drm/i915: Make ring buffer size of a LRC context configurable
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50
51 #include "i915_params.h"
52 #include "i915_reg.h"
53
54 #include "intel_bios.h"
55 #include "intel_dpll_mgr.h"
56 #include "intel_guc.h"
57 #include "intel_lrc.h"
58 #include "intel_ringbuffer.h"
59
60 #include "i915_gem.h"
61 #include "i915_gem_gtt.h"
62 #include "i915_gem_render_state.h"
63
64 #include "intel_gvt.h"
65
66 /* General customization:
67 */
68
69 #define DRIVER_NAME "i915"
70 #define DRIVER_DESC "Intel Graphics"
71 #define DRIVER_DATE "20160606"
72
73 #undef WARN_ON
74 /* Many gcc seem to no see through this and fall over :( */
75 #if 0
76 #define WARN_ON(x) ({ \
77 bool __i915_warn_cond = (x); \
78 if (__builtin_constant_p(__i915_warn_cond)) \
79 BUILD_BUG_ON(__i915_warn_cond); \
80 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
81 #else
82 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
83 #endif
84
85 #undef WARN_ON_ONCE
86 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
87
88 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
89 (long) (x), __func__);
90
91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
93 * which may not necessarily be a user visible problem. This will either
94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
95 * enable distros and users to tailor their preferred amount of i915 abrt
96 * spam.
97 */
98 #define I915_STATE_WARN(condition, format...) ({ \
99 int __ret_warn_on = !!(condition); \
100 if (unlikely(__ret_warn_on)) \
101 if (!WARN(i915.verbose_state_checks, format)) \
102 DRM_ERROR(format); \
103 unlikely(__ret_warn_on); \
104 })
105
106 #define I915_STATE_WARN_ON(x) \
107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
108
109 bool __i915_inject_load_failure(const char *func, int line);
110 #define i915_inject_load_failure() \
111 __i915_inject_load_failure(__func__, __LINE__)
112
113 static inline const char *yesno(bool v)
114 {
115 return v ? "yes" : "no";
116 }
117
118 static inline const char *onoff(bool v)
119 {
120 return v ? "on" : "off";
121 }
122
123 enum pipe {
124 INVALID_PIPE = -1,
125 PIPE_A = 0,
126 PIPE_B,
127 PIPE_C,
128 _PIPE_EDP,
129 I915_MAX_PIPES = _PIPE_EDP
130 };
131 #define pipe_name(p) ((p) + 'A')
132
133 enum transcoder {
134 TRANSCODER_A = 0,
135 TRANSCODER_B,
136 TRANSCODER_C,
137 TRANSCODER_EDP,
138 TRANSCODER_DSI_A,
139 TRANSCODER_DSI_C,
140 I915_MAX_TRANSCODERS
141 };
142
143 static inline const char *transcoder_name(enum transcoder transcoder)
144 {
145 switch (transcoder) {
146 case TRANSCODER_A:
147 return "A";
148 case TRANSCODER_B:
149 return "B";
150 case TRANSCODER_C:
151 return "C";
152 case TRANSCODER_EDP:
153 return "EDP";
154 case TRANSCODER_DSI_A:
155 return "DSI A";
156 case TRANSCODER_DSI_C:
157 return "DSI C";
158 default:
159 return "<invalid>";
160 }
161 }
162
163 static inline bool transcoder_is_dsi(enum transcoder transcoder)
164 {
165 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
166 }
167
168 /*
169 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
170 * number of planes per CRTC. Not all platforms really have this many planes,
171 * which means some arrays of size I915_MAX_PLANES may have unused entries
172 * between the topmost sprite plane and the cursor plane.
173 */
174 enum plane {
175 PLANE_A = 0,
176 PLANE_B,
177 PLANE_C,
178 PLANE_CURSOR,
179 I915_MAX_PLANES,
180 };
181 #define plane_name(p) ((p) + 'A')
182
183 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
184
185 enum port {
186 PORT_A = 0,
187 PORT_B,
188 PORT_C,
189 PORT_D,
190 PORT_E,
191 I915_MAX_PORTS
192 };
193 #define port_name(p) ((p) + 'A')
194
195 #define I915_NUM_PHYS_VLV 2
196
197 enum dpio_channel {
198 DPIO_CH0,
199 DPIO_CH1
200 };
201
202 enum dpio_phy {
203 DPIO_PHY0,
204 DPIO_PHY1
205 };
206
207 enum intel_display_power_domain {
208 POWER_DOMAIN_PIPE_A,
209 POWER_DOMAIN_PIPE_B,
210 POWER_DOMAIN_PIPE_C,
211 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
212 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
214 POWER_DOMAIN_TRANSCODER_A,
215 POWER_DOMAIN_TRANSCODER_B,
216 POWER_DOMAIN_TRANSCODER_C,
217 POWER_DOMAIN_TRANSCODER_EDP,
218 POWER_DOMAIN_TRANSCODER_DSI_A,
219 POWER_DOMAIN_TRANSCODER_DSI_C,
220 POWER_DOMAIN_PORT_DDI_A_LANES,
221 POWER_DOMAIN_PORT_DDI_B_LANES,
222 POWER_DOMAIN_PORT_DDI_C_LANES,
223 POWER_DOMAIN_PORT_DDI_D_LANES,
224 POWER_DOMAIN_PORT_DDI_E_LANES,
225 POWER_DOMAIN_PORT_DSI,
226 POWER_DOMAIN_PORT_CRT,
227 POWER_DOMAIN_PORT_OTHER,
228 POWER_DOMAIN_VGA,
229 POWER_DOMAIN_AUDIO,
230 POWER_DOMAIN_PLLS,
231 POWER_DOMAIN_AUX_A,
232 POWER_DOMAIN_AUX_B,
233 POWER_DOMAIN_AUX_C,
234 POWER_DOMAIN_AUX_D,
235 POWER_DOMAIN_GMBUS,
236 POWER_DOMAIN_MODESET,
237 POWER_DOMAIN_INIT,
238
239 POWER_DOMAIN_NUM,
240 };
241
242 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
243 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
244 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
245 #define POWER_DOMAIN_TRANSCODER(tran) \
246 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
247 (tran) + POWER_DOMAIN_TRANSCODER_A)
248
249 enum hpd_pin {
250 HPD_NONE = 0,
251 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
252 HPD_CRT,
253 HPD_SDVO_B,
254 HPD_SDVO_C,
255 HPD_PORT_A,
256 HPD_PORT_B,
257 HPD_PORT_C,
258 HPD_PORT_D,
259 HPD_PORT_E,
260 HPD_NUM_PINS
261 };
262
263 #define for_each_hpd_pin(__pin) \
264 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
265
266 struct i915_hotplug {
267 struct work_struct hotplug_work;
268
269 struct {
270 unsigned long last_jiffies;
271 int count;
272 enum {
273 HPD_ENABLED = 0,
274 HPD_DISABLED = 1,
275 HPD_MARK_DISABLED = 2
276 } state;
277 } stats[HPD_NUM_PINS];
278 u32 event_bits;
279 struct delayed_work reenable_work;
280
281 struct intel_digital_port *irq_port[I915_MAX_PORTS];
282 u32 long_port_mask;
283 u32 short_port_mask;
284 struct work_struct dig_port_work;
285
286 /*
287 * if we get a HPD irq from DP and a HPD irq from non-DP
288 * the non-DP HPD could block the workqueue on a mode config
289 * mutex getting, that userspace may have taken. However
290 * userspace is waiting on the DP workqueue to run which is
291 * blocked behind the non-DP one.
