drm/i915/debugfs: add a separate debugfs file for VBT
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include "i915_reg.h"
37 #include "intel_bios.h"
38 #include "intel_ringbuffer.h"
39 #include "intel_lrc.h"
40 #include "i915_gem_gtt.h"
41 #include "i915_gem_render_state.h"
42 #include <linux/io-mapping.h>
43 #include <linux/i2c.h>
44 #include <linux/i2c-algo-bit.h>
45 #include <drm/intel-gtt.h>
46 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
47 #include <drm/drm_gem.h>
48 #include <linux/backlight.h>
49 #include <linux/hashtable.h>
50 #include <linux/intel-iommu.h>
51 #include <linux/kref.h>
52 #include <linux/pm_qos.h>
53 #include "intel_guc.h"
54
55 /* General customization:
56 */
57
58 #define DRIVER_NAME "i915"
59 #define DRIVER_DESC "Intel Graphics"
60 #define DRIVER_DATE "20151204"
61
62 #undef WARN_ON
63 /* Many gcc seem to no see through this and fall over :( */
64 #if 0
65 #define WARN_ON(x) ({ \
66 bool __i915_warn_cond = (x); \
67 if (__builtin_constant_p(__i915_warn_cond)) \
68 BUILD_BUG_ON(__i915_warn_cond); \
69 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
70 #else
71 #define WARN_ON(x) WARN((x), "WARN_ON(%s)", #x )
72 #endif
73
74 #undef WARN_ON_ONCE
75 #define WARN_ON_ONCE(x) WARN_ONCE((x), "WARN_ON_ONCE(%s)", #x )
76
77 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
78 (long) (x), __func__);
79
80 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
81 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
82 * which may not necessarily be a user visible problem. This will either
83 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
84 * enable distros and users to tailor their preferred amount of i915 abrt
85 * spam.
86 */
87 #define I915_STATE_WARN(condition, format...) ({ \
88 int __ret_warn_on = !!(condition); \
89 if (unlikely(__ret_warn_on)) { \
90 if (i915.verbose_state_checks) \
91 WARN(1, format); \
92 else \
93 DRM_ERROR(format); \
94 } \
95 unlikely(__ret_warn_on); \
96 })
97
98 #define I915_STATE_WARN_ON(condition) ({ \
99 int __ret_warn_on = !!(condition); \
100 if (unlikely(__ret_warn_on)) { \
101 if (i915.verbose_state_checks) \
102 WARN(1, "WARN_ON(" #condition ")\n"); \
103 else \
104 DRM_ERROR("WARN_ON(" #condition ")\n"); \
105 } \
106 unlikely(__ret_warn_on); \
107 })
108
109 static inline const char *yesno(bool v)
110 {
111 return v ? "yes" : "no";
112 }
113
114 enum pipe {
115 INVALID_PIPE = -1,
116 PIPE_A = 0,
117 PIPE_B,
118 PIPE_C,
119 _PIPE_EDP,
120 I915_MAX_PIPES = _PIPE_EDP
121 };
122 #define pipe_name(p) ((p) + 'A')
123
124 enum transcoder {
125 TRANSCODER_A = 0,
126 TRANSCODER_B,
127 TRANSCODER_C,
128 TRANSCODER_EDP,
129 I915_MAX_TRANSCODERS
130 };
131 #define transcoder_name(t) ((t) + 'A')
132
133 /*
134 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
135 * number of planes per CRTC. Not all platforms really have this many planes,
136 * which means some arrays of size I915_MAX_PLANES may have unused entries
137 * between the topmost sprite plane and the cursor plane.
138 */
139 enum plane {
140 PLANE_A = 0,
141 PLANE_B,
142 PLANE_C,
143 PLANE_CURSOR,
144 I915_MAX_PLANES,
145 };
146 #define plane_name(p) ((p) + 'A')
147
148 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
149
150 enum port {
151 PORT_A = 0,
152 PORT_B,
153 PORT_C,
154 PORT_D,
155 PORT_E,
156 I915_MAX_PORTS
157 };
158 #define port_name(p) ((p) + 'A')
159
160 #define I915_NUM_PHYS_VLV 2
161
162 enum dpio_channel {
163 DPIO_CH0,
164 DPIO_CH1
165 };
166
167 enum dpio_phy {
168 DPIO_PHY0,
169 DPIO_PHY1
170 };
171
172 enum intel_display_power_domain {
173 POWER_DOMAIN_PIPE_A,
174 POWER_DOMAIN_PIPE_B,
175 POWER_DOMAIN_PIPE_C,
176 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
177 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
178 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
179 POWER_DOMAIN_TRANSCODER_A,
180 POWER_DOMAIN_TRANSCODER_B,
181 POWER_DOMAIN_TRANSCODER_C,
182 POWER_DOMAIN_TRANSCODER_EDP,
183 POWER_DOMAIN_PORT_DDI_A_LANES,
184 POWER_DOMAIN_PORT_DDI_B_LANES,
185 POWER_DOMAIN_PORT_DDI_C_LANES,
186 POWER_DOMAIN_PORT_DDI_D_LANES,
187 POWER_DOMAIN_PORT_DDI_E_LANES,
188 POWER_DOMAIN_PORT_DSI,
189 POWER_DOMAIN_PORT_CRT,
190 POWER_DOMAIN_PORT_OTHER,
191 POWER_DOMAIN_VGA,
192 POWER_DOMAIN_AUDIO,
193 POWER_DOMAIN_PLLS,
194 POWER_DOMAIN_AUX_A,
195 POWER_DOMAIN_AUX_B,
196 POWER_DOMAIN_AUX_C,
197 POWER_DOMAIN_AUX_D,
198 POWER_DOMAIN_GMBUS,
199 POWER_DOMAIN_MODESET,
200 POWER_DOMAIN_INIT,
201
202 POWER_DOMAIN_NUM,
203 };
204
205 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
206 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
207 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
208 #define POWER_DOMAIN_TRANSCODER(tran) \
209 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
210 (tran) + POWER_DOMAIN_TRANSCODER_A)
211
212 enum hpd_pin {
213 HPD_NONE = 0,
214 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
215 HPD_CRT,
216 HPD_SDVO_B,
217 HPD_SDVO_C,
218 HPD_PORT_A,
219 HPD_PORT_B,
220 HPD_PORT_C,
221 HPD_PORT_D,
222 HPD_PORT_E,
223 HPD_NUM_PINS
224 };
225
226 #define for_each_hpd_pin(__pin) \
227 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
228
229 struct i915_hotplug {
230 struct work_struct hotplug_work;
231
232 struct {
233 unsigned long last_jiffies;
234 int count;
235 enum {
236 HPD_ENABLED = 0,
237 HPD_DISABLED = 1,
238 HPD_MARK_DISABLED = 2
239 } state;
240 } stats[HPD_NUM_PINS];
241 u32 event_bits;
242 struct delayed_work reenable_work;
243
244 struct intel_digital_port *irq_port[I915_MAX_PORTS];
245 u32 long_port_mask;
246 u32 short_port_mask;
247 struct work_struct dig_port_work;
248
249 /*
250 * if we get a HPD irq from DP and a HPD irq from non-DP
251 * the non-DP HPD could block the workqueue on a mode config
252 * mutex getting, that userspace may have taken. However
253 * userspace is waiting on the DP workqueue to run which is
254 * blocked behind the non-DP one.
255 */
256 struct workqueue_struct *dp_wq;
257 };
258
259 #define I915_GEM_GPU_DOMAINS \
260 (I915_GEM_DOMAIN_RENDER | \
261 I915_GEM_DOMAIN_SAMPLER | \
262 I915_GEM_DOMAIN_COMMAND | \
263 I915_GEM_DOMAIN_INSTRUCTION | \
264 I915_GEM_DOMAIN_VERTEX)
265
266 #define for_each_pipe(__dev_priv, __p) \
267 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
268 #define for_each_plane(__dev_priv, __pipe, __p) \
269 for ((__p) = 0; \
270 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
271 (__p)++)
272 #define for_each_sprite(__dev_priv, __p, __s) \
273 for ((__s) = 0; \
274 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
275 (__s)++)
276
277 #define for_each_crtc(dev, crtc) \
278 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
279
280 #define for_each_intel_plane(dev, intel_plane) \
281 list_for_each_entry(intel_plane, \
282 &dev->mode_config.plane_list, \
283 base.head)
284
285 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
286 list_for_each_entry(intel_plane, \
287 &(dev)->mode_config.plane_list, \
288 base.head) \
289 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
290
291 #define for_each_intel_crtc(dev, intel_crtc) \
292 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
293
294 #define for_each_intel_encoder(dev, intel_encoder) \
295 list_for_each_entry(intel_encoder, \
296 &(dev)->mode_config.encoder_list, \
297 base.head)
298
299 #define for_each_intel_connector(dev, intel_connector) \
300 list_for_each_entry(intel_connector, \
301 &dev->mode_config.connector_list, \
302 base.head)
303
304 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
305 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
306 for_each_if ((intel_encoder)->base.crtc == (__crtc))
307
308 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
309 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
310 for_each_if ((intel_connector)->base.encoder == (__encoder))
311
312 #define for_each_power_domain(domain, mask) \
313 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
314 for_each_if ((1 << (domain)) & (mask))
315
316 struct drm_i915_private;
317 struct i915_mm_struct;
318 struct i915_mmu_object;
319
320 struct drm_i915_file_private {
321 struct drm_i915_private *dev_priv;
322 struct drm_file *file;
323
324 struct {
325 spinlock_t lock;
326 struct list_head request_list;
327 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
328 * chosen to prevent the CPU getting more than a frame ahead of the GPU
329 * (when using lax throttling for the frontbuffer). We also use it to
330 * offer free GPU waitboosts for severely congested workloads.
331 */
332 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
333 } mm;
334 struct idr context_idr;
335
336 struct intel_rps_client {
337 struct list_head link;
338 unsigned boosts;
339 } rps;
340
341 struct intel_engine_cs *bsd_ring;
342 };
343
344 enum intel_dpll_id {
345 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
346 /* real shared dpll ids must be >= 0 */
347 DPLL_ID_PCH_PLL_A = 0,
348 DPLL_ID_PCH_PLL_B = 1,
349 /* hsw/bdw */
350 DPLL_ID_WRPLL1 = 0,
351 DPLL_ID_WRPLL2 = 1,
352 DPLL_ID_SPLL = 2,
353
354 /* skl */
355 DPLL_ID_SKL_DPLL1 = 0,
356 DPLL_ID_SKL_DPLL2 = 1,
357 DPLL_ID_SKL_DPLL3 = 2,
358 };
359 #define I915_NUM_PLLS 3
360
361 struct intel_dpll_hw_state {
362 /* i9xx, pch plls */
363 uint32_t dpll;
364 uint32_t dpll_md;
365 uint32_t fp0;
366 uint32_t fp1;
367
368 /* hsw, bdw */
369 uint32_t wrpll;
370 uint32_t spll;
371
372 /* skl */
373 /*
374 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
375 * lower part of ctrl1 and they get shifted into position when writing
376 * the register. This allows us to easily compare the state to share
377 * the DPLL.
378 */
379 uint32_t ctrl1;
380 /* HDMI only, 0 when used for DP */
381 uint32_t cfgcr1, cfgcr2;
382
383 /* bxt */
384 uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
385 pcsdw12;
386 };
387
388 struct intel_shared_dpll_config {
389 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
390 struct intel_dpll_hw_state hw_state;
391 };
392
393 struct intel_shared_dpll {
394 struct intel_shared_dpll_config config;
395
396 int active; /* count of number of active CRTCs (i.e. DPMS on) */
397 bool on; /* is the PLL actually active? Disabled during modeset */
398 const char *name;
399 /* should match the index in the dev_priv->shared_dplls array */
400 enum intel_dpll_id id;
401 /* The mode_set hook is optional and should be used together with the
402 * intel_prepare_shared_dpll function. */
403 void (*mode_set)(struct drm_i915_private *dev_priv,
404 struct intel_shared_dpll *pll);
405 void (*enable)(struct drm_i915_private *dev_priv,
406 struct intel_shared_dpll *pll);
407 void (*disable)(struct drm_i915_private *dev_priv,
408 struct intel_shared_dpll *pll);
409 bool (*get_hw_state)(struct drm_i915_private *dev_priv,
410 struct intel_shared_dpll *pll,
411 struct intel_dpll_hw_state *hw_state);
412 };
413
414 #define SKL_DPLL0 0
415 #define SKL_DPLL1 1
416 #define SKL_DPLL2 2
417 #define SKL_DPLL3 3
418
419 /* Used by dp and fdi links */
420 struct intel_link_m_n {
421 uint32_t tu;
422 uint32_t gmch_m;
423 uint32_t gmch_n;
424 uint32_t link_m;
425 uint32_t link_n;
426 };
427
428 void intel_link_compute_m_n(int bpp, int nlanes,
429 int pixel_clock, int link_clock,
430 struct intel_link_m_n *m_n);
431
432 /* Interface history:
433 *
434 * 1.1: Original.
