engine__)->id, \
2091 intel_engine_initialized(engine__)))
2092
2093 /* Iterator over subset of engines selected by mask */
2094 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2095 for ((engine__) = &(dev_priv__)->engine[0]; \
2096 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2097 (engine__)++) \
2098 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2099 intel_engine_initialized(engine__))
2100
2101 enum hdmi_force_audio {
2102 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2103 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2104 HDMI_AUDIO_AUTO, /* trust EDID */
2105 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2106 };
2107
2108 #define I915_GTT_OFFSET_NONE ((u32)-1)
2109
2110 struct drm_i915_gem_object_ops {
2111 unsigned int flags;
2112 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2113
2114 /* Interface between the GEM object and its backing storage.
2115 * get_pages() is called once prior to the use of the associated set
2116 * of pages before to binding them into the GTT, and put_pages() is
2117 * called after we no longer need them. As we expect there to be
2118 * associated cost with migrating pages between the backing storage
2119 * and making them available for the GPU (e.g. clflush), we may hold
2120 * onto the pages after they are no longer referenced by the GPU
2121 * in case they may be used again shortly (for example migrating the
2122 * pages to a different memory domain within the GTT). put_pages()
2123 * will therefore most likely be called when the object itself is
2124 * being released or under memory pressure (where we attempt to
2125 * reap pages for the shrinker).
2126 */
2127 int (*get_pages)(struct drm_i915_gem_object *);
2128 void (*put_pages)(struct drm_i915_gem_object *);
2129
2130 int (*dmabuf_export)(struct drm_i915_gem_object *);
2131 void (*release)(struct drm_i915_gem_object *);
2132 };
2133
2134 /*
2135 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2136 * considered to be the frontbuffer for the given plane interface-wise. This
2137 * doesn't mean that the hw necessarily already scans it out, but that any
2138 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2139 *
2140 * We have one bit per pipe and per scanout plane type.
2141 */
2142 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2143 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2144 #define INTEL_FRONTBUFFER_BITS \
2145 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2146 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2147 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2148 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2149 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2150 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2151 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2152 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2153 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2154 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2155 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2156
2157 struct drm_i915_gem_object {
2158 struct drm_gem_object base;
2159
2160 const struct drm_i915_gem_object_ops *ops;
2161
2162 /** List of VMAs backed by this object */
2163 struct list_head vma_list;
2164
2165 /** Stolen memory for this object, instead of being backed by shmem. */
2166 struct drm_mm_node *stolen;
2167 struct list_head global_list;
2168
2169 struct list_head engine_list[I915_NUM_ENGINES];
2170 /** Used in execbuf to temporarily hold a ref */
2171 struct list_head obj_exec_link;
2172
2173 struct list_head batch_pool_link;
2174
2175 /**
2176 * This is set if the object is on the active lists (has pending
2177 * rendering and so a non-zero seqno), and is not set if it i s on
2178 * inactive (ready to be unbound) list.
2179 */
2180 unsigned int active:I915_NUM_ENGINES;
2181
2182 /**
2183 * This is set if the object has been written to since last bound
2184 * to the GTT
2185 */
2186 unsigned int dirty:1;
2187
2188 /**
2189 * Fence register bits (if any) for this object. Will be set
2190 * as needed when mapped into the GTT.
2191 * Protected by dev->struct_mutex.
2192 */
2193 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2194
2195 /**
2196 * Advice: are the backing pages purgeable?
2197 */
2198 unsigned int madv:2;
2199
2200 /**
2201 * Current tiling mode for the object.
2202 */
2203 unsigned int tiling_mode:2;
2204 /**
2205 * Whether the tiling parameters for the currently associated fence
2206 * register have changed. Note that for the purposes of tracking
2207 * tiling changes we also treat the unfenced register, the register
2208 * slot that the object occupies whilst it executes a fenced
2209 * command (such as BLT on gen2/3), as a "fence".
2210 */
2211 unsigned int fence_dirty:1;
2212
2213 /**
2214 * Is the object at the current location in the gtt mappable and
2215 * fenceable? Used to avoid costly recalculations.
2216 */
2217 unsigned int map_and_fenceable:1;
2218
2219 /**
2220 * Whether the current gtt mapping needs to be mappable (and isn't just
2221 * mappable by accident). Track pin and fault separate for a more
2222 * accurate mappable working set.
2223 */
2224 unsigned int fault_mappable:1;
2225
2226 /*
2227 * Is the object to be mapped as read-only to the GPU
2228 * Only honoured if hardware has relevant pte bit
2229 */
2230 unsigned long gt_ro:1;
2231 unsigned int cache_level:3;
2232 unsigned int cache_dirty:1;
2233
2234 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2235
2236 unsigned int has_wc_mmap;
2237 unsigned int pin_display;
2238
2239 struct sg_table *pages;
2240 int pages_pin_count;
2241 struct get_page {
2242 struct scatterlist *sg;
2243 int last;
2244 } get_page;
2245 void *mapping;
2246
2247 /** Breadcrumb of last rendering to the buffer.
2248 * There can only be one writer, but we allow for multiple readers.
2249 * If there is a writer that necessarily implies that all other
2250 * read requests are complete - but we may only be lazily clearing
2251 * the read requests. A read request is naturally the most recent
2252 * request on a ring, so we may have two different write and read
2253 * requests on one ring where the write request is older than the
2254 * read request. This allows for the CPU to read from an active
2255 * buffer by only waiting for the write to complete.
2256 * */
2257 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2258 struct drm_i915_gem_request *last_write_req;
2259 /** Breadcrumb of last fenced GPU access to the buffer. */
2260 struct drm_i915_gem_request *last_fenced_req;
2261
2262 /** Current tiling stride for the object, if it's tiled. */
2263 uint32_t stride;
2264
2265 /** References from framebuffers, locks out tiling changes. */
2266 unsigned long framebuffer_references;
2267
2268 /** Record of address bit 17 of each page at last unbind. */
2269 unsigned long *bit_17;
2270
2271 union {
2272 /** for phy allocated objects */
2273 struct drm_dma_handle *phys_handle;
2274
2275 struct i915_gem_userptr {
2276 uintptr_t ptr;
2277 unsigned read_only :1;
2278 unsigned workers :4;
2279 #define I915_GEM_USERPTR_MAX_WORKERS 15
2280
2281 struct i915_mm_struct *mm;
2282 struct i915_mmu_object *mmu_object;
2283 struct work_struct *work;
2284 } userptr;
2285 };
2286 };
2287 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2288
2289 static inline bool
2290 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2291 {
2292 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2293 }
2294
2295 /*
2296 * Optimised SGL iterator for GEM objects
2297 */
2298 static __always_inline struct sgt_iter {
2299 struct scatterlist *sgp;
2300 union {
2301 unsigned long pfn;
2302 dma_addr_t dma;
2303 };
2304 unsigned int curr;
2305 unsigned int max;
2306 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2307 struct sgt_iter s = { .sgp = sgl };
2308
2309 if (s.sgp) {
2310 s.max = s.curr = s.sgp->offset;
2311 s.max += s.sgp->length;
2312 if (dma)
2313 s.dma = sg_dma_address(s.sgp);
2314 else
2315 s.pfn = page_to_pfn(sg_page(s.sgp));
2316 }
2317
2318 return s;
2319 }
2320
2321 /**
2322 * __sg_next - return the next scatterlist entry in a list
2323 * @sg: The current sg entry
2324 *
2325 * Description:
2326 * If the entry is the last, return NULL; otherwise, step to the next
2327 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2328 * otherwise just return the pointer to the current element.