292 */
293 struct workqueue_struct *dp_wq;
294 };
295
296 #define I915_GEM_GPU_DOMAINS \
297 (I915_GEM_DOMAIN_RENDER | \
298 I915_GEM_DOMAIN_SAMPLER | \
299 I915_GEM_DOMAIN_COMMAND | \
300 I915_GEM_DOMAIN_INSTRUCTION | \
301 I915_GEM_DOMAIN_VERTEX)
302
303 #define for_each_pipe(__dev_priv, __p) \
304 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
305 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
306 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
307 for_each_if ((__mask) & (1 << (__p)))
308 #define for_each_plane(__dev_priv, __pipe, __p) \
309 for ((__p) = 0; \
310 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
311 (__p)++)
312 #define for_each_sprite(__dev_priv, __p, __s) \
313 for ((__s) = 0; \
314 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
315 (__s)++)
316
317 #define for_each_port_masked(__port, __ports_mask) \
318 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
319 for_each_if ((__ports_mask) & (1 << (__port)))
320
321 #define for_each_crtc(dev, crtc) \
322 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
323
324 #define for_each_intel_plane(dev, intel_plane) \
325 list_for_each_entry(intel_plane, \
326 &dev->mode_config.plane_list, \
327 base.head)
328
329 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
330 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, \
331 base.head) \
332 for_each_if ((plane_mask) & \
333 (1 << drm_plane_index(&intel_plane->base)))
334
335 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
336 list_for_each_entry(intel_plane, \
337 &(dev)->mode_config.plane_list, \
338 base.head) \
339 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
340
341 #define for_each_intel_crtc(dev, intel_crtc) \
342 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
343
344 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
345 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) \
346 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
347
348 #define for_each_intel_encoder(dev, intel_encoder) \
349 list_for_each_entry(intel_encoder, \
350 &(dev)->mode_config.encoder_list, \
351 base.head)
352
353 #define for_each_intel_connector(dev, intel_connector) \
354 list_for_each_entry(intel_connector, \
355 &dev->mode_config.connector_list, \
356 base.head)
357
358 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
359 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
360 for_each_if ((intel_encoder)->base.crtc == (__crtc))
361
362 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
363 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
364 for_each_if ((intel_connector)->base.encoder == (__encoder))
365
366 #define for_each_power_domain(domain, mask) \
367 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
368 for_each_if ((1 << (domain)) & (mask))
369
370 struct drm_i915_private;
371 struct i915_mm_struct;
372 struct i915_mmu_object;
373
374 struct drm_i915_file_private {
375 struct drm_i915_private *dev_priv;
376 struct drm_file *file;
377
378 struct {
379 spinlock_t lock;
380 struct list_head request_list;
381 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
382 * chosen to prevent the CPU getting more than a frame ahead of the GPU
383 * (when using lax throttling for the frontbuffer). We also use it to
384 * offer free GPU waitboosts for severely congested workloads.
385 */
386 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
387 } mm;
388 struct idr context_idr;
389
390 struct intel_rps_client {
391 struct list_head link;
392 unsigned boosts;
393 } rps;
394
395 unsigned int bsd_ring;
396 };
397
398 /* Used by dp and fdi links */
399 struct intel_link_m_n {
400 uint32_t tu;
401 uint32_t gmch_m;
402 uint32_t gmch_n;
403 uint32_t link_m;
404 uint32_t link_n;
405 };
406
407 void intel_link_compute_m_n(int bpp, int nlanes,
408 int pixel_clock, int link_clock,
409 struct intel_link_m_n *m_n);
410
411 /* Interface history:
412 *
413 * 1.1: Original.