435 * 1.2: Add Power Management
436 * 1.3: Add vblank support
437 * 1.4: Fix cmdbuffer path, add heap destroy
438 * 1.5: Add vblank pipe configuration
439 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
440 * - Support vertical blank on secondary display pipe
441 */
442 #define DRIVER_MAJOR 1
443 #define DRIVER_MINOR 6
444 #define DRIVER_PATCHLEVEL 0
445
446 #define WATCH_LISTS 0
447
448 struct opregion_header;
449 struct opregion_acpi;
450 struct opregion_swsci;
451 struct opregion_asle;
452
453 struct intel_opregion {
454 struct opregion_header *header;
455 struct opregion_acpi *acpi;
456 struct opregion_swsci *swsci;
457 u32 swsci_gbda_sub_functions;
458 u32 swsci_sbcb_sub_functions;
459 struct opregion_asle *asle;
460 const void *vbt;
461 u32 vbt_size;
462 u32 *lid_state;
463 struct work_struct asle_work;
464 };
465 #define OPREGION_SIZE (8*1024)
466
467 struct intel_overlay;
468 struct intel_overlay_error_state;
469
470 #define I915_FENCE_REG_NONE -1
471 #define I915_MAX_NUM_FENCES 32
472 /* 32 fences + sign bit for FENCE_REG_NONE */
473 #define I915_MAX_NUM_FENCE_BITS 6
474
475 struct drm_i915_fence_reg {
476 struct list_head lru_list;
477 struct drm_i915_gem_object *obj;
478 int pin_count;
479 };
480
481 struct sdvo_device_mapping {
482 u8 initialized;
483 u8 dvo_port;
484 u8 slave_addr;
485 u8 dvo_wiring;
486 u8 i2c_pin;
487 u8 ddc_pin;
488 };
489
490 struct intel_display_error_state;
491
492 struct drm_i915_error_state {
493 struct kref ref;
494 struct timeval time;
495
496 char error_msg[128];
497 int iommu;
498 u32 reset_count;
499 u32 suspend_count;
500
501 /* Generic register state */
502 u32 eir;
503 u32 pgtbl_er;
504 u32 ier;
505 u32 gtier[4];
506 u32 ccid;
507 u32 derrmr;
508 u32 forcewake;
509 u32 error; /* gen6+ */
510 u32 err_int; /* gen7 */
511 u32 fault_data0; /* gen8, gen9 */
512 u32 fault_data1; /* gen8, gen9 */
513 u32 done_reg;
514 u32 gac_eco;
515 u32 gam_ecochk;
516 u32 gab_ctl;
517 u32 gfx_mode;
518 u32 extra_instdone[I915_NUM_INSTDONE_REG];
519 u64 fence[I915_MAX_NUM_FENCES];
520 struct intel_overlay_error_state *overlay;
521 struct intel_display_error_state *display;
522 struct drm_i915_error_object *semaphore_obj;
523
524 struct drm_i915_error_ring {
525 bool valid;
526 /* Software tracked state */
527 bool waiting;
528 int hangcheck_score;
529 enum intel_ring_hangcheck_action hangcheck_action;
530 int num_requests;
531
532 /* our own tracking of ring head and tail */
533 u32 cpu_ring_head;
534 u32 cpu_ring_tail;
535
536 u32 semaphore_seqno[I915_NUM_RINGS - 1];
537
538 /* Register state */
539 u32 start;
540 u32 tail;
541 u32 head;
542 u32 ctl;
543 u32 hws;
544 u32 ipeir;
545 u32 ipehr;
546 u32 instdone;
547 u32 bbstate;
548 u32 instpm;
549 u32 instps;
550 u32 seqno;
551 u64 bbaddr;
552 u64 acthd;
553 u32 fault_reg;
554 u64 faddr;
555 u32 rc_psmi; /* sleep state */
556 u32 semaphore_mboxes[I915_NUM_RINGS - 1];
557
558 struct drm_i915_error_object {
559 int page_count;
560 u64 gtt_offset;
561 u32 *pages[0];
562 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
563
564 struct drm_i915_error_request {
565 long jiffies;
566 u32 seqno;
567 u32 tail;
568 } *requests;
569
570 struct {
571 u32 gfx_mode;
572 union {
573 u64 pdp[4];
574 u32 pp_dir_base;
575 };
576 } vm_info;
577
578 pid_t pid;
579 char comm[TASK_COMM_LEN];
580 } ring[I915_NUM_RINGS];
581
582 struct drm_i915_error_buffer {
583 u32 size;
584 u32 name;
585 u32 rseqno[I915_NUM_RINGS], wseqno;
586 u64 gtt_offset;
587 u32 read_domains;
588 u32 write_domain;
589 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
590 s32 pinned:2;
591 u32 tiling:2;
592 u32 dirty:1;
593 u32 purgeable:1;
594 u32 userptr:1;
595 s32 ring:4;
596 u32 cache_level:3;
597 } **active_bo, **pinned_bo;
598
599 u32 *active_bo_count, *pinned_bo_count;
600 u32 vm_count;
601 };
602
603 struct intel_connector;
604 struct intel_encoder;
605 struct intel_crtc_state;
606 struct intel_initial_plane_config;
607 struct intel_crtc;
608 struct intel_limit;
609 struct dpll;
610
611 struct drm_i915_display_funcs {
612 int (*get_display_clock_speed)(struct drm_device *dev);
613 int (*get_fifo_size)(struct drm_device *dev, int plane);
614 /**
615 * find_dpll() - Find the best values for the PLL
616 * @limit: limits for the PLL
617 * @crtc: current CRTC
618 * @target: target frequency in kHz
619 * @refclk: reference clock frequency in kHz
620 * @match_clock: if provided, @best_clock P divider must
621 * match the P divider from @match_clock
622 * used for LVDS downclocking
623 * @best_clock: best PLL values found
624 *
625 * Returns true on success, false on failure.
626 */
627 bool (*find_dpll)(const struct intel_limit *limit,
628 struct intel_crtc_state *crtc_state,
629 int target, int refclk,
630 struct dpll *match_clock,
631 struct dpll *best_clock);
632 int (*compute_pipe_wm)(struct intel_crtc *crtc,
633 struct drm_atomic_state *state);
634 void (*update_wm)(struct drm_crtc *crtc);
635 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
636 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
637 /* Returns the active state of the crtc, and if the crtc is active,
638 * fills out the pipe-config with the hw state. */
639 bool (*get_pipe_config)(struct intel_crtc *,
640 struct intel_crtc_state *);
641 void (*get_initial_plane_config)(struct intel_crtc *,
642 struct intel_initial_plane_config *);
643 int (*crtc_compute_clock)(struct intel_crtc *crtc,
644 struct intel_crtc_state *crtc_state);
645 void (*crtc_enable)(struct drm_crtc *crtc);
646 void (*crtc_disable)(struct drm_crtc *crtc);
647 void (*audio_codec_enable)(struct drm_connector *connector,
648 struct intel_encoder *encoder,
649 const struct drm_display_mode *adjusted_mode);
650 void (*audio_codec_disable)(struct intel_encoder *encoder);
651 void (*fdi_link_train)(struct drm_crtc *crtc);
652 void (*init_clock_gating)(struct drm_device *dev);
653 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
654 struct drm_framebuffer *fb,
655 struct drm_i915_gem_object *obj,
656 struct drm_i915_gem_request *req,
657 uint32_t flags);
658 void (*update_primary_plane)(struct drm_crtc *crtc,
659 struct drm_framebuffer *fb,
660 int x, int y);
661 void (*hpd_irq_setup)(struct drm_device *dev);
662 /* clock updates for mode set */
663 /* cursor updates */
664 /* render clock increase/decrease */
665 /* display clock increase/decrease */
666 /* pll clock increase/decrease */
667 };
668
669 enum forcewake_domain_id {
670 FW_DOMAIN_ID_RENDER = 0,
671 FW_DOMAIN_ID_BLITTER,
672 FW_DOMAIN_ID_MEDIA,
673
674 FW_DOMAIN_ID_COUNT
675 };
676
677 enum forcewake_domains {
678 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
679 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
680 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
681 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
682 FORCEWAKE_BLITTER |
683 FORCEWAKE_MEDIA)
684 };
685
686 struct intel_uncore_funcs {
687 void (*force_wake_get)(struct drm_i915_private *dev_priv,
688 enum forcewake_domains domains);
689 void (*force_wake_put)(struct drm_i915_private *dev_priv,
690 enum forcewake_domains domains);
691
692 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
693 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
694 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
695 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
696
697 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
698 uint8_t val, bool trace);
699 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
700 uint16_t val, bool trace);
701 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
702 uint32_t val, bool trace);
703 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
704 uint64_t val, bool trace);
705 };
706
707 struct intel_uncore {
708 spinlock_t lock; /** lock is also taken in irq contexts. */
709
710 struct intel_uncore_funcs funcs;
711
712 unsigned fifo_count;
713 enum forcewake_domains fw_domains;
714
715 struct intel_uncore_forcewake_domain {
716 struct drm_i915_private *i915;
717 enum forcewake_domain_id id;
718 unsigned wake_count;
719 struct timer_list timer;
720 i915_reg_t reg_set;
721 u32 val_set;
722 u32 val_clear;
723 i915_reg_t reg_ack;
724 i915_reg_t reg_post;
725 u32 val_reset;
726 } fw_domain[FW_DOMAIN_ID_COUNT];
727 };
728
729 /* Iterate over initialised fw domains */
730 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \
731 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
732 (i__) < FW_DOMAIN_ID_COUNT; \
733 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \
734 for_each_if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__)))
735
736 #define for_each_fw_domain(domain__, dev_priv__, i__) \
737 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__)
738
739 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
740 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
741 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
742
743 struct intel_csr {
744 struct work_struct work;
745 const char *fw_path;
746 uint32_t *dmc_payload;
747 uint32_t dmc_fw_size;
748 uint32_t version;
749 uint32_t mmio_count;
750 i915_reg_t mmioaddr[8];
751 uint32_t mmiodata[8];
752 };
753
754 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
755 func(is_mobile) sep \
756 func(is_i85x) sep \
757 func(is_i915g) sep \
758 func(is_i945gm) sep \
759 func(is_g33) sep \
760 func(need_gfx_hws) sep \
761 func(is_g4x) sep \
762 func(is_pineview) sep \
763 func(is_broadwater) sep \
764 func(is_crestline) sep \
765 func(is_ivybridge) sep \
766 func(is_valleyview) sep \
767 func(is_cherryview) sep \
768 func(is_haswell) sep \
769 func(is_skylake) sep \
770 func(is_broxton) sep \
771 func(is_kabylake) sep \
772 func(is_preliminary) sep \
773 func(has_fbc) sep \
774 func(has_pipe_cxsr) sep \
775 func(has_hotplug) sep \
776 func(cursor_needs_physical) sep \
777 func(has_overlay) sep \
778 func(overlay_needs_physical) sep \
779 func(supports_tv) sep \
780 func(has_llc) sep \
781 func(has_ddi) sep \
782 func(has_fpga_dbg)
783
784 #define DEFINE_FLAG(name) u8 name:1
785 #define SEP_SEMICOLON ;
786
787 struct intel_device_info {
788 u32 display_mmio_offset;
789 u16 device_id;
790 u8 num_pipes:3;
791 u8 num_sprites[I915_MAX_PIPES];
792 u8 gen;
793 u8 ring_mask; /* Rings supported by the HW */
794 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
795 /* Register offsets for the various display pipes and transcoders */
796 int pipe_offsets[I915_MAX_TRANSCODERS];
797 int trans_offsets[I915_MAX_TRANSCODERS];
798 int palette_offsets[I915_MAX_PIPES];
799 int cursor_offsets[I915_MAX_PIPES];
800
801 /* Slice/subslice/EU info */
802 u8 slice_total;
803 u8 subslice_total;
804 u8 subslice_per_slice;
805 u8 eu_total;
806 u8 eu_per_subslice;
807 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
808 u8 subslice_7eu[3];
809 u8 has_slice_pg:1;
810 u8 has_subslice_pg:1;
811 u8 has_eu_pg:1;
812 };
813
814 #undef DEFINE_FLAG
815 #undef SEP_SEMICOLON
816
817 enum i915_cache_level {
818 I915_CACHE_NONE = 0,
819 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
820 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
821 caches, eg sampler/render caches, and the
822 large Last-Level-Cache. LLC is coherent with
823 the CPU, but L3 is only visible to the GPU. */
824 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
825 };
826
827 struct i915_ctx_hang_stats {
828 /* This context had batch pending when hang was declared */
829 unsigned batch_pending;
830
831 /* This context had batch active when hang was declared */
832 unsigned batch_active;
833
834 /* Time when this context was last blamed for a GPU reset */
835 unsigned long guilty_ts;
836
837 /* If the contexts causes a second GPU hang within this time,
838 * it is permanently banned from submitting any more work.
839 */
840 unsigned long ban_period_seconds;
841
842 /* This context is banned to submit more work */
843 bool banned;
844 };
845
846 /* This must match up with the value previously used for execbuf2.rsvd1. */
847 #define DEFAULT_CONTEXT_HANDLE 0
848
849 #define CONTEXT_NO_ZEROMAP (1<<0)
850 /**
851 * struct intel_context - as the name implies, represents a context.
852 * @ref: reference count.
853 * @user_handle: userspace tracking identity for this context.
854 * @remap_slice: l3 row remapping information.
855 * @flags: context specific flags:
856 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
857 * @file_priv: filp associated with this context (NULL for global default
858 * context).
859 * @hang_stats: information about the role of this context in possible GPU
860 * hangs.
861 * @ppgtt: virtual memory space used by this context.
862 * @legacy_hw_ctx: render context backing object and whether it is correctly
863 * initialized (legacy ring submission mechanism only).
864 * @link: link in the global list of contexts.
865 *
866 * Contexts are memory images used by the hardware to store copies of their
867 * internal state.
