drm/i915: Allow userspace to request no-error-capture upon GPU hangs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64
65 #include "intel_gvt.h"
66
67 /* General customization:
68 */
69
70 #define DRIVER_NAME "i915"
71 #define DRIVER_DESC "Intel Graphics"
72 #define DRIVER_DATE "20160620"
73
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99 #define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105 })
106
107 #define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114 static inline const char *yesno(bool v)
115 {
116 return v ? "yes" : "no";
117 }
118
119 static inline const char *onoff(bool v)
120 {
121 return v ? "on" : "off";
122 }
123
124 enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133
134 enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142 };
143
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162 }
163
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168
169 /*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175 enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186 enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195
196 #define I915_NUM_PHYS_VLV 2
197
198 enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201 };
202
203 enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206 };
207
208 enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241 };
242
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250 enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262 };
263
264 #define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267 struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 /*
288 * if we get a HPD irq from DP and a HPD irq from non-DP
289 * the non-DP HPD could block the workqueue on a mode config
290 * mutex getting, that userspace may have taken. However
291 * userspace is waiting on the DP workqueue to run which is
292 * blocked behind the non-DP one.
293 */
294 struct workqueue_struct *dp_wq;
295 };
296
297 #define I915_GEM_GPU_DOMAINS \
298 (I915_GEM_DOMAIN_RENDER | \
299 I915_GEM_DOMAIN_SAMPLER | \
300 I915_GEM_DOMAIN_COMMAND | \
301 I915_GEM_DOMAIN_INSTRUCTION | \
302 I915_GEM_DOMAIN_VERTEX)
303
304 #define for_each_pipe(__dev_priv, __p) \
305 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
306 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
307 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
308 for_each_if ((__mask) & (1 << (__p)))
309 #define for_each_plane(__dev_priv, __pipe, __p) \
310 for ((__p) = 0; \
311 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
312 (__p)++)
313 #define for_each_sprite(__dev_priv, __p, __s) \
314 for ((__s) = 0; \
315 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
316 (__s)++)
317
318 #define for_each_port_masked(__port, __ports_mask) \
319 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
320 for_each_if ((__ports_mask) & (1 << (__port)))
321
322 #define for_each_crtc(dev, crtc) \
323 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
324
325 #define for_each_intel_plane(dev, intel_plane) \
326 list_for_each_entry(intel_plane, \
327 &dev->mode_config.plane_list, \
328 base.head)
329
330 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
331 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, \
332 base.head) \
333 for_each_if ((plane_mask) & \
334 (1 << drm_plane_index(&intel_plane->base)))
335
336 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
337 list_for_each_entry(intel_plane, \
338 &(dev)->mode_config.plane_list, \
339 base.head) \
340 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
341
342 #define for_each_intel_crtc(dev, intel_crtc) \
343 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
344
345 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
346 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) \
347 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
348
349 #define for_each_intel_encoder(dev, intel_encoder) \
350 list_for_each_entry(intel_encoder, \
351 &(dev)->mode_config.encoder_list, \
352 base.head)
353
354 #define for_each_intel_connector(dev, intel_connector) \
355 list_for_each_entry(intel_connector, \
356 &dev->mode_config.connector_list, \
357 base.head)
358
359 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
360 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
361 for_each_if ((intel_encoder)->base.crtc == (__crtc))
362
363 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
364 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
365 for_each_if ((intel_connector)->base.encoder == (__encoder))
366
367 #define for_each_power_domain(domain, mask) \
368 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
369 for_each_if ((1 << (domain)) & (mask))
370
371 struct drm_i915_private;
372 struct i915_mm_struct;
373 struct i915_mmu_object;
374
375 struct drm_i915_file_private {
376 struct drm_i915_private *dev_priv;
377 struct drm_file *file;
378
379 struct {
380 spinlock_t lock;
381 struct list_head request_list;
382 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
383 * chosen to prevent the CPU getting more than a frame ahead of the GPU
384 * (when using lax throttling for the frontbuffer). We also use it to
385 * offer free GPU waitboosts for severely congested workloads.
386 */
387 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
388 } mm;
389 struct idr context_idr;
390
391 struct intel_rps_client {
392 struct list_head link;
393 unsigned boosts;
394 } rps;
395
396 unsigned int bsd_ring;
397 };
398
399 /* Used by dp and fdi links */
400 struct intel_link_m_n {
401 uint32_t tu;
402 uint32_t gmch_m;
403 uint32_t gmch_n;
404 uint32_t link_m;
405 uint32_t link_n;
406 };
407
408 void intel_link_compute_m_n(int bpp, int nlanes,
409 int pixel_clock, int link_clock,
410 struct intel_link_m_n *m_n);
411
412 /* Interface history:
413 *
414 * 1.1: Original.
415 * 1.2: Add Power Management
416 * 1.3: Add vblank support
417 * 1.4: Fix cmdbuffer path, add heap destroy
418 * 1.5: Add vblank pipe configuration
419 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
420 * - Support vertical blank on secondary display pipe
421 */
422 #define DRIVER_MAJOR 1
423 #define DRIVER_MINOR 6
424 #define DRIVER_PATCHLEVEL 0
425
426 #define WATCH_LISTS 0
427
428 struct opregion_header;
429 struct opregion_acpi;
430 struct opregion_swsci;
431 struct opregion_asle;
432
433 struct intel_opregion {
434 struct opregion_header *header;
435 struct opregion_acpi *acpi;
436 struct opregion_swsci *swsci;
437 u32 swsci_gbda_sub_functions;
438 u32 swsci_sbcb_sub_functions;
439 struct opregion_asle *asle;
440 void *rvda;
441 const void *vbt;
442 u32 vbt_size;
443 u32 *lid_state;
444 struct work_struct asle_work;
445 };
446 #define OPREGION_SIZE (8*1024)
447
448 struct intel_overlay;
449 struct intel_overlay_error_state;
450
451 #define I915_FENCE_REG_NONE -1
452 #define I915_MAX_NUM_FENCES 32
453 /* 32 fences + sign bit for FENCE_REG_NONE */
454 #define I915_MAX_NUM_FENCE_BITS 6
455
456 struct drm_i915_fence_reg {
457 struct list_head lru_list;
458 struct drm_i915_gem_object *obj;
459 int pin_count;
460 };
461
462 struct sdvo_device_mapping {
463 u8 initialized;
464 u8 dvo_port;
465 u8 slave_addr;
466 u8 dvo_wiring;
467 u8 i2c_pin;
468 u8 ddc_pin;
469 };
470
471 struct intel_display_error_state;
472
473 struct drm_i915_error_state {
474 struct kref ref;
475 struct timeval time;
476
477 char error_msg[128];
478 bool simulated;
479 int iommu;
480 u32 reset_count;
481 u32 suspend_count;
482
483 /* Generic register state */
484 u32 eir;
485 u32 pgtbl_er;
486 u32 ier;
487 u32 gtier[4];
488 u32 ccid;
489 u32 derrmr;
490 u32 forcewake;
491 u32 error; /* gen6+ */
492 u32 err_int; /* gen7 */
493 u32 fault_data0; /* gen8, gen9 */
494 u32 fault_data1; /* gen8, gen9 */
495 u32 done_reg;
496 u32 gac_eco;
497 u32 gam_ecochk;
498 u32 gab_ctl;
499 u32 gfx_mode;
500 u32 extra_instdone[I915_NUM_INSTDONE_REG];
501 u64 fence[I915_MAX_NUM_FENCES];
502 struct intel_overlay_error_state *overlay;
503 struct intel_display_error_state *display;
504 struct drm_i915_error_object *semaphore_obj;
505
506 struct drm_i915_error_ring {
507 bool valid;
508 /* Software tracked state */
509 bool waiting;
510 int num_waiters;
511 int hangcheck_score;
512 enum intel_ring_hangcheck_action hangcheck_action;
513 int num_requests;
514
515 /* our own tracking of ring head and tail */
516 u32 cpu_ring_head;
517 u32 cpu_ring_tail;
518
519 u32 last_seqno;
520 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
521
522 /* Register state */
523 u32 start;
524 u32 tail;
525 u32 head;
526 u32 ctl;
527 u32 hws;
528 u32 ipeir;
529 u32 ipehr;
530 u32 instdone;
531 u32 bbstate;
532 u32 instpm;
533 u32 instps;
534 u32 seqno;
535 u64 bbaddr;
536 u64 acthd;
537 u32 fault_reg;
538 u64 faddr;
539 u32 rc_psmi; /* sleep state */
540 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
541
542 struct drm_i915_error_object {
543 int page_count;
544 u64 gtt_offset;
545 u32 *pages[0];
546 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
547
548 struct drm_i915_error_object *wa_ctx;
549
550 struct drm_i915_error_request {
551 long jiffies;
552 u32 seqno;
553 u32 tail;
554 } *requests;
555
556 struct drm_i915_error_waiter {
557 char comm[TASK_COMM_LEN];
558 pid_t pid;
559 u32 seqno;
560 } *waiters;
561
562 struct {
563 u32 gfx_mode;
564 union {
565 u64 pdp[4];
566 u32 pp_dir_base;
567 };
568 } vm_info;
569
570 pid_t pid;
571 char comm[TASK_COMM_LEN];
572 } ring[I915_NUM_ENGINES];
573
574 struct drm_i915_error_buffer {
575 u32 size;
576 u32 name;
577 u32 rseqno[I915_NUM_ENGINES], wseqno;
578 u64 gtt_offset;
579 u32 read_domains;
580 u32 write_domain;
581 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
582 s32 pinned:2;
583 u32 tiling:2;
584 u32 dirty:1;
585 u32 purgeable:1;
586 u32 userptr:1;
587 s32 ring:4;
588 u32 cache_level:3;
589 } **active_bo, **pinned_bo;
590
591 u32 *active_bo_count, *pinned_bo_count;
592 u32 vm_count;
593 };
594
595 struct intel_connector;
596 struct intel_encoder;
597 struct intel_crtc_state;
598 struct intel_initial_plane_config;
599 struct intel_crtc;
600 struct intel_limit;
601 struct dpll;
602
603 struct drm_i915_display_funcs {
604 int (*get_display_clock_speed)(struct drm_device *dev);
605 int (*get_fifo_size)(struct drm_device *dev, int plane);
606 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
607 int (*compute_intermediate_wm)(struct drm_device *dev,
608 struct intel_crtc *intel_crtc,
609 struct intel_crtc_state *newstate);
610 void (*initial_watermarks)(struct intel_crtc_state *cstate);
611 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
612 int (*compute_global_watermarks)(struct drm_atomic_state *state);
613 void (*update_wm)(struct drm_crtc *crtc);
614 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
615 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
616 /* Returns the active state of the crtc, and if the crtc is active,
617 * fills out the pipe-config with the hw state. */
618 bool (*get_pipe_config)(struct intel_crtc *,
619 struct intel_crtc_state *);
620 void (*get_initial_plane_config)(struct intel_crtc *,
621 struct intel_initial_plane_config *);
622 int (*crtc_compute_clock)(struct intel_crtc *crtc,
623 struct intel_crtc_state *crtc_state);
624 void (*crtc_enable)(struct drm_crtc *crtc);
625 void (*crtc_disable)(struct drm_crtc *crtc);
626 void (*audio_codec_enable)(struct drm_connector *connector,
627 struct intel_encoder *encoder,
628 const struct drm_display_mode *adjusted_mode);
629 void (*audio_codec_disable)(struct intel_encoder *encoder);
630 void (*fdi_link_train)(struct drm_crtc *crtc);
631 void (*init_clock_gating)(struct drm_device *dev);
632 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
633 struct drm_framebuffer *fb,
634 struct drm_i915_gem_object *obj,
635 struct drm_i915_gem_request *req,
636 uint32_t flags);
637 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
638 /* clock updates for mode set */
639 /* cursor updates */
640 /* render clock increase/decrease */
641 /* display clock increase/decrease */
642 /* pll clock increase/decrease */
643
644 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
645 void (*load_luts)(struct drm_crtc_state *crtc_state);
646 };
647
648 enum forcewake_domain_id {
649 FW_DOMAIN_ID_RENDER = 0,
650 FW_DOMAIN_ID_BLITTER,
651 FW_DOMAIN_ID_MEDIA,
652
653 FW_DOMAIN_ID_COUNT
654 };
655
656 enum forcewake_domains {
657 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
658 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
659 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
660 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
661 FORCEWAKE_BLITTER |
662 FORCEWAKE_MEDIA)
663 };
664
665 #define FW_REG_READ (1)
666 #define FW_REG_WRITE (2)
667
668 enum forcewake_domains
669 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
670 i915_reg_t reg, unsigned int op);
671
672 struct intel_uncore_funcs {
673 void (*force_wake_get)(struct drm_i915_private *dev_priv,
674 enum forcewake_domains domains);
675 void (*force_wake_put)(struct drm_i915_private *dev_priv,
676 enum forcewake_domains domains);
677
678 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
679 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
680 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
681 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
682
683 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
684 uint8_t val, bool trace);
685 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
686 uint16_t val, bool trace);
687 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
688 uint32_t val, bool trace);
689 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
690 uint64_t val, bool trace);
691 };
692
693 struct intel_uncore {
694 spinlock_t lock; /** lock is also taken in irq contexts. */
695
696 struct intel_uncore_funcs funcs;
697
698 unsigned fifo_count;
699 enum forcewake_domains fw_domains;
700
701 struct intel_uncore_forcewake_domain {
702 struct drm_i915_private *i915;
703 enum forcewake_domain_id id;
704 enum forcewake_domains mask;
705 unsigned wake_count;
706 struct hrtimer timer;
707 i915_reg_t reg_set;
708 u32 val_set;
709 u32 val_clear;
710 i915_reg_t reg_ack;
711 i915_reg_t reg_post;
712 u32 val_reset;
713 } fw_domain[FW_DOMAIN_ID_COUNT];
714
715 int unclaimed_mmio_check;
716 };
717
718 /* Iterate over initialised fw domains */
719 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
720 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
721 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
722 (domain__)++) \
723 for_each_if ((mask__) & (domain__)->mask)
724
725 #define for_each_fw_domain(domain__, dev_priv__) \
726 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
727
728 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
729 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
730 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
731
732 struct intel_csr {
733 struct work_struct work;
734 const char *fw_path;
735 uint32_t *dmc_payload;
736 uint32_t dmc_fw_size;
737 uint32_t version;
738 uint32_t mmio_count;
739 i915_reg_t mmioaddr[8];
740 uint32_t mmiodata[8];
741 uint32_t dc_state;
742 uint32_t allowed_dc_mask;
743 };
744
745 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
746 func(is_mobile) sep \
747 func(is_i85x) sep \
748 func(is_i915g) sep \
749 func(is_i945gm) sep \
750 func(is_g33) sep \
751 func(need_gfx_hws) sep \
752 func(is_g4x) sep \
753 func(is_pineview) sep \
754 func(is_broadwater) sep \
755 func(is_crestline) sep \
756 func(is_ivybridge) sep \
757 func(is_valleyview) sep \
758 func(is_cherryview) sep \
759 func(is_haswell) sep \
760 func(is_broadwell) sep \
761 func(is_skylake) sep \
762 func(is_broxton) sep \
763 func(is_kabylake) sep \
764 func(is_preliminary) sep \
765 func(has_fbc) sep \
766 func(has_pipe_cxsr) sep \
767 func(has_hotplug) sep \
768 func(cursor_needs_physical) sep \
769 func(has_overlay) sep \
770 func(overlay_needs_physical) sep \
771 func(supports_tv) sep \
772 func(has_llc) sep \
773 func(has_snoop) sep \
774 func(has_ddi) sep \
775 func(has_fpga_dbg) sep \
776 func(has_pooled_eu)
777
778 #define DEFINE_FLAG(name) u8 name:1
779 #define SEP_SEMICOLON ;
780
781 struct intel_device_info {
782 u32 display_mmio_offset;
783 u16 device_id;
784 u8 num_pipes;
785 u8 num_sprites[I915_MAX_PIPES];
786 u8 gen;
787 u16 gen_mask;
788 u8 ring_mask; /* Rings supported by the HW */
789 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
790 /* Register offsets for the various display pipes and transcoders */
791 int pipe_offsets[I915_MAX_TRANSCODERS];
792 int trans_offsets[I915_MAX_TRANSCODERS];
793 int palette_offsets[I915_MAX_PIPES];
794 int cursor_offsets[I915_MAX_PIPES];
795
796 /* Slice/subslice/EU info */
797 u8 slice_total;
798 u8 subslice_total;
799 u8 subslice_per_slice;
800 u8 eu_total;
801 u8 eu_per_subslice;
802 u8 min_eu_in_pool;
803 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
804 u8 subslice_7eu[3];
805 u8 has_slice_pg:1;
806 u8 has_subslice_pg:1;
807 u8 has_eu_pg:1;
808
809 struct color_luts {
810 u16 degamma_lut_size;
811 u16 gamma_lut_size;
812 } color;
813 };
814
815 #undef DEFINE_FLAG
816 #undef SEP_SEMICOLON
817
818 enum i915_cache_level {
819 I915_CACHE_NONE = 0,
820 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
821 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
822 caches, eg sampler/render caches, and the
823 large Last-Level-Cache. LLC is coherent with
824 the CPU, but L3 is only visible to the GPU. */
825 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
826 };
827
828 struct i915_ctx_hang_stats {
829 /* This context had batch pending when hang was declared */
830 unsigned batch_pending;
831
832 /* This context had batch active when hang was declared */
833 unsigned batch_active;
834
835 /* Time when this context was last blamed for a GPU reset */
836 unsigned long guilty_ts;
837
838 /* If the contexts causes a second GPU hang within this time,
839 * it is permanently banned from submitting any more work.