414 * 1.2: Add Power Management
415 * 1.3: Add vblank support
416 * 1.4: Fix cmdbuffer path, add heap destroy
417 * 1.5: Add vblank pipe configuration
418 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
419 * - Support vertical blank on secondary display pipe
420 */
421 #define DRIVER_MAJOR 1
422 #define DRIVER_MINOR 6
423 #define DRIVER_PATCHLEVEL 0
424
425 #define WATCH_LISTS 0
426
427 struct opregion_header;
428 struct opregion_acpi;
429 struct opregion_swsci;
430 struct opregion_asle;
431
432 struct intel_opregion {
433 struct opregion_header *header;
434 struct opregion_acpi *acpi;
435 struct opregion_swsci *swsci;
436 u32 swsci_gbda_sub_functions;
437 u32 swsci_sbcb_sub_functions;
438 struct opregion_asle *asle;
439 void *rvda;
440 const void *vbt;
441 u32 vbt_size;
442 u32 *lid_state;
443 struct work_struct asle_work;
444 };
445 #define OPREGION_SIZE (8*1024)
446
447 struct intel_overlay;
448 struct intel_overlay_error_state;
449
450 #define I915_FENCE_REG_NONE -1
451 #define I915_MAX_NUM_FENCES 32
452 /* 32 fences + sign bit for FENCE_REG_NONE */
453 #define I915_MAX_NUM_FENCE_BITS 6
454
455 struct drm_i915_fence_reg {
456 struct list_head lru_list;
457 struct drm_i915_gem_object *obj;
458 int pin_count;
459 };
460
461 struct sdvo_device_mapping {
462 u8 initialized;
463 u8 dvo_port;
464 u8 slave_addr;
465 u8 dvo_wiring;
466 u8 i2c_pin;
467 u8 ddc_pin;
468 };
469
470 struct intel_display_error_state;
471
472 struct drm_i915_error_state {
473 struct kref ref;
474 struct timeval time;
475
476 char error_msg[128];
477 int iommu;
478 u32 reset_count;
479 u32 suspend_count;
480
481 /* Generic register state */
482 u32 eir;
483 u32 pgtbl_er;
484 u32 ier;
485 u32 gtier[4];
486 u32 ccid;
487 u32 derrmr;
488 u32 forcewake;
489 u32 error; /* gen6+ */
490 u32 err_int; /* gen7 */
491 u32 fault_data0; /* gen8, gen9 */
492 u32 fault_data1; /* gen8, gen9 */
493 u32 done_reg;
494 u32 gac_eco;
495 u32 gam_ecochk;
496 u32 gab_ctl;
497 u32 gfx_mode;
498 u32 extra_instdone[I915_NUM_INSTDONE_REG];
499 u64 fence[I915_MAX_NUM_FENCES];
500 struct intel_overlay_error_state *overlay;
501 struct intel_display_error_state *display;
502 struct drm_i915_error_object *semaphore_obj;
503
504 struct drm_i915_error_ring {
505 bool valid;
506 /* Software tracked state */
507 bool waiting;
508 int hangcheck_score;
509 enum intel_ring_hangcheck_action hangcheck_action;
510 int num_requests;
511
512 /* our own tracking of ring head and tail */
513 u32 cpu_ring_head;
514 u32 cpu_ring_tail;
515
516 u32 last_seqno;
517 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
518
519 /* Register state */
520 u32 start;
521 u32 tail;
522 u32 head;
523 u32 ctl;
524 u32 hws;
525 u32 ipeir;
526 u32 ipehr;
527 u32 instdone;
528 u32 bbstate;
529 u32 instpm;
530 u32 instps;
531 u32 seqno;
532 u64 bbaddr;
533 u64 acthd;
534 u32 fault_reg;
535 u64 faddr;
536 u32 rc_psmi; /* sleep state */
537 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
538
539 struct drm_i915_error_object {
540 int page_count;
541 u64 gtt_offset;
542 u32 *pages[0];
543 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
544
545 struct drm_i915_error_object *wa_ctx;
546
547 struct drm_i915_error_request {
548 long jiffies;
549 u32 seqno;
550 u32 tail;
551 } *requests;
552
553 struct {
554 u32 gfx_mode;
555 union {
556 u64 pdp[4];
557 u32 pp_dir_base;
558 };
559 } vm_info;
560
561 pid_t pid;
562 char comm[TASK_COMM_LEN];
563 } ring[I915_NUM_ENGINES];
564
565 struct drm_i915_error_buffer {
566 u32 size;
567 u32 name;
568 u32 rseqno[I915_NUM_ENGINES], wseqno;
569 u64 gtt_offset;
570 u32 read_domains;
571 u32 write_domain;
572 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
573 s32 pinned:2;
574 u32 tiling:2;
575 u32 dirty:1;
576 u32 purgeable:1;
577 u32 userptr:1;
578 s32 ring:4;
579 u32 cache_level:3;
580 } **active_bo, **pinned_bo;
581
582 u32 *active_bo_count, *pinned_bo_count;
583 u32 vm_count;
584 };
585
586 struct intel_connector;
587 struct intel_encoder;
588 struct intel_crtc_state;
589 struct intel_initial_plane_config;
590 struct intel_crtc;
591 struct intel_limit;
592 struct dpll;
593
594 struct drm_i915_display_funcs {
595 int (*get_display_clock_speed)(struct drm_device *dev);
596 int (*get_fifo_size)(struct drm_device *dev, int plane);
597 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
598 int (*compute_intermediate_wm)(struct drm_device *dev,
599 struct intel_crtc *intel_crtc,
600 struct intel_crtc_state *newstate);
601 void (*initial_watermarks)(struct intel_crtc_state *cstate);
602 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
603 int (*compute_global_watermarks)(struct drm_atomic_state *state);
604 void (*update_wm)(struct drm_crtc *crtc);
605 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
606 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
607 /* Returns the active state of the crtc, and if the crtc is active,
608 * fills out the pipe-config with the hw state. */
609 bool (*get_pipe_config)(struct intel_crtc *,
610 struct intel_crtc_state *);
611 void (*get_initial_plane_config)(struct intel_crtc *,
612 struct intel_initial_plane_config *);
613 int (*crtc_compute_clock)(struct intel_crtc *crtc,
614 struct intel_crtc_state *crtc_state);
615 void (*crtc_enable)(struct drm_crtc *crtc);
616 void (*crtc_disable)(struct drm_crtc *crtc);
617 void (*audio_codec_enable)(struct drm_connector *connector,
618 struct intel_encoder *encoder,
619 const struct drm_display_mode *adjusted_mode);
620 void (*audio_codec_disable)(struct intel_encoder *encoder);
621 void (*fdi_link_train)(struct drm_crtc *crtc);
622 void (*init_clock_gating)(struct drm_device *dev);
623 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
624 struct drm_framebuffer *fb,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_request *req,
627 uint32_t flags);
628 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
629 /* clock updates for mode set */
630 /* cursor updates */
631 /* render clock increase/decrease */
632 /* display clock increase/decrease */
633 /* pll clock increase/decrease */
634
635 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
636 void (*load_luts)(struct drm_crtc_state *crtc_state);
637 };
638
639 enum forcewake_domain_id {
640 FW_DOMAIN_ID_RENDER = 0,
641 FW_DOMAIN_ID_BLITTER,
642 FW_DOMAIN_ID_MEDIA,
643
644 FW_DOMAIN_ID_COUNT
645 };
646
647 enum forcewake_domains {
648 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
649 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
650 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