868 */
869 struct intel_context {
870 struct kref ref;
871 int user_handle;
872 uint8_t remap_slice;
873 struct drm_i915_private *i915;
874 int flags;
875 struct drm_i915_file_private *file_priv;
876 struct i915_ctx_hang_stats hang_stats;
877 struct i915_hw_ppgtt *ppgtt;
878
879 /* Legacy ring buffer submission */
880 struct {
881 struct drm_i915_gem_object *rcs_state;
882 bool initialized;
883 } legacy_hw_ctx;
884
885 /* Execlists */
886 struct {
887 struct drm_i915_gem_object *state;
888 struct intel_ringbuffer *ringbuf;
889 int pin_count;
890 } engine[I915_NUM_RINGS];
891
892 struct list_head link;
893 };
894
895 enum fb_op_origin {
896 ORIGIN_GTT,
897 ORIGIN_CPU,
898 ORIGIN_CS,
899 ORIGIN_FLIP,
900 ORIGIN_DIRTYFB,
901 };
902
903 struct i915_fbc {
904 /* This is always the inner lock when overlapping with struct_mutex and
905 * it's the outer lock when overlapping with stolen_lock. */
906 struct mutex lock;
907 unsigned threshold;
908 unsigned int fb_id;
909 unsigned int possible_framebuffer_bits;
910 unsigned int busy_bits;
911 struct intel_crtc *crtc;
912 int y;
913
914 struct drm_mm_node compressed_fb;
915 struct drm_mm_node *compressed_llb;
916
917 bool false_color;
918
919 bool enabled;
920 bool active;
921
922 struct intel_fbc_work {
923 bool scheduled;
924 struct work_struct work;
925 struct drm_framebuffer *fb;
926 unsigned long enable_jiffies;
927 } work;
928
929 const char *no_fbc_reason;
930
931 bool (*is_active)(struct drm_i915_private *dev_priv);
932 void (*activate)(struct intel_crtc *crtc);
933 void (*deactivate)(struct drm_i915_private *dev_priv);
934 };
935
936 /**
937 * HIGH_RR is the highest eDP panel refresh rate read from EDID
938 * LOW_RR is the lowest eDP panel refresh rate found from EDID
939 * parsing for same resolution.
940 */
941 enum drrs_refresh_rate_type {
942 DRRS_HIGH_RR,
943 DRRS_LOW_RR,
944 DRRS_MAX_RR, /* RR count */
945 };
946
947 enum drrs_support_type {
948 DRRS_NOT_SUPPORTED = 0,
949 STATIC_DRRS_SUPPORT = 1,
950 SEAMLESS_DRRS_SUPPORT = 2
951 };
952
953 struct intel_dp;
954 struct i915_drrs {
955 struct mutex mutex;
956 struct delayed_work work;
957 struct intel_dp *dp;
958 unsigned busy_frontbuffer_bits;
959 enum drrs_refresh_rate_type refresh_rate_type;
960 enum drrs_support_type type;
961 };
962
963 struct i915_psr {
964 struct mutex lock;
965 bool sink_support;
966 bool source_ok;
967 struct intel_dp *enabled;
968 bool active;
969 struct delayed_work work;
970 unsigned busy_frontbuffer_bits;
971 bool psr2_support;
972 bool aux_frame_sync;
973 };
974
975 enum intel_pch {
976 PCH_NONE = 0, /* No PCH present */
977 PCH_IBX, /* Ibexpeak PCH */
978 PCH_CPT, /* Cougarpoint PCH */
979 PCH_LPT, /* Lynxpoint PCH */
980 PCH_SPT, /* Sunrisepoint PCH */
981 PCH_NOP,
982 };
983
984 enum intel_sbi_destination {
985 SBI_ICLK,
986 SBI_MPHY,
987 };
988
989 #define QUIRK_PIPEA_FORCE (1<<0)
990 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
991 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
992 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
993 #define QUIRK_PIPEB_FORCE (1<<4)
994 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
995
996 struct intel_fbdev;
997 struct intel_fbc_work;
998
999 struct intel_gmbus {
1000 struct i2c_adapter adapter;
1001 u32 force_bit;
1002 u32 reg0;
1003 i915_reg_t gpio_reg;
1004 struct i2c_algo_bit_data bit_algo;
1005 struct drm_i915_private *dev_priv;
1006 };
1007
1008 struct i915_suspend_saved_registers {
1009 u32 saveDSPARB;
1010 u32 saveLVDS;
1011 u32 savePP_ON_DELAYS;
1012 u32 savePP_OFF_DELAYS;
1013 u32 savePP_ON;
1014 u32 savePP_OFF;
1015 u32 savePP_CONTROL;
1016 u32 savePP_DIVISOR;
1017 u32 saveFBC_CONTROL;
1018 u32 saveCACHE_MODE_0;
1019 u32 saveMI_ARB_STATE;
1020 u32 saveSWF0[16];
1021 u32 saveSWF1[16];
1022 u32 saveSWF3[3];
1023 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1024 u32 savePCH_PORT_HOTPLUG;
1025 u16 saveGCDGMBUS;
1026 };
1027
1028 struct vlv_s0ix_state {
1029 /* GAM */
1030 u32 wr_watermark;
1031 u32 gfx_prio_ctrl;
1032 u32 arb_mode;
1033 u32 gfx_pend_tlb0;
1034 u32 gfx_pend_tlb1;
1035 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1036 u32 media_max_req_count;
1037 u32 gfx_max_req_count;
1038 u32 render_hwsp;
1039 u32 ecochk;
1040 u32 bsd_hwsp;
1041 u32 blt_hwsp;
1042 u32 tlb_rd_addr;
1043
1044 /* MBC */
1045 u32 g3dctl;
1046 u32 gsckgctl;
1047 u32 mbctl;
1048
1049 /* GCP */
1050 u32 ucgctl1;
1051 u32 ucgctl3;
1052 u32 rcgctl1;
1053 u32 rcgctl2;
1054 u32 rstctl;
1055 u32 misccpctl;
1056
1057 /* GPM */
1058 u32 gfxpause;
1059 u32 rpdeuhwtc;
1060 u32 rpdeuc;
1061 u32 ecobus;
1062 u32 pwrdwnupctl;
1063 u32 rp_down_timeout;
1064 u32 rp_deucsw;
1065 u32 rcubmabdtmr;
1066 u32 rcedata;
1067 u32 spare2gh;
1068
1069 /* Display 1 CZ domain */
1070 u32 gt_imr;
1071 u32 gt_ier;
1072 u32 pm_imr;
1073 u32 pm_ier;
1074 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1075
1076 /* GT SA CZ domain */
1077 u32 tilectl;
1078 u32 gt_fifoctl;
1079 u32 gtlc_wake_ctrl;
1080 u32 gtlc_survive;
1081 u32 pmwgicz;
1082
1083 /* Display 2 CZ domain */
1084 u32 gu_ctl0;
1085 u32 gu_ctl1;
1086 u32 pcbr;
1087 u32 clock_gate_dis2;
1088 };
1089
1090 struct intel_rps_ei {
1091 u32 cz_clock;
1092 u32 render_c0;
1093 u32 media_c0;
1094 };
1095
1096 struct intel_gen6_power_mgmt {
1097 /*
1098 * work, interrupts_enabled and pm_iir are protected by
1099 * dev_priv->irq_lock
1100 */
1101 struct work_struct work;
1102 bool interrupts_enabled;
1103 u32 pm_iir;
1104
1105 /* Frequencies are stored in potentially platform dependent multiples.
1106 * In other words, *_freq needs to be multiplied by X to be interesting.
1107 * Soft limits are those which are used for the dynamic reclocking done
1108 * by the driver (raise frequencies under heavy loads, and lower for
1109 * lighter loads). Hard limits are those imposed by the hardware.
1110 *
1111 * A distinction is made for overclocking, which is never enabled by
1112 * default, and is considered to be above the hard limit if it's
1113 * possible at all.
1114 */
1115 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1116 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1117 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1118 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1119 u8 min_freq; /* AKA RPn. Minimum frequency */
1120 u8 idle_freq; /* Frequency to request when we are idle */
1121 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1122 u8 rp1_freq; /* "less than" RP0 power/freqency */
1123 u8 rp0_freq; /* Non-overclocked max frequency. */
1124
1125 u8 up_threshold; /* Current %busy required to uplock */
1126 u8 down_threshold; /* Current %busy required to downclock */
1127
1128 int last_adj;
1129 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1130
1131 spinlock_t client_lock;
1132 struct list_head clients;
1133 bool client_boost;
1134
1135 bool enabled;
1136 struct delayed_work delayed_resume_work;
1137 unsigned boosts;
1138
1139 struct intel_rps_client semaphores, mmioflips;
1140
1141 /* manual wa residency calculations */
1142 struct intel_rps_ei up_ei, down_ei;
1143
1144 /*
1145 * Protects RPS/RC6 register access and PCU communication.
1146 * Must be taken after struct_mutex if nested. Note that
1147 * this lock may be held for long periods of time when
1148 * talking to hw - so only take it when talking to hw!
1149 */
1150 struct mutex hw_lock;
1151 };
1152
1153 /* defined intel_pm.c */
1154 extern spinlock_t mchdev_lock;
1155
1156 struct intel_ilk_power_mgmt {
1157 u8 cur_delay;
1158 u8 min_delay;
1159 u8 max_delay;
1160 u8 fmax;
1161 u8 fstart;
1162
1163 u64 last_count1;
1164 unsigned long last_time1;
1165 unsigned long chipset_power;
1166 u64 last_count2;
1167 u64 last_time2;
1168 unsigned long gfx_power;
1169 u8 corr;
1170
1171 int c_m;
1172 int r_t;
1173 };
1174
1175 struct drm_i915_private;
1176 struct i915_power_well;
1177
1178 struct i915_power_well_ops {
1179 /*
1180 * Synchronize the well's hw state to match the current sw state, for
1181 * example enable/disable it based on the current refcount. Called
1182 * during driver init and resume time, possibly after first calling
1183 * the enable/disable handlers.
1184 */
1185 void (*sync_hw)(struct drm_i915_private *dev_priv,
1186 struct i915_power_well *power_well);
1187 /*
1188 * Enable the well and resources that depend on it (for example
1189 * interrupts located on the well). Called after the 0->1 refcount
1190 * transition.
1191 */
1192 void (*enable)(struct drm_i915_private *dev_priv,
1193 struct i915_power_well *power_well);
1194 /*
1195 * Disable the well and resources that depend on it. Called after
1196 * the 1->0 refcount transition.
1197 */
1198 void (*disable)(struct drm_i915_private *dev_priv,
1199 struct i915_power_well *power_well);
1200 /* Returns the hw enabled state. */
1201 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1202 struct i915_power_well *power_well);
1203 };
1204
1205 /* Power well structure for haswell */
1206 struct i915_power_well {
1207 const char *name;
1208 bool always_on;
1209 /* power well enable/disable usage count */
1210 int count;
1211 /* cached hw enabled state */
1212 bool hw_enabled;
1213 unsigned long domains;
1214 unsigned long data;
1215 const struct i915_power_well_ops *ops;
1216 };
1217
1218 struct i915_power_domains {
1219 /*
1220 * Power wells needed for initialization at driver init and suspend
1221 * time are on. They are kept on until after the first modeset.
1222 */
1223 bool init_power_on;
1224 bool initializing;
1225 int power_well_count;
1226
1227 struct mutex lock;
1228 int domain_use_count[POWER_DOMAIN_NUM];
1229 struct i915_power_well *power_wells;
1230 };
1231
1232 #define MAX_L3_SLICES 2
1233 struct intel_l3_parity {
1234 u32 *remap_info[MAX_L3_SLICES];
1235 struct work_struct error_work;
1236 int which_slice;
1237 };
1238
1239 struct i915_gem_mm {
1240 /** Memory allocator for GTT stolen memory */
1241 struct drm_mm stolen;
1242 /** Protects the usage of the GTT stolen memory allocator. This is
1243 * always the inner lock when overlapping with struct_mutex. */
1244 struct mutex stolen_lock;
1245
1246 /** List of all objects in gtt_space. Used to restore gtt
1247 * mappings on resume */
1248 struct list_head bound_list;
1249 /**
1250 * List of objects which are not bound to the GTT (thus
1251 * are idle and not used by the GPU) but still have
1252 * (presumably uncached) pages still attached.
1253 */
1254 struct list_head unbound_list;
1255
1256 /** Usable portion of the GTT for GEM */
1257 unsigned long stolen_base; /* limited to low memory (32-bit) */
1258
1259 /** PPGTT used for aliasing the PPGTT with the GTT */
1260 struct i915_hw_ppgtt *aliasing_ppgtt;
1261
1262 struct notifier_block oom_notifier;
1263 struct shrinker shrinker;
1264 bool shrinker_no_lock_stealing;
1265
1266 /** LRU list of objects with fence regs on them. */
1267 struct list_head fence_list;
1268
1269 /**
1270 * We leave the user IRQ off as much as possible,
1271 * but this means that requests will finish and never
1272 * be retired once the system goes idle. Set a timer to
1273 * fire periodically while the ring is running. When it
1274 * fires, go retire requests.
1275 */
1276 struct delayed_work retire_work;
1277
1278 /**
1279 * When we detect an idle GPU, we want to turn on
1280 * powersaving features. So once we see that there
1281 * are no more requests outstanding and no more
1282 * arrive within a small period of time, we fire
1283 * off the idle_work.