2329 **/
2330 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2331 {
2332 #ifdef CONFIG_DEBUG_SG
2333 BUG_ON(sg->sg_magic != SG_MAGIC);
2334 #endif
2335 return sg_is_last(sg) ? NULL :
2336 likely(!sg_is_chain(++sg)) ? sg :
2337 sg_chain_ptr(sg);
2338 }
2339
2340 /**
2341 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2342 * @__dmap: DMA address (output)
2343 * @__iter: 'struct sgt_iter' (iterator state, internal)
2344 * @__sgt: sg_table to iterate over (input)
2345 */
2346 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2347 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2348 ((__dmap) = (__iter).dma + (__iter).curr); \
2349 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2350 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2351
2352 /**
2353 * for_each_sgt_page - iterate over the pages of the given sg_table
2354 * @__pp: page pointer (output)
2355 * @__iter: 'struct sgt_iter' (iterator state, internal)
2356 * @__sgt: sg_table to iterate over (input)
2357 */
2358 #define for_each_sgt_page(__pp, __iter, __sgt) \
2359 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2360 ((__pp) = (__iter).pfn == 0 ? NULL : \
2361 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2362 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2363 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2364
2365 /**
2366 * Request queue structure.
2367 *
2368 * The request queue allows us to note sequence numbers that have been emitted
2369 * and may be associated with active buffers to be retired.
2370 *
2371 * By keeping this list, we can avoid having to do questionable sequence
2372 * number comparisons on buffer last_read|write_seqno. It also allows an
2373 * emission time to be associated with the request for tracking how far ahead
2374 * of the GPU the submission is.
2375 *
2376 * The requests are reference counted, so upon creation they should have an
2377 * initial reference taken using kref_init
2378 */
2379 struct drm_i915_gem_request {
2380 struct kref ref;
2381
2382 /** On Which ring this request was generated */
2383 struct drm_i915_private *i915;
2384 struct intel_engine_cs *engine;
2385 struct intel_signal_node signaling;
2386
2387 /** GEM sequence number associated with the previous request,
2388 * when the HWS breadcrumb is equal to this the GPU is processing
2389 * this request.
2390 */
2391 u32 previous_seqno;
2392
2393 /** GEM sequence number associated with this request,
2394 * when the HWS breadcrumb is equal or greater than this the GPU
2395 * has finished processing this request.
2396 */
2397 u32 seqno;
2398
2399 /** Position in the ringbuffer of the start of the request */
2400 u32 head;
2401
2402 /**
2403 * Position in the ringbuffer of the start of the postfix.
2404 * This is required to calculate the maximum available ringbuffer
2405 * space without overwriting the postfix.
2406 */
2407 u32 postfix;
2408
2409 /** Position in the ringbuffer of the end of the whole request */
2410 u32 tail;
2411
2412 /** Preallocate space in the ringbuffer for the emitting the request */
2413 u32 reserved_space;
2414
2415 /**
2416 * Context and ring buffer related to this request
2417 * Contexts are refcounted, so when this request is associated with a
2418 * context, we must increment the context's refcount, to guarantee that
2419 * it persists while any request is linked to it. Requests themselves
2420 * are also refcounted, so the request will only be freed when the last
2421 * reference to it is dismissed, and the code in
2422 * i915_gem_request_free() will then decrement the refcount on the
2423 * context.
2424 */
2425 struct i915_gem_context *ctx;
2426 struct intel_ringbuffer *ringbuf;
2427
2428 /**
2429 * Context related to the previous request.
2430 * As the contexts are accessed by the hardware until the switch is
2431 * completed to a new context, the hardware may still be writing
2432 * to the context object after the breadcrumb is visible. We must
2433 * not unpin/unbind/prune that object whilst still active and so
2434 * we keep the previous context pinned until the following (this)
2435 * request is retired.
2436 */
2437 struct i915_gem_context *previous_context;
2438
2439 /** Batch buffer related to this request if any (used for
2440 error state dump only) */
2441 struct drm_i915_gem_object *batch_obj;
2442
2443 /** Time at which this request was emitted, in jiffies. */
2444 unsigned long emitted_jiffies;
2445
2446 /** global list entry for this request */
2447 struct list_head list;
2448
2449 struct drm_i915_file_private *file_priv;
2450 /** file_priv list entry for this request */
2451 struct list_head client_list;
2452
2453 /** process identifier submitting this request */
2454 struct pid *pid;
2455
2456 /**
2457 * The ELSP only accepts two elements at a time, so we queue
2458 * context/tail pairs on a given queue (ring->execlist_queue) until the
2459 * hardware is available. The queue serves a double purpose: we also use
2460 * it to keep track of the up to 2 contexts currently in the hardware
2461 * (usually one in execution and the other queued up by the GPU): We
2462 * only remove elements from the head of the queue when the hardware
2463 * informs us that an element has been completed.
2464 *
2465 * All accesses to the queue are mediated by a spinlock
2466 * (ring->execlist_lock).
2467 */
2468
2469 /** Execlist link in the submission queue.*/
2470 struct list_head execlist_link;
2471
2472 /** Execlists no. of times this request has been sent to the ELSP */
2473 int elsp_submitted;
2474
2475 /** Execlists context hardware id. */
2476 unsigned ctx_hw_id;
2477 };
2478
2479 struct drm_i915_gem_request * __must_check
2480 i915_gem_request_alloc(struct intel_engine_cs *engine,
2481 struct i915_gem_context *ctx);
2482 void i915_gem_request_free(struct kref *req_ref);
2483 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2484 struct drm_file *file);
2485
2486 static inline uint32_t
2487 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2488 {
2489 return req ? req->seqno : 0;
2490 }
2491
2492 static inline struct intel_engine_cs *
2493 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2494 {
2495 return req ? req->engine : NULL;
2496 }
2497
2498 static inline struct drm_i915_gem_request *
2499 i915_gem_request_reference(struct drm_i915_gem_request *req)
2500 {
2501 if (req)
2502 kref_get(&req->ref);
2503 return req;
2504 }
2505
2506 static inline void
2507 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2508 {
2509 kref_put(&req->ref, i915_gem_request_free);
2510 }
2511
2512 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2513 struct drm_i915_gem_request *src)
2514 {
2515 if (src)
2516 i915_gem_request_reference(src);
2517
2518 if (*pdst)
2519 i915_gem_request_unreference(*pdst);
2520
2521 *pdst = src;
2522 }
2523
2524 /*
2525 * XXX: i915_gem_request_completed should be here but currently needs the
2526 * definition of i915_seqno_passed() which is below. It will be moved in
2527 * a later patch when the call to i915_seqno_passed() is obsoleted...