840 */
841 unsigned long ban_period_seconds;
842
843 /* This context is banned to submit more work */
844 bool banned;
845 };
846
847 /* This must match up with the value previously used for execbuf2.rsvd1. */
848 #define DEFAULT_CONTEXT_HANDLE 0
849
850 /**
851 * struct i915_gem_context - as the name implies, represents a context.
852 * @ref: reference count.
853 * @user_handle: userspace tracking identity for this context.
854 * @remap_slice: l3 row remapping information.
855 * @flags: context specific flags:
856 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
857 * @file_priv: filp associated with this context (NULL for global default
858 * context).
859 * @hang_stats: information about the role of this context in possible GPU
860 * hangs.
861 * @ppgtt: virtual memory space used by this context.
862 * @legacy_hw_ctx: render context backing object and whether it is correctly
863 * initialized (legacy ring submission mechanism only).
864 * @link: link in the global list of contexts.
865 *
866 * Contexts are memory images used by the hardware to store copies of their
867 * internal state.
868 */
869 struct i915_gem_context {
870 struct kref ref;
871 struct drm_i915_private *i915;
872 struct drm_i915_file_private *file_priv;
873 struct i915_hw_ppgtt *ppgtt;
874
875 struct i915_ctx_hang_stats hang_stats;
876
877 /* Unique identifier for this context, used by the hw for tracking */
878 unsigned long flags;
879 #define CONTEXT_NO_ZEROMAP BIT(0)
880 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
881 unsigned hw_id;
882 u32 user_handle;
883
884 u32 ggtt_alignment;
885
886 struct intel_context {
887 struct drm_i915_gem_object *state;
888 struct intel_ringbuffer *ringbuf;
889 struct i915_vma *lrc_vma;
890 uint32_t *lrc_reg_state;
891 u64 lrc_desc;
892 int pin_count;
893 bool initialised;
894 } engine[I915_NUM_ENGINES];
895 u32 ring_size;
896 u32 desc_template;
897 struct atomic_notifier_head status_notifier;
898 bool execlists_force_single_submission;
899
900 struct list_head link;
901
902 u8 remap_slice;
903 };
904
905 enum fb_op_origin {
906 ORIGIN_GTT,
907 ORIGIN_CPU,
908 ORIGIN_CS,
909 ORIGIN_FLIP,
910 ORIGIN_DIRTYFB,
911 };
912
913 struct intel_fbc {
914 /* This is always the inner lock when overlapping with struct_mutex and
915 * it's the outer lock when overlapping with stolen_lock. */
916 struct mutex lock;
917 unsigned threshold;
918 unsigned int possible_framebuffer_bits;
919 unsigned int busy_bits;
920 unsigned int visible_pipes_mask;
921 struct intel_crtc *crtc;
922
923 struct drm_mm_node compressed_fb;
924 struct drm_mm_node *compressed_llb;
925
926 bool false_color;
927
928 bool enabled;
929 bool active;
930
931 struct intel_fbc_state_cache {
932 struct {
933 unsigned int mode_flags;
934 uint32_t hsw_bdw_pixel_rate;
935 } crtc;
936
937 struct {
938 unsigned int rotation;
939 int src_w;
940 int src_h;
941 bool visible;
942 } plane;
943
944 struct {
945 u64 ilk_ggtt_offset;
946 uint32_t pixel_format;
947 unsigned int stride;
948 int fence_reg;
949 unsigned int tiling_mode;
950 } fb;
951 } state_cache;
952
953 struct intel_fbc_reg_params {
954 struct {
955 enum pipe pipe;
956 enum plane plane;
957 unsigned int fence_y_offset;
958 } crtc;
959
960 struct {
961 u64 ggtt_offset;
962 uint32_t pixel_format;
963 unsigned int stride;
964 int fence_reg;
965 } fb;
966
967 int cfb_size;
968 } params;
969
970 struct intel_fbc_work {
971 bool scheduled;
972 u32 scheduled_vblank;
973 struct work_struct work;
974 } work;
975
976 const char *no_fbc_reason;
977 };
978
979 /**
980 * HIGH_RR is the highest eDP panel refresh rate read from EDID
981 * LOW_RR is the lowest eDP panel refresh rate found from EDID
982 * parsing for same resolution.
983 */
984 enum drrs_refresh_rate_type {
985 DRRS_HIGH_RR,
986 DRRS_LOW_RR,
987 DRRS_MAX_RR, /* RR count */
988 };
989
990 enum drrs_support_type {
991 DRRS_NOT_SUPPORTED = 0,
992 STATIC_DRRS_SUPPORT = 1,
993 SEAMLESS_DRRS_SUPPORT = 2
994 };
995
996 struct intel_dp;
997 struct i915_drrs {
998 struct mutex mutex;
999 struct delayed_work work;
1000 struct intel_dp *dp;
1001 unsigned busy_frontbuffer_bits;
1002 enum drrs_refresh_rate_type refresh_rate_type;
1003 enum drrs_support_type type;
1004 };
1005
1006 struct i915_psr {
1007 struct mutex lock;
1008 bool sink_support;
1009 bool source_ok;
1010 struct intel_dp *enabled;
1011 bool active;
1012 struct delayed_work work;
1013 unsigned busy_frontbuffer_bits;
1014 bool psr2_support;
1015 bool aux_frame_sync;
1016 bool link_standby;
1017 };
1018
1019 enum intel_pch {
1020 PCH_NONE = 0, /* No PCH present */
1021 PCH_IBX, /* Ibexpeak PCH */
1022 PCH_CPT, /* Cougarpoint PCH */
1023 PCH_LPT, /* Lynxpoint PCH */
1024 PCH_SPT, /* Sunrisepoint PCH */
1025 PCH_NOP,
1026 };
1027
1028 enum intel_sbi_destination {
1029 SBI_ICLK,
1030 SBI_MPHY,
1031 };
1032
1033 #define QUIRK_PIPEA_FORCE (1<<0)
1034 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1035 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1036 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1037 #define QUIRK_PIPEB_FORCE (1<<4)
1038 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1039
1040 struct intel_fbdev;
1041 struct intel_fbc_work;
1042
1043 struct intel_gmbus {
1044 struct i2c_adapter adapter;
1045 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1046 u32 force_bit;
1047 u32 reg0;
1048 i915_reg_t gpio_reg;
1049 struct i2c_algo_bit_data bit_algo;
1050 struct drm_i915_private *dev_priv;
1051 };
1052
1053 struct i915_suspend_saved_registers {
1054 u32 saveDSPARB;
1055 u32 saveLVDS;
1056 u32 savePP_ON_DELAYS;
1057 u32 savePP_OFF_DELAYS;
1058 u32 savePP_ON;
1059 u32 savePP_OFF;
1060 u32 savePP_CONTROL;
1061 u32 savePP_DIVISOR;
1062 u32 saveFBC_CONTROL;
1063 u32 saveCACHE_MODE_0;
1064 u32 saveMI_ARB_STATE;
1065 u32 saveSWF0[16];
1066 u32 saveSWF1[16];
1067 u32 saveSWF3[3];
1068 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1069 u32 savePCH_PORT_HOTPLUG;
1070 u16 saveGCDGMBUS;
1071 };
1072
1073 struct vlv_s0ix_state {
1074 /* GAM */
1075 u32 wr_watermark;
1076 u32 gfx_prio_ctrl;
1077 u32 arb_mode;
1078 u32 gfx_pend_tlb0;
1079 u32 gfx_pend_tlb1;
1080 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1081 u32 media_max_req_count;
1082 u32 gfx_max_req_count;
1083 u32 render_hwsp;
1084 u32 ecochk;
1085 u32 bsd_hwsp;
1086 u32 blt_hwsp;
1087 u32 tlb_rd_addr;
1088
1089 /* MBC */
1090 u32 g3dctl;
1091 u32 gsckgctl;
1092 u32 mbctl;
1093
1094 /* GCP */
1095 u32 ucgctl1;
1096 u32 ucgctl3;
1097 u32 rcgctl1;
1098 u32 rcgctl2;
1099 u32 rstctl;
1100 u32 misccpctl;
1101
1102 /* GPM */
1103 u32 gfxpause;
1104 u32 rpdeuhwtc;
1105 u32 rpdeuc;
1106 u32 ecobus;
1107 u32 pwrdwnupctl;
1108 u32 rp_down_timeout;
1109 u32 rp_deucsw;
1110 u32 rcubmabdtmr;
1111 u32 rcedata;
1112 u32 spare2gh;
1113
1114 /* Display 1 CZ domain */
1115 u32 gt_imr;
1116 u32 gt_ier;
1117 u32 pm_imr;
1118 u32 pm_ier;
1119 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1120
1121 /* GT SA CZ domain */
1122 u32 tilectl;
1123 u32 gt_fifoctl;
1124 u32 gtlc_wake_ctrl;
1125 u32 gtlc_survive;
1126 u32 pmwgicz;
1127
1128 /* Display 2 CZ domain */
1129 u32 gu_ctl0;
1130 u32 gu_ctl1;
1131 u32 pcbr;
1132 u32 clock_gate_dis2;
1133 };
1134
1135 struct intel_rps_ei {
1136 u32 cz_clock;
1137 u32 render_c0;
1138 u32 media_c0;
1139 };
1140
1141 struct intel_gen6_power_mgmt {
1142 /*
1143 * work, interrupts_enabled and pm_iir are protected by
1144 * dev_priv->irq_lock
1145 */
1146 struct work_struct work;
1147 bool interrupts_enabled;
1148 u32 pm_iir;
1149
1150 u32 pm_intr_keep;
1151
1152 /* Frequencies are stored in potentially platform dependent multiples.
1153 * In other words, *_freq needs to be multiplied by X to be interesting.