1284 */
1285 struct delayed_work idle_work;
1286
1287 /**
1288 * Are we in a non-interruptible section of code like
1289 * modesetting?
1290 */
1291 bool interruptible;
1292
1293 /**
1294 * Is the GPU currently considered idle, or busy executing userspace
1295 * requests? Whilst idle, we attempt to power down the hardware and
1296 * display clocks. In order to reduce the effect on performance, there
1297 * is a slight delay before we do so.
1298 */
1299 bool busy;
1300
1301 /* the indicator for dispatch video commands on two BSD rings */
1302 int bsd_ring_dispatch_index;
1303
1304 /** Bit 6 swizzling required for X tiling */
1305 uint32_t bit_6_swizzle_x;
1306 /** Bit 6 swizzling required for Y tiling */
1307 uint32_t bit_6_swizzle_y;
1308
1309 /* accounting, useful for userland debugging */
1310 spinlock_t object_stat_lock;
1311 size_t object_memory;
1312 u32 object_count;
1313 };
1314
1315 struct drm_i915_error_state_buf {
1316 struct drm_i915_private *i915;
1317 unsigned bytes;
1318 unsigned size;
1319 int err;
1320 u8 *buf;
1321 loff_t start;
1322 loff_t pos;
1323 };
1324
1325 struct i915_error_state_file_priv {
1326 struct drm_device *dev;
1327 struct drm_i915_error_state *error;
1328 };
1329
1330 struct i915_gpu_error {
1331 /* For hangcheck timer */
1332 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1333 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1334 /* Hang gpu twice in this window and your context gets banned */
1335 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1336
1337 struct workqueue_struct *hangcheck_wq;
1338 struct delayed_work hangcheck_work;
1339
1340 /* For reset and error_state handling. */
1341 spinlock_t lock;
1342 /* Protected by the above dev->gpu_error.lock. */
1343 struct drm_i915_error_state *first_error;
1344
1345 unsigned long missed_irq_rings;
1346
1347 /**
1348 * State variable controlling the reset flow and count
1349 *
1350 * This is a counter which gets incremented when reset is triggered,
1351 * and again when reset has been handled. So odd values (lowest bit set)
1352 * means that reset is in progress and even values that
1353 * (reset_counter >> 1):th reset was successfully completed.
1354 *
1355 * If reset is not completed succesfully, the I915_WEDGE bit is
1356 * set meaning that hardware is terminally sour and there is no
1357 * recovery. All waiters on the reset_queue will be woken when
1358 * that happens.
1359 *
1360 * This counter is used by the wait_seqno code to notice that reset
1361 * event happened and it needs to restart the entire ioctl (since most
1362 * likely the seqno it waited for won't ever signal anytime soon).
1363 *
1364 * This is important for lock-free wait paths, where no contended lock
1365 * naturally enforces the correct ordering between the bail-out of the
1366 * waiter and the gpu reset work code.
1367 */
1368 atomic_t reset_counter;
1369
1370 #define I915_RESET_IN_PROGRESS_FLAG 1
1371 #define I915_WEDGED (1 << 31)
1372
1373 /**
1374 * Waitqueue to signal when the reset has completed. Used by clients
1375 * that wait for dev_priv->mm.wedged to settle.
1376 */
1377 wait_queue_head_t reset_queue;
1378
1379 /* Userspace knobs for gpu hang simulation;
1380 * combines both a ring mask, and extra flags
1381 */
1382 u32 stop_rings;
1383 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1384 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1385
1386 /* For missed irq/seqno simulation. */
1387 unsigned int test_irq_rings;
1388
1389 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1390 bool reload_in_reset;
1391 };
1392
1393 enum modeset_restore {
1394 MODESET_ON_LID_OPEN,
1395 MODESET_DONE,
1396 MODESET_SUSPENDED,
1397 };
1398
1399 #define DP_AUX_A 0x40
1400 #define DP_AUX_B 0x10
1401 #define DP_AUX_C 0x20
1402 #define DP_AUX_D 0x30
1403
1404 #define DDC_PIN_B 0x05
1405 #define DDC_PIN_C 0x04
1406 #define DDC_PIN_D 0x06
1407
1408 struct ddi_vbt_port_info {
1409 /*
1410 * This is an index in the HDMI/DVI DDI buffer translation table.
1411 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1412 * populate this field.
1413 */
1414 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1415 uint8_t hdmi_level_shift;
1416
1417 uint8_t supports_dvi:1;
1418 uint8_t supports_hdmi:1;
1419 uint8_t supports_dp:1;
1420
1421 uint8_t alternate_aux_channel;
1422 uint8_t alternate_ddc_pin;
1423
1424 uint8_t dp_boost_level;
1425 uint8_t hdmi_boost_level;
1426 };
1427
1428 enum psr_lines_to_wait {
1429 PSR_0_LINES_TO_WAIT = 0,
1430 PSR_1_LINE_TO_WAIT,
1431 PSR_4_LINES_TO_WAIT,
1432 PSR_8_LINES_TO_WAIT
1433 };
1434
1435 struct intel_vbt_data {
1436 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1437 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1438
1439 /* Feature bits */
1440 unsigned int int_tv_support:1;
1441 unsigned int lvds_dither:1;
1442 unsigned int lvds_vbt:1;
1443 unsigned int int_crt_support:1;
1444 unsigned int lvds_use_ssc:1;
1445 unsigned int display_clock_mode:1;
1446 unsigned int fdi_rx_polarity_inverted:1;
1447 unsigned int has_mipi:1;
1448 int lvds_ssc_freq;
1449 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1450
1451 enum drrs_support_type drrs_type;
1452
1453 /* eDP */
1454 int edp_rate;
1455 int edp_lanes;
1456 int edp_preemphasis;
1457 int edp_vswing;
1458 bool edp_initialized;
1459 bool edp_support;
1460 int edp_bpp;
1461 struct edp_power_seq edp_pps;
1462
1463 struct {
1464 bool full_link;
1465 bool require_aux_wakeup;
1466 int idle_frames;
1467 enum psr_lines_to_wait lines_to_wait;
1468 int tp1_wakeup_time;
1469 int tp2_tp3_wakeup_time;
1470 } psr;
1471
1472 struct {
1473 u16 pwm_freq_hz;
1474 bool present;
1475 bool active_low_pwm;
1476 u8 min_brightness; /* min_brightness/255 of max */
1477 } backlight;
1478
1479 /* MIPI DSI */
1480 struct {
1481 u16 port;
1482 u16 panel_id;
1483 struct mipi_config *config;
1484 struct mipi_pps_data *pps;
1485 u8 seq_version;
1486 u32 size;
1487 u8 *data;
1488 u8 *sequence[MIPI_SEQ_MAX];
1489 } dsi;
1490
1491 int crt_ddc_pin;
1492
1493 int child_dev_num;
1494 union child_device_config *child_dev;
1495
1496 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1497 };
1498
1499 enum intel_ddb_partitioning {
1500 INTEL_DDB_PART_1_2,
1501 INTEL_DDB_PART_5_6, /* IVB+ */
1502 };
1503
1504 struct intel_wm_level {
1505 bool enable;
1506 uint32_t pri_val;
1507 uint32_t spr_val;
1508 uint32_t cur_val;
1509 uint32_t fbc_val;
1510 };
1511
1512 struct ilk_wm_values {
1513 uint32_t wm_pipe[3];
1514 uint32_t wm_lp[3];
1515 uint32_t wm_lp_spr[3];
1516 uint32_t wm_linetime[3];
1517 bool enable_fbc_wm;
1518 enum intel_ddb_partitioning partitioning;
1519 };
1520
1521 struct vlv_pipe_wm {
1522 uint16_t primary;
1523 uint16_t sprite[2];
1524 uint8_t cursor;
1525 };
1526
1527 struct vlv_sr_wm {
1528 uint16_t plane;
1529 uint8_t cursor;
1530 };
1531
1532 struct vlv_wm_values {
1533 struct vlv_pipe_wm pipe[3];
1534 struct vlv_sr_wm sr;
1535 struct {
1536 uint8_t cursor;
1537 uint8_t sprite[2];
1538 uint8_t primary;
1539 } ddl[3];
1540 uint8_t level;
1541 bool cxsr;
1542 };
1543
1544 struct skl_ddb_entry {
1545 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1546 };
1547
1548 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1549 {
1550 return entry->end - entry->start;
1551 }
1552
1553 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1554 const struct skl_ddb_entry *e2)
1555 {
1556 if (e1->start == e2->start && e1->end == e2->end)
1557 return true;
1558
1559 return false;
1560 }
1561
1562 struct skl_ddb_allocation {
1563 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1564 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1565 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1566 };
1567
1568 struct skl_wm_values {
1569 bool dirty[I915_MAX_PIPES];
1570 struct skl_ddb_allocation ddb;
1571 uint32_t wm_linetime[I915_MAX_PIPES];
1572 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1573 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1574 };
1575
1576 struct skl_wm_level {
1577 bool plane_en[I915_MAX_PLANES];
1578 uint16_t plane_res_b[I915_MAX_PLANES];
1579 uint8_t plane_res_l[I915_MAX_PLANES];
1580 };
1581
1582 /*
1583 * This struct helps tracking the state needed for runtime PM, which puts the
1584 * device in PCI D3 state. Notice that when this happens, nothing on the
1585 * graphics device works, even register access, so we don't get interrupts nor
1586 * anything else.
1587 *
1588 * Every piece of our code that needs to actually touch the hardware needs to
1589 * either call intel_runtime_pm_get or call intel_display_power_get with the
1590 * appropriate power domain.
1591 *
1592 * Our driver uses the autosuspend delay feature, which means we'll only really
1593 * suspend if we stay with zero refcount for a certain amount of time. The
1594 * default value is currently very conservative (see intel_runtime_pm_enable), but
1595 * it can be changed with the standard runtime PM files from sysfs.
1596 *
1597 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1598 * goes back to false exactly before we reenable the IRQs. We use this variable
1599 * to check if someone is trying to enable/disable IRQs while they're supposed
1600 * to be disabled. This shouldn't happen and we'll print some error messages in
1601 * case it happens.
1602 *
1603 * For more, read the Documentation/power/runtime_pm.txt.
1604 */
1605 struct i915_runtime_pm {
1606 bool suspended;
1607 bool irqs_enabled;
1608 };
1609
1610 enum intel_pipe_crc_source {
1611 INTEL_PIPE_CRC_SOURCE_NONE,
1612 INTEL_PIPE_CRC_SOURCE_PLANE1,
1613 INTEL_PIPE_CRC_SOURCE_PLANE2,
1614 INTEL_PIPE_CRC_SOURCE_PF,
1615 INTEL_PIPE_CRC_SOURCE_PIPE,
1616 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1617 INTEL_PIPE_CRC_SOURCE_TV,
1618 INTEL_PIPE_CRC_SOURCE_DP_B,
1619 INTEL_PIPE_CRC_SOURCE_DP_C,
1620 INTEL_PIPE_CRC_SOURCE_DP_D,
1621 INTEL_PIPE_CRC_SOURCE_AUTO,
1622 INTEL_PIPE_CRC_SOURCE_MAX,
1623 };
1624
1625 struct intel_pipe_crc_entry {
1626 uint32_t frame;
1627 uint32_t crc[5];
1628 };
1629
1630 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1631 struct intel_pipe_crc {
1632 spinlock_t lock;
1633 bool opened; /* exclusive access to the result file */
1634 struct intel_pipe_crc_entry *entries;
1635 enum intel_pipe_crc_source source;
1636 int head, tail;
1637 wait_queue_head_t wq;
1638 };
1639
1640 struct i915_frontbuffer_tracking {
1641 struct mutex lock;
1642
1643 /*
1644 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1645 * scheduled flips.
1646 */
1647 unsigned busy_bits;
1648 unsigned flip_bits;
1649 };
1650
1651 struct i915_wa_reg {
1652 i915_reg_t addr;
1653 u32 value;
1654 /* bitmask representing WA bits */
1655 u32 mask;
1656 };
1657
1658 #define I915_MAX_WA_REGS 16
1659
1660 struct i915_workarounds {
1661 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1662 u32 count;
1663 };
1664
1665 struct i915_virtual_gpu {
1666 bool active;
1667 };
1668
1669 struct i915_execbuffer_params {
1670 struct drm_device *dev;
1671 struct drm_file *file;
1672 uint32_t dispatch_flags;
1673 uint32_t args_batch_start_offset;
1674 uint64_t batch_obj_vm_offset;
1675 struct intel_engine_cs *ring;
1676 struct drm_i915_gem_object *batch_obj;
1677 struct intel_context *ctx;
1678 struct drm_i915_gem_request *request;
1679 };
1680
1681 /* used in computing the new watermarks state */
1682 struct intel_wm_config {
1683 unsigned int num_pipes_active;
1684 bool sprites_enabled;
1685 bool sprites_scaled;
1686 };
1687
1688 struct drm_i915_private {
1689 struct drm_device *dev;
1690 struct kmem_cache *objects;
1691 struct kmem_cache *vmas;
1692 struct kmem_cache *requests;
1693
1694 const struct intel_device_info info;
1695
1696 int relative_constants_mode;
1697
1698 void __iomem *regs;
1699
1700 struct intel_uncore uncore;
1701
1702 struct i915_virtual_gpu vgpu;
1703
1704 struct intel_guc guc;
1705
1706 struct intel_csr csr;
1707
1708 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1709
1710 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1711 * controller on different i2c buses. */
1712 struct mutex gmbus_mutex;
1713
1714 /**
1715 * Base address of the gmbus and gpio block.