2528 */
2529
2530 /*
2531 * A command that requires special handling by the command parser.
2532 */
2533 struct drm_i915_cmd_descriptor {
2534 /*
2535 * Flags describing how the command parser processes the command.
2536 *
2537 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2538 * a length mask if not set
2539 * CMD_DESC_SKIP: The command is allowed but does not follow the
2540 * standard length encoding for the opcode range in
2541 * which it falls
2542 * CMD_DESC_REJECT: The command is never allowed
2543 * CMD_DESC_REGISTER: The command should be checked against the
2544 * register whitelist for the appropriate ring
2545 * CMD_DESC_MASTER: The command is allowed if the submitting process
2546 * is the DRM master
2547 */
2548 u32 flags;
2549 #define CMD_DESC_FIXED (1<<0)
2550 #define CMD_DESC_SKIP (1<<1)
2551 #define CMD_DESC_REJECT (1<<2)
2552 #define CMD_DESC_REGISTER (1<<3)
2553 #define CMD_DESC_BITMASK (1<<4)
2554 #define CMD_DESC_MASTER (1<<5)
2555
2556 /*
2557 * The command's unique identification bits and the bitmask to get them.
2558 * This isn't strictly the opcode field as defined in the spec and may
2559 * also include type, subtype, and/or subop fields.
2560 */
2561 struct {
2562 u32 value;
2563 u32 mask;
2564 } cmd;
2565
2566 /*
2567 * The command's length. The command is either fixed length (i.e. does
2568 * not include a length field) or has a length field mask. The flag
2569 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2570 * a length mask. All command entries in a command table must include
2571 * length information.
2572 */
2573 union {
2574 u32 fixed;
2575 u32 mask;
2576 } length;
2577
2578 /*
2579 * Describes where to find a register address in the command to check
2580 * against the ring's register whitelist. Only valid if flags has the
2581 * CMD_DESC_REGISTER bit set.
2582 *
2583 * A non-zero step value implies that the command may access multiple
2584 * registers in sequence (e.g. LRI), in that case step gives the
2585 * distance in dwords between individual offset fields.
2586 */
2587 struct {
2588 u32 offset;
2589 u32 mask;
2590 u32 step;
2591 } reg;
2592
2593 #define MAX_CMD_DESC_BITMASKS 3
2594 /*
2595 * Describes command checks where a particular dword is masked and
2596 * compared against an expected value. If the command does not match
2597 * the expected value, the parser rejects it. Only valid if flags has
2598 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2599 * are valid.
2600 *
2601 * If the check specifies a non-zero condition_mask then the parser
2602 * only performs the check when the bits specified by condition_mask
2603 * are non-zero.
2604 */
2605 struct {
2606 u32 offset;
2607 u32 mask;
2608 u32 expected;
2609 u32 condition_offset;
2610 u32 condition_mask;
2611 } bits[MAX_CMD_DESC_BITMASKS];
2612 };
2613
2614 /*
2615 * A table of commands requiring special handling by the command parser.
2616 *
2617 * Each ring has an array of tables. Each table consists of an array of command
2618 * descriptors, which must be sorted with command opcodes in ascending order.
2619 */
2620 struct drm_i915_cmd_table {
2621 const struct drm_i915_cmd_descriptor *table;
2622 int count;
2623 };
2624
2625 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2626 #define __I915__(p) ({ \
2627 struct drm_i915_private *__p; \
2628 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2629 __p = (struct drm_i915_private *)p; \
2630 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2631 __p = to_i915((struct drm_device *)p); \
2632 else \
2633 BUILD_BUG(); \
2634 __p; \
2635 })
2636 #define INTEL_INFO(p) (&__I915__(p)->info)
2637 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2638 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2639
2640 #define REVID_FOREVER 0xff
2641 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2642
2643 #define GEN_FOREVER (0)
2644 /*
2645 * Returns true if Gen is in inclusive range [Start, End].
2646 *
2647 * Use GEN_FOREVER for unbound start and or end.
2648 */
2649 #define IS_GEN(p, s, e) ({ \
2650 unsigned int __s = (s), __e = (e); \
2651 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2652 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2653 if ((__s) != GEN_FOREVER) \
2654 __s = (s) - 1; \
2655 if ((__e) == GEN_FOREVER) \
2656 __e = BITS_PER_LONG - 1; \
2657 else \
2658 __e = (e) - 1; \
2659 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2660 })
2661
2662 /*
2663 * Return true if revision is in range [since,until] inclusive.
2664 *
2665 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2666 */
2667 #define IS_REVID(p, since, until) \
2668 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2669
2670 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2671 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2672 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2673 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2674 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2675 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2676 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2677 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2678 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2679 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2680 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2681 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2682 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2683 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2684 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2685 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2686 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2687 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2688 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2689 INTEL_DEVID(dev) == 0x0152 || \
2690 INTEL_DEVID(dev) == 0x015a)
2691 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2692 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2693 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2694 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2695 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2696 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2697 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2698 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2699 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2700 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2701 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2702 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2703 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2704 (INTEL_DEVID(dev) & 0xf) == 0xe))
2705 /* ULX machines are also considered ULT. */
2706 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2707 (INTEL_DEVID(dev) & 0xf) == 0xe)
2708 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2709 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2710 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2711 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2712 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2713 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2714 /* ULX machines are also considered ULT. */
2715 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2716 INTEL_DEVID(dev) == 0x0A1E)
2717 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2718 INTEL_DEVID(dev) == 0x1913 || \
2719 INTEL_DEVID(dev) == 0x1916 || \
2720 INTEL_DEVID(dev) == 0x1921 || \
2721 INTEL_DEVID(dev) == 0x1926)
2722 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2723 INTEL_DEVID(dev) == 0x1915 || \
2724 INTEL_DEVID(dev) == 0x191E)
2725 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2726 INTEL_DEVID(dev) == 0x5913 || \
2727 INTEL_DEVID(dev) == 0x5916 || \
2728 INTEL_DEVID(dev) == 0x5921 || \
2729 INTEL_DEVID(dev) == 0x5926)
2730 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2731 INTEL_DEVID(dev) == 0x5915 || \
2732 INTEL_DEVID(dev) == 0x591E)
2733 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2734 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2735 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2736 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2737
2738 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2739
2740 #define SKL_REVID_A0 0x0
2741 #define SKL_REVID_B0 0x1
2742 #define SKL_REVID_C0 0x2
2743 #define SKL_REVID_D0 0x3
2744 #define SKL_REVID_E0 0x4
2745 #define SKL_REVID_F0 0x5
2746
2747 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2748
2749 #define BXT_REVID_A0 0x0
2750 #define BXT_REVID_A1 0x1
2751 #define BXT_REVID_B0 0x3
2752 #define BXT_REVID_C0 0x9
2753
2754 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2755
2756 #define KBL_REVID_A0 0x0
2757 #define KBL_REVID_B0 0x1
2758 #define KBL_REVID_C0 0x2
2759 #define KBL_REVID_D0 0x3
2760 #define KBL_REVID_E0 0x4
2761
2762 #define IS_KBL_REVID(p, since, until) \
2763 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2764
2765 /*
2766 * The genX designation typically refers to the render engine, so render
2767 * capability related checks should use IS_GEN, while display and other checks
2768 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2769 * chips, etc.).