1154 * Soft limits are those which are used for the dynamic reclocking done
1155 * by the driver (raise frequencies under heavy loads, and lower for
1156 * lighter loads). Hard limits are those imposed by the hardware.
1157 *
1158 * A distinction is made for overclocking, which is never enabled by
1159 * default, and is considered to be above the hard limit if it's
1160 * possible at all.
1161 */
1162 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1163 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1164 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1165 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1166 u8 min_freq; /* AKA RPn. Minimum frequency */
1167 u8 idle_freq; /* Frequency to request when we are idle */
1168 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1169 u8 rp1_freq; /* "less than" RP0 power/freqency */
1170 u8 rp0_freq; /* Non-overclocked max frequency. */
1171 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1172
1173 u8 up_threshold; /* Current %busy required to uplock */
1174 u8 down_threshold; /* Current %busy required to downclock */
1175
1176 int last_adj;
1177 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1178
1179 spinlock_t client_lock;
1180 struct list_head clients;
1181 bool client_boost;
1182
1183 bool enabled;
1184 struct delayed_work delayed_resume_work;
1185 unsigned boosts;
1186
1187 struct intel_rps_client semaphores, mmioflips;
1188
1189 /* manual wa residency calculations */
1190 struct intel_rps_ei up_ei, down_ei;
1191
1192 /*
1193 * Protects RPS/RC6 register access and PCU communication.
1194 * Must be taken after struct_mutex if nested. Note that
1195 * this lock may be held for long periods of time when
1196 * talking to hw - so only take it when talking to hw!
1197 */
1198 struct mutex hw_lock;
1199 };
1200
1201 /* defined intel_pm.c */
1202 extern spinlock_t mchdev_lock;
1203
1204 struct intel_ilk_power_mgmt {
1205 u8 cur_delay;
1206 u8 min_delay;
1207 u8 max_delay;
1208 u8 fmax;
1209 u8 fstart;
1210
1211 u64 last_count1;
1212 unsigned long last_time1;
1213 unsigned long chipset_power;
1214 u64 last_count2;
1215 u64 last_time2;
1216 unsigned long gfx_power;
1217 u8 corr;
1218
1219 int c_m;
1220 int r_t;
1221 };
1222
1223 struct drm_i915_private;
1224 struct i915_power_well;
1225
1226 struct i915_power_well_ops {
1227 /*
1228 * Synchronize the well's hw state to match the current sw state, for
1229 * example enable/disable it based on the current refcount. Called
1230 * during driver init and resume time, possibly after first calling
1231 * the enable/disable handlers.
1232 */
1233 void (*sync_hw)(struct drm_i915_private *dev_priv,
1234 struct i915_power_well *power_well);
1235 /*
1236 * Enable the well and resources that depend on it (for example
1237 * interrupts located on the well). Called after the 0->1 refcount
1238 * transition.
1239 */
1240 void (*enable)(struct drm_i915_private *dev_priv,
1241 struct i915_power_well *power_well);
1242 /*
1243 * Disable the well and resources that depend on it. Called after
1244 * the 1->0 refcount transition.
1245 */
1246 void (*disable)(struct drm_i915_private *dev_priv,
1247 struct i915_power_well *power_well);
1248 /* Returns the hw enabled state. */
1249 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1250 struct i915_power_well *power_well);
1251 };
1252
1253 /* Power well structure for haswell */
1254 struct i915_power_well {
1255 const char *name;
1256 bool always_on;
1257 /* power well enable/disable usage count */
1258 int count;
1259 /* cached hw enabled state */
1260 bool hw_enabled;
1261 unsigned long domains;
1262 unsigned long data;
1263 const struct i915_power_well_ops *ops;
1264 };
1265
1266 struct i915_power_domains {
1267 /*
1268 * Power wells needed for initialization at driver init and suspend
1269 * time are on. They are kept on until after the first modeset.
1270 */
1271 bool init_power_on;
1272 bool initializing;
1273 int power_well_count;
1274
1275 struct mutex lock;
1276 int domain_use_count[POWER_DOMAIN_NUM];
1277 struct i915_power_well *power_wells;
1278 };
1279
1280 #define MAX_L3_SLICES 2
1281 struct intel_l3_parity {
1282 u32 *remap_info[MAX_L3_SLICES];
1283 struct work_struct error_work;
1284 int which_slice;
1285 };
1286
1287 struct i915_gem_mm {
1288 /** Memory allocator for GTT stolen memory */
1289 struct drm_mm stolen;
1290 /** Protects the usage of the GTT stolen memory allocator. This is
1291 * always the inner lock when overlapping with struct_mutex. */
1292 struct mutex stolen_lock;
1293
1294 /** List of all objects in gtt_space. Used to restore gtt
1295 * mappings on resume */
1296 struct list_head bound_list;
1297 /**
1298 * List of objects which are not bound to the GTT (thus
1299 * are idle and not used by the GPU) but still have
1300 * (presumably uncached) pages still attached.
1301 */
1302 struct list_head unbound_list;
1303
1304 /** Usable portion of the GTT for GEM */
1305 unsigned long stolen_base; /* limited to low memory (32-bit) */
1306
1307 /** PPGTT used for aliasing the PPGTT with the GTT */
1308 struct i915_hw_ppgtt *aliasing_ppgtt;
1309
1310 struct notifier_block oom_notifier;
1311 struct notifier_block vmap_notifier;
1312 struct shrinker shrinker;
1313 bool shrinker_no_lock_stealing;
1314
1315 /** LRU list of objects with fence regs on them. */
1316 struct list_head fence_list;
1317
1318 /**
1319 * Are we in a non-interruptible section of code like
1320 * modesetting?
1321 */
1322 bool interruptible;
1323
1324 /* the indicator for dispatch video commands on two BSD rings */
1325 unsigned int bsd_ring_dispatch_index;
1326
1327 /** Bit 6 swizzling required for X tiling */
1328 uint32_t bit_6_swizzle_x;
1329 /** Bit 6 swizzling required for Y tiling */
1330 uint32_t bit_6_swizzle_y;
1331
1332 /* accounting, useful for userland debugging */
1333 spinlock_t object_stat_lock;
1334 size_t object_memory;
1335 u32 object_count;
1336 };
1337
1338 struct drm_i915_error_state_buf {
1339 struct drm_i915_private *i915;
1340 unsigned bytes;
1341 unsigned size;
1342 int err;
1343 u8 *buf;
1344 loff_t start;
1345 loff_t pos;
1346 };
1347
1348 struct i915_error_state_file_priv {
1349 struct drm_device *dev;
1350 struct drm_i915_error_state *error;
1351 };
1352
1353 struct i915_gpu_error {
1354 /* For hangcheck timer */
1355 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1356 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1357 /* Hang gpu twice in this window and your context gets banned */
1358 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1359
1360 struct delayed_work hangcheck_work;
1361
1362 /* For reset and error_state handling. */
1363 spinlock_t lock;
1364 /* Protected by the above dev->gpu_error.lock. */
1365 struct drm_i915_error_state *first_error;
1366
1367 unsigned long missed_irq_rings;
1368
1369 /**
1370 * State variable controlling the reset flow and count
1371 *
1372 * This is a counter which gets incremented when reset is triggered,
1373 * and again when reset has been handled. So odd values (lowest bit set)
1374 * means that reset is in progress and even values that
1375 * (reset_counter >> 1):th reset was successfully completed.
1376 *
1377 * If reset is not completed succesfully, the I915_WEDGE bit is
1378 * set meaning that hardware is terminally sour and there is no
1379 * recovery. All waiters on the reset_queue will be woken when
1380 * that happens.
1381 *
1382 * This counter is used by the wait_seqno code to notice that reset
1383 * event happened and it needs to restart the entire ioctl (since most
1384 * likely the seqno it waited for won't ever signal anytime soon).
1385 *
1386 * This is important for lock-free wait paths, where no contended lock
1387 * naturally enforces the correct ordering between the bail-out of the
1388 * waiter and the gpu reset work code.
1389 */
1390 atomic_t reset_counter;
1391
1392 #define I915_RESET_IN_PROGRESS_FLAG 1
1393 #define I915_WEDGED (1 << 31)
1394
1395 /**
1396 * Waitqueue to signal when a hang is detected. Used to for waiters
1397 * to release the struct_mutex for the reset to procede.
1398 */
1399 wait_queue_head_t wait_queue;
1400
1401 /**
1402 * Waitqueue to signal when the reset has completed. Used by clients
1403 * that wait for dev_priv->mm.wedged to settle.
1404 */
1405 wait_queue_head_t reset_queue;
1406
1407 /* For missed irq/seqno simulation. */
1408 unsigned long test_irq_rings;
1409 };
1410
1411 enum modeset_restore {
1412 MODESET_ON_LID_OPEN,
1413 MODESET_DONE,
1414 MODESET_SUSPENDED,
1415 };
1416
1417 #define DP_AUX_A 0x40
1418 #define DP_AUX_B 0x10
1419 #define DP_AUX_C 0x20
1420 #define DP_AUX_D 0x30
1421
1422 #define DDC_PIN_B 0x05
1423 #define DDC_PIN_C 0x04
1424 #define DDC_PIN_D 0x06
1425
1426 struct ddi_vbt_port_info {
1427 /*
1428 * This is an index in the HDMI/DVI DDI buffer translation table.
1429 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1430 * populate this field.
1431 */
1432 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1433 uint8_t hdmi_level_shift;
1434
1435 uint8_t supports_dvi:1;
1436 uint8_t supports_hdmi:1;
1437 uint8_t supports_dp:1;
1438
1439 uint8_t alternate_aux_channel;
1440 uint8_t alternate_ddc_pin;
1441
1442 uint8_t dp_boost_level;
1443 uint8_t hdmi_boost_level;
1444 };
1445
1446 enum psr_lines_to_wait {
1447 PSR_0_LINES_TO_WAIT = 0,
1448 PSR_1_LINE_TO_WAIT,
1449 PSR_4_LINES_TO_WAIT,
1450 PSR_8_LINES_TO_WAIT
1451 };
1452
1453 struct intel_vbt_data {
1454 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1455 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1456
1457 /* Feature bits */
1458 unsigned int int_tv_support:1;
1459 unsigned int lvds_dither:1;
1460 unsigned int lvds_vbt:1;
1461 unsigned int int_crt_support:1;
1462 unsigned int lvds_use_ssc:1;
1463 unsigned int display_clock_mode:1;
1464 unsigned int fdi_rx_polarity_inverted:1;
1465 unsigned int panel_type:4;
1466 int lvds_ssc_freq;
1467 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1468
1469 enum drrs_support_type drrs_type;
1470
1471 struct {
1472 int rate;
1473 int lanes;
1474 int preemphasis;
1475 int vswing;
1476 bool low_vswing;
1477 bool initialized;
1478 bool support;
1479 int bpp;
1480 struct edp_power_seq pps;
1481 } edp;
1482
1483 struct {
1484 bool full_link;
1485 bool require_aux_wakeup;
1486 int idle_frames;
1487 enum psr_lines_to_wait lines_to_wait;
1488 int tp1_wakeup_time;
1489 int tp2_tp3_wakeup_time;
1490 } psr;
1491
1492 struct {
1493 u16 pwm_freq_hz;
1494 bool present;
1495 bool active_low_pwm;
1496 u8 min_brightness; /* min_brightness/255 of max */
1497 enum intel_backlight_type type;
1498 } backlight;
1499
1500 /* MIPI DSI */
1501 struct {
1502 u16 panel_id;
1503 struct mipi_config *config;
1504 struct mipi_pps_data *pps;
1505 u8 seq_version;
1506 u32 size;
1507 u8 *data;
1508 const u8 *sequence[MIPI_SEQ_MAX];
1509 } dsi;
1510
1511 int crt_ddc_pin;
1512
1513 int child_dev_num;
1514 union child_device_config *child_dev;
1515
1516 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1517 struct sdvo_device_mapping sdvo_mappings[2];
1518 };
1519
1520 enum intel_ddb_partitioning {
1521 INTEL_DDB_PART_1_2,
1522 INTEL_DDB_PART_5_6, /* IVB+ */
1523 };
1524
1525 struct intel_wm_level {
1526 bool enable;
1527 uint32_t pri_val;
1528 uint32_t spr_val;
1529 uint32_t cur_val;
1530 uint32_t fbc_val;
1531 };
1532
1533 struct ilk_wm_values {
1534 uint32_t wm_pipe[3];
1535 uint32_t wm_lp[3];
1536 uint32_t wm_lp_spr[3];
1537 uint32_t wm_linetime[3];
1538 bool enable_fbc_wm;
1539 enum intel_ddb_partitioning partitioning;
1540 };
1541
1542 struct vlv_pipe_wm {
1543 uint16_t primary;
1544 uint16_t sprite[2];
1545 uint8_t cursor;
1546 };
1547
1548 struct vlv_sr_wm {
1549 uint16_t plane;
1550 uint8_t cursor;
1551 };
1552
1553 struct vlv_wm_values {
1554 struct vlv_pipe_wm pipe[3];
1555 struct vlv_sr_wm sr;
1556 struct {
1557 uint8_t cursor;
1558 uint8_t sprite[2];
1559 uint8_t primary;
1560 } ddl[3];
1561 uint8_t level;
1562 bool cxsr;
1563 };
1564
1565 struct skl_ddb_entry {
1566 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1567 };
1568
1569 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1570 {
1571 return entry->end - entry->start;
1572 }
1573
1574 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1575 const struct skl_ddb_entry *e2)
1576 {
1577 if (e1->start == e2->start && e1->end == e2->end)
1578 return true;
1579
1580 return false;
1581 }
1582
1583 struct skl_ddb_allocation {
1584 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1585 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1586 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1587 };
1588
1589 struct skl_wm_values {
1590 unsigned dirty_pipes;
1591 struct skl_ddb_allocation ddb;
1592 uint32_t wm_linetime[I915_MAX_PIPES];
1593 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1594 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1595 };
1596
1597 struct skl_wm_level {
1598 bool plane_en[I915_MAX_PLANES];
1599 uint16_t plane_res_b[I915_MAX_PLANES];
1600 uint8_t plane_res_l[I915_MAX_PLANES];
1601 };
1602
1603 /*
1604 * This struct helps tracking the state needed for runtime PM, which puts the
1605 * device in PCI D3 state. Notice that when this happens, nothing on the
1606 * graphics device works, even register access, so we don't get interrupts nor
1607 * anything else.