651 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
652 FORCEWAKE_BLITTER |
653 FORCEWAKE_MEDIA)
654 };
655
656 #define FW_REG_READ (1)
657 #define FW_REG_WRITE (2)
658
659 enum forcewake_domains
660 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
661 i915_reg_t reg, unsigned int op);
662
663 struct intel_uncore_funcs {
664 void (*force_wake_get)(struct drm_i915_private *dev_priv,
665 enum forcewake_domains domains);
666 void (*force_wake_put)(struct drm_i915_private *dev_priv,
667 enum forcewake_domains domains);
668
669 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
670 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
671 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
672 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
673
674 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
675 uint8_t val, bool trace);
676 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
677 uint16_t val, bool trace);
678 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
679 uint32_t val, bool trace);
680 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
681 uint64_t val, bool trace);
682 };
683
684 struct intel_uncore {
685 spinlock_t lock; /** lock is also taken in irq contexts. */
686
687 struct intel_uncore_funcs funcs;
688
689 unsigned fifo_count;
690 enum forcewake_domains fw_domains;
691
692 struct intel_uncore_forcewake_domain {
693 struct drm_i915_private *i915;
694 enum forcewake_domain_id id;
695 enum forcewake_domains mask;
696 unsigned wake_count;
697 struct hrtimer timer;
698 i915_reg_t reg_set;
699 u32 val_set;
700 u32 val_clear;
701 i915_reg_t reg_ack;
702 i915_reg_t reg_post;
703 u32 val_reset;
704 } fw_domain[FW_DOMAIN_ID_COUNT];
705
706 int unclaimed_mmio_check;
707 };
708
709 /* Iterate over initialised fw domains */
710 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
711 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
712 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
713 (domain__)++) \
714 for_each_if ((mask__) & (domain__)->mask)
715
716 #define for_each_fw_domain(domain__, dev_priv__) \
717 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
718
719 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
720 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
721 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
722
723 struct intel_csr {
724 struct work_struct work;
725 const char *fw_path;
726 uint32_t *dmc_payload;
727 uint32_t dmc_fw_size;
728 uint32_t version;
729 uint32_t mmio_count;
730 i915_reg_t mmioaddr[8];
731 uint32_t mmiodata[8];
732 uint32_t dc_state;
733 uint32_t allowed_dc_mask;
734 };
735
736 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
737 func(is_mobile) sep \
738 func(is_i85x) sep \
739 func(is_i915g) sep \
740 func(is_i945gm) sep \
741 func(is_g33) sep \
742 func(need_gfx_hws) sep \
743 func(is_g4x) sep \
744 func(is_pineview) sep \
745 func(is_broadwater) sep \
746 func(is_crestline) sep \
747 func(is_ivybridge) sep \
748 func(is_valleyview) sep \
749 func(is_cherryview) sep \
750 func(is_haswell) sep \
751 func(is_broadwell) sep \
752 func(is_skylake) sep \
753 func(is_broxton) sep \
754 func(is_kabylake) sep \
755 func(is_preliminary) sep \
756 func(has_fbc) sep \
757 func(has_pipe_cxsr) sep \
758 func(has_hotplug) sep \
759 func(cursor_needs_physical) sep \
760 func(has_overlay) sep \
761 func(overlay_needs_physical) sep \
762 func(supports_tv) sep \
763 func(has_llc) sep \
764 func(has_snoop) sep \
765 func(has_ddi) sep \
766 func(has_fpga_dbg) sep \
767 func(has_pooled_eu)
768
769 #define DEFINE_FLAG(name) u8 name:1
770 #define SEP_SEMICOLON ;
771
772 struct intel_device_info {
773 u32 display_mmio_offset;
774 u16 device_id;
775 u8 num_pipes;
776 u8 num_sprites[I915_MAX_PIPES];
777 u8 gen;
778 u16 gen_mask;
779 u8 ring_mask; /* Rings supported by the HW */
780 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
781 /* Register offsets for the various display pipes and transcoders */
782 int pipe_offsets[I915_MAX_TRANSCODERS];
783 int trans_offsets[I915_MAX_TRANSCODERS];
784 int palette_offsets[I915_MAX_PIPES];
785 int cursor_offsets[I915_MAX_PIPES];
786
787 /* Slice/subslice/EU info */
788 u8 slice_total;
789 u8 subslice_total;
790 u8 subslice_per_slice;
791 u8 eu_total;
792 u8 eu_per_subslice;
793 u8 min_eu_in_pool;
794 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
795 u8 subslice_7eu[3];
796 u8 has_slice_pg:1;
797 u8 has_subslice_pg:1;
798 u8 has_eu_pg:1;
799
800 struct color_luts {
801 u16 degamma_lut_size;
802 u16 gamma_lut_size;
803 } color;
804 };
805
806 #undef DEFINE_FLAG
807 #undef SEP_SEMICOLON
808
809 enum i915_cache_level {
810 I915_CACHE_NONE = 0,
811 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
812 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
813 caches, eg sampler/render caches, and the
814 large Last-Level-Cache. LLC is coherent with
815 the CPU, but L3 is only visible to the GPU. */
816 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
817 };
818
819 struct i915_ctx_hang_stats {
820 /* This context had batch pending when hang was declared */
821 unsigned batch_pending;
822
823 /* This context had batch active when hang was declared */
824 unsigned batch_active;
825
826 /* Time when this context was last blamed for a GPU reset */
827 unsigned long guilty_ts;
828
829 /* If the contexts causes a second GPU hang within this time,
830 * it is permanently banned from submitting any more work.
831 */
832 unsigned long ban_period_seconds;
833
834 /* This context is banned to submit more work */
835 bool banned;
836 };
837
838 /* This must match up with the value previously used for execbuf2.rsvd1. */
839 #define DEFAULT_CONTEXT_HANDLE 0
840
841 /**
842 * struct i915_gem_context - as the name implies, represents a context.
843 * @ref: reference count.
844 * @user_handle: userspace tracking identity for this context.
845 * @remap_slice: l3 row remapping information.
846 * @flags: context specific flags:
847 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
848 * @file_priv: filp associated with this context (NULL for global default
849 * context).
850 * @hang_stats: information about the role of this context in possible GPU
851 * hangs.
852 * @ppgtt: virtual memory space used by this context.
853 * @legacy_hw_ctx: render context backing object and whether it is correctly
854 * initialized (legacy ring submission mechanism only).
855 * @link: link in the global list of contexts.
856 *
857 * Contexts are memory images used by the hardware to store copies of their
858 * internal state.