2770 */
2771 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2772 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2773 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2774 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2775 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2776 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2777 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2778 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2779
2780 #define ENGINE_MASK(id) BIT(id)
2781 #define RENDER_RING ENGINE_MASK(RCS)
2782 #define BSD_RING ENGINE_MASK(VCS)
2783 #define BLT_RING ENGINE_MASK(BCS)
2784 #define VEBOX_RING ENGINE_MASK(VECS)
2785 #define BSD2_RING ENGINE_MASK(VCS2)
2786 #define ALL_ENGINES (~0)
2787
2788 #define HAS_ENGINE(dev_priv, id) \
2789 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2790
2791 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2792 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2793 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2794 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2795
2796 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2797 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2798 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2799 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2800 HAS_EDRAM(dev))
2801 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2802
2803 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2804 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2805 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2806 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2807 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2808
2809 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2810 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2811
2812 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2813 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2814
2815 /* WaRsDisableCoarsePowerGating:skl,bxt */
2816 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2817 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2818 IS_SKL_GT3(dev_priv) || \
2819 IS_SKL_GT4(dev_priv))
2820
2821 /*
2822 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2823 * even when in MSI mode. This results in spurious interrupt warnings if the
2824 * legacy irq no. is shared with another device. The kernel then disables that
2825 * interrupt source and so prevents the other device from working properly.
2826 */
2827 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2828 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2829
2830 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2831 * rows, which changed the alignment requirements and fence programming.
2832 */
2833 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2834 IS_I915GM(dev)))
2835 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2836 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2837
2838 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2839 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2840 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2841
2842 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2843
2844 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2845 INTEL_INFO(dev)->gen >= 9)
2846
2847 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2848 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2849 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2850 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2851 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2852 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2853 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2854 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2855 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2856 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2857 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2858
2859 #define HAS_CSR(dev) (IS_GEN9(dev))
2860
2861 /*
2862 * For now, anything with a GuC requires uCode loading, and then supports
2863 * command submission once loaded. But these are logically independent
2864 * properties, so we have separate macros to test them.
2865 */
2866 #define HAS_GUC(dev) (IS_GEN9(dev))
2867 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2868 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2869
2870 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2871 INTEL_INFO(dev)->gen >= 8)
2872
2873 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2874 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2875 !IS_BROXTON(dev))
2876
2877 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2878
2879 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2880 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2881 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2882 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2883 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2884 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2885 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2886 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2887 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2888 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2889 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2890 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2891
2892 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2893 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2894 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2895 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2896 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2897 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2898 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2899 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2900 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2901 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2902
2903 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2904 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2905
2906 /* DPF == dynamic parity feature */
2907 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2908 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2909
2910 #define GT_FREQUENCY_MULTIPLIER 50
2911 #define GEN9_FREQ_SCALER 3
2912
2913 #include "i915_trace.h"
2914
2915 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2916 {
2917 #ifdef CONFIG_INTEL_IOMMU
2918 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2919 return true;
2920 #endif
2921 return false;
2922 }
2923
2924 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2925 extern int i915_resume_switcheroo(struct drm_device *dev);
2926
2927 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2928 int enable_ppgtt);
2929
2930 /* i915_drv.c */
2931 void __printf(3, 4)
2932 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2933 const char *fmt, ...);
2934
2935 #define i915_report_error(dev_priv, fmt, ...) \
2936 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2937
2938 #ifdef CONFIG_COMPAT
2939 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2940 unsigned long arg);
2941 #endif
2942 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2943 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2944 extern int i915_reset(struct drm_i915_private *dev_priv);
2945 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2946 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2947 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2948 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2949 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2950 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2951 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2952
2953 /* intel_hotplug.c */
2954 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2955 u32 pin_mask, u32 long_mask);
2956 void intel_hpd_init(struct drm_i915_private *dev_priv);
2957 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2958 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2959 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2960
2961 /* i915_irq.c */
2962 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2963 {
2964 unsigned long delay;
2965
2966 if (unlikely(!i915.enable_hangcheck))
2967 return;
2968
2969 /* Don't continually defer the hangcheck so that it is always run at
2970 * least once after work has been scheduled on any ring. Otherwise,
2971 * we will ignore a hung ring if a second ring is kept busy.
2972 */
2973
2974 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2975 queue_delayed_work(system_long_wq,
2976 &dev_priv->gpu_error.hangcheck_work, delay);
2977 }
2978
2979 __printf(3, 4)
2980 void i915_handle_error(struct drm_i915_private *dev_priv,
2981 u32 engine_mask,
2982 const char *fmt, ...);
2983
2984 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2985 int intel_irq_install(struct drm_i915_private *dev_priv);
2986 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2987
2988 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2989 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2990 bool restore_forcewake);
2991 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2992 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2993 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2994 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2995 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2996 bool restore);
2997 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2998 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2999 enum forcewake_domains domains);
3000 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3001 enum forcewake_domains domains);
3002 /* Like above but the caller must manage the uncore.lock itself.
3003 * Must be used with I915_READ_FW and friends.