1608 *
1609 * Every piece of our code that needs to actually touch the hardware needs to
1610 * either call intel_runtime_pm_get or call intel_display_power_get with the
1611 * appropriate power domain.
1612 *
1613 * Our driver uses the autosuspend delay feature, which means we'll only really
1614 * suspend if we stay with zero refcount for a certain amount of time. The
1615 * default value is currently very conservative (see intel_runtime_pm_enable), but
1616 * it can be changed with the standard runtime PM files from sysfs.
1617 *
1618 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1619 * goes back to false exactly before we reenable the IRQs. We use this variable
1620 * to check if someone is trying to enable/disable IRQs while they're supposed
1621 * to be disabled. This shouldn't happen and we'll print some error messages in
1622 * case it happens.
1623 *
1624 * For more, read the Documentation/power/runtime_pm.txt.
1625 */
1626 struct i915_runtime_pm {
1627 atomic_t wakeref_count;
1628 atomic_t atomic_seq;
1629 bool suspended;
1630 bool irqs_enabled;
1631 };
1632
1633 enum intel_pipe_crc_source {
1634 INTEL_PIPE_CRC_SOURCE_NONE,
1635 INTEL_PIPE_CRC_SOURCE_PLANE1,
1636 INTEL_PIPE_CRC_SOURCE_PLANE2,
1637 INTEL_PIPE_CRC_SOURCE_PF,
1638 INTEL_PIPE_CRC_SOURCE_PIPE,
1639 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1640 INTEL_PIPE_CRC_SOURCE_TV,
1641 INTEL_PIPE_CRC_SOURCE_DP_B,
1642 INTEL_PIPE_CRC_SOURCE_DP_C,
1643 INTEL_PIPE_CRC_SOURCE_DP_D,
1644 INTEL_PIPE_CRC_SOURCE_AUTO,
1645 INTEL_PIPE_CRC_SOURCE_MAX,
1646 };
1647
1648 struct intel_pipe_crc_entry {
1649 uint32_t frame;
1650 uint32_t crc[5];
1651 };
1652
1653 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1654 struct intel_pipe_crc {
1655 spinlock_t lock;
1656 bool opened; /* exclusive access to the result file */
1657 struct intel_pipe_crc_entry *entries;
1658 enum intel_pipe_crc_source source;
1659 int head, tail;
1660 wait_queue_head_t wq;
1661 };
1662
1663 struct i915_frontbuffer_tracking {
1664 struct mutex lock;
1665
1666 /*
1667 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1668 * scheduled flips.
1669 */
1670 unsigned busy_bits;
1671 unsigned flip_bits;
1672 };
1673
1674 struct i915_wa_reg {
1675 i915_reg_t addr;
1676 u32 value;
1677 /* bitmask representing WA bits */
1678 u32 mask;
1679 };
1680
1681 /*
1682 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1683 * allowing it for RCS as we don't foresee any requirement of having
1684 * a whitelist for other engines. When it is really required for
1685 * other engines then the limit need to be increased.
1686 */
1687 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1688
1689 struct i915_workarounds {
1690 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1691 u32 count;
1692 u32 hw_whitelist_count[I915_NUM_ENGINES];
1693 };
1694
1695 struct i915_virtual_gpu {
1696 bool active;
1697 };
1698
1699 struct i915_execbuffer_params {
1700 struct drm_device *dev;
1701 struct drm_file *file;
1702 uint32_t dispatch_flags;
1703 uint32_t args_batch_start_offset;
1704 uint64_t batch_obj_vm_offset;
1705 struct intel_engine_cs *engine;
1706 struct drm_i915_gem_object *batch_obj;
1707 struct i915_gem_context *ctx;
1708 struct drm_i915_gem_request *request;
1709 };
1710
1711 /* used in computing the new watermarks state */
1712 struct intel_wm_config {
1713 unsigned int num_pipes_active;
1714 bool sprites_enabled;
1715 bool sprites_scaled;
1716 };
1717
1718 struct drm_i915_private {
1719 struct drm_device drm;
1720
1721 struct drm_device *dev;
1722 struct kmem_cache *objects;
1723 struct kmem_cache *vmas;
1724 struct kmem_cache *requests;
1725
1726 const struct intel_device_info info;
1727
1728 int relative_constants_mode;
1729
1730 void __iomem *regs;
1731
1732 struct intel_uncore uncore;
1733
1734 struct i915_virtual_gpu vgpu;
1735
1736 struct intel_gvt gvt;
1737
1738 struct intel_guc guc;
1739
1740 struct intel_csr csr;
1741
1742 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1743
1744 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1745 * controller on different i2c buses. */
1746 struct mutex gmbus_mutex;
1747
1748 /**
1749 * Base address of the gmbus and gpio block.
1750 */
1751 uint32_t gpio_mmio_base;
1752
1753 /* MMIO base address for MIPI regs */
1754 uint32_t mipi_mmio_base;
1755
1756 uint32_t psr_mmio_base;
1757
1758 wait_queue_head_t gmbus_wait_queue;
1759
1760 struct pci_dev *bridge_dev;
1761 struct i915_gem_context *kernel_context;
1762 struct intel_engine_cs engine[I915_NUM_ENGINES];
1763 struct drm_i915_gem_object *semaphore_obj;
1764 uint32_t last_seqno, next_seqno;
1765
1766 struct drm_dma_handle *status_page_dmah;
1767 struct resource mch_res;
1768
1769 /* protects the irq masks */
1770 spinlock_t irq_lock;
1771
1772 /* protects the mmio flip data */
1773 spinlock_t mmio_flip_lock;
1774
1775 bool display_irqs_enabled;
1776
1777 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1778 struct pm_qos_request pm_qos;
1779
1780 /* Sideband mailbox protection */
1781 struct mutex sb_lock;
1782
1783 /** Cached value of IMR to avoid reads in updating the bitfield */
1784 union {
1785 u32 irq_mask;
1786 u32 de_irq_mask[I915_MAX_PIPES];
1787 };
1788 u32 gt_irq_mask;
1789 u32 pm_irq_mask;
1790 u32 pm_rps_events;
1791 u32 pipestat_irq_mask[I915_MAX_PIPES];
1792
1793 struct i915_hotplug hotplug;
1794 struct intel_fbc fbc;
1795 struct i915_drrs drrs;
1796 struct intel_opregion opregion;
1797 struct intel_vbt_data vbt;
1798
1799 bool preserve_bios_swizzle;
1800
1801 /* overlay */
1802 struct intel_overlay *overlay;
1803
1804 /* backlight registers and fields in struct intel_panel */
1805 struct mutex backlight_lock;
1806
1807 /* LVDS info */
1808 bool no_aux_handshake;
1809
1810 /* protects panel power sequencer state */
1811 struct mutex pps_mutex;
1812
1813 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1814 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1815
1816 unsigned int fsb_freq, mem_freq, is_ddr3;
1817 unsigned int skl_preferred_vco_freq;
1818 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1819 unsigned int max_dotclk_freq;
1820 unsigned int rawclk_freq;
1821 unsigned int hpll_freq;
1822 unsigned int czclk_freq;
1823
1824 struct {
1825 unsigned int vco, ref;
1826 } cdclk_pll;
1827
1828 /**
1829 * wq - Driver workqueue for GEM.
1830 *
1831 * NOTE: Work items scheduled here are not allowed to grab any modeset
1832 * locks, for otherwise the flushing done in the pageflip code will
1833 * result in deadlocks.
1834 */
1835 struct workqueue_struct *wq;
1836
1837 /* Display functions */
1838 struct drm_i915_display_funcs display;
1839
1840 /* PCH chipset type */
1841 enum intel_pch pch_type;
1842 unsigned short pch_id;
1843
1844 unsigned long quirks;
1845
1846 enum modeset_restore modeset_restore;
1847 struct mutex modeset_restore_lock;
1848 struct drm_atomic_state *modeset_restore_state;
1849
1850 struct list_head vm_list; /* Global list of all address spaces */
1851 struct i915_ggtt ggtt; /* VM representing the global address space */
1852
1853 struct i915_gem_mm mm;
1854 DECLARE_HASHTABLE(mm_structs, 7);
1855 struct mutex mm_lock;
1856
1857 /* The hw wants to have a stable context identifier for the lifetime
1858 * of the context (for OA, PASID, faults, etc). This is limited
1859 * in execlists to 21 bits.
1860 */
1861 struct ida context_hw_ida;
1862 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1863
1864 /* Kernel Modesetting */
1865
1866 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1867 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1868 wait_queue_head_t pending_flip_queue;
1869
1870 #ifdef CONFIG_DEBUG_FS
1871 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1872 #endif
1873
1874 /* dpll and cdclk state is protected by connection_mutex */
1875 int num_shared_dpll;
1876 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1877 const struct intel_dpll_mgr *dpll_mgr;
1878
1879 /*
1880 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1881 * Must be global rather than per dpll, because on some platforms
1882 * plls share registers.
1883 */
1884 struct mutex dpll_lock;
1885
1886 unsigned int active_crtcs;
1887 unsigned int min_pixclk[I915_MAX_PIPES];
1888
1889 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1890
1891 struct i915_workarounds workarounds;
1892
1893 struct i915_frontbuffer_tracking fb_tracking;
1894
1895 u16 orig_clock;
1896
1897 bool mchbar_need_disable;
1898
1899 struct intel_l3_parity l3_parity;
1900
1901 /* Cannot be determined by PCIID. You must always read a register. */
1902 u32 edram_cap;
1903
1904 /* gen6+ rps state */
1905 struct intel_gen6_power_mgmt rps;
1906
1907 /* ilk-only ips/rps state. Everything in here is protected by the global
1908 * mchdev_lock in intel_pm.c */
1909 struct intel_ilk_power_mgmt ips;
1910
1911 struct i915_power_domains power_domains;
1912
1913 struct i915_psr psr;
1914
1915 struct i915_gpu_error gpu_error;
1916
1917 struct drm_i915_gem_object *vlv_pctx;
1918
1919 #ifdef CONFIG_DRM_FBDEV_EMULATION
1920 /* list of fbdev register on this device */
1921 struct intel_fbdev *fbdev;
1922 struct work_struct fbdev_suspend_work;
1923 #endif
1924
1925 struct drm_property *broadcast_rgb_property;
1926 struct drm_property *force_audio_property;
1927
1928 /* hda/i915 audio component */
1929 struct i915_audio_component *audio_component;
1930 bool audio_component_registered;
1931 /**
1932 * av_mutex - mutex for audio/video sync
1933 *
1934 */
1935 struct mutex av_mutex;
1936
1937 uint32_t hw_context_size;
1938 struct list_head context_list;
1939
1940 u32 fdi_rx_config;
1941
1942 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1943 u32 chv_phy_control;
1944 /*
1945 * Shadows for CHV DPLL_MD regs to keep the state
1946 * checker somewhat working in the presence hardware
1947 * crappiness (can't read out DPLL_MD for pipes B & C).
1948 */
1949 u32 chv_dpll_md[I915_MAX_PIPES];
1950 u32 bxt_phy_grc;
1951
1952 u32 suspend_count;
1953 bool suspended_to_idle;
1954 struct i915_suspend_saved_registers regfile;
1955 struct vlv_s0ix_state vlv_s0ix_state;
1956
1957 struct {
1958 /*
1959 * Raw watermark latency values:
1960 * in 0.1us units for WM0,
1961 * in 0.5us units for WM1+.
1962 */
1963 /* primary */
1964 uint16_t pri_latency[5];
1965 /* sprite */
1966 uint16_t spr_latency[5];
1967 /* cursor */
1968 uint16_t cur_latency[5];
1969 /*
1970 * Raw watermark memory latency values
1971 * for SKL for all 8 levels
1972 * in 1us units.
1973 */
1974 uint16_t skl_latency[8];
1975
1976 /*
1977 * The skl_wm_values structure is a bit too big for stack
1978 * allocation, so we keep the staging struct where we store
1979 * intermediate results here instead.
1980 */
1981 struct skl_wm_values skl_results;
1982
1983 /* current hardware state */
1984 union {
1985 struct ilk_wm_values hw;
1986 struct skl_wm_values skl_hw;
1987 struct vlv_wm_values vlv;
1988 };
1989
1990 uint8_t max_level;
1991
1992 /*
1993 * Should be held around atomic WM register writing; also
1994 * protects * intel_crtc->wm.active and
1995 * cstate->wm.need_postvbl_update.
1996 */
1997 struct mutex wm_mutex;
1998
1999 /*
2000 * Set during HW readout of watermarks/DDB. Some platforms
2001 * need to know when we're still using BIOS-provided values
2002 * (which we don't fully trust).
2003 */
2004 bool distrust_bios_wm;
2005 } wm;
2006
2007 struct i915_runtime_pm pm;
2008
2009 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2010 struct {
2011 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2012 struct drm_i915_gem_execbuffer2 *args,
2013 struct list_head *vmas);
2014 int (*init_engines)(struct drm_device *dev);
2015 void (*cleanup_engine)(struct intel_engine_cs *engine);
2016 void (*stop_engine)(struct intel_engine_cs *engine);
2017
2018 /**
2019 * Is the GPU currently considered idle, or busy executing
2020 * userspace requests? Whilst idle, we allow runtime power
2021 * management to power down the hardware and display clocks.