1716 */
1717 uint32_t gpio_mmio_base;
1718
1719 /* MMIO base address for MIPI regs */
1720 uint32_t mipi_mmio_base;
1721
1722 uint32_t psr_mmio_base;
1723
1724 wait_queue_head_t gmbus_wait_queue;
1725
1726 struct pci_dev *bridge_dev;
1727 struct intel_engine_cs ring[I915_NUM_RINGS];
1728 struct drm_i915_gem_object *semaphore_obj;
1729 uint32_t last_seqno, next_seqno;
1730
1731 struct drm_dma_handle *status_page_dmah;
1732 struct resource mch_res;
1733
1734 /* protects the irq masks */
1735 spinlock_t irq_lock;
1736
1737 /* protects the mmio flip data */
1738 spinlock_t mmio_flip_lock;
1739
1740 bool display_irqs_enabled;
1741
1742 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1743 struct pm_qos_request pm_qos;
1744
1745 /* Sideband mailbox protection */
1746 struct mutex sb_lock;
1747
1748 /** Cached value of IMR to avoid reads in updating the bitfield */
1749 union {
1750 u32 irq_mask;
1751 u32 de_irq_mask[I915_MAX_PIPES];
1752 };
1753 u32 gt_irq_mask;
1754 u32 pm_irq_mask;
1755 u32 pm_rps_events;
1756 u32 pipestat_irq_mask[I915_MAX_PIPES];
1757
1758 struct i915_hotplug hotplug;
1759 struct i915_fbc fbc;
1760 struct i915_drrs drrs;
1761 struct intel_opregion opregion;
1762 struct intel_vbt_data vbt;
1763
1764 bool preserve_bios_swizzle;
1765
1766 /* overlay */
1767 struct intel_overlay *overlay;
1768
1769 /* backlight registers and fields in struct intel_panel */
1770 struct mutex backlight_lock;
1771
1772 /* LVDS info */
1773 bool no_aux_handshake;
1774
1775 /* protects panel power sequencer state */
1776 struct mutex pps_mutex;
1777
1778 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1779 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1780
1781 unsigned int fsb_freq, mem_freq, is_ddr3;
1782 unsigned int skl_boot_cdclk;
1783 unsigned int cdclk_freq, max_cdclk_freq;
1784 unsigned int max_dotclk_freq;
1785 unsigned int hpll_freq;
1786 unsigned int czclk_freq;
1787
1788 /**
1789 * wq - Driver workqueue for GEM.
1790 *
1791 * NOTE: Work items scheduled here are not allowed to grab any modeset
1792 * locks, for otherwise the flushing done in the pageflip code will
1793 * result in deadlocks.
1794 */
1795 struct workqueue_struct *wq;
1796
1797 /* Display functions */
1798 struct drm_i915_display_funcs display;
1799
1800 /* PCH chipset type */
1801 enum intel_pch pch_type;
1802 unsigned short pch_id;
1803
1804 unsigned long quirks;
1805
1806 enum modeset_restore modeset_restore;
1807 struct mutex modeset_restore_lock;
1808
1809 struct list_head vm_list; /* Global list of all address spaces */
1810 struct i915_gtt gtt; /* VM representing the global address space */
1811
1812 struct i915_gem_mm mm;
1813 DECLARE_HASHTABLE(mm_structs, 7);
1814 struct mutex mm_lock;
1815
1816 /* Kernel Modesetting */
1817
1818 struct sdvo_device_mapping sdvo_mappings[2];
1819
1820 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1821 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1822 wait_queue_head_t pending_flip_queue;
1823
1824 #ifdef CONFIG_DEBUG_FS
1825 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1826 #endif
1827
1828 int num_shared_dpll;
1829 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1830 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1831
1832 struct i915_workarounds workarounds;
1833
1834 /* Reclocking support */
1835 bool render_reclock_avail;
1836
1837 struct i915_frontbuffer_tracking fb_tracking;
1838
1839 u16 orig_clock;
1840
1841 bool mchbar_need_disable;
1842
1843 struct intel_l3_parity l3_parity;
1844
1845 /* Cannot be determined by PCIID. You must always read a register. */
1846 size_t ellc_size;
1847
1848 /* gen6+ rps state */
1849 struct intel_gen6_power_mgmt rps;
1850
1851 /* ilk-only ips/rps state. Everything in here is protected by the global
1852 * mchdev_lock in intel_pm.c */
1853 struct intel_ilk_power_mgmt ips;
1854
1855 struct i915_power_domains power_domains;
1856
1857 struct i915_psr psr;
1858
1859 struct i915_gpu_error gpu_error;
1860
1861 struct drm_i915_gem_object *vlv_pctx;
1862
1863 #ifdef CONFIG_DRM_FBDEV_EMULATION
1864 /* list of fbdev register on this device */
1865 struct intel_fbdev *fbdev;
1866 struct work_struct fbdev_suspend_work;
1867 #endif
1868
1869 struct drm_property *broadcast_rgb_property;
1870 struct drm_property *force_audio_property;
1871
1872 /* hda/i915 audio component */
1873 struct i915_audio_component *audio_component;
1874 bool audio_component_registered;
1875 /**
1876 * av_mutex - mutex for audio/video sync
1877 *
1878 */
1879 struct mutex av_mutex;
1880
1881 uint32_t hw_context_size;
1882 struct list_head context_list;
1883
1884 u32 fdi_rx_config;
1885
1886 u32 chv_phy_control;
1887
1888 u32 suspend_count;
1889 bool suspended_to_idle;
1890 struct i915_suspend_saved_registers regfile;
1891 struct vlv_s0ix_state vlv_s0ix_state;
1892
1893 struct {
1894 /*
1895 * Raw watermark latency values:
1896 * in 0.1us units for WM0,
1897 * in 0.5us units for WM1+.
1898 */
1899 /* primary */
1900 uint16_t pri_latency[5];
1901 /* sprite */
1902 uint16_t spr_latency[5];
1903 /* cursor */
1904 uint16_t cur_latency[5];
1905 /*
1906 * Raw watermark memory latency values
1907 * for SKL for all 8 levels
1908 * in 1us units.
1909 */
1910 uint16_t skl_latency[8];
1911
1912 /* Committed wm config */
1913 struct intel_wm_config config;
1914
1915 /*
1916 * The skl_wm_values structure is a bit too big for stack
1917 * allocation, so we keep the staging struct where we store
1918 * intermediate results here instead.
1919 */
1920 struct skl_wm_values skl_results;
1921
1922 /* current hardware state */
1923 union {
1924 struct ilk_wm_values hw;
1925 struct skl_wm_values skl_hw;
1926 struct vlv_wm_values vlv;
1927 };
1928
1929 uint8_t max_level;
1930 } wm;
1931
1932 struct i915_runtime_pm pm;
1933
1934 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1935 struct {
1936 int (*execbuf_submit)(struct i915_execbuffer_params *params,
1937 struct drm_i915_gem_execbuffer2 *args,
1938 struct list_head *vmas);
1939 int (*init_rings)(struct drm_device *dev);
1940 void (*cleanup_ring)(struct intel_engine_cs *ring);
1941 void (*stop_ring)(struct intel_engine_cs *ring);
1942 } gt;
1943
1944 bool edp_low_vswing;
1945
1946 /* perform PHY state sanity checks? */
1947 bool chv_phy_assert[2];
1948
1949 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
1950
1951 /*
1952 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
1953 * will be rejected. Instead look for a better place.
1954 */
1955 };
1956
1957 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
1958 {
1959 return dev->dev_private;
1960 }
1961
1962 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
1963 {
1964 return to_i915(dev_get_drvdata(dev));
1965 }
1966
1967 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
1968 {
1969 return container_of(guc, struct drm_i915_private, guc);
1970 }
1971
1972 /* Iterate over initialised rings */
1973 #define for_each_ring(ring__, dev_priv__, i__) \
1974 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
1975 for_each_if ((((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__))))
1976
1977 enum hdmi_force_audio {
1978 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
1979 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
1980 HDMI_AUDIO_AUTO, /* trust EDID */
1981 HDMI_AUDIO_ON, /* force turn on HDMI audio */
1982 };
1983
1984 #define I915_GTT_OFFSET_NONE ((u32)-1)
1985
1986 struct drm_i915_gem_object_ops {
1987 /* Interface between the GEM object and its backing storage.
1988 * get_pages() is called once prior to the use of the associated set
1989 * of pages before to binding them into the GTT, and put_pages() is
1990 * called after we no longer need them. As we expect there to be
1991 * associated cost with migrating pages between the backing storage
1992 * and making them available for the GPU (e.g. clflush), we may hold
1993 * onto the pages after they are no longer referenced by the GPU
1994 * in case they may be used again shortly (for example migrating the
1995 * pages to a different memory domain within the GTT). put_pages()
1996 * will therefore most likely be called when the object itself is
1997 * being released or under memory pressure (where we attempt to
1998 * reap pages for the shrinker).
1999 */
2000 int (*get_pages)(struct drm_i915_gem_object *);
2001 void (*put_pages)(struct drm_i915_gem_object *);
2002 int (*dmabuf_export)(struct drm_i915_gem_object *);
2003 void (*release)(struct drm_i915_gem_object *);
2004 };
2005
2006 /*
2007 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2008 * considered to be the frontbuffer for the given plane interface-wise. This
2009 * doesn't mean that the hw necessarily already scans it out, but that any
2010 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2011 *
2012 * We have one bit per pipe and per scanout plane type.
2013 */
2014 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2015 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2016 #define INTEL_FRONTBUFFER_BITS \
2017 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2018 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2019 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2020 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2021 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2022 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2023 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2024 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2025 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2026 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2027 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2028
2029 struct drm_i915_gem_object {
2030 struct drm_gem_object base;
2031
2032 const struct drm_i915_gem_object_ops *ops;
2033
2034 /** List of VMAs backed by this object */
2035 struct list_head vma_list;
2036
2037 /** Stolen memory for this object, instead of being backed by shmem. */
2038 struct drm_mm_node *stolen;
2039 struct list_head global_list;
2040
2041 struct list_head ring_list[I915_NUM_RINGS];
2042 /** Used in execbuf to temporarily hold a ref */
2043 struct list_head obj_exec_link;
2044
2045 struct list_head batch_pool_link;
2046
2047 /**
2048 * This is set if the object is on the active lists (has pending
2049 * rendering and so a non-zero seqno), and is not set if it i s on
2050 * inactive (ready to be unbound) list.
2051 */
2052 unsigned int active:I915_NUM_RINGS;
2053
2054 /**
2055 * This is set if the object has been written to since last bound
2056 * to the GTT
2057 */
2058 unsigned int dirty:1;
2059
2060 /**
2061 * Fence register bits (if any) for this object. Will be set
2062 * as needed when mapped into the GTT.
2063 * Protected by dev->struct_mutex.
2064 */
2065 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2066
2067 /**
2068 * Advice: are the backing pages purgeable?
2069 */
2070 unsigned int madv:2;
2071
2072 /**
2073 * Current tiling mode for the object.
2074 */
2075 unsigned int tiling_mode:2;
2076 /**
2077 * Whether the tiling parameters for the currently associated fence
2078 * register have changed. Note that for the purposes of tracking
2079 * tiling changes we also treat the unfenced register, the register
2080 * slot that the object occupies whilst it executes a fenced
2081 * command (such as BLT on gen2/3), as a "fence".
2082 */
2083 unsigned int fence_dirty:1;
2084
2085 /**
2086 * Is the object at the current location in the gtt mappable and
2087 * fenceable? Used to avoid costly recalculations.
2088 */
2089 unsigned int map_and_fenceable:1;
2090
2091 /**
2092 * Whether the current gtt mapping needs to be mappable (and isn't just
2093 * mappable by accident). Track pin and fault separate for a more
2094 * accurate mappable working set.
2095 */
2096 unsigned int fault_mappable:1;
2097
2098 /*
2099 * Is the object to be mapped as read-only to the GPU
2100 * Only honoured if hardware has relevant pte bit
2101 */
2102 unsigned long gt_ro:1;
2103 unsigned int cache_level:3;
2104 unsigned int cache_dirty:1;
2105
2106 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2107
2108 unsigned int pin_display;
2109
2110 struct sg_table *pages;
2111 int pages_pin_count;
2112 struct get_page {
2113 struct scatterlist *sg;
2114 int last;
2115 } get_page;
2116
2117 /* prime dma-buf support */
2118 void *dma_buf_vmapping;
2119 int vmapping_count;
2120
2121 /** Breadcrumb of last rendering to the buffer.
2122 * There can only be one writer, but we allow for multiple readers.
2123 * If there is a writer that necessarily implies that all other
2124 * read requests are complete - but we may only be lazily clearing
2125 * the read requests. A read request is naturally the most recent
2126 * request on a ring, so we may have two different write and read
2127 * requests on one ring where the write request is older than the
2128 * read request. This allows for the CPU to read from an active
2129 * buffer by only waiting for the write to complete.