3004 */
3005 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3006 enum forcewake_domains domains);
3007 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3008 enum forcewake_domains domains);
3009 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3010
3011 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3012
3013 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3014 i915_reg_t reg,
3015 const u32 mask,
3016 const u32 value,
3017 const unsigned long timeout_ms);
3018 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3019 i915_reg_t reg,
3020 const u32 mask,
3021 const u32 value,
3022 const unsigned long timeout_ms);
3023
3024 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3025 {
3026 return dev_priv->gvt.initialized;
3027 }
3028
3029 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3030 {
3031 return dev_priv->vgpu.active;
3032 }
3033
3034 void
3035 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3036 u32 status_mask);
3037
3038 void
3039 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3040 u32 status_mask);
3041
3042 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3043 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3044 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3045 uint32_t mask,
3046 uint32_t bits);
3047 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3048 uint32_t interrupt_mask,
3049 uint32_t enabled_irq_mask);
3050 static inline void
3051 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3052 {
3053 ilk_update_display_irq(dev_priv, bits, bits);
3054 }
3055 static inline void
3056 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3057 {
3058 ilk_update_display_irq(dev_priv, bits, 0);
3059 }
3060 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3061 enum pipe pipe,
3062 uint32_t interrupt_mask,
3063 uint32_t enabled_irq_mask);
3064 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3065 enum pipe pipe, uint32_t bits)
3066 {
3067 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3068 }
3069 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3070 enum pipe pipe, uint32_t bits)
3071 {
3072 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3073 }
3074 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3075 uint32_t interrupt_mask,
3076 uint32_t enabled_irq_mask);
3077 static inline void
3078 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3079 {
3080 ibx_display_interrupt_update(dev_priv, bits, bits);
3081 }
3082 static inline void
3083 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3084 {
3085 ibx_display_interrupt_update(dev_priv, bits, 0);
3086 }
3087
3088 /* i915_gem.c */
3089 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3090 struct drm_file *file_priv);
3091 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3092 struct drm_file *file_priv);
3093 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3094 struct drm_file *file_priv);
3095 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3096 struct drm_file *file_priv);
3097 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3098 struct drm_file *file_priv);
3099 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3100 struct drm_file *file_priv);
3101 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3102 struct drm_file *file_priv);
3103 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3104 struct drm_i915_gem_request *req);
3105 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3106 struct drm_i915_gem_execbuffer2 *args,
3107 struct list_head *vmas);
3108 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3109 struct drm_file *file_priv);
3110 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3111 struct drm_file *file_priv);
3112 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3113 struct drm_file *file_priv);
3114 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3115 struct drm_file *file);
3116 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3117 struct drm_file *file);
3118 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3119 struct drm_file *file_priv);
3120 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3121 struct drm_file *file_priv);
3122 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3123 struct drm_file *file_priv);
3124 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3125 struct drm_file *file_priv);
3126 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3127 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3128 struct drm_file *file);
3129 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3130 struct drm_file *file_priv);
3131 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3132 struct drm_file *file_priv);
3133 void i915_gem_load_init(struct drm_device *dev);
3134 void i915_gem_load_cleanup(struct drm_device *dev);
3135 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3136 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3137
3138 void *i915_gem_object_alloc(struct drm_device *dev);
3139 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3140 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3141 const struct drm_i915_gem_object_ops *ops);
3142 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3143 size_t size);
3144 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3145 struct drm_device *dev, const void *data, size_t size);
3146 void i915_gem_free_object(struct drm_gem_object *obj);
3147 void i915_gem_vma_destroy(struct i915_vma *vma);
3148
3149 /* Flags used by pin/bind&friends. */
3150 #define PIN_MAPPABLE (1<<0)
3151 #define PIN_NONBLOCK (1<<1)
3152 #define PIN_GLOBAL (1<<2)
3153 #define PIN_OFFSET_BIAS (1<<3)
3154 #define PIN_USER (1<<4)
3155 #define PIN_UPDATE (1<<5)
3156 #define PIN_ZONE_4G (1<<6)
3157 #define PIN_HIGH (1<<7)
3158 #define PIN_OFFSET_FIXED (1<<8)
3159 #define PIN_OFFSET_MASK (~4095)
3160 int __must_check
3161 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3162 struct i915_address_space *vm,
3163 uint32_t alignment,
3164 uint64_t flags);
3165 int __must_check
3166 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3167 const struct i915_ggtt_view *view,
3168 uint32_t alignment,
3169 uint64_t flags);
3170
3171 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3172 u32 flags);
3173 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3174 int __must_check i915_vma_unbind(struct i915_vma *vma);
3175 /*
3176 * BEWARE: Do not use the function below unless you can _absolutely_
3177 * _guarantee_ VMA in question is _not in use_ anywhere.
3178 */
3179 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3180 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3181 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3182 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3183
3184 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3185 int *needs_clflush);
3186
3187 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3188
3189 static inline int __sg_page_count(struct scatterlist *sg)
3190 {
3191 return sg->length >> PAGE_SHIFT;
3192 }
3193
3194 struct page *
3195 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3196
3197 static inline dma_addr_t
3198 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3199 {
3200 if (n < obj->get_page.last) {
3201 obj->get_page.sg = obj->pages->sgl;
3202 obj->get_page.last = 0;
3203 }
3204
3205 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3206 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3207 if (unlikely(sg_is_chain(obj->get_page.sg)))
3208 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3209 }
3210
3211 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3212 }
3213
3214 static inline struct page *
3215 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3216 {
3217 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3218 return NULL;
3219
3220 if (n < obj->get_page.last) {
3221 obj->get_page.sg = obj->pages->sgl;
3222 obj->get_page.last = 0;
3223 }
3224
3225 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3226 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3227 if (unlikely(sg_is_chain(obj->get_page.sg)))
3228 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3229 }
3230
3231 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3232 }
3233
3234 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3235 {
3236 BUG_ON(obj->pages == NULL);
3237 obj->pages_pin_count++;
3238 }
3239
3240 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3241 {
3242 BUG_ON(obj->pages_pin_count == 0);
3243 obj->pages_pin_count--;
3244 }
3245
3246 /**
3247 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3248 * @obj - the object to map into kernel address space
3249 *
3250 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3251 * pages and then returns a contiguous mapping of the backing storage into
3252 * the kernel address space.
3253 *
3254 * The caller must hold the struct_mutex, and is responsible for calling
3255 * i915_gem_object_unpin_map() when the mapping is no longer required.
3256 *
3257 * Returns the pointer through which to access the mapped object, or an
3258 * ERR_PTR() on error.
3259 */
3260 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3261
3262 /**
3263 * i915_gem_object_unpin_map - releases an earlier mapping
3264 * @obj - the object to unmap
3265 *
3266 * After pinning the object and mapping its pages, once you are finished
3267 * with your access, call i915_gem_object_unpin_map() to release the pin
3268 * upon the mapping. Once the pin count reaches zero, that mapping may be
3269 * removed.
3270 *
3271 * The caller must hold the struct_mutex.
3272 */
3273 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3274 {
3275 lockdep_assert_held(&obj->base.dev->struct_mutex);
3276 i915_gem_object_unpin_pages(obj);
3277 }
3278
3279 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3280 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3281 struct intel_engine_cs *to,
3282 struct drm_i915_gem_request **to_req);
3283 void i915_vma_move_to_active(struct i915_vma *vma,
3284 struct drm_i915_gem_request *req);
3285 int i915_gem_dumb_create(struct drm_file *file_priv,
3286 struct drm_device *dev,
3287 struct drm_mode_create_dumb *args);
3288 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3289 uint32_t handle, uint64_t *offset);
3290
3291 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3292 struct drm_i915_gem_object *new,
3293 unsigned frontbuffer_bits);
3294
3295 /**
3296 * Returns true if seq1 is later than seq2.