2022 * In order to reduce the effect on performance, there
2023 * is a slight delay before we do so.
2024 */
2025 unsigned int active_engines;
2026 bool awake;
2027
2028 /**
2029 * We leave the user IRQ off as much as possible,
2030 * but this means that requests will finish and never
2031 * be retired once the system goes idle. Set a timer to
2032 * fire periodically while the ring is running. When it
2033 * fires, go retire requests.
2034 */
2035 struct delayed_work retire_work;
2036
2037 /**
2038 * When we detect an idle GPU, we want to turn on
2039 * powersaving features. So once we see that there
2040 * are no more requests outstanding and no more
2041 * arrive within a small period of time, we fire
2042 * off the idle_work.
2043 */
2044 struct delayed_work idle_work;
2045 } gt;
2046
2047 /* perform PHY state sanity checks? */
2048 bool chv_phy_assert[2];
2049
2050 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2051
2052 /*
2053 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2054 * will be rejected. Instead look for a better place.
2055 */
2056 };
2057
2058 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2059 {
2060 return container_of(dev, struct drm_i915_private, drm);
2061 }
2062
2063 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2064 {
2065 return to_i915(dev_get_drvdata(dev));
2066 }
2067
2068 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2069 {
2070 return container_of(guc, struct drm_i915_private, guc);
2071 }
2072
2073 /* Simple iterator over all initialised engines */
2074 #define for_each_engine(engine__, dev_priv__) \
2075 for ((engine__) = &(dev_priv__)->engine[0]; \
2076 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2077 (engine__)++) \
2078 for_each_if (intel_engine_initialized(engine__))
2079
2080 /* Iterator with engine_id */
2081 #define for_each_engine_id(engine__, dev_priv__, id__) \
2082 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2083 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2084 (engine__)++) \
2085 for_each_if (((id__) = (engine__)->id, \
2086 intel_engine_initialized(engine__)))
2087
2088 /* Iterator over subset of engines selected by mask */
2089 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2090 for ((engine__) = &(dev_priv__)->engine[0]; \
2091 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2092 (engine__)++) \
2093 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2094 intel_engine_initialized(engine__))
2095
2096 enum hdmi_force_audio {
2097 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2098 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2099 HDMI_AUDIO_AUTO, /* trust EDID */
2100 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2101 };
2102
2103 #define I915_GTT_OFFSET_NONE ((u32)-1)
2104
2105 struct drm_i915_gem_object_ops {
2106 unsigned int flags;
2107 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2108
2109 /* Interface between the GEM object and its backing storage.
2110 * get_pages() is called once prior to the use of the associated set
2111 * of pages before to binding them into the GTT, and put_pages() is
2112 * called after we no longer need them. As we expect there to be
2113 * associated cost with migrating pages between the backing storage
2114 * and making them available for the GPU (e.g. clflush), we may hold
2115 * onto the pages after they are no longer referenced by the GPU
2116 * in case they may be used again shortly (for example migrating the
2117 * pages to a different memory domain within the GTT). put_pages()
2118 * will therefore most likely be called when the object itself is
2119 * being released or under memory pressure (where we attempt to
2120 * reap pages for the shrinker).
2121 */
2122 int (*get_pages)(struct drm_i915_gem_object *);
2123 void (*put_pages)(struct drm_i915_gem_object *);
2124
2125 int (*dmabuf_export)(struct drm_i915_gem_object *);
2126 void (*release)(struct drm_i915_gem_object *);
2127 };
2128
2129 /*
2130 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2131 * considered to be the frontbuffer for the given plane interface-wise. This
2132 * doesn't mean that the hw necessarily already scans it out, but that any
2133 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2134 *
2135 * We have one bit per pipe and per scanout plane type.
2136 */
2137 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2138 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2139 #define INTEL_FRONTBUFFER_BITS \
2140 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2141 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2142 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2143 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2144 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2145 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2146 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2147 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2148 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2149 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2150 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2151
2152 struct drm_i915_gem_object {
2153 struct drm_gem_object base;
2154
2155 const struct drm_i915_gem_object_ops *ops;
2156
2157 /** List of VMAs backed by this object */
2158 struct list_head vma_list;
2159
2160 /** Stolen memory for this object, instead of being backed by shmem. */
2161 struct drm_mm_node *stolen;
2162 struct list_head global_list;
2163
2164 struct list_head engine_list[I915_NUM_ENGINES];
2165 /** Used in execbuf to temporarily hold a ref */
2166 struct list_head obj_exec_link;
2167
2168 struct list_head batch_pool_link;
2169
2170 /**
2171 * This is set if the object is on the active lists (has pending
2172 * rendering and so a non-zero seqno), and is not set if it i s on
2173 * inactive (ready to be unbound) list.
2174 */
2175 unsigned int active:I915_NUM_ENGINES;
2176
2177 /**
2178 * This is set if the object has been written to since last bound
2179 * to the GTT
2180 */
2181 unsigned int dirty:1;
2182
2183 /**
2184 * Fence register bits (if any) for this object. Will be set
2185 * as needed when mapped into the GTT.
2186 * Protected by dev->struct_mutex.
2187 */
2188 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2189
2190 /**
2191 * Advice: are the backing pages purgeable?
2192 */
2193 unsigned int madv:2;
2194
2195 /**
2196 * Current tiling mode for the object.
2197 */
2198 unsigned int tiling_mode:2;
2199 /**
2200 * Whether the tiling parameters for the currently associated fence
2201 * register have changed. Note that for the purposes of tracking
2202 * tiling changes we also treat the unfenced register, the register
2203 * slot that the object occupies whilst it executes a fenced
2204 * command (such as BLT on gen2/3), as a "fence".
2205 */
2206 unsigned int fence_dirty:1;
2207
2208 /**
2209 * Is the object at the current location in the gtt mappable and
2210 * fenceable? Used to avoid costly recalculations.
2211 */
2212 unsigned int map_and_fenceable:1;
2213
2214 /**
2215 * Whether the current gtt mapping needs to be mappable (and isn't just
2216 * mappable by accident). Track pin and fault separate for a more
2217 * accurate mappable working set.
2218 */
2219 unsigned int fault_mappable:1;
2220
2221 /*
2222 * Is the object to be mapped as read-only to the GPU
2223 * Only honoured if hardware has relevant pte bit
2224 */
2225 unsigned long gt_ro:1;
2226 unsigned int cache_level:3;
2227 unsigned int cache_dirty:1;
2228
2229 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2230
2231 unsigned int has_wc_mmap;
2232 unsigned int pin_display;
2233
2234 struct sg_table *pages;
2235 int pages_pin_count;
2236 struct get_page {
2237 struct scatterlist *sg;
2238 int last;
2239 } get_page;
2240 void *mapping;
2241
2242 /** Breadcrumb of last rendering to the buffer.
2243 * There can only be one writer, but we allow for multiple readers.
2244 * If there is a writer that necessarily implies that all other
2245 * read requests are complete - but we may only be lazily clearing
2246 * the read requests. A read request is naturally the most recent
2247 * request on a ring, so we may have two different write and read
2248 * requests on one ring where the write request is older than the
2249 * read request. This allows for the CPU to read from an active
2250 * buffer by only waiting for the write to complete.
2251 * */
2252 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2253 struct drm_i915_gem_request *last_write_req;
2254 /** Breadcrumb of last fenced GPU access to the buffer. */
2255 struct drm_i915_gem_request *last_fenced_req;
2256
2257 /** Current tiling stride for the object, if it's tiled. */
2258 uint32_t stride;
2259
2260 /** References from framebuffers, locks out tiling changes. */
2261 unsigned long framebuffer_references;
2262
2263 /** Record of address bit 17 of each page at last unbind. */
2264 unsigned long *bit_17;
2265
2266 union {
2267 /** for phy allocated objects */
2268 struct drm_dma_handle *phys_handle;
2269
2270 struct i915_gem_userptr {
2271 uintptr_t ptr;
2272 unsigned read_only :1;
2273 unsigned workers :4;
2274 #define I915_GEM_USERPTR_MAX_WORKERS 15
2275
2276 struct i915_mm_struct *mm;
2277 struct i915_mmu_object *mmu_object;
2278 struct work_struct *work;
2279 } userptr;
2280 };
2281 };
2282 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2283
2284 static inline bool
2285 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2286 {
2287 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2288 }
2289
2290 /*
2291 * Optimised SGL iterator for GEM objects
2292 */
2293 static __always_inline struct sgt_iter {
2294 struct scatterlist *sgp;
2295 union {
2296 unsigned long pfn;
2297 dma_addr_t dma;
2298 };
2299 unsigned int curr;
2300 unsigned int max;
2301 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2302 struct sgt_iter s = { .sgp = sgl };
2303
2304 if (s.sgp) {
2305 s.max = s.curr = s.sgp->offset;
2306 s.max += s.sgp->length;
2307 if (dma)
2308 s.dma = sg_dma_address(s.sgp);
2309 else
2310 s.pfn = page_to_pfn(sg_page(s.sgp));
2311 }
2312
2313 return s;
2314 }
2315
2316 /**
2317 * __sg_next - return the next scatterlist entry in a list
2318 * @sg: The current sg entry
2319 *
2320 * Description:
2321 * If the entry is the last, return NULL; otherwise, step to the next
2322 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2323 * otherwise just return the pointer to the current element.
2324 **/
2325 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2326 {
2327 #ifdef CONFIG_DEBUG_SG
2328 BUG_ON(sg->sg_magic != SG_MAGIC);
2329 #endif
2330 return sg_is_last(sg) ? NULL :
2331 likely(!sg_is_chain(++sg)) ? sg :
2332 sg_chain_ptr(sg);
2333 }
2334
2335 /**
2336 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2337 * @__dmap: DMA address (output)
2338 * @__iter: 'struct sgt_iter' (iterator state, internal)
2339 * @__sgt: sg_table to iterate over (input)
2340 */
2341 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2342 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2343 ((__dmap) = (__iter).dma + (__iter).curr); \
2344 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2345 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2346
2347 /**
2348 * for_each_sgt_page - iterate over the pages of the given sg_table
2349 * @__pp: page pointer (output)
2350 * @__iter: 'struct sgt_iter' (iterator state, internal)
2351 * @__sgt: sg_table to iterate over (input)
2352 */
2353 #define for_each_sgt_page(__pp, __iter, __sgt) \
2354 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2355 ((__pp) = (__iter).pfn == 0 ? NULL : \
2356 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2357 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2358 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2359
2360 /**
2361 * Request queue structure.
2362 *
2363 * The request queue allows us to note sequence numbers that have been emitted
2364 * and may be associated with active buffers to be retired.
2365 *
2366 * By keeping this list, we can avoid having to do questionable sequence
2367 * number comparisons on buffer last_read|write_seqno. It also allows an
2368 * emission time to be associated with the request for tracking how far ahead
2369 * of the GPU the submission is.
2370 *
2371 * The requests are reference counted, so upon creation they should have an
2372 * initial reference taken using kref_init
2373 */
2374 struct drm_i915_gem_request {
2375 struct kref ref;
2376
2377 /** On Which ring this request was generated */
2378 struct drm_i915_private *i915;
2379 struct intel_engine_cs *engine;
2380 struct intel_signal_node signaling;
2381
2382 /** GEM sequence number associated with the previous request,
2383 * when the HWS breadcrumb is equal to this the GPU is processing
2384 * this request.
2385 */
2386 u32 previous_seqno;
2387
2388 /** GEM sequence number associated with this request,
2389 * when the HWS breadcrumb is equal or greater than this the GPU
2390 * has finished processing this request.
2391 */
2392 u32 seqno;
2393
2394 /** Position in the ringbuffer of the start of the request */
2395 u32 head;
2396
2397 /**
2398 * Position in the ringbuffer of the start of the postfix.
2399 * This is required to calculate the maximum available ringbuffer
2400 * space without overwriting the postfix.
2401 */
2402 u32 postfix;
2403
2404 /** Position in the ringbuffer of the end of the whole request */
2405 u32 tail;
2406
2407 /** Preallocate space in the ringbuffer for the emitting the request */
2408 u32 reserved_space;
2409
2410 /**
2411 * Context and ring buffer related to this request
2412 * Contexts are refcounted, so when this request is associated with a
2413 * context, we must increment the context's refcount, to guarantee that
2414 * it persists while any request is linked to it. Requests themselves
2415 * are also refcounted, so the request will only be freed when the last
2416 * reference to it is dismissed, and the code in
2417 * i915_gem_request_free() will then decrement the refcount on the
2418 * context.
2419 */
2420 struct i915_gem_context *ctx;
2421 struct intel_ringbuffer *ringbuf;
2422
2423 /**
2424 * Context related to the previous request.
2425 * As the contexts are accessed by the hardware until the switch is
2426 * completed to a new context, the hardware may still be writing
2427 * to the context object after the breadcrumb is visible. We must
2428 * not unpin/unbind/prune that object whilst still active and so
2429 * we keep the previous context pinned until the following (this)
2430 * request is retired.
2431 */
2432 struct i915_gem_context *previous_context;
2433
2434 /** Batch buffer related to this request if any (used for
2435 error state dump only) */
2436 struct drm_i915_gem_object *batch_obj;
2437
2438 /** Time at which this request was emitted, in jiffies. */
2439 unsigned long emitted_jiffies;
2440
2441 /** global list entry for this request */
2442 struct list_head list;
2443
2444 struct drm_i915_file_private *file_priv;
2445 /** file_priv list entry for this request */
2446 struct list_head client_list;
2447
2448 /** process identifier submitting this request */
2449 struct pid *pid;
2450
2451 /**
2452 * The ELSP only accepts two elements at a time, so we queue
2453 * context/tail pairs on a given queue (ring->execlist_queue) until the
2454 * hardware is available. The queue serves a double purpose: we also use
2455 * it to keep track of the up to 2 contexts currently in the hardware
2456 * (usually one in execution and the other queued up by the GPU): We
2457 * only remove elements from the head of the queue when the hardware
2458 * informs us that an element has been completed.