859 */
860 struct i915_gem_context {
861 struct kref ref;
862 struct drm_i915_private *i915;
863 struct drm_i915_file_private *file_priv;
864 struct i915_hw_ppgtt *ppgtt;
865
866 struct i915_ctx_hang_stats hang_stats;
867
868 /* Unique identifier for this context, used by the hw for tracking */
869 unsigned long flags;
870 unsigned hw_id;
871 u32 user_handle;
872 #define CONTEXT_NO_ZEROMAP (1<<0)
873
874 struct intel_context {
875 struct drm_i915_gem_object *state;
876 struct intel_ringbuffer *ringbuf;
877 struct i915_vma *lrc_vma;
878 uint32_t *lrc_reg_state;
879 u64 lrc_desc;
880 int pin_count;
881 bool initialised;
882 } engine[I915_NUM_ENGINES];
883 u32 ring_size;
884
885 struct list_head link;
886
887 u8 remap_slice;
888 };
889
890 enum fb_op_origin {
891 ORIGIN_GTT,
892 ORIGIN_CPU,
893 ORIGIN_CS,
894 ORIGIN_FLIP,
895 ORIGIN_DIRTYFB,
896 };
897
898 struct intel_fbc {
899 /* This is always the inner lock when overlapping with struct_mutex and
900 * it's the outer lock when overlapping with stolen_lock. */
901 struct mutex lock;
902 unsigned threshold;
903 unsigned int possible_framebuffer_bits;
904 unsigned int busy_bits;
905 unsigned int visible_pipes_mask;
906 struct intel_crtc *crtc;
907
908 struct drm_mm_node compressed_fb;
909 struct drm_mm_node *compressed_llb;
910
911 bool false_color;
912
913 bool enabled;
914 bool active;
915
916 struct intel_fbc_state_cache {
917 struct {
918 unsigned int mode_flags;
919 uint32_t hsw_bdw_pixel_rate;
920 } crtc;
921
922 struct {
923 unsigned int rotation;
924 int src_w;
925 int src_h;
926 bool visible;
927 } plane;
928
929 struct {
930 u64 ilk_ggtt_offset;
931 uint32_t pixel_format;
932 unsigned int stride;
933 int fence_reg;
934 unsigned int tiling_mode;
935 } fb;
936 } state_cache;
937
938 struct intel_fbc_reg_params {
939 struct {
940 enum pipe pipe;
941 enum plane plane;
942 unsigned int fence_y_offset;
943 } crtc;
944
945 struct {
946 u64 ggtt_offset;
947 uint32_t pixel_format;
948 unsigned int stride;
949 int fence_reg;
950 } fb;
951
952 int cfb_size;
953 } params;
954
955 struct intel_fbc_work {
956 bool scheduled;
957 u32 scheduled_vblank;
958 struct work_struct work;
959 } work;
960
961 const char *no_fbc_reason;
962 };
963
964 /**
965 * HIGH_RR is the highest eDP panel refresh rate read from EDID
966 * LOW_RR is the lowest eDP panel refresh rate found from EDID
967 * parsing for same resolution.
968 */
969 enum drrs_refresh_rate_type {
970 DRRS_HIGH_RR,
971 DRRS_LOW_RR,
972 DRRS_MAX_RR, /* RR count */
973 };
974
975 enum drrs_support_type {
976 DRRS_NOT_SUPPORTED = 0,
977 STATIC_DRRS_SUPPORT = 1,
978 SEAMLESS_DRRS_SUPPORT = 2
979 };
980
981 struct intel_dp;
982 struct i915_drrs {
983 struct mutex mutex;
984 struct delayed_work work;
985 struct intel_dp *dp;
986 unsigned busy_frontbuffer_bits;
987 enum drrs_refresh_rate_type refresh_rate_type;
988 enum drrs_support_type type;
989 };
990
991 struct i915_psr {
992 struct mutex lock;
993 bool sink_support;
994 bool source_ok;
995 struct intel_dp *enabled;
996 bool active;
997 struct delayed_work work;
998 unsigned busy_frontbuffer_bits;
999 bool psr2_support;
1000 bool aux_frame_sync;
1001 bool link_standby;
1002 };
1003
1004 enum intel_pch {
1005 PCH_NONE = 0, /* No PCH present */
1006 PCH_IBX, /* Ibexpeak PCH */
1007 PCH_CPT, /* Cougarpoint PCH */
1008 PCH_LPT, /* Lynxpoint PCH */
1009 PCH_SPT, /* Sunrisepoint PCH */
1010 PCH_NOP,
1011 };
1012
1013 enum intel_sbi_destination {
1014 SBI_ICLK,
1015 SBI_MPHY,
1016 };
1017
1018 #define QUIRK_PIPEA_FORCE (1<<0)
1019 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1020 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1021 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1022 #define QUIRK_PIPEB_FORCE (1<<4)
1023 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1024
1025 struct intel_fbdev;
1026 struct intel_fbc_work;
1027
1028 struct intel_gmbus {
1029 struct i2c_adapter adapter;
1030 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1031 u32 force_bit;
1032 u32 reg0;
1033 i915_reg_t gpio_reg;
1034 struct i2c_algo_bit_data bit_algo;
1035 struct drm_i915_private *dev_priv;
1036 };
1037
1038 struct i915_suspend_saved_registers {
1039 u32 saveDSPARB;
1040 u32 saveLVDS;
1041 u32 savePP_ON_DELAYS;
1042 u32 savePP_OFF_DELAYS;
1043 u32 savePP_ON;
1044 u32 savePP_OFF;
1045 u32 savePP_CONTROL;
1046 u32 savePP_DIVISOR;
1047 u32 saveFBC_CONTROL;
1048 u32 saveCACHE_MODE_0;
1049 u32 saveMI_ARB_STATE;
1050 u32 saveSWF0[16];
1051 u32 saveSWF1[16];
1052 u32 saveSWF3[3];
1053 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1054 u32 savePCH_PORT_HOTPLUG;
1055 u16 saveGCDGMBUS;
1056 };
1057
1058 struct vlv_s0ix_state {
1059 /* GAM */
1060 u32 wr_watermark;
1061 u32 gfx_prio_ctrl;
1062 u32 arb_mode;
1063 u32 gfx_pend_tlb0;
1064 u32 gfx_pend_tlb1;
1065 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1066 u32 media_max_req_count;
1067 u32 gfx_max_req_count;
1068 u32 render_hwsp;
1069 u32 ecochk;
1070 u32 bsd_hwsp;
1071 u32 blt_hwsp;
1072 u32 tlb_rd_addr;
1073
1074 /* MBC */
1075 u32 g3dctl;
1076 u32 gsckgctl;
1077 u32 mbctl;
1078
1079 /* GCP */
1080 u32 ucgctl1;
1081 u32 ucgctl3;
1082 u32 rcgctl1;
1083 u32 rcgctl2;
1084 u32 rstctl;
1085 u32 misccpctl;
1086
1087 /* GPM */
1088 u32 gfxpause;
1089 u32 rpdeuhwtc;
1090 u32 rpdeuc;
1091 u32 ecobus;
1092 u32 pwrdwnupctl;
1093 u32 rp_down_timeout;
1094 u32 rp_deucsw;
1095 u32 rcubmabdtmr;
1096 u32 rcedata;
1097 u32 spare2gh;
1098
1099 /* Display 1 CZ domain */
1100 u32 gt_imr;
1101 u32 gt_ier;
1102 u32 pm_imr;
1103 u32 pm_ier;
1104 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1105
1106 /* GT SA CZ domain */
1107 u32 tilectl;
1108 u32 gt_fifoctl;
1109 u32 gtlc_wake_ctrl;
1110 u32 gtlc_survive;
1111 u32 pmwgicz;
1112
1113 /* Display 2 CZ domain */
1114 u32 gu_ctl0;
1115 u32 gu_ctl1;
1116 u32 pcbr;
1117 u32 clock_gate_dis2;
1118 };
1119
1120 struct intel_rps_ei {
1121 u32 cz_clock;
1122 u32 render_c0;
1123 u32 media_c0;
1124 };
1125
1126 struct intel_gen6_power_mgmt {
1127 /*
1128 * work, interrupts_enabled and pm_iir are protected by
1129 * dev_priv->irq_lock
1130 */
1131 struct work_struct work;
1132 bool interrupts_enabled;
1133 u32 pm_iir;
1134
1135 u32 pm_intr_keep;
1136
1137 /* Frequencies are stored in potentially platform dependent multiples.