3297 */
3298 static inline bool
3299 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3300 {
3301 return (int32_t)(seq1 - seq2) >= 0;
3302 }
3303
3304 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3305 {
3306 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3307 req->previous_seqno);
3308 }
3309
3310 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3311 {
3312 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3313 req->seqno);
3314 }
3315
3316 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3317 int state, unsigned long timeout_us);
3318 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3319 int state, unsigned long timeout_us)
3320 {
3321 return (i915_gem_request_started(request) &&
3322 __i915_spin_request(request, state, timeout_us));
3323 }
3324
3325 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3326 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3327
3328 struct drm_i915_gem_request *
3329 i915_gem_find_active_request(struct intel_engine_cs *engine);
3330
3331 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3332 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3333
3334 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3335 {
3336 return atomic_read(&error->reset_counter);
3337 }
3338
3339 static inline bool __i915_reset_in_progress(u32 reset)
3340 {
3341 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3342 }
3343
3344 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3345 {
3346 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3347 }
3348
3349 static inline bool __i915_terminally_wedged(u32 reset)
3350 {
3351 return unlikely(reset & I915_WEDGED);
3352 }
3353
3354 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3355 {
3356 return __i915_reset_in_progress(i915_reset_counter(error));
3357 }
3358
3359 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3360 {
3361 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3362 }
3363
3364 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3365 {
3366 return __i915_terminally_wedged(i915_reset_counter(error));
3367 }
3368
3369 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3370 {
3371 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3372 }
3373
3374 void i915_gem_reset(struct drm_device *dev);
3375 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3376 int __must_check i915_gem_init(struct drm_device *dev);
3377 int i915_gem_init_engines(struct drm_device *dev);
3378 int __must_check i915_gem_init_hw(struct drm_device *dev);
3379 void i915_gem_init_swizzling(struct drm_device *dev);
3380 void i915_gem_cleanup_engines(struct drm_device *dev);
3381 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3382 int __must_check i915_gem_suspend(struct drm_device *dev);
3383 void __i915_add_request(struct drm_i915_gem_request *req,
3384 struct drm_i915_gem_object *batch_obj,
3385 bool flush_caches);
3386 #define i915_add_request(req) \
3387 __i915_add_request(req, NULL, true)
3388 #define i915_add_request_no_flush(req) \
3389 __i915_add_request(req, NULL, false)
3390 int __i915_wait_request(struct drm_i915_gem_request *req,
3391 bool interruptible,
3392 s64 *timeout,
3393 struct intel_rps_client *rps);
3394 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3395 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3396 int __must_check
3397 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3398 bool readonly);
3399 int __must_check
3400 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3401 bool write);
3402 int __must_check
3403 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3404 int __must_check
3405 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3406 u32 alignment,
3407 const struct i915_ggtt_view *view);
3408 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3409 const struct i915_ggtt_view *view);
3410 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3411 int align);
3412 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3413 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3414
3415 uint32_t
3416 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3417 uint32_t
3418 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3419 int tiling_mode, bool fenced);
3420
3421 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3422 enum i915_cache_level cache_level);
3423
3424 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3425 struct dma_buf *dma_buf);
3426
3427 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3428 struct drm_gem_object *gem_obj, int flags);
3429
3430 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3431 const struct i915_ggtt_view *view);
3432 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3433 struct i915_address_space *vm);
3434 static inline u64
3435 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3436 {
3437 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3438 }
3439
3440 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3441 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3442 const struct i915_ggtt_view *view);
3443 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3444 struct i915_address_space *vm);
3445
3446 struct i915_vma *
3447 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3448 struct i915_address_space *vm);
3449 struct i915_vma *
3450 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3451 const struct i915_ggtt_view *view);
3452
3453 struct i915_vma *
3454 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3455 struct i915_address_space *vm);
3456 struct i915_vma *
3457 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3458 const struct i915_ggtt_view *view);
3459
3460 static inline struct i915_vma *
3461 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3462 {
3463 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3464 }
3465 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3466
3467 /* Some GGTT VM helpers */
3468 static inline struct i915_hw_ppgtt *
3469 i915_vm_to_ppgtt(struct i915_address_space *vm)
3470 {
3471 return container_of(vm, struct i915_hw_ppgtt, base);
3472 }
3473
3474
3475 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3476 {
3477 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3478 }
3479
3480 unsigned long
3481 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3482
3483 static inline int __must_check
3484 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3485 uint32_t alignment,
3486 unsigned flags)
3487 {
3488 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3489 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3490
3491 return i915_gem_object_pin(obj, &ggtt->base,
3492 alignment, flags | PIN_GLOBAL);
3493 }
3494
3495 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3496 const struct i915_ggtt_view *view);
3497 static inline void
3498 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3499 {
3500 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3501 }
3502
3503 /* i915_gem_fence.c */
3504 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3505 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3506
3507 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3508 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3509
3510 void i915_gem_restore_fences(struct drm_device *dev);
3511
3512 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3513 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3514 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3515
3516 /* i915_gem_context.c */
3517 int __must_check i915_gem_context_init(struct drm_device *dev);
3518 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3519 void i915_gem_context_fini(struct drm_device *dev);
3520 void i915_gem_context_reset(struct drm_device *dev);
3521 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3522 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3523 int i915_switch_context(struct drm_i915_gem_request *req);
3524 void i915_gem_context_free(struct kref *ctx_ref);
3525 struct drm_i915_gem_object *
3526 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3527 struct i915_gem_context *
3528 i915_gem_context_create_gvt(struct drm_device *dev);
3529
3530 static inline struct i915_gem_context *
3531 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3532 {
3533 struct i915_gem_context *ctx;
3534
3535 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3536
3537 ctx = idr_find(&file_priv->context_idr, id);
3538 if (!ctx)
3539 return ERR_PTR(-ENOENT);
3540
3541 return ctx;
3542 }
3543
3544 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3545 {
3546 kref_get(&ctx->ref);
3547 }
3548
3549 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3550 {
3551 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3552 kref_put(&ctx->ref, i915_gem_context_free);
3553 }
3554
3555 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3556 {
3557 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3558 }
3559
3560 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3561 struct drm_file *file);
3562 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3563 struct drm_file *file);
3564 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file_priv);
3566 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3567 struct drm_file *file_priv);
3568 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3569 struct drm_file *file);
3570
3571 /* i915_gem_evict.c */
3572 int __must_check i915_gem_evict_something(struct drm_device *dev,
3573 struct i915_address_space *vm,
3574 int min_size,
3575 unsigned alignment,
3576 unsigned cache_level,
3577 unsigned long start,
3578 unsigned long end,
3579 unsigned flags);
3580 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3581 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3582
3583 /* belongs in i915_gem_gtt.h */
3584 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3585 {
3586 if (INTEL_GEN(dev_priv) < 6)
3587 intel_gtt_chipset_flush();
3588 }
3589
3590 /* i915_gem_stolen.c */
3591 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3592 struct drm_mm_node *node, u64 size,
3593 unsigned alignment);
3594 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3595 struct drm_mm_node *node, u64 size,
3596 unsigned alignment, u64 start,
3597 u64 end);
3598 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3599 struct drm_mm_node *node);
3600 int i915_gem_init_stolen(struct drm_device *dev);
3601 void i915_gem_cleanup_stolen(struct drm_device *dev);
3602 struct drm_i915_gem_object *
3603 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3604 struct drm_i915_gem_object *
3605 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3606 u32 stolen_offset,
3607 u32 gtt_offset,
3608 u32 size);
3609
3610 /* i915_gem_shrinker.c */
3611 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3612 unsigned long target,