2130 * */
2131 struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS];
2132 struct drm_i915_gem_request *last_write_req;
2133 /** Breadcrumb of last fenced GPU access to the buffer. */
2134 struct drm_i915_gem_request *last_fenced_req;
2135
2136 /** Current tiling stride for the object, if it's tiled. */
2137 uint32_t stride;
2138
2139 /** References from framebuffers, locks out tiling changes. */
2140 unsigned long framebuffer_references;
2141
2142 /** Record of address bit 17 of each page at last unbind. */
2143 unsigned long *bit_17;
2144
2145 union {
2146 /** for phy allocated objects */
2147 struct drm_dma_handle *phys_handle;
2148
2149 struct i915_gem_userptr {
2150 uintptr_t ptr;
2151 unsigned read_only :1;
2152 unsigned workers :4;
2153 #define I915_GEM_USERPTR_MAX_WORKERS 15
2154
2155 struct i915_mm_struct *mm;
2156 struct i915_mmu_object *mmu_object;
2157 struct work_struct *work;
2158 } userptr;
2159 };
2160 };
2161 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2162
2163 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2164 struct drm_i915_gem_object *new,
2165 unsigned frontbuffer_bits);
2166
2167 /**
2168 * Request queue structure.
2169 *
2170 * The request queue allows us to note sequence numbers that have been emitted
2171 * and may be associated with active buffers to be retired.
2172 *
2173 * By keeping this list, we can avoid having to do questionable sequence
2174 * number comparisons on buffer last_read|write_seqno. It also allows an
2175 * emission time to be associated with the request for tracking how far ahead
2176 * of the GPU the submission is.
2177 *
2178 * The requests are reference counted, so upon creation they should have an
2179 * initial reference taken using kref_init
2180 */
2181 struct drm_i915_gem_request {
2182 struct kref ref;
2183
2184 /** On Which ring this request was generated */
2185 struct drm_i915_private *i915;
2186 struct intel_engine_cs *ring;
2187
2188 /** GEM sequence number associated with this request. */
2189 uint32_t seqno;
2190
2191 /** Position in the ringbuffer of the start of the request */
2192 u32 head;
2193
2194 /**
2195 * Position in the ringbuffer of the start of the postfix.
2196 * This is required to calculate the maximum available ringbuffer
2197 * space without overwriting the postfix.
2198 */
2199 u32 postfix;
2200
2201 /** Position in the ringbuffer of the end of the whole request */
2202 u32 tail;
2203
2204 /**
2205 * Context and ring buffer related to this request
2206 * Contexts are refcounted, so when this request is associated with a
2207 * context, we must increment the context's refcount, to guarantee that
2208 * it persists while any request is linked to it. Requests themselves
2209 * are also refcounted, so the request will only be freed when the last
2210 * reference to it is dismissed, and the code in
2211 * i915_gem_request_free() will then decrement the refcount on the
2212 * context.
2213 */
2214 struct intel_context *ctx;
2215 struct intel_ringbuffer *ringbuf;
2216
2217 /** Batch buffer related to this request if any (used for
2218 error state dump only) */
2219 struct drm_i915_gem_object *batch_obj;
2220
2221 /** Time at which this request was emitted, in jiffies. */
2222 unsigned long emitted_jiffies;
2223
2224 /** global list entry for this request */
2225 struct list_head list;
2226
2227 struct drm_i915_file_private *file_priv;
2228 /** file_priv list entry for this request */
2229 struct list_head client_list;
2230
2231 /** process identifier submitting this request */
2232 struct pid *pid;
2233
2234 /**
2235 * The ELSP only accepts two elements at a time, so we queue
2236 * context/tail pairs on a given queue (ring->execlist_queue) until the
2237 * hardware is available. The queue serves a double purpose: we also use
2238 * it to keep track of the up to 2 contexts currently in the hardware
2239 * (usually one in execution and the other queued up by the GPU): We
2240 * only remove elements from the head of the queue when the hardware
2241 * informs us that an element has been completed.
2242 *
2243 * All accesses to the queue are mediated by a spinlock
2244 * (ring->execlist_lock).
2245 */
2246
2247 /** Execlist link in the submission queue.*/
2248 struct list_head execlist_link;
2249
2250 /** Execlists no. of times this request has been sent to the ELSP */
2251 int elsp_submitted;
2252
2253 };
2254
2255 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2256 struct intel_context *ctx,
2257 struct drm_i915_gem_request **req_out);
2258 void i915_gem_request_cancel(struct drm_i915_gem_request *req);
2259 void i915_gem_request_free(struct kref *req_ref);
2260 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2261 struct drm_file *file);
2262
2263 static inline uint32_t
2264 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2265 {
2266 return req ? req->seqno : 0;
2267 }
2268
2269 static inline struct intel_engine_cs *
2270 i915_gem_request_get_ring(struct drm_i915_gem_request *req)
2271 {
2272 return req ? req->ring : NULL;
2273 }
2274
2275 static inline struct drm_i915_gem_request *
2276 i915_gem_request_reference(struct drm_i915_gem_request *req)
2277 {
2278 if (req)
2279 kref_get(&req->ref);
2280 return req;
2281 }
2282
2283 static inline void
2284 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2285 {
2286 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
2287 kref_put(&req->ref, i915_gem_request_free);
2288 }
2289
2290 static inline void
2291 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
2292 {
2293 struct drm_device *dev;
2294
2295 if (!req)
2296 return;
2297
2298 dev = req->ring->dev;
2299 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
2300 mutex_unlock(&dev->struct_mutex);
2301 }
2302
2303 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2304 struct drm_i915_gem_request *src)
2305 {
2306 if (src)
2307 i915_gem_request_reference(src);
2308
2309 if (*pdst)
2310 i915_gem_request_unreference(*pdst);
2311
2312 *pdst = src;
2313 }
2314
2315 /*
2316 * XXX: i915_gem_request_completed should be here but currently needs the
2317 * definition of i915_seqno_passed() which is below. It will be moved in
2318 * a later patch when the call to i915_seqno_passed() is obsoleted...
2319 */
2320
2321 /*
2322 * A command that requires special handling by the command parser.
2323 */
2324 struct drm_i915_cmd_descriptor {
2325 /*
2326 * Flags describing how the command parser processes the command.
2327 *
2328 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2329 * a length mask if not set
2330 * CMD_DESC_SKIP: The command is allowed but does not follow the
2331 * standard length encoding for the opcode range in
2332 * which it falls
2333 * CMD_DESC_REJECT: The command is never allowed
2334 * CMD_DESC_REGISTER: The command should be checked against the
2335 * register whitelist for the appropriate ring
2336 * CMD_DESC_MASTER: The command is allowed if the submitting process
2337 * is the DRM master
2338 */
2339 u32 flags;
2340 #define CMD_DESC_FIXED (1<<0)
2341 #define CMD_DESC_SKIP (1<<1)
2342 #define CMD_DESC_REJECT (1<<2)
2343 #define CMD_DESC_REGISTER (1<<3)
2344 #define CMD_DESC_BITMASK (1<<4)
2345 #define CMD_DESC_MASTER (1<<5)
2346
2347 /*
2348 * The command's unique identification bits and the bitmask to get them.
2349 * This isn't strictly the opcode field as defined in the spec and may
2350 * also include type, subtype, and/or subop fields.
2351 */
2352 struct {
2353 u32 value;
2354 u32 mask;
2355 } cmd;
2356
2357 /*
2358 * The command's length. The command is either fixed length (i.e. does
2359 * not include a length field) or has a length field mask. The flag
2360 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2361 * a length mask. All command entries in a command table must include
2362 * length information.
2363 */
2364 union {
2365 u32 fixed;
2366 u32 mask;
2367 } length;
2368
2369 /*
2370 * Describes where to find a register address in the command to check
2371 * against the ring's register whitelist. Only valid if flags has the
2372 * CMD_DESC_REGISTER bit set.
2373 *
2374 * A non-zero step value implies that the command may access multiple
2375 * registers in sequence (e.g. LRI), in that case step gives the
2376 * distance in dwords between individual offset fields.
2377 */
2378 struct {
2379 u32 offset;
2380 u32 mask;
2381 u32 step;
2382 } reg;
2383
2384 #define MAX_CMD_DESC_BITMASKS 3
2385 /*
2386 * Describes command checks where a particular dword is masked and
2387 * compared against an expected value. If the command does not match
2388 * the expected value, the parser rejects it. Only valid if flags has
2389 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2390 * are valid.
2391 *
2392 * If the check specifies a non-zero condition_mask then the parser
2393 * only performs the check when the bits specified by condition_mask
2394 * are non-zero.
2395 */
2396 struct {
2397 u32 offset;
2398 u32 mask;
2399 u32 expected;
2400 u32 condition_offset;
2401 u32 condition_mask;
2402 } bits[MAX_CMD_DESC_BITMASKS];
2403 };
2404
2405 /*
2406 * A table of commands requiring special handling by the command parser.
2407 *
2408 * Each ring has an array of tables. Each table consists of an array of command
2409 * descriptors, which must be sorted with command opcodes in ascending order.
2410 */
2411 struct drm_i915_cmd_table {
2412 const struct drm_i915_cmd_descriptor *table;
2413 int count;
2414 };
2415
2416 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2417 #define __I915__(p) ({ \
2418 struct drm_i915_private *__p; \
2419 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2420 __p = (struct drm_i915_private *)p; \
2421 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2422 __p = to_i915((struct drm_device *)p); \
2423 else \
2424 BUILD_BUG(); \
2425 __p; \
2426 })
2427 #define INTEL_INFO(p) (&__I915__(p)->info)
2428 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2429 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2430
2431 #define REVID_FOREVER 0xff
2432 /*
2433 * Return true if revision is in range [since,until] inclusive.
2434 *
2435 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2436 */
2437 #define IS_REVID(p, since, until) \
2438 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2439
2440 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2441 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2442 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2443 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2444 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2445 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2446 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2447 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2448 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2449 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2450 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2451 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2452 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2453 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2454 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2455 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2456 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2457 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2458 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2459 INTEL_DEVID(dev) == 0x0152 || \
2460 INTEL_DEVID(dev) == 0x015a)
2461 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2462 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2463 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2464 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev))
2465 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2466 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2467 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2468 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2469 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2470 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2471 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2472 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2473 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2474 (INTEL_DEVID(dev) & 0xf) == 0xe))
2475 /* ULX machines are also considered ULT. */
2476 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2477 (INTEL_DEVID(dev) & 0xf) == 0xe)
2478 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2479 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2480 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2481 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2482 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2483 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2484 /* ULX machines are also considered ULT. */
2485 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2486 INTEL_DEVID(dev) == 0x0A1E)
2487 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2488 INTEL_DEVID(dev) == 0x1913 || \
2489 INTEL_DEVID(dev) == 0x1916 || \
2490 INTEL_DEVID(dev) == 0x1921 || \
2491 INTEL_DEVID(dev) == 0x1926)
2492 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2493 INTEL_DEVID(dev) == 0x1915 || \
2494 INTEL_DEVID(dev) == 0x191E)
2495 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2496 INTEL_DEVID(dev) == 0x5913 || \
2497 INTEL_DEVID(dev) == 0x5916 || \
2498 INTEL_DEVID(dev) == 0x5921 || \
2499 INTEL_DEVID(dev) == 0x5926)
2500 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2501 INTEL_DEVID(dev) == 0x5915 || \
2502 INTEL_DEVID(dev) == 0x591E)
2503 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2504 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2505 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2506 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2507
2508 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2509
2510 #define SKL_REVID_A0 0x0
2511 #define SKL_REVID_B0 0x1
2512 #define SKL_REVID_C0 0x2
2513 #define SKL_REVID_D0 0x3
2514 #define SKL_REVID_E0 0x4
2515 #define SKL_REVID_F0 0x5
2516
2517 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2518
2519 #define BXT_REVID_A0 0x0
2520 #define BXT_REVID_A1 0x1
2521 #define BXT_REVID_B0 0x3
2522 #define BXT_REVID_C0 0x9
2523
2524 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2525
2526 /*
2527 * The genX designation typically refers to the render engine, so render
2528 * capability related checks should use IS_GEN, while display and other checks
2529 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2530 * chips, etc.).
2531 */
2532 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2533 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2534 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2535 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2536 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2537 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2538 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2539 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2540
2541 #define RENDER_RING (1<<RCS)
2542 #define BSD_RING (1<<VCS)
2543 #define BLT_RING (1<<BCS)
2544 #define VEBOX_RING (1<<VECS)
2545 #define BSD2_RING (1<<VCS2)
2546 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2547 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2548 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2549 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2550 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2551 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2552 __I915__(dev)->ellc_size)
2553 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2554
2555 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2556 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2557 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2558 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2559 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2560
2561 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2562 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2563
2564 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2565 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2566 /*
2567 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2568 * even when in MSI mode. This results in spurious interrupt warnings if the
2569 * legacy irq no. is shared with another device. The kernel then disables that
2570 * interrupt source and so prevents the other device from working properly.
2571 */
2572 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2573 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2574
2575 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2576 * rows, which changed the alignment requirements and fence programming.