1138 * In other words, *_freq needs to be multiplied by X to be interesting.
1139 * Soft limits are those which are used for the dynamic reclocking done
1140 * by the driver (raise frequencies under heavy loads, and lower for
1141 * lighter loads). Hard limits are those imposed by the hardware.
1142 *
1143 * A distinction is made for overclocking, which is never enabled by
1144 * default, and is considered to be above the hard limit if it's
1145 * possible at all.
1146 */
1147 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1148 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1149 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1150 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1151 u8 min_freq; /* AKA RPn. Minimum frequency */
1152 u8 idle_freq; /* Frequency to request when we are idle */
1153 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1154 u8 rp1_freq; /* "less than" RP0 power/freqency */
1155 u8 rp0_freq; /* Non-overclocked max frequency. */
1156 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1157
1158 u8 up_threshold; /* Current %busy required to uplock */
1159 u8 down_threshold; /* Current %busy required to downclock */
1160
1161 int last_adj;
1162 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1163
1164 spinlock_t client_lock;
1165 struct list_head clients;
1166 bool client_boost;
1167
1168 bool enabled;
1169 struct delayed_work delayed_resume_work;
1170 unsigned boosts;
1171
1172 struct intel_rps_client semaphores, mmioflips;
1173
1174 /* manual wa residency calculations */
1175 struct intel_rps_ei up_ei, down_ei;
1176
1177 /*
1178 * Protects RPS/RC6 register access and PCU communication.
1179 * Must be taken after struct_mutex if nested. Note that
1180 * this lock may be held for long periods of time when
1181 * talking to hw - so only take it when talking to hw!
1182 */
1183 struct mutex hw_lock;
1184 };
1185
1186 /* defined intel_pm.c */
1187 extern spinlock_t mchdev_lock;
1188
1189 struct intel_ilk_power_mgmt {
1190 u8 cur_delay;
1191 u8 min_delay;
1192 u8 max_delay;
1193 u8 fmax;
1194 u8 fstart;
1195
1196 u64 last_count1;
1197 unsigned long last_time1;
1198 unsigned long chipset_power;
1199 u64 last_count2;
1200 u64 last_time2;
1201 unsigned long gfx_power;
1202 u8 corr;
1203
1204 int c_m;
1205 int r_t;
1206 };
1207
1208 struct drm_i915_private;
1209 struct i915_power_well;
1210
1211 struct i915_power_well_ops {
1212 /*
1213 * Synchronize the well's hw state to match the current sw state, for
1214 * example enable/disable it based on the current refcount. Called
1215 * during driver init and resume time, possibly after first calling
1216 * the enable/disable handlers.
1217 */
1218 void (*sync_hw)(struct drm_i915_private *dev_priv,
1219 struct i915_power_well *power_well);
1220 /*
1221 * Enable the well and resources that depend on it (for example
1222 * interrupts located on the well). Called after the 0->1 refcount
1223 * transition.
1224 */
1225 void (*enable)(struct drm_i915_private *dev_priv,
1226 struct i915_power_well *power_well);
1227 /*
1228 * Disable the well and resources that depend on it. Called after
1229 * the 1->0 refcount transition.
1230 */
1231 void (*disable)(struct drm_i915_private *dev_priv,
1232 struct i915_power_well *power_well);
1233 /* Returns the hw enabled state. */
1234 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1235 struct i915_power_well *power_well);
1236 };
1237
1238 /* Power well structure for haswell */
1239 struct i915_power_well {
1240 const char *name;
1241 bool always_on;
1242 /* power well enable/disable usage count */
1243 int count;
1244 /* cached hw enabled state */
1245 bool hw_enabled;
1246 unsigned long domains;
1247 unsigned long data;
1248 const struct i915_power_well_ops *ops;
1249 };
1250
1251 struct i915_power_domains {
1252 /*
1253 * Power wells needed for initialization at driver init and suspend
1254 * time are on. They are kept on until after the first modeset.
1255 */
1256 bool init_power_on;
1257 bool initializing;
1258 int power_well_count;
1259
1260 struct mutex lock;
1261 int domain_use_count[POWER_DOMAIN_NUM];
1262 struct i915_power_well *power_wells;
1263 };
1264
1265 #define MAX_L3_SLICES 2
1266 struct intel_l3_parity {
1267 u32 *remap_info[MAX_L3_SLICES];
1268 struct work_struct error_work;
1269 int which_slice;
1270 };
1271
1272 struct i915_gem_mm {
1273 /** Memory allocator for GTT stolen memory */
1274 struct drm_mm stolen;
1275 /** Protects the usage of the GTT stolen memory allocator. This is
1276 * always the inner lock when overlapping with struct_mutex. */
1277 struct mutex stolen_lock;
1278
1279 /** List of all objects in gtt_space. Used to restore gtt
1280 * mappings on resume */
1281 struct list_head bound_list;
1282 /**
1283 * List of objects which are not bound to the GTT (thus
1284 * are idle and not used by the GPU) but still have
1285 * (presumably uncached) pages still attached.