3613 unsigned flags);
3614 #define I915_SHRINK_PURGEABLE 0x1
3615 #define I915_SHRINK_UNBOUND 0x2
3616 #define I915_SHRINK_BOUND 0x4
3617 #define I915_SHRINK_ACTIVE 0x8
3618 #define I915_SHRINK_VMAPS 0x10
3619 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3620 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3621 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3622
3623
3624 /* i915_gem_tiling.c */
3625 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3626 {
3627 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3628
3629 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3630 obj->tiling_mode != I915_TILING_NONE;
3631 }
3632
3633 /* i915_gem_debug.c */
3634 #if WATCH_LISTS
3635 int i915_verify_lists(struct drm_device *dev);
3636 #else
3637 #define i915_verify_lists(dev) 0
3638 #endif
3639
3640 /* i915_debugfs.c */
3641 #ifdef CONFIG_DEBUG_FS
3642 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3643 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3644 int i915_debugfs_connector_add(struct drm_connector *connector);
3645 void intel_display_crc_init(struct drm_device *dev);
3646 #else
3647 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3648 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3649 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3650 { return 0; }
3651 static inline void intel_display_crc_init(struct drm_device *dev) {}
3652 #endif
3653
3654 /* i915_gpu_error.c */
3655 __printf(2, 3)
3656 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3657 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3658 const struct i915_error_state_file_priv *error);
3659 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3660 struct drm_i915_private *i915,
3661 size_t count, loff_t pos);
3662 static inline void i915_error_state_buf_release(
3663 struct drm_i915_error_state_buf *eb)
3664 {
3665 kfree(eb->buf);
3666 }
3667 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3668 u32 engine_mask,
3669 const char *error_msg);
3670 void i915_error_state_get(struct drm_device *dev,
3671 struct i915_error_state_file_priv *error_priv);
3672 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3673 void i915_destroy_error_state(struct drm_device *dev);
3674
3675 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3676 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3677
3678 /* i915_cmd_parser.c */
3679 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3680 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3681 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3682 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3683 int i915_parse_cmds(struct intel_engine_cs *engine,
3684 struct drm_i915_gem_object *batch_obj,
3685 struct drm_i915_gem_object *shadow_batch_obj,
3686 u32 batch_start_offset,
3687 u32 batch_len,
3688 bool is_master);
3689
3690 /* i915_suspend.c */
3691 extern int i915_save_state(struct drm_device *dev);
3692 extern int i915_restore_state(struct drm_device *dev);
3693
3694 /* i915_sysfs.c */
3695 void i915_setup_sysfs(struct drm_device *dev_priv);
3696 void i915_teardown_sysfs(struct drm_device *dev_priv);
3697
3698 /* intel_i2c.c */
3699 extern int intel_setup_gmbus(struct drm_device *dev);
3700 extern void intel_teardown_gmbus(struct drm_device *dev);
3701 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3702 unsigned int pin);
3703
3704 extern struct i2c_adapter *
3705 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3706 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3707 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3708 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3709 {
3710 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3711 }
3712 extern void intel_i2c_reset(struct drm_device *dev);
3713
3714 /* intel_bios.c */
3715 int intel_bios_init(struct drm_i915_private *dev_priv);
3716 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3717 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3718 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3719 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3720 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3721 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3722 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3723 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3724 enum port port);
3725
3726 /* intel_opregion.c */
3727 #ifdef CONFIG_ACPI
3728 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3729 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3730 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3731 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3732 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3733 bool enable);
3734 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3735 pci_power_t state);
3736 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3737 #else
3738 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3739 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3740 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3741 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3742 {
3743 }
3744 static inline int
3745 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3746 {
3747 return 0;
3748 }
3749 static inline int
3750 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3751 {
3752 return 0;
3753 }
3754 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3755 {
3756 return -ENODEV;
3757 }
3758 #endif
3759
3760 /* intel_acpi.c */
3761 #ifdef CONFIG_ACPI
3762 extern void intel_register_dsm_handler(void);
3763 extern void intel_unregister_dsm_handler(void);
3764 #else
3765 static inline void intel_register_dsm_handler(void) { return; }
3766 static inline void intel_unregister_dsm_handler(void) { return; }
3767 #endif /* CONFIG_ACPI */
3768
3769 /* intel_device_info.c */
3770 static inline struct intel_device_info *
3771 mkwrite_device_info(struct drm_i915_private *dev_priv)
3772 {
3773 return (struct intel_device_info *)&dev_priv->info;
3774 }
3775
3776 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3777 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3778
3779 /* modesetting */
3780 extern void intel_modeset_init_hw(struct drm_device *dev);
3781 extern void intel_modeset_init(struct drm_device *dev);
3782 extern void intel_modeset_gem_init(struct drm_device *dev);
3783 extern void intel_modeset_cleanup(struct drm_device *dev);
3784 extern int intel_connector_register(struct drm_connector *);
3785 extern void intel_connector_unregister(struct drm_connector *);
3786 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3787 extern void intel_display_resume(struct drm_device *dev);
3788 extern void i915_redisable_vga(struct drm_device *dev);
3789 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3790 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3791 extern void intel_init_pch_refclk(struct drm_device *dev);
3792 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3793 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3794 bool enable);
3795
3796 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3797 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file);
3799
3800 /* overlay */
3801 extern struct intel_overlay_error_state *
3802 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3803 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3804 struct intel_overlay_error_state *error);
3805
3806 extern struct intel_display_error_state *
3807 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3808 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3809 struct drm_device *dev,
3810 struct intel_display_error_state *error);
3811
3812 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3813 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3814
3815 /* intel_sideband.c */
3816 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3817 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3818 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3819 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3820 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3821 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3822 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3823 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3824 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3825 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3826 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3827 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3828 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3829 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3830 enum intel_sbi_destination destination);
3831 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3832 enum intel_sbi_destination destination);
3833 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3834 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3835
3836 /* intel_dpio_phy.c */
3837 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3838 u32 deemph_reg_value, u32 margin_reg_value,
3839 bool uniq_trans_scale);
3840 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3841 bool reset);
3842 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3843 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3844 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3845 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3846
3847 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3848 u32 demph_reg_value, u32 preemph_reg_value,
3849 u32 uniqtranscale_reg_value, u32 tx3_demph);
3850 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3851 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3852 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3853
3854 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3855 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3856
3857 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3858 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3859
3860 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3861 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3862 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3863 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3864
3865 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3866 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3867 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3868 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3869
3870 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3871 * will be implemented using 2 32-bit writes in an arbitrary order with
3872 * an arbitrary delay between them. This can cause the hardware to
3873 * act upon the intermediate value, possibly leading to corruption and
3874 * machine death. You have been warned.