2577 */
2578 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2579 IS_I915GM(dev)))
2580 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2581 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2582
2583 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2584 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2585 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2586
2587 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2588
2589 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2590 INTEL_INFO(dev)->gen >= 9)
2591
2592 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2593 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2594 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2595 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2596 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2597 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2598 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2599 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2600 IS_KABYLAKE(dev))
2601 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2602 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2603
2604 #define HAS_CSR(dev) (IS_GEN9(dev))
2605
2606 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2607 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2608
2609 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2610 INTEL_INFO(dev)->gen >= 8)
2611
2612 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2613 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2614 !IS_BROXTON(dev))
2615
2616 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2617 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2618 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2619 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2620 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2621 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2622 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2623 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2624 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2625 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2626
2627 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2628 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2629 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2630 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2631 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2632 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2633 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2634 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2635 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2636
2637 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2638 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2639
2640 /* DPF == dynamic parity feature */
2641 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2642 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2643
2644 #define GT_FREQUENCY_MULTIPLIER 50
2645 #define GEN9_FREQ_SCALER 3
2646
2647 #include "i915_trace.h"
2648
2649 extern const struct drm_ioctl_desc i915_ioctls[];
2650 extern int i915_max_ioctl;
2651
2652 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2653 extern int i915_resume_switcheroo(struct drm_device *dev);
2654
2655 /* i915_params.c */
2656 struct i915_params {
2657 int modeset;
2658 int panel_ignore_lid;
2659 int semaphores;
2660 int lvds_channel_mode;
2661 int panel_use_ssc;
2662 int vbt_sdvo_panel_type;
2663 int enable_rc6;
2664 int enable_dc;
2665 int enable_fbc;
2666 int enable_ppgtt;
2667 int enable_execlists;
2668 int enable_psr;
2669 unsigned int preliminary_hw_support;
2670 int disable_power_well;
2671 int enable_ips;
2672 int invert_brightness;
2673 int enable_cmd_parser;
2674 /* leave bools at the end to not create holes */
2675 bool enable_hangcheck;
2676 bool fastboot;
2677 bool prefault_disable;
2678 bool load_detect_test;
2679 bool reset;
2680 bool disable_display;
2681 bool disable_vtd_wa;
2682 bool enable_guc_submission;
2683 int guc_log_level;
2684 int use_mmio_flip;
2685 int mmio_debug;
2686 bool verbose_state_checks;
2687 bool nuclear_pageflip;
2688 int edp_vswing;
2689 };
2690 extern struct i915_params i915 __read_mostly;
2691
2692 /* i915_dma.c */
2693 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2694 extern int i915_driver_unload(struct drm_device *);
2695 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2696 extern void i915_driver_lastclose(struct drm_device * dev);
2697 extern void i915_driver_preclose(struct drm_device *dev,
2698 struct drm_file *file);
2699 extern void i915_driver_postclose(struct drm_device *dev,
2700 struct drm_file *file);
2701 #ifdef CONFIG_COMPAT
2702 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2703 unsigned long arg);
2704 #endif
2705 extern int intel_gpu_reset(struct drm_device *dev);
2706 extern bool intel_has_gpu_reset(struct drm_device *dev);
2707 extern int i915_reset(struct drm_device *dev);
2708 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2709 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2710 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2711 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2712 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2713
2714 /* intel_hotplug.c */
2715 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
2716 void intel_hpd_init(struct drm_i915_private *dev_priv);
2717 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2718 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2719 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2720
2721 /* i915_irq.c */
2722 void i915_queue_hangcheck(struct drm_device *dev);
2723 __printf(3, 4)
2724 void i915_handle_error(struct drm_device *dev, bool wedged,
2725 const char *fmt, ...);
2726
2727 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2728 int intel_irq_install(struct drm_i915_private *dev_priv);
2729 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2730
2731 extern void intel_uncore_sanitize(struct drm_device *dev);
2732 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2733 bool restore_forcewake);
2734 extern void intel_uncore_init(struct drm_device *dev);
2735 extern void intel_uncore_check_errors(struct drm_device *dev);
2736 extern void intel_uncore_fini(struct drm_device *dev);
2737 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2738 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2739 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2740 enum forcewake_domains domains);
2741 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2742 enum forcewake_domains domains);
2743 /* Like above but the caller must manage the uncore.lock itself.
2744 * Must be used with I915_READ_FW and friends.
2745 */
2746 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2747 enum forcewake_domains domains);
2748 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2749 enum forcewake_domains domains);
2750 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2751 static inline bool intel_vgpu_active(struct drm_device *dev)
2752 {
2753 return to_i915(dev)->vgpu.active;
2754 }
2755
2756 void
2757 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2758 u32 status_mask);
2759
2760 void
2761 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2762 u32 status_mask);
2763
2764 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2765 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2766 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2767 uint32_t mask,
2768 uint32_t bits);
2769 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2770 uint32_t interrupt_mask,
2771 uint32_t enabled_irq_mask);
2772 static inline void
2773 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2774 {
2775 ilk_update_display_irq(dev_priv, bits, bits);
2776 }
2777 static inline void
2778 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2779 {
2780 ilk_update_display_irq(dev_priv, bits, 0);
2781 }
2782 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2783 enum pipe pipe,
2784 uint32_t interrupt_mask,
2785 uint32_t enabled_irq_mask);
2786 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2787 enum pipe pipe, uint32_t bits)
2788 {
2789 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2790 }
2791 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2792 enum pipe pipe, uint32_t bits)
2793 {
2794 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2795 }
2796 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2797 uint32_t interrupt_mask,
2798 uint32_t enabled_irq_mask);
2799 static inline void
2800 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2801 {
2802 ibx_display_interrupt_update(dev_priv, bits, bits);
2803 }
2804 static inline void
2805 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2806 {
2807 ibx_display_interrupt_update(dev_priv, bits, 0);
2808 }
2809
2810
2811 /* i915_gem.c */
2812 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2813 struct drm_file *file_priv);
2814 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2815 struct drm_file *file_priv);
2816 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2817 struct drm_file *file_priv);
2818 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2819 struct drm_file *file_priv);
2820 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2821 struct drm_file *file_priv);
2822 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2823 struct drm_file *file_priv);
2824 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2825 struct drm_file *file_priv);
2826 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2827 struct drm_i915_gem_request *req);
2828 void i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params);
2829 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2830 struct drm_i915_gem_execbuffer2 *args,
2831 struct list_head *vmas);
2832 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2833 struct drm_file *file_priv);
2834 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2835 struct drm_file *file_priv);
2836 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2837 struct drm_file *file_priv);
2838 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2839 struct drm_file *file);
2840 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2841 struct drm_file *file);
2842 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2843 struct drm_file *file_priv);
2844 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2845 struct drm_file *file_priv);
2846 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2847 struct drm_file *file_priv);
2848 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2849 struct drm_file *file_priv);
2850 int i915_gem_init_userptr(struct drm_device *dev);
2851 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2852 struct drm_file *file);
2853 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2854 struct drm_file *file_priv);
2855 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2856 struct drm_file *file_priv);
2857 void i915_gem_load(struct drm_device *dev);
2858 void *i915_gem_object_alloc(struct drm_device *dev);
2859 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2860 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2861 const struct drm_i915_gem_object_ops *ops);
2862 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2863 size_t size);
2864 struct drm_i915_gem_object *i915_gem_object_create_from_data(
2865 struct drm_device *dev, const void *data, size_t size);
2866 void i915_gem_free_object(struct drm_gem_object *obj);
2867 void i915_gem_vma_destroy(struct i915_vma *vma);
2868
2869 /* Flags used by pin/bind&friends. */
2870 #define PIN_MAPPABLE (1<<0)
2871 #define PIN_NONBLOCK (1<<1)
2872 #define PIN_GLOBAL (1<<2)
2873 #define PIN_OFFSET_BIAS (1<<3)
2874 #define PIN_USER (1<<4)
2875 #define PIN_UPDATE (1<<5)
2876 #define PIN_ZONE_4G (1<<6)
2877 #define PIN_HIGH (1<<7)
2878 #define PIN_OFFSET_FIXED (1<<8)
2879 #define PIN_OFFSET_MASK (~4095)
2880 int __must_check
2881 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2882 struct i915_address_space *vm,
2883 uint32_t alignment,
2884 uint64_t flags);
2885 int __must_check
2886 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2887 const struct i915_ggtt_view *view,
2888 uint32_t alignment,
2889 uint64_t flags);
2890
2891 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2892 u32 flags);
2893 int __must_check i915_vma_unbind(struct i915_vma *vma);
2894 /*
2895 * BEWARE: Do not use the function below unless you can _absolutely_
2896 * _guarantee_ VMA in question is _not in use_ anywhere.
2897 */
2898 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
2899 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2900 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2901 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2902
2903 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2904 int *needs_clflush);
2905
2906 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2907
2908 static inline int __sg_page_count(struct scatterlist *sg)
2909 {
2910 return sg->length >> PAGE_SHIFT;
2911 }
2912
2913 struct page *
2914 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
2915
2916 static inline struct page *
2917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2918 {
2919 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
2920 return NULL;
2921
2922 if (n < obj->get_page.last) {
2923 obj->get_page.sg = obj->pages->sgl;
2924 obj->get_page.last = 0;
2925 }
2926
2927 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
2928 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
2929 if (unlikely(sg_is_chain(obj->get_page.sg)))
2930 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
2931 }
2932
2933 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
2934 }
2935
2936 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2937 {
2938 BUG_ON(obj->pages == NULL);
2939 obj->pages_pin_count++;
2940 }
2941 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2942 {
2943 BUG_ON(obj->pages_pin_count == 0);
2944 obj->pages_pin_count--;
2945 }
2946
2947 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2948 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
2949 struct intel_engine_cs *to,
2950 struct drm_i915_gem_request **to_req);
2951 void i915_vma_move_to_active(struct i915_vma *vma,
2952 struct drm_i915_gem_request *req);
2953 int i915_gem_dumb_create(struct drm_file *file_priv,
2954 struct drm_device *dev,
2955 struct drm_mode_create_dumb *args);
2956 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2957 uint32_t handle, uint64_t *offset);
2958 /**
2959 * Returns true if seq1 is later than seq2.
2960 */
2961 static inline bool
2962 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
2963 {
2964 return (int32_t)(seq1 - seq2) >= 0;
2965 }
2966
2967 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
2968 bool lazy_coherency)
2969 {
2970 u32 seqno;
2971
2972 BUG_ON(req == NULL);
2973
2974 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2975
2976 return i915_seqno_passed(seqno, req->seqno);
2977 }
2978
2979 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
2980 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
2981
2982 struct drm_i915_gem_request *
2983 i915_gem_find_active_request(struct intel_engine_cs *ring);
2984
2985 bool i915_gem_retire_requests(struct drm_device *dev);
2986 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
2987 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
2988 bool interruptible);
2989
2990 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
2991 {
2992 return unlikely(atomic_read(&error->reset_counter)
2993 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
2994 }
2995
2996 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
2997 {
2998 return atomic_read(&error->reset_counter) & I915_WEDGED;
2999 }
3000
3001 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3002 {
3003 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2;
3004 }
3005
3006 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
3007 {
3008 return dev_priv->gpu_error.stop_rings == 0 ||
3009 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
3010 }
3011
3012 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
3013 {
3014 return dev_priv->gpu_error.stop_rings == 0 ||
3015 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
3016 }
3017
3018 void i915_gem_reset(struct drm_device *dev);
3019 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3020 int __must_check i915_gem_init(struct drm_device *dev);
3021 int i915_gem_init_rings(struct drm_device *dev);
3022 int __must_check i915_gem_init_hw(struct drm_device *dev);
3023 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
3024 void i915_gem_init_swizzling(struct drm_device *dev);
3025 void i915_gem_cleanup_ringbuffer(struct drm_device *dev);
3026 int __must_check i915_gpu_idle(struct drm_device *dev);
3027 int __must_check i915_gem_suspend(struct drm_device *dev);
3028 void __i915_add_request(struct drm_i915_gem_request *req,
3029 struct drm_i915_gem_object *batch_obj,
3030 bool flush_caches);
3031 #define i915_add_request(req) \
3032 __i915_add_request(req, NULL, true)
3033 #define i915_add_request_no_flush(req) \
3034 __i915_add_request(req, NULL, false)
3035 int __i915_wait_request(struct drm_i915_gem_request *req,
3036 unsigned reset_counter,
3037 bool interruptible,
3038 s64 *timeout,
3039 struct intel_rps_client *rps);
3040 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3041 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3042 int __must_check
3043 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3044 bool readonly);
3045 int __must_check
3046 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3047 bool write);
3048 int __must_check
3049 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3050 int __must_check
3051 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3052 u32 alignment,
3053 const struct i915_ggtt_view *view);
3054 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3055 const struct i915_ggtt_view *view);
3056 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3057 int align);
3058 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3059 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3060
3061 uint32_t
3062 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3063 uint32_t
3064 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3065 int tiling_mode, bool fenced);
3066
3067 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3068 enum i915_cache_level cache_level);
3069
3070 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3071 struct dma_buf *dma_buf);
3072
3073 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3074 struct drm_gem_object *gem_obj, int flags);
3075
3076 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3077 const struct i915_ggtt_view *view);
3078 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3079 struct i915_address_space *vm);
3080 static inline u64
3081 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3082 {
3083 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3084 }
3085