1286 */
1287 struct list_head unbound_list;
1288
1289 /** Usable portion of the GTT for GEM */
1290 unsigned long stolen_base; /* limited to low memory (32-bit) */
1291
1292 /** PPGTT used for aliasing the PPGTT with the GTT */
1293 struct i915_hw_ppgtt *aliasing_ppgtt;
1294
1295 struct notifier_block oom_notifier;
1296 struct notifier_block vmap_notifier;
1297 struct shrinker shrinker;
1298 bool shrinker_no_lock_stealing;
1299
1300 /** LRU list of objects with fence regs on them. */
1301 struct list_head fence_list;
1302
1303 /**
1304 * We leave the user IRQ off as much as possible,
1305 * but this means that requests will finish and never
1306 * be retired once the system goes idle. Set a timer to
1307 * fire periodically while the ring is running. When it
1308 * fires, go retire requests.
1309 */
1310 struct delayed_work retire_work;
1311
1312 /**
1313 * When we detect an idle GPU, we want to turn on
1314 * powersaving features. So once we see that there
1315 * are no more requests outstanding and no more
1316 * arrive within a small period of time, we fire
1317 * off the idle_work.
1318 */
1319 struct delayed_work idle_work;
1320
1321 /**
1322 * Are we in a non-interruptible section of code like
1323 * modesetting?
1324 */
1325 bool interruptible;
1326
1327 /**
1328 * Is the GPU currently considered idle, or busy executing userspace
1329 * requests? Whilst idle, we attempt to power down the hardware and
1330 * display clocks. In order to reduce the effect on performance, there
1331 * is a slight delay before we do so.
1332 */
1333 bool busy;
1334
1335 /* the indicator for dispatch video commands on two BSD rings */
1336 unsigned int bsd_ring_dispatch_index;
1337
1338 /** Bit 6 swizzling required for X tiling */
1339 uint32_t bit_6_swizzle_x;
1340 /** Bit 6 swizzling required for Y tiling */
1341 uint32_t bit_6_swizzle_y;
1342
1343 /* accounting, useful for userland debugging */
1344 spinlock_t object_stat_lock;
1345 size_t object_memory;
1346 u32 object_count;
1347 };
1348
1349 struct drm_i915_error_state_buf {
1350 struct drm_i915_private *i915;
1351 unsigned bytes;
1352 unsigned size;
1353 int err;
1354 u8 *buf;
1355 loff_t start;
1356 loff_t pos;
1357 };
1358
1359 struct i915_error_state_file_priv {
1360 struct drm_device *dev;
1361 struct drm_i915_error_state *error;
1362 };
1363
1364 struct i915_gpu_error {
1365 /* For hangcheck timer */
1366 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1367 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1368 /* Hang gpu twice in this window and your context gets banned */
1369 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1370
1371 struct workqueue_struct *hangcheck_wq;
1372 struct delayed_work hangcheck_work;
1373
1374 /* For reset and error_state handling. */
1375 spinlock_t lock;
1376 /* Protected by the above dev->gpu_error.lock. */
1377 struct drm_i915_error_state *first_error;
1378
1379 unsigned long missed_irq_rings;
1380
1381 /**
1382 * State variable controlling the reset flow and count
1383 *
1384 * This is a counter which gets incremented when reset is triggered,
1385 * and again when reset has been handled. So odd values (lowest bit set)
1386 * means that reset is in progress and even values that
1387 * (reset_counter >> 1):th reset was successfully completed.
1388 *
1389 * If reset is not completed succesfully, the I915_WEDGE bit is
1390 * set meaning that hardware is terminally sour and there is no
1391 * recovery. All waiters on the reset_queue will be woken when
1392 * that happens.
1393 *
1394 * This counter is used by the wait_seqno code to notice that reset
1395 * event happened and it needs to restart the entire ioctl (since most
1396 * likely the seqno it waited for won't ever signal anytime soon).
1397 *
1398 * This is important for lock-free wait paths, where no contended lock
1399 * naturally enforces the correct ordering between the bail-out of the
1400 * waiter and the gpu reset work code.
1401 */
1402 atomic_t reset_counter;
1403
1404 #define I915_RESET_IN_PROGRESS_FLAG 1
1405 #define I915_WEDGED (1 << 31)
1406
1407 /**
1408 * Waitqueue to signal when the reset has completed. Used by clients
1409 * that wait for dev_priv->mm.wedged to settle.
1410 */
1411 wait_queue_head_t reset_queue;
1412
1413 /* Userspace knobs for gpu hang simulation;
1414 * combines both a ring mask, and extra flags
1415 */
1416 u32 stop_rings;
1417 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1418 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1419
1420 /* For missed irq/seqno simulation. */
1421 unsigned int test_irq_rings;
1422 };
1423
1424 enum modeset_restore {
1425 MODESET_ON_LID_OPEN,
1426 MODESET_DONE,
1427 MODESET_SUSPENDED,
1428 };
1429
1430 #define DP_AUX_A 0x40
1431 #define DP_AUX_B 0x10
1432 #define DP_AUX_C 0x20
1433 #define DP_AUX_D 0x30
1434
1435 #define DDC_PIN_B 0x05
1436 #define DDC_PIN_C 0x04
1437 #define DDC_PIN_D 0x06
1438
1439 struct ddi_vbt_port_info {
1440 /*
1441 * This is an index in the HDMI/DVI DDI buffer translation table.
1442 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1443 * populate this field.