2459 *
2460 * All accesses to the queue are mediated by a spinlock
2461 * (ring->execlist_lock).
2462 */
2463
2464 /** Execlist link in the submission queue.*/
2465 struct list_head execlist_link;
2466
2467 /** Execlists no. of times this request has been sent to the ELSP */
2468 int elsp_submitted;
2469
2470 /** Execlists context hardware id. */
2471 unsigned ctx_hw_id;
2472 };
2473
2474 struct drm_i915_gem_request * __must_check
2475 i915_gem_request_alloc(struct intel_engine_cs *engine,
2476 struct i915_gem_context *ctx);
2477 void i915_gem_request_free(struct kref *req_ref);
2478 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2479 struct drm_file *file);
2480
2481 static inline uint32_t
2482 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2483 {
2484 return req ? req->seqno : 0;
2485 }
2486
2487 static inline struct intel_engine_cs *
2488 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2489 {
2490 return req ? req->engine : NULL;
2491 }
2492
2493 static inline struct drm_i915_gem_request *
2494 i915_gem_request_reference(struct drm_i915_gem_request *req)
2495 {
2496 if (req)
2497 kref_get(&req->ref);
2498 return req;
2499 }
2500
2501 static inline void
2502 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2503 {
2504 kref_put(&req->ref, i915_gem_request_free);
2505 }
2506
2507 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2508 struct drm_i915_gem_request *src)
2509 {
2510 if (src)
2511 i915_gem_request_reference(src);
2512
2513 if (*pdst)
2514 i915_gem_request_unreference(*pdst);
2515
2516 *pdst = src;
2517 }
2518
2519 /*
2520 * XXX: i915_gem_request_completed should be here but currently needs the
2521 * definition of i915_seqno_passed() which is below. It will be moved in
2522 * a later patch when the call to i915_seqno_passed() is obsoleted...
2523 */
2524
2525 /*
2526 * A command that requires special handling by the command parser.
2527 */
2528 struct drm_i915_cmd_descriptor {
2529 /*
2530 * Flags describing how the command parser processes the command.
2531 *
2532 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2533 * a length mask if not set
2534 * CMD_DESC_SKIP: The command is allowed but does not follow the
2535 * standard length encoding for the opcode range in
2536 * which it falls
2537 * CMD_DESC_REJECT: The command is never allowed
2538 * CMD_DESC_REGISTER: The command should be checked against the
2539 * register whitelist for the appropriate ring
2540 * CMD_DESC_MASTER: The command is allowed if the submitting process
2541 * is the DRM master
2542 */
2543 u32 flags;
2544 #define CMD_DESC_FIXED (1<<0)
2545 #define CMD_DESC_SKIP (1<<1)
2546 #define CMD_DESC_REJECT (1<<2)
2547 #define CMD_DESC_REGISTER (1<<3)
2548 #define CMD_DESC_BITMASK (1<<4)
2549 #define CMD_DESC_MASTER (1<<5)
2550
2551 /*
2552 * The command's unique identification bits and the bitmask to get them.
2553 * This isn't strictly the opcode field as defined in the spec and may
2554 * also include type, subtype, and/or subop fields.
2555 */
2556 struct {
2557 u32 value;
2558 u32 mask;
2559 } cmd;
2560
2561 /*
2562 * The command's length. The command is either fixed length (i.e. does
2563 * not include a length field) or has a length field mask. The flag
2564 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2565 * a length mask. All command entries in a command table must include
2566 * length information.
2567 */
2568 union {
2569 u32 fixed;
2570 u32 mask;
2571 } length;
2572
2573 /*
2574 * Describes where to find a register address in the command to check
2575 * against the ring's register whitelist. Only valid if flags has the
2576 * CMD_DESC_REGISTER bit set.
2577 *
2578 * A non-zero step value implies that the command may access multiple
2579 * registers in sequence (e.g. LRI), in that case step gives the
2580 * distance in dwords between individual offset fields.
2581 */
2582 struct {
2583 u32 offset;
2584 u32 mask;
2585 u32 step;
2586 } reg;
2587
2588 #define MAX_CMD_DESC_BITMASKS 3
2589 /*
2590 * Describes command checks where a particular dword is masked and
2591 * compared against an expected value. If the command does not match
2592 * the expected value, the parser rejects it. Only valid if flags has
2593 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2594 * are valid.
2595 *
2596 * If the check specifies a non-zero condition_mask then the parser
2597 * only performs the check when the bits specified by condition_mask
2598 * are non-zero.
2599 */
2600 struct {
2601 u32 offset;
2602 u32 mask;
2603 u32 expected;
2604 u32 condition_offset;
2605 u32 condition_mask;
2606 } bits[MAX_CMD_DESC_BITMASKS];
2607 };
2608
2609 /*
2610 * A table of commands requiring special handling by the command parser.
2611 *
2612 * Each ring has an array of tables. Each table consists of an array of command
2613 * descriptors, which must be sorted with command opcodes in ascending order.
2614 */
2615 struct drm_i915_cmd_table {
2616 const struct drm_i915_cmd_descriptor *table;
2617 int count;
2618 };
2619
2620 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2621 #define __I915__(p) ({ \
2622 struct drm_i915_private *__p; \
2623 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2624 __p = (struct drm_i915_private *)p; \
2625 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2626 __p = to_i915((struct drm_device *)p); \
2627 else \
2628 BUILD_BUG(); \
2629 __p; \
2630 })
2631 #define INTEL_INFO(p) (&__I915__(p)->info)
2632 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2633 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2634
2635 #define REVID_FOREVER 0xff
2636 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2637
2638 #define GEN_FOREVER (0)
2639 /*
2640 * Returns true if Gen is in inclusive range [Start, End].
2641 *
2642 * Use GEN_FOREVER for unbound start and or end.
2643 */
2644 #define IS_GEN(p, s, e) ({ \
2645 unsigned int __s = (s), __e = (e); \
2646 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2647 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2648 if ((__s) != GEN_FOREVER) \
2649 __s = (s) - 1; \
2650 if ((__e) == GEN_FOREVER) \
2651 __e = BITS_PER_LONG - 1; \
2652 else \
2653 __e = (e) - 1; \
2654 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2655 })
2656
2657 /*
2658 * Return true if revision is in range [since,until] inclusive.
2659 *
2660 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2661 */
2662 #define IS_REVID(p, since, until) \
2663 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2664
2665 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2666 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2667 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2668 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2669 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2670 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2671 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2672 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2673 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2674 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2675 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2676 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2677 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2678 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2679 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2680 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2681 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2682 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2683 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2684 INTEL_DEVID(dev) == 0x0152 || \
2685 INTEL_DEVID(dev) == 0x015a)
2686 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2687 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2688 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2689 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2690 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2691 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2692 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2693 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2694 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2695 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2696 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2697 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2698 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2699 (INTEL_DEVID(dev) & 0xf) == 0xe))
2700 /* ULX machines are also considered ULT. */
2701 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2702 (INTEL_DEVID(dev) & 0xf) == 0xe)
2703 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2704 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2705 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2706 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2707 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2708 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2709 /* ULX machines are also considered ULT. */
2710 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2711 INTEL_DEVID(dev) == 0x0A1E)
2712 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2713 INTEL_DEVID(dev) == 0x1913 || \
2714 INTEL_DEVID(dev) == 0x1916 || \
2715 INTEL_DEVID(dev) == 0x1921 || \
2716 INTEL_DEVID(dev) == 0x1926)
2717 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2718 INTEL_DEVID(dev) == 0x1915 || \
2719 INTEL_DEVID(dev) == 0x191E)
2720 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2721 INTEL_DEVID(dev) == 0x5913 || \
2722 INTEL_DEVID(dev) == 0x5916 || \
2723 INTEL_DEVID(dev) == 0x5921 || \
2724 INTEL_DEVID(dev) == 0x5926)
2725 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2726 INTEL_DEVID(dev) == 0x5915 || \
2727 INTEL_DEVID(dev) == 0x591E)
2728 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2729 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2730 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2731 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2732
2733 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2734
2735 #define SKL_REVID_A0 0x0
2736 #define SKL_REVID_B0 0x1
2737 #define SKL_REVID_C0 0x2
2738 #define SKL_REVID_D0 0x3
2739 #define SKL_REVID_E0 0x4
2740 #define SKL_REVID_F0 0x5
2741
2742 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2743
2744 #define BXT_REVID_A0 0x0
2745 #define BXT_REVID_A1 0x1
2746 #define BXT_REVID_B0 0x3
2747 #define BXT_REVID_C0 0x9
2748
2749 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2750
2751 #define KBL_REVID_A0 0x0
2752 #define KBL_REVID_B0 0x1
2753 #define KBL_REVID_C0 0x2
2754 #define KBL_REVID_D0 0x3
2755 #define KBL_REVID_E0 0x4
2756
2757 #define IS_KBL_REVID(p, since, until) \
2758 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2759
2760 /*
2761 * The genX designation typically refers to the render engine, so render
2762 * capability related checks should use IS_GEN, while display and other checks
2763 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2764 * chips, etc.).
2765 */
2766 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen_mask & BIT(1))
2767 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen_mask & BIT(2))
2768 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen_mask & BIT(3))
2769 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen_mask & BIT(4))
2770 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen_mask & BIT(5))
2771 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen_mask & BIT(6))
2772 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen_mask & BIT(7))
2773 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen_mask & BIT(8))
2774
2775 #define ENGINE_MASK(id) BIT(id)
2776 #define RENDER_RING ENGINE_MASK(RCS)
2777 #define BSD_RING ENGINE_MASK(VCS)
2778 #define BLT_RING ENGINE_MASK(BCS)
2779 #define VEBOX_RING ENGINE_MASK(VECS)
2780 #define BSD2_RING ENGINE_MASK(VCS2)
2781 #define ALL_ENGINES (~0)
2782
2783 #define HAS_ENGINE(dev_priv, id) \
2784 (INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))
2785
2786 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2787 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2788 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2789 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2790
2791 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2792 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2793 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
2794 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2795 HAS_EDRAM(dev))
2796 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2797
2798 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2799 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2800 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2801 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2802 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2803
2804 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2805 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2806
2807 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2808 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2809
2810 /* WaRsDisableCoarsePowerGating:skl,bxt */
2811 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2812 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2813 IS_SKL_GT3(dev_priv) || \
2814 IS_SKL_GT4(dev_priv))
2815
2816 /*
2817 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2818 * even when in MSI mode. This results in spurious interrupt warnings if the
2819 * legacy irq no. is shared with another device. The kernel then disables that
2820 * interrupt source and so prevents the other device from working properly.
2821 */
2822 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2823 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2824
2825 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2826 * rows, which changed the alignment requirements and fence programming.
2827 */
2828 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2829 IS_I915GM(dev)))
2830 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2831 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2832
2833 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2834 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2835 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2836
2837 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2838
2839 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2840 INTEL_INFO(dev)->gen >= 9)
2841
2842 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2843 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2844 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2845 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2846 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2847 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2848 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2849 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2850 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2851 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2852 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2853
2854 #define HAS_CSR(dev) (IS_GEN9(dev))
2855
2856 /*
2857 * For now, anything with a GuC requires uCode loading, and then supports
2858 * command submission once loaded. But these are logically independent
2859 * properties, so we have separate macros to test them.
2860 */
2861 #define HAS_GUC(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2862 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2863 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2864
2865 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2866 INTEL_INFO(dev)->gen >= 8)
2867
2868 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2869 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2870 !IS_BROXTON(dev))
2871
2872 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2873
2874 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2875 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2876 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2877 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2878 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2879 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2880 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2881 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2882 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2883 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2884 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2885
2886 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2887 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2888 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2889 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2890 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2891 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2892 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2893 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2894 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2895
2896 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2897 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2898
2899 /* DPF == dynamic parity feature */
2900 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2901 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2902
2903 #define GT_FREQUENCY_MULTIPLIER 50
2904 #define GEN9_FREQ_SCALER 3
2905
2906 #include "i915_trace.h"
2907
2908 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2909 extern int i915_resume_switcheroo(struct drm_device *dev);
2910
2911 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2912 int enable_ppgtt);
2913
2914 /* i915_drv.c */
2915 void __printf(3, 4)
2916 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2917 const char *fmt, ...);
2918
2919 #define i915_report_error(dev_priv, fmt, ...) \
2920 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2921
2922 #ifdef CONFIG_COMPAT
2923 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2924 unsigned long arg);
2925 #endif
2926 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2927 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2928 extern int i915_reset(struct drm_i915_private *dev_priv);
2929 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2930 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2931 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2932 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2933 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2934 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2935 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2936
2937 /* intel_hotplug.c */
2938 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2939 u32 pin_mask, u32 long_mask);
2940 void intel_hpd_init(struct drm_i915_private *dev_priv);
2941 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2942 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2943 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2944
2945 /* i915_irq.c */
2946 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2947 {
2948 unsigned long delay;
2949
2950 if (unlikely(!i915.enable_hangcheck))
2951 return;
2952
2953 /* Don't continually defer the hangcheck so that it is always run at
2954 * least once after work has been scheduled on any ring. Otherwise,
2955 * we will ignore a hung ring if a second ring is kept busy.