3086 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3087 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3088 const struct i915_ggtt_view *view);
3089 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3090 struct i915_address_space *vm);
3091
3092 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
3093 struct i915_address_space *vm);
3094 struct i915_vma *
3095 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3096 struct i915_address_space *vm);
3097 struct i915_vma *
3098 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3099 const struct i915_ggtt_view *view);
3100
3101 struct i915_vma *
3102 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3103 struct i915_address_space *vm);
3104 struct i915_vma *
3105 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3106 const struct i915_ggtt_view *view);
3107
3108 static inline struct i915_vma *
3109 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3110 {
3111 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3112 }
3113 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3114
3115 /* Some GGTT VM helpers */
3116 #define i915_obj_to_ggtt(obj) \
3117 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
3118 static inline bool i915_is_ggtt(struct i915_address_space *vm)
3119 {
3120 struct i915_address_space *ggtt =
3121 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base;
3122 return vm == ggtt;
3123 }
3124
3125 static inline struct i915_hw_ppgtt *
3126 i915_vm_to_ppgtt(struct i915_address_space *vm)
3127 {
3128 WARN_ON(i915_is_ggtt(vm));
3129
3130 return container_of(vm, struct i915_hw_ppgtt, base);
3131 }
3132
3133
3134 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3135 {
3136 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3137 }
3138
3139 static inline unsigned long
3140 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
3141 {
3142 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj));
3143 }
3144
3145 static inline int __must_check
3146 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3147 uint32_t alignment,
3148 unsigned flags)
3149 {
3150 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj),
3151 alignment, flags | PIN_GLOBAL);
3152 }
3153
3154 static inline int
3155 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
3156 {
3157 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
3158 }
3159
3160 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3161 const struct i915_ggtt_view *view);
3162 static inline void
3163 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3164 {
3165 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3166 }
3167
3168 /* i915_gem_fence.c */
3169 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3170 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3171
3172 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3173 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3174
3175 void i915_gem_restore_fences(struct drm_device *dev);
3176
3177 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3178 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3179 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3180
3181 /* i915_gem_context.c */
3182 int __must_check i915_gem_context_init(struct drm_device *dev);
3183 void i915_gem_context_fini(struct drm_device *dev);
3184 void i915_gem_context_reset(struct drm_device *dev);
3185 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3186 int i915_gem_context_enable(struct drm_i915_gem_request *req);
3187 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3188 int i915_switch_context(struct drm_i915_gem_request *req);
3189 struct intel_context *
3190 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
3191 void i915_gem_context_free(struct kref *ctx_ref);
3192 struct drm_i915_gem_object *
3193 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3194 static inline void i915_gem_context_reference(struct intel_context *ctx)
3195 {
3196 kref_get(&ctx->ref);
3197 }
3198
3199 static inline void i915_gem_context_unreference(struct intel_context *ctx)
3200 {
3201 kref_put(&ctx->ref, i915_gem_context_free);
3202 }
3203
3204 static inline bool i915_gem_context_is_default(const struct intel_context *c)
3205 {
3206 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3207 }
3208
3209 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3210 struct drm_file *file);
3211 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3212 struct drm_file *file);
3213 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3214 struct drm_file *file_priv);
3215 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3216 struct drm_file *file_priv);
3217
3218 /* i915_gem_evict.c */
3219 int __must_check i915_gem_evict_something(struct drm_device *dev,
3220 struct i915_address_space *vm,
3221 int min_size,
3222 unsigned alignment,
3223 unsigned cache_level,
3224 unsigned long start,
3225 unsigned long end,
3226 unsigned flags);
3227 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3228 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3229
3230 /* belongs in i915_gem_gtt.h */
3231 static inline void i915_gem_chipset_flush(struct drm_device *dev)
3232 {
3233 if (INTEL_INFO(dev)->gen < 6)
3234 intel_gtt_chipset_flush();
3235 }
3236
3237 /* i915_gem_stolen.c */
3238 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3239 struct drm_mm_node *node, u64 size,
3240 unsigned alignment);
3241 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3242 struct drm_mm_node *node, u64 size,
3243 unsigned alignment, u64 start,
3244 u64 end);
3245 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3246 struct drm_mm_node *node);
3247 int i915_gem_init_stolen(struct drm_device *dev);
3248 void i915_gem_cleanup_stolen(struct drm_device *dev);
3249 struct drm_i915_gem_object *
3250 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3251 struct drm_i915_gem_object *
3252 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3253 u32 stolen_offset,
3254 u32 gtt_offset,
3255 u32 size);
3256
3257 /* i915_gem_shrinker.c */
3258 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3259 unsigned long target,
3260 unsigned flags);
3261 #define I915_SHRINK_PURGEABLE 0x1
3262 #define I915_SHRINK_UNBOUND 0x2
3263 #define I915_SHRINK_BOUND 0x4
3264 #define I915_SHRINK_ACTIVE 0x8
3265 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3266 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3267
3268
3269 /* i915_gem_tiling.c */
3270 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3271 {
3272 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3273
3274 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3275 obj->tiling_mode != I915_TILING_NONE;
3276 }
3277
3278 /* i915_gem_debug.c */
3279 #if WATCH_LISTS
3280 int i915_verify_lists(struct drm_device *dev);
3281 #else
3282 #define i915_verify_lists(dev) 0
3283 #endif
3284
3285 /* i915_debugfs.c */
3286 int i915_debugfs_init(struct drm_minor *minor);
3287 void i915_debugfs_cleanup(struct drm_minor *minor);
3288 #ifdef CONFIG_DEBUG_FS
3289 int i915_debugfs_connector_add(struct drm_connector *connector);
3290 void intel_display_crc_init(struct drm_device *dev);
3291 #else
3292 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3293 { return 0; }
3294 static inline void intel_display_crc_init(struct drm_device *dev) {}
3295 #endif
3296
3297 /* i915_gpu_error.c */
3298 __printf(2, 3)
3299 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3300 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3301 const struct i915_error_state_file_priv *error);
3302 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3303 struct drm_i915_private *i915,
3304 size_t count, loff_t pos);
3305 static inline void i915_error_state_buf_release(
3306 struct drm_i915_error_state_buf *eb)
3307 {
3308 kfree(eb->buf);
3309 }
3310 void i915_capture_error_state(struct drm_device *dev, bool wedge,
3311 const char *error_msg);
3312 void i915_error_state_get(struct drm_device *dev,
3313 struct i915_error_state_file_priv *error_priv);
3314 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3315 void i915_destroy_error_state(struct drm_device *dev);
3316
3317 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3318 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3319
3320 /* i915_cmd_parser.c */
3321 int i915_cmd_parser_get_version(void);
3322 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
3323 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
3324 bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
3325 int i915_parse_cmds(struct intel_engine_cs *ring,
3326 struct drm_i915_gem_object *batch_obj,
3327 struct drm_i915_gem_object *shadow_batch_obj,
3328 u32 batch_start_offset,
3329 u32 batch_len,
3330 bool is_master);
3331
3332 /* i915_suspend.c */
3333 extern int i915_save_state(struct drm_device *dev);
3334 extern int i915_restore_state(struct drm_device *dev);
3335
3336 /* i915_sysfs.c */
3337 void i915_setup_sysfs(struct drm_device *dev_priv);
3338 void i915_teardown_sysfs(struct drm_device *dev_priv);
3339
3340 /* intel_i2c.c */
3341 extern int intel_setup_gmbus(struct drm_device *dev);
3342 extern void intel_teardown_gmbus(struct drm_device *dev);
3343 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3344 unsigned int pin);
3345
3346 extern struct i2c_adapter *
3347 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3348 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3349 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3350 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3351 {
3352 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3353 }
3354 extern void intel_i2c_reset(struct drm_device *dev);
3355
3356 /* intel_bios.c */
3357 int intel_bios_init(struct drm_device *dev);
3358 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3359
3360 /* intel_opregion.c */
3361 #ifdef CONFIG_ACPI
3362 extern int intel_opregion_setup(struct drm_device *dev);
3363 extern void intel_opregion_init(struct drm_device *dev);
3364 extern void intel_opregion_fini(struct drm_device *dev);
3365 extern void intel_opregion_asle_intr(struct drm_device *dev);
3366 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3367 bool enable);
3368 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3369 pci_power_t state);
3370 #else
3371 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3372 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3373 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3374 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3375 static inline int
3376 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3377 {
3378 return 0;
3379 }
3380 static inline int
3381 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3382 {
3383 return 0;
3384 }
3385 #endif
3386
3387 /* intel_acpi.c */
3388 #ifdef CONFIG_ACPI
3389 extern void intel_register_dsm_handler(void);
3390 extern void intel_unregister_dsm_handler(void);
3391 #else
3392 static inline void intel_register_dsm_handler(void) { return; }
3393 static inline void intel_unregister_dsm_handler(void) { return; }
3394 #endif /* CONFIG_ACPI */
3395
3396 /* modesetting */
3397 extern void intel_modeset_init_hw(struct drm_device *dev);
3398 extern void intel_modeset_init(struct drm_device *dev);
3399 extern void intel_modeset_gem_init(struct drm_device *dev);
3400 extern void intel_modeset_cleanup(struct drm_device *dev);
3401 extern void intel_connector_unregister(struct intel_connector *);
3402 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3403 extern void intel_display_resume(struct drm_device *dev);
3404 extern void i915_redisable_vga(struct drm_device *dev);
3405 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3406 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3407 extern void intel_init_pch_refclk(struct drm_device *dev);
3408 extern void intel_set_rps(struct drm_device *dev, u8 val);
3409 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3410 bool enable);
3411 extern void intel_detect_pch(struct drm_device *dev);
3412 extern int intel_enable_rc6(const struct drm_device *dev);
3413
3414 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3415 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3416 struct drm_file *file);
3417 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file);
3419
3420 /* overlay */
3421 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3422 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3423 struct intel_overlay_error_state *error);
3424
3425 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3426 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3427 struct drm_device *dev,
3428 struct intel_display_error_state *error);
3429
3430 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3431 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3432
3433 /* intel_sideband.c */
3434 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3435 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3436 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3437 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg);
3438 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3439 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3440 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3441 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3442 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3443 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3444 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3445 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg);
3446 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3447 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3448 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3449 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3450 enum intel_sbi_destination destination);
3451 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3452 enum intel_sbi_destination destination);
3453 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3454 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3455
3456 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3457 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3458
3459 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3460 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3461
3462 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3463 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3464 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3465 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3466
3467 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3468 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3469 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3470 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3471
3472 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3473 * will be implemented using 2 32-bit writes in an arbitrary order with
3474 * an arbitrary delay between them. This can cause the hardware to
3475 * act upon the intermediate value, possibly leading to corruption and
3476 * machine death. You have been warned.
3477 */
3478 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3479 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3480
3481 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3482 u32 upper, lower, old_upper, loop = 0; \
3483 upper = I915_READ(upper_reg); \
3484 do { \
3485 old_upper = upper; \
3486 lower = I915_READ(lower_reg); \
3487 upper = I915_READ(upper_reg); \
3488 } while (upper != old_upper && loop++ < 2); \
3489 (u64)upper << 32 | lower; })
3490
3491 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3492 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3493
3494 #define __raw_read(x, s) \
3495 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3496 i915_reg_t reg) \
3497 { \
3498 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3499 }
3500
3501 #define __raw_write(x, s) \
3502 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3503 i915_reg_t reg, uint##x##_t val) \
3504 { \
3505 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3506 }
3507 __raw_read(8, b)
3508 __raw_read(16, w)
3509 __raw_read(32, l)
3510 __raw_read(64, q)
3511
3512 __raw_write(8, b)
3513 __raw_write(16, w)
3514 __raw_write(32, l)
3515 __raw_write(64, q)
3516
3517 #undef __raw_read
3518 #undef __raw_write
3519
3520 /* These are untraced mmio-accessors that are only valid to be used inside
3521 * criticial sections inside IRQ handlers where forcewake is explicitly
3522 * controlled.
3523 * Think twice, and think again, before using these.
3524 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3525 * intel_uncore_forcewake_irqunlock().
3526 */
3527 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3528 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3529 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3530
3531 /* "Broadcast RGB" property */
3532 #define INTEL_BROADCAST_RGB_AUTO 0
3533 #define INTEL_BROADCAST_RGB_FULL 1
3534 #define INTEL_BROADCAST_RGB_LIMITED 2
3535
3536 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3537 {
3538 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3539 return VLV_VGACNTRL;
3540 else if (INTEL_INFO(dev)->gen >= 5)
3541 return CPU_VGACNTRL;
3542 else
3543 return VGACNTRL;
3544 }
3545
3546 static inline void __user *to_user_ptr(u64 address)
3547 {
3548 return (void __user *)(uintptr_t)address;
3549 }
3550
3551 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3552 {
3553 unsigned long j = msecs_to_jiffies(m);
3554
3555 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3556 }
3557
3558 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3559 {
3560 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3561 }
3562
3563 static inline unsigned long
3564 timespec_to_jiffies_timeout(const struct timespec *value)
3565 {
3566 unsigned long j = timespec_to_jiffies(value);
3567
3568 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3569 }
3570
3571 /*
3572 * If you need to wait X milliseconds between events A and B, but event B
3573 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3574 * when event A happened, then just before event B you call this function and
3575 * pass the timestamp as the first argument, and X as the second argument.
3576 */
3577 static inline void
3578 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3579 {
3580 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3581
3582 /*
3583 * Don't re-read the value of "jiffies" every time since it may change
3584 * behind our back and break the math.
3585 */
3586 tmp_jiffies = jiffies;
3587 target_jiffies = timestamp_jiffies +
3588 msecs_to_jiffies_timeout(to_wait_ms);
3589
3590 if (time_after(target_jiffies, tmp_jiffies)) {
3591 remaining_jiffies = target_jiffies - tmp_jiffies;
3592 while (remaining_jiffies)
3593 remaining_jiffies =
3594 schedule_timeout_uninterruptible(remaining_jiffies);
3595 }
3596 }
3597
3598 static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
3599 struct drm_i915_gem_request *req)
3600 {
3601 if (ring->trace_irq_req == NULL && ring->irq_get(ring))
3602 i915_gem_request_assign(&ring->trace_irq_req, req);
3603 }
3604
3605 #endif
This page took 0.180169 seconds and 6 git commands to generate.