3875 */
3876 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3877 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3878
3879 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3880 u32 upper, lower, old_upper, loop = 0; \
3881 upper = I915_READ(upper_reg); \
3882 do { \
3883 old_upper = upper; \
3884 lower = I915_READ(lower_reg); \
3885 upper = I915_READ(upper_reg); \
3886 } while (upper != old_upper && loop++ < 2); \
3887 (u64)upper << 32 | lower; })
3888
3889 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3890 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3891
3892 #define __raw_read(x, s) \
3893 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3894 i915_reg_t reg) \
3895 { \
3896 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3897 }
3898
3899 #define __raw_write(x, s) \
3900 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3901 i915_reg_t reg, uint##x##_t val) \
3902 { \
3903 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3904 }
3905 __raw_read(8, b)
3906 __raw_read(16, w)
3907 __raw_read(32, l)
3908 __raw_read(64, q)
3909
3910 __raw_write(8, b)
3911 __raw_write(16, w)
3912 __raw_write(32, l)
3913 __raw_write(64, q)
3914
3915 #undef __raw_read
3916 #undef __raw_write
3917
3918 /* These are untraced mmio-accessors that are only valid to be used inside
3919 * criticial sections inside IRQ handlers where forcewake is explicitly
3920 * controlled.
3921 * Think twice, and think again, before using these.
3922 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3923 * intel_uncore_forcewake_irqunlock().
3924 */
3925 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3926 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3927 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3928 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3929
3930 /* "Broadcast RGB" property */
3931 #define INTEL_BROADCAST_RGB_AUTO 0
3932 #define INTEL_BROADCAST_RGB_FULL 1
3933 #define INTEL_BROADCAST_RGB_LIMITED 2
3934
3935 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3936 {
3937 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3938 return VLV_VGACNTRL;
3939 else if (INTEL_INFO(dev)->gen >= 5)
3940 return CPU_VGACNTRL;
3941 else
3942 return VGACNTRL;
3943 }
3944
3945 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3946 {
3947 unsigned long j = msecs_to_jiffies(m);
3948
3949 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3950 }
3951
3952 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3953 {
3954 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3955 }
3956
3957 static inline unsigned long
3958 timespec_to_jiffies_timeout(const struct timespec *value)
3959 {
3960 unsigned long j = timespec_to_jiffies(value);
3961
3962 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3963 }
3964
3965 /*
3966 * If you need to wait X milliseconds between events A and B, but event B
3967 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3968 * when event A happened, then just before event B you call this function and
3969 * pass the timestamp as the first argument, and X as the second argument.
3970 */
3971 static inline void
3972 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3973 {
3974 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3975
3976 /*
3977 * Don't re-read the value of "jiffies" every time since it may change
3978 * behind our back and break the math.
3979 */
3980 tmp_jiffies = jiffies;
3981 target_jiffies = timestamp_jiffies +
3982 msecs_to_jiffies_timeout(to_wait_ms);
3983
3984 if (time_after(target_jiffies, tmp_jiffies)) {
3985 remaining_jiffies = target_jiffies - tmp_jiffies;
3986 while (remaining_jiffies)
3987 remaining_jiffies =
3988 schedule_timeout_uninterruptible(remaining_jiffies);
3989 }
3990 }
3991 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3992 {
3993 struct intel_engine_cs *engine = req->engine;
3994
3995 /* Before we do the heavier coherent read of the seqno,
3996 * check the value (hopefully) in the CPU cacheline.
3997 */
3998 if (i915_gem_request_completed(req))
3999 return true;
4000
4001 /* Ensure our read of the seqno is coherent so that we
4002 * do not "miss an interrupt" (i.e. if this is the last
4003 * request and the seqno write from the GPU is not visible
4004 * by the time the interrupt fires, we will see that the
4005 * request is incomplete and go back to sleep awaiting
4006 * another interrupt that will never come.)
4007 *
4008 * Strictly, we only need to do this once after an interrupt,
4009 * but it is easier and safer to do it every time the waiter
4010 * is woken.
4011 */
4012 if (engine->irq_seqno_barrier &&
4013 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
4014 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
4015 struct task_struct *tsk;
4016
4017 /* The ordering of irq_posted versus applying the barrier
4018 * is crucial. The clearing of the current irq_posted must
4019 * be visible before we perform the barrier operation,
4020 * such that if a subsequent interrupt arrives, irq_posted
4021 * is reasserted and our task rewoken (which causes us to
4022 * do another __i915_request_irq_complete() immediately
4023 * and reapply the barrier). Conversely, if the clear
4024 * occurs after the barrier, then an interrupt that arrived
4025 * whilst we waited on the barrier would not trigger a
4026 * barrier on the next pass, and the read may not see the
4027 * seqno update.
4028 */
4029 engine->irq_seqno_barrier(engine);
4030
4031 /* If we consume the irq, but we are no longer the bottom-half,
4032 * the real bottom-half may not have serialised their own
4033 * seqno check with the irq-barrier (i.e. may have inspected
4034 * the seqno before we believe it coherent since they see
4035 * irq_posted == false but we are still running).
4036 */
4037 rcu_read_lock();
4038 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
4039 if (tsk && tsk != current)
4040 /* Note that if the bottom-half is changed as we
4041 * are sending the wake-up, the new bottom-half will
4042 * be woken by whomever made the change. We only have
4043 * to worry about when we steal the irq-posted for
4044 * ourself.
4045 */
4046 wake_up_process(tsk);
4047 rcu_read_unlock();
4048
4049 if (i915_gem_request_completed(req))
4050 return true;
4051 }
4052
4053 /* We need to check whether any gpu reset happened in between
4054 * the request being submitted and now. If a reset has occurred,
4055 * the seqno will have been advance past ours and our request
4056 * is complete. If we are in the process of handling a reset,
4057 * the request is effectively complete as the rendering will
4058 * be discarded, but we need to return in order to drop the
4059 * struct_mutex.
4060 */
4061 if (i915_reset_in_progress(&req->i915->gpu_error))
4062 return true;
4063
4064 return false;
4065 }
4066
4067 #endif
This page took 0.108323 seconds and 6 git commands to generate.