2956 */
2957
2958 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2959 queue_delayed_work(system_long_wq,
2960 &dev_priv->gpu_error.hangcheck_work, delay);
2961 }
2962
2963 __printf(3, 4)
2964 void i915_handle_error(struct drm_i915_private *dev_priv,
2965 u32 engine_mask,
2966 const char *fmt, ...);
2967
2968 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2969 int intel_irq_install(struct drm_i915_private *dev_priv);
2970 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2971
2972 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2973 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2974 bool restore_forcewake);
2975 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2976 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2977 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2978 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2979 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2980 bool restore);
2981 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2982 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2983 enum forcewake_domains domains);
2984 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2985 enum forcewake_domains domains);
2986 /* Like above but the caller must manage the uncore.lock itself.
2987 * Must be used with I915_READ_FW and friends.
2988 */
2989 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2990 enum forcewake_domains domains);
2991 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2992 enum forcewake_domains domains);
2993 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2994
2995 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2996
2997 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2998 i915_reg_t reg,
2999 const u32 mask,
3000 const u32 value,
3001 const unsigned long timeout_ms);
3002 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3003 i915_reg_t reg,
3004 const u32 mask,
3005 const u32 value,
3006 const unsigned long timeout_ms);
3007
3008 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3009 {
3010 return dev_priv->gvt.initialized;
3011 }
3012
3013 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3014 {
3015 return dev_priv->vgpu.active;
3016 }
3017
3018 void
3019 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3020 u32 status_mask);
3021
3022 void
3023 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3024 u32 status_mask);
3025
3026 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3027 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3028 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3029 uint32_t mask,
3030 uint32_t bits);
3031 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3032 uint32_t interrupt_mask,
3033 uint32_t enabled_irq_mask);
3034 static inline void
3035 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3036 {
3037 ilk_update_display_irq(dev_priv, bits, bits);
3038 }
3039 static inline void
3040 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3041 {
3042 ilk_update_display_irq(dev_priv, bits, 0);
3043 }
3044 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3045 enum pipe pipe,
3046 uint32_t interrupt_mask,
3047 uint32_t enabled_irq_mask);
3048 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3049 enum pipe pipe, uint32_t bits)
3050 {
3051 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3052 }
3053 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3054 enum pipe pipe, uint32_t bits)
3055 {
3056 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3057 }
3058 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3059 uint32_t interrupt_mask,
3060 uint32_t enabled_irq_mask);
3061 static inline void
3062 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3063 {
3064 ibx_display_interrupt_update(dev_priv, bits, bits);
3065 }
3066 static inline void
3067 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3068 {
3069 ibx_display_interrupt_update(dev_priv, bits, 0);
3070 }
3071
3072 /* i915_gem.c */
3073 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3074 struct drm_file *file_priv);
3075 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3076 struct drm_file *file_priv);
3077 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3078 struct drm_file *file_priv);
3079 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3080 struct drm_file *file_priv);
3081 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3082 struct drm_file *file_priv);
3083 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3084 struct drm_file *file_priv);
3085 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3086 struct drm_file *file_priv);
3087 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3088 struct drm_i915_gem_request *req);
3089 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3090 struct drm_i915_gem_execbuffer2 *args,
3091 struct list_head *vmas);
3092 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3093 struct drm_file *file_priv);
3094 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3095 struct drm_file *file_priv);
3096 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file_priv);
3098 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file);
3100 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file);
3102 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file_priv);
3104 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3109 struct drm_file *file_priv);
3110 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3111 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3112 struct drm_file *file);
3113 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3114 struct drm_file *file_priv);
3115 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3116 struct drm_file *file_priv);
3117 void i915_gem_load_init(struct drm_device *dev);
3118 void i915_gem_load_cleanup(struct drm_device *dev);
3119 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3120 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3121
3122 void *i915_gem_object_alloc(struct drm_device *dev);
3123 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3124 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3125 const struct drm_i915_gem_object_ops *ops);
3126 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3127 size_t size);
3128 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3129 struct drm_device *dev, const void *data, size_t size);
3130 void i915_gem_free_object(struct drm_gem_object *obj);
3131 void i915_gem_vma_destroy(struct i915_vma *vma);
3132
3133 /* Flags used by pin/bind&friends. */
3134 #define PIN_MAPPABLE (1<<0)
3135 #define PIN_NONBLOCK (1<<1)
3136 #define PIN_GLOBAL (1<<2)
3137 #define PIN_OFFSET_BIAS (1<<3)
3138 #define PIN_USER (1<<4)
3139 #define PIN_UPDATE (1<<5)
3140 #define PIN_ZONE_4G (1<<6)
3141 #define PIN_HIGH (1<<7)
3142 #define PIN_OFFSET_FIXED (1<<8)
3143 #define PIN_OFFSET_MASK (~4095)
3144 int __must_check
3145 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3146 struct i915_address_space *vm,
3147 uint32_t alignment,
3148 uint64_t flags);
3149 int __must_check
3150 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3151 const struct i915_ggtt_view *view,
3152 uint32_t alignment,
3153 uint64_t flags);
3154
3155 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3156 u32 flags);
3157 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3158 int __must_check i915_vma_unbind(struct i915_vma *vma);
3159 /*
3160 * BEWARE: Do not use the function below unless you can _absolutely_
3161 * _guarantee_ VMA in question is _not in use_ anywhere.
3162 */
3163 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3164 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3165 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3166 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3167
3168 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3169 int *needs_clflush);
3170
3171 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3172
3173 static inline int __sg_page_count(struct scatterlist *sg)
3174 {
3175 return sg->length >> PAGE_SHIFT;
3176 }
3177
3178 struct page *
3179 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3180
3181 static inline dma_addr_t
3182 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3183 {
3184 if (n < obj->get_page.last) {
3185 obj->get_page.sg = obj->pages->sgl;
3186 obj->get_page.last = 0;
3187 }
3188
3189 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3190 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3191 if (unlikely(sg_is_chain(obj->get_page.sg)))
3192 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3193 }
3194
3195 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3196 }
3197
3198 static inline struct page *
3199 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3200 {
3201 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3202 return NULL;
3203
3204 if (n < obj->get_page.last) {
3205 obj->get_page.sg = obj->pages->sgl;
3206 obj->get_page.last = 0;
3207 }
3208
3209 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3210 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3211 if (unlikely(sg_is_chain(obj->get_page.sg)))
3212 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3213 }
3214
3215 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3216 }
3217
3218 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3219 {
3220 BUG_ON(obj->pages == NULL);
3221 obj->pages_pin_count++;
3222 }
3223
3224 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3225 {
3226 BUG_ON(obj->pages_pin_count == 0);
3227 obj->pages_pin_count--;
3228 }
3229
3230 /**
3231 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3232 * @obj - the object to map into kernel address space
3233 *
3234 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3235 * pages and then returns a contiguous mapping of the backing storage into
3236 * the kernel address space.
3237 *
3238 * The caller must hold the struct_mutex, and is responsible for calling
3239 * i915_gem_object_unpin_map() when the mapping is no longer required.
3240 *
3241 * Returns the pointer through which to access the mapped object, or an
3242 * ERR_PTR() on error.
3243 */
3244 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3245
3246 /**
3247 * i915_gem_object_unpin_map - releases an earlier mapping
3248 * @obj - the object to unmap
3249 *
3250 * After pinning the object and mapping its pages, once you are finished
3251 * with your access, call i915_gem_object_unpin_map() to release the pin
3252 * upon the mapping. Once the pin count reaches zero, that mapping may be
3253 * removed.
3254 *
3255 * The caller must hold the struct_mutex.
3256 */
3257 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3258 {
3259 lockdep_assert_held(&obj->base.dev->struct_mutex);
3260 i915_gem_object_unpin_pages(obj);
3261 }
3262
3263 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3264 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3265 struct intel_engine_cs *to,
3266 struct drm_i915_gem_request **to_req);
3267 void i915_vma_move_to_active(struct i915_vma *vma,
3268 struct drm_i915_gem_request *req);
3269 int i915_gem_dumb_create(struct drm_file *file_priv,
3270 struct drm_device *dev,
3271 struct drm_mode_create_dumb *args);
3272 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3273 uint32_t handle, uint64_t *offset);
3274
3275 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3276 struct drm_i915_gem_object *new,
3277 unsigned frontbuffer_bits);
3278
3279 /**
3280 * Returns true if seq1 is later than seq2.
3281 */
3282 static inline bool
3283 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3284 {
3285 return (int32_t)(seq1 - seq2) >= 0;
3286 }
3287
3288 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3289 {
3290 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3291 req->previous_seqno);
3292 }
3293
3294 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3295 {
3296 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3297 req->seqno);
3298 }
3299
3300 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3301 int state, unsigned long timeout_us);
3302 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3303 int state, unsigned long timeout_us)
3304 {
3305 return (i915_gem_request_started(request) &&
3306 __i915_spin_request(request, state, timeout_us));
3307 }
3308
3309 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3310 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3311
3312 struct drm_i915_gem_request *
3313 i915_gem_find_active_request(struct intel_engine_cs *engine);
3314
3315 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3316 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3317
3318 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3319 {
3320 return atomic_read(&error->reset_counter);
3321 }
3322
3323 static inline bool __i915_reset_in_progress(u32 reset)
3324 {
3325 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3326 }
3327
3328 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3329 {
3330 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3331 }
3332
3333 static inline bool __i915_terminally_wedged(u32 reset)
3334 {
3335 return unlikely(reset & I915_WEDGED);
3336 }
3337
3338 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3339 {
3340 return __i915_reset_in_progress(i915_reset_counter(error));
3341 }
3342
3343 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3344 {
3345 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3346 }
3347
3348 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3349 {
3350 return __i915_terminally_wedged(i915_reset_counter(error));
3351 }
3352
3353 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3354 {
3355 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3356 }
3357
3358 void i915_gem_reset(struct drm_device *dev);
3359 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3360 int __must_check i915_gem_init(struct drm_device *dev);
3361 int i915_gem_init_engines(struct drm_device *dev);
3362 int __must_check i915_gem_init_hw(struct drm_device *dev);
3363 void i915_gem_init_swizzling(struct drm_device *dev);
3364 void i915_gem_cleanup_engines(struct drm_device *dev);
3365 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3366 int __must_check i915_gem_suspend(struct drm_device *dev);
3367 void __i915_add_request(struct drm_i915_gem_request *req,
3368 struct drm_i915_gem_object *batch_obj,
3369 bool flush_caches);
3370 #define i915_add_request(req) \
3371 __i915_add_request(req, NULL, true)
3372 #define i915_add_request_no_flush(req) \
3373 __i915_add_request(req, NULL, false)
3374 int __i915_wait_request(struct drm_i915_gem_request *req,
3375 bool interruptible,
3376 s64 *timeout,
3377 struct intel_rps_client *rps);
3378 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3379 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3380 int __must_check
3381 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3382 bool readonly);
3383 int __must_check
3384 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3385 bool write);
3386 int __must_check
3387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3388 int __must_check
3389 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3390 u32 alignment,
3391 const struct i915_ggtt_view *view);
3392 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3393 const struct i915_ggtt_view *view);
3394 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3395 int align);
3396 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3397 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3398
3399 uint32_t
3400 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3401 uint32_t
3402 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3403 int tiling_mode, bool fenced);
3404
3405 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3406 enum i915_cache_level cache_level);
3407
3408 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3409 struct dma_buf *dma_buf);
3410
3411 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3412 struct drm_gem_object *gem_obj, int flags);
3413
3414 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3415 const struct i915_ggtt_view *view);
3416 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3417 struct i915_address_space *vm);
3418 static inline u64
3419 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3420 {
3421 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3422 }
3423
3424 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3425 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3426 const struct i915_ggtt_view *view);
3427 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3428 struct i915_address_space *vm);
3429
3430 struct i915_vma *
3431 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3432 struct i915_address_space *vm);
3433 struct i915_vma *
3434 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3435 const struct i915_ggtt_view *view);
3436
3437 struct i915_vma *
3438 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3439 struct i915_address_space *vm);
3440 struct i915_vma *
3441 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3442 const struct i915_ggtt_view *view);
3443
3444 static inline struct i915_vma *
3445 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3446 {
3447 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3448 }
3449 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3450
3451 /* Some GGTT VM helpers */
3452 static inline struct i915_hw_ppgtt *
3453 i915_vm_to_ppgtt(struct i915_address_space *vm)
3454 {
3455 return container_of(vm, struct i915_hw_ppgtt, base);
3456 }
3457
3458
3459 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3460 {
3461 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3462 }
3463
3464 unsigned long
3465 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3466
3467 static inline int __must_check
3468 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3469 uint32_t alignment,
3470 unsigned flags)
3471 {
3472 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3473 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3474
3475 return i915_gem_object_pin(obj, &ggtt->base,
3476 alignment, flags | PIN_GLOBAL);
3477 }
3478
3479 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3480 const struct i915_ggtt_view *view);
3481 static inline void
3482 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3483 {
3484 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3485 }
3486
3487 /* i915_gem_fence.c */
3488 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3489 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3490
3491 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3492 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3493
3494 void i915_gem_restore_fences(struct drm_device *dev);
3495
3496 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3497 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3498 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3499
3500 /* i915_gem_context.c */
3501 int __must_check i915_gem_context_init(struct drm_device *dev);
3502 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3503 void i915_gem_context_fini(struct drm_device *dev);
3504 void i915_gem_context_reset(struct drm_device *dev);
3505 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3506 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3507 int i915_switch_context(struct drm_i915_gem_request *req);
3508 void i915_gem_context_free(struct kref *ctx_ref);
3509 struct drm_i915_gem_object *
3510 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3511 struct i915_gem_context *
3512 i915_gem_context_create_gvt(struct drm_device *dev);
3513
3514 static inline struct i915_gem_context *
3515 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3516 {
3517 struct i915_gem_context *ctx;
3518
3519 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3520
3521 ctx = idr_find(&file_priv->context_idr, id);
3522 if (!ctx)
3523 return ERR_PTR(-ENOENT);
3524
3525 return ctx;
3526 }
3527
3528 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3529 {
3530 kref_get(&ctx->ref);
3531 }
3532
3533 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3534 {
3535 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3536 kref_put(&ctx->ref, i915_gem_context_free);
3537 }
3538
3539 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3540 {
3541 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3542 }
3543
3544 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file);
3546 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3547 struct drm_file *file);
3548 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3549 struct drm_file *file_priv);
3550 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3551 struct drm_file *file_priv);
3552 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3553 struct drm_file *file);
3554
3555 /* i915_gem_evict.c */
3556 int __must_check i915_gem_evict_something(struct drm_device *dev,
3557 struct i915_address_space *vm,
3558 int min_size,
3559 unsigned alignment,
3560 unsigned cache_level,
3561 unsigned long start,
3562 unsigned long end,
3563 unsigned flags);
3564 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3565 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3566
3567 /* belongs in i915_gem_gtt.h */
3568 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3569 {
3570 if (INTEL_GEN(dev_priv) < 6)
3571 intel_gtt_chipset_flush();
3572 }
3573
3574 /* i915_gem_stolen.c */
3575 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3576 struct drm_mm_node *node, u64 size,
3577 unsigned alignment);
3578 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3579 struct drm_mm_node *node, u64 size,
3580 unsigned alignment, u64 start,
3581 u64 end);
3582 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3583 struct drm_mm_node *node);
3584 int i915_gem_init_stolen(struct drm_device *dev);
3585 void i915_gem_cleanup_stolen(struct drm_device *dev);
3586 struct drm_i915_gem_object *
3587 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3588 struct drm_i915_gem_object *
3589 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3590 u32 stolen_offset,
3591 u32 gtt_offset,
3592 u32 size);
3593
3594 /* i915_gem_shrinker.c */
3595 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3596 unsigned long target,
3597 unsigned flags);
3598 #define I915_SHRINK_PURGEABLE 0x1
3599 #define I915_SHRINK_UNBOUND 0x2
3600 #define I915_SHRINK_BOUND 0x4
3601 #define I915_SHRINK_ACTIVE 0x8
3602 #define I915_SHRINK_VMAPS 0x10
3603 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3604 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3605 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3606
3607
3608 /* i915_gem_tiling.c */
3609 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3610 {
3611 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3612
3613 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3614 obj->tiling_mode != I915_TILING_NONE;
3615 }
3616
3617 /* i915_gem_debug.c */
3618 #if WATCH_LISTS
3619 int i915_verify_lists(struct drm_device *dev);
3620 #else
3621 #define i915_verify_lists(dev) 0
3622 #endif
3623
3624 /* i915_debugfs.c */
3625 #ifdef CONFIG_DEBUG_FS
3626 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3627 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3628 int i915_debugfs_connector_add(struct drm_connector *connector);
3629 void intel_display_crc_init(struct drm_device *dev);
3630 #else
3631 static inline int i915_debugfs_register(struct drm_i915_private *) {return 0;}
3632 static inline void i915_debugfs_unregister(struct drm_i915_private *) {}
3633 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3634 { return 0; }
3635 static inline void intel_display_crc_init(struct drm_device *dev) {}
3636 #endif
3637
3638 /* i915_gpu_error.c */
3639 __printf(2, 3)
3640 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3641 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3642 const struct i915_error_state_file_priv *error);
3643 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3644 struct drm_i915_private *i915,
3645 size_t count, loff_t pos);
3646 static inline void i915_error_state_buf_release(
3647 struct drm_i915_error_state_buf *eb)
3648 {
3649 kfree(eb->buf);
3650 }
3651 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3652 u32 engine_mask,
3653 const char *error_msg);
3654 void i915_error_state_get(struct drm_device *dev,
3655 struct i915_error_state_file_priv *error_priv);
3656 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3657 void i915_destroy_error_state(struct drm_device *dev);
3658
3659 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3660 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3661
3662 /* i915_cmd_parser.c */
3663 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3664 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3665 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3666 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3667 int i915_parse_cmds(struct intel_engine_cs *engine,
3668 struct drm_i915_gem_object *batch_obj,
3669 struct drm_i915_gem_object *shadow_batch_obj,
3670 u32 batch_start_offset,
3671 u32 batch_len,
3672 bool is_master);
3673
3674 /* i915_suspend.c */
3675 extern int i915_save_state(struct drm_device *dev);
3676 extern int i915_restore_state(struct drm_device *dev);
3677
3678 /* i915_sysfs.c */
3679 void i915_setup_sysfs(struct drm_device *dev_priv);
3680 void i915_teardown_sysfs(struct drm_device *dev_priv);
3681
3682 /* intel_i2c.c */
3683 extern int intel_setup_gmbus(struct drm_device *dev);
3684 extern void intel_teardown_gmbus(struct drm_device *dev);
3685 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3686 unsigned int pin);
3687
3688 extern struct i2c_adapter *
3689 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3690 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3691 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3692 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3693 {
3694 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3695 }
3696 extern void intel_i2c_reset(struct drm_device *dev);
3697
3698 /* intel_bios.c */
3699 int intel_bios_init(struct drm_i915_private *dev_priv);
3700 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3701 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3702 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3703 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3704 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3705 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3706 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3707 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3708 enum port port);
3709
3710 /* intel_opregion.c */
3711 #ifdef CONFIG_ACPI
3712 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3713 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3714 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3715 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3716 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3717 bool enable);
3718 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3719 pci_power_t state);
3720 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3721 #else
3722 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3723 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3724 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3725 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3726 {
3727 }
3728 static inline int
3729 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3730 {
3731 return 0;
3732 }
3733 static inline int
3734 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3735 {
3736 return 0;
3737 }
3738 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3739 {
3740 return -ENODEV;
3741 }
3742 #endif
3743
3744 /* intel_acpi.c */
3745 #ifdef CONFIG_ACPI
3746 extern void intel_register_dsm_handler(void);
3747 extern void intel_unregister_dsm_handler(void);
3748 #else
3749 static inline void intel_register_dsm_handler(void) { return; }
3750 static inline void intel_unregister_dsm_handler(void) { return; }
3751 #endif /* CONFIG_ACPI */
3752
3753 /* modesetting */
3754 extern void intel_modeset_init_hw(struct drm_device *dev);
3755 extern void intel_modeset_init(struct drm_device *dev);
3756 extern void intel_modeset_gem_init(struct drm_device *dev);
3757 extern void intel_modeset_cleanup(struct drm_device *dev);
3758 extern int intel_connector_register(struct drm_connector *);
3759 extern void intel_connector_unregister(struct drm_connector *);
3760 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3761 extern void intel_display_resume(struct drm_device *dev);
3762 extern void i915_redisable_vga(struct drm_device *dev);
3763 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3764 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3765 extern void intel_init_pch_refclk(struct drm_device *dev);
3766 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3767 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3768 bool enable);
3769
3770 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3771 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3772 struct drm_file *file);
3773
3774 /* overlay */
3775 extern struct intel_overlay_error_state *
3776 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3777 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3778 struct intel_overlay_error_state *error);
3779
3780 extern struct intel_display_error_state *
3781 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3782 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3783 struct drm_device *dev,
3784 struct intel_display_error_state *error);
3785
3786 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3787 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3788
3789 /* intel_sideband.c */
3790 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3791 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3792 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3793 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3794 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3795 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3796 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3797 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3798 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3799 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3800 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3801 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3802 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3803 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3804 enum intel_sbi_destination destination);
3805 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3806 enum intel_sbi_destination destination);
3807 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3808 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3809
3810 /* intel_dpio_phy.c */
3811 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3812 u32 deemph_reg_value, u32 margin_reg_value,
3813 bool uniq_trans_scale);
3814 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3815 bool reset);
3816 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3817 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3818 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3819 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3820
3821 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3822 u32 demph_reg_value, u32 preemph_reg_value,
3823 u32 uniqtranscale_reg_value, u32 tx3_demph);
3824 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3825 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3826 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3827
3828 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3829 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3830
3831 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3832 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3833
3834 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3835 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3836 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3837 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3838
3839 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3840 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3841 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3842 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3843
3844 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3845 * will be implemented using 2 32-bit writes in an arbitrary order with
3846 * an arbitrary delay between them. This can cause the hardware to
3847 * act upon the intermediate value, possibly leading to corruption and
3848 * machine death. You have been warned.
3849 */
3850 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3851 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3852
3853 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3854 u32 upper, lower, old_upper, loop = 0; \
3855 upper = I915_READ(upper_reg); \
3856 do { \
3857 old_upper = upper; \
3858 lower = I915_READ(lower_reg); \
3859 upper = I915_READ(upper_reg); \
3860 } while (upper != old_upper && loop++ < 2); \
3861 (u64)upper << 32 | lower; })
3862
3863 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3864 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3865
3866 #define __raw_read(x, s) \
3867 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3868 i915_reg_t reg) \
3869 { \
3870 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3871 }
3872
3873 #define __raw_write(x, s) \
3874 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3875 i915_reg_t reg, uint##x##_t val) \
3876 { \
3877 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3878 }
3879 __raw_read(8, b)
3880 __raw_read(16, w)
3881 __raw_read(32, l)
3882 __raw_read(64, q)
3883
3884 __raw_write(8, b)
3885 __raw_write(16, w)
3886 __raw_write(32, l)
3887 __raw_write(64, q)
3888
3889 #undef __raw_read
3890 #undef __raw_write
3891
3892 /* These are untraced mmio-accessors that are only valid to be used inside
3893 * criticial sections inside IRQ handlers where forcewake is explicitly
3894 * controlled.
3895 * Think twice, and think again, before using these.
3896 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3897 * intel_uncore_forcewake_irqunlock().
3898 */
3899 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3900 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3901 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3902 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3903
3904 /* "Broadcast RGB" property */
3905 #define INTEL_BROADCAST_RGB_AUTO 0
3906 #define INTEL_BROADCAST_RGB_FULL 1
3907 #define INTEL_BROADCAST_RGB_LIMITED 2
3908
3909 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3910 {
3911 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3912 return VLV_VGACNTRL;
3913 else if (INTEL_INFO(dev)->gen >= 5)
3914 return CPU_VGACNTRL;
3915 else
3916 return VGACNTRL;
3917 }
3918
3919 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3920 {
3921 unsigned long j = msecs_to_jiffies(m);
3922
3923 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3924 }
3925
3926 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3927 {
3928 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3929 }
3930
3931 static inline unsigned long
3932 timespec_to_jiffies_timeout(const struct timespec *value)
3933 {
3934 unsigned long j = timespec_to_jiffies(value);
3935
3936 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3937 }
3938
3939 /*
3940 * If you need to wait X milliseconds between events A and B, but event B
3941 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3942 * when event A happened, then just before event B you call this function and
3943 * pass the timestamp as the first argument, and X as the second argument.
3944 */
3945 static inline void
3946 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3947 {
3948 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3949
3950 /*
3951 * Don't re-read the value of "jiffies" every time since it may change
3952 * behind our back and break the math.
3953 */
3954 tmp_jiffies = jiffies;
3955 target_jiffies = timestamp_jiffies +
3956 msecs_to_jiffies_timeout(to_wait_ms);
3957
3958 if (time_after(target_jiffies, tmp_jiffies)) {
3959 remaining_jiffies = target_jiffies - tmp_jiffies;
3960 while (remaining_jiffies)
3961 remaining_jiffies =
3962 schedule_timeout_uninterruptible(remaining_jiffies);
3963 }
3964 }
3965 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3966 {
3967 struct intel_engine_cs *engine = req->engine;
3968
3969 /* Before we do the heavier coherent read of the seqno,
3970 * check the value (hopefully) in the CPU cacheline.
3971 */
3972 if (i915_gem_request_completed(req))
3973 return true;
3974
3975 /* Ensure our read of the seqno is coherent so that we
3976 * do not "miss an interrupt" (i.e. if this is the last
3977 * request and the seqno write from the GPU is not visible
3978 * by the time the interrupt fires, we will see that the
3979 * request is incomplete and go back to sleep awaiting
3980 * another interrupt that will never come.)
3981 *
3982 * Strictly, we only need to do this once after an interrupt,
3983 * but it is easier and safer to do it every time the waiter
3984 * is woken.
3985 */
3986 if (engine->irq_seqno_barrier &&
3987 cmpxchg_relaxed(&engine->irq_posted, 1, 0)) {
3988 /* The ordering of irq_posted versus applying the barrier
3989 * is crucial. The clearing of the current irq_posted must
3990 * be visible before we perform the barrier operation,
3991 * such that if a subsequent interrupt arrives, irq_posted
3992 * is reasserted and our task rewoken (which causes us to
3993 * do another __i915_request_irq_complete() immediately
3994 * and reapply the barrier). Conversely, if the clear
3995 * occurs after the barrier, then an interrupt that arrived
3996 * whilst we waited on the barrier would not trigger a
3997 * barrier on the next pass, and the read may not see the
3998 * seqno update.
3999 */
4000 engine->irq_seqno_barrier(engine);
4001 if (i915_gem_request_completed(req))
4002 return true;
4003 }
4004
4005 /* We need to check whether any gpu reset happened in between
4006 * the request being submitted and now. If a reset has occurred,
4007 * the seqno will have been advance past ours and our request
4008 * is complete. If we are in the process of handling a reset,
4009 * the request is effectively complete as the rendering will
4010 * be discarded, but we need to return in order to drop the
4011 * struct_mutex.
4012 */
4013 if (i915_reset_in_progress(&req->i915->gpu_error))
4014 return true;
4015
4016 return false;
4017 }
4018
4019 #endif
This page took 0.122898 seconds and 6 git commands to generate.