1444 */
1445 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1446 uint8_t hdmi_level_shift;
1447
1448 uint8_t supports_dvi:1;
1449 uint8_t supports_hdmi:1;
1450 uint8_t supports_dp:1;
1451
1452 uint8_t alternate_aux_channel;
1453 uint8_t alternate_ddc_pin;
1454
1455 uint8_t dp_boost_level;
1456 uint8_t hdmi_boost_level;
1457 };
1458
1459 enum psr_lines_to_wait {
1460 PSR_0_LINES_TO_WAIT = 0,
1461 PSR_1_LINE_TO_WAIT,
1462 PSR_4_LINES_TO_WAIT,
1463 PSR_8_LINES_TO_WAIT
1464 };
1465
1466 struct intel_vbt_data {
1467 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1468 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1469
1470 /* Feature bits */
1471 unsigned int int_tv_support:1;
1472 unsigned int lvds_dither:1;
1473 unsigned int lvds_vbt:1;
1474 unsigned int int_crt_support:1;
1475 unsigned int lvds_use_ssc:1;
1476 unsigned int display_clock_mode:1;
1477 unsigned int fdi_rx_polarity_inverted:1;
1478 unsigned int panel_type:4;
1479 int lvds_ssc_freq;
1480 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1481
1482 enum drrs_support_type drrs_type;
1483
1484 struct {
1485 int rate;
1486 int lanes;
1487 int preemphasis;
1488 int vswing;
1489 bool low_vswing;
1490 bool initialized;
1491 bool support;
1492 int bpp;
1493 struct edp_power_seq pps;
1494 } edp;
1495
1496 struct {
1497 bool full_link;
1498 bool require_aux_wakeup;
1499 int idle_frames;
1500 enum psr_lines_to_wait lines_to_wait;
1501 int tp1_wakeup_time;
1502 int tp2_tp3_wakeup_time;
1503 } psr;
1504
1505 struct {
1506 u16 pwm_freq_hz;
1507 bool present;
1508 bool active_low_pwm;
1509 u8 min_brightness; /* min_brightness/255 of max */
1510 enum intel_backlight_type type;
1511 } backlight;
1512
1513 /* MIPI DSI */
1514 struct {
1515 u16 panel_id;
1516 struct mipi_config *config;
1517 struct mipi_pps_data *pps;
1518 u8 seq_version;
1519 u32 size;
1520 u8 *data;
1521 const u8 *sequence[MIPI_SEQ_MAX];
1522 } dsi;
1523
1524 int crt_ddc_pin;
1525
1526 int child_dev_num;
1527 union child_device_config *child_dev;
1528
1529 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1530 struct sdvo_device_mapping sdvo_mappings[2];
1531 };
1532
1533 enum intel_ddb_partitioning {
1534 INTEL_DDB_PART_1_2,
1535 INTEL_DDB_PART_5_6, /* IVB+ */
1536 };
1537
1538 struct intel_wm_level {
1539 bool enable;
1540 uint32_t pri_val;
1541 uint32_t spr_val;
1542 uint32_t cur_val;
1543 uint32_t fbc_val;
1544 };
1545
1546 struct ilk_wm_values {
1547 uint32_t wm_pipe[3];
1548 uint32_t wm_lp[3];
1549 uint32_t wm_lp_spr[3];
1550 uint32_t wm_linetime[3];
1551 bool enable_fbc_wm;
1552 enum intel_ddb_partitioning partitioning;
1553 };
1554
1555 struct vlv_pipe_wm {
1556 uint16_t primary;
1557 uint16_t sprite[2];
1558 uint8_t cursor;
1559 };
1560
1561 struct vlv_sr_wm {
1562 uint16_t plane;
1563 uint8_t cursor;
1564 };
1565
1566 struct vlv_wm_values {
1567 struct vlv_pipe_wm pipe[3];
1568 struct vlv_sr_wm sr;
1569 struct {
1570 uint8_t cursor;
1571 uint8_t sprite[2];
1572 uint8_t primary;
1573 } ddl[3];
1574 uint8_t level;
1575 bool cxsr;
1576 };
1577
1578 struct skl_ddb_entry {
1579 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1580 };
1581
1582 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1583 {
1584 return entry->end - entry->start;
1585 }
1586
1587 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1588 const struct skl_ddb_entry *e2)
1589 {
1590 if (e1->start == e2->start && e1->end == e2->end)
1591 return true;
1592
1593 return false;
1594 }
1595
1596 struct skl_ddb_allocation {
1597 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1598 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1599 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1600 };
1601
1602 struct skl_wm_values {
1603 unsigned dirty_pipes;
1604 struct skl_ddb_allocation ddb;
1605 uint32_t wm_linetime[I915_MAX_PIPES];
1606 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1607 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1608 };
1609
1610 struct skl_wm_level {
1611 bool plane_en[I915_MAX_PLANES];
1612 uint16_t plane_res_b[I915_MAX_PLANES];
1613 uint8_t plane_res_l[I915_MAX_PLANES];
1614 };
1615
1616 /*
1617 * This struct helps tracking the state needed for runtime PM, which puts the
1618 * device in PCI D3 state. Notice that when this happens, nothing on the
1619 * graphics device works, even register access, so we don't get interrupts nor
1620 * anything else.
1621 *
1622 * Every piece of our code that needs to actually touch the hardware needs to
1623 * either call intel_runtime_pm_get or call intel_display_power_get with the
1624 * appropriate power domain.
1625 *
1626 * Our driver uses the autosuspend delay feature, which means we'll only really
1627 * suspend if we stay with zero refcount for a certain amount of time. The
1628 * default value is currently very conservative (see intel_runtime_pm_enable), but
1629 * it can be changed with the standard runtime PM files from sysfs.
1630 *
1631 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1632 * goes back to false exactly before we reenable the IRQs. We use this variable
1633 * to check if someone is trying to enable/disable IRQs while they're supposed
1634 * to be disabled. This shouldn't happen and we'll print some error messages in
1635 * case it happens.
1636 *
1637 * For more, read the Documentation/power/runtime_pm.txt.
1638 */
1639 struct i915_runtime_pm {
1640 atomic_t wakeref_count;
1641 atomic_t atomic_seq;
1642 bool suspended;
1643 bool irqs_enabled;
1644 };
1645
1646 enum intel_pipe_crc_source {
1647 INTEL_PIPE_CRC_SOURCE_NONE,
1648 INTEL_PIPE_CRC_SOURCE_PLANE1,
1649 INTEL_PIPE_CRC_SOURCE_PLANE2,
1650 INTEL_PIPE_CRC_SOURCE_PF,
1651 INTEL_PIPE_CRC_SOURCE_PIPE,
1652 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1653 INTEL_PIPE_CRC_SOURCE_TV,
1654 INTEL_PIPE_CRC_SOURCE_DP_B,
1655 INTEL_PIPE_CRC_SOURCE_DP_C,
1656 INTEL_PIPE_CRC_SOURCE_DP_D,
1657 INTEL_PIPE_CRC_SOURCE_AUTO,
1658 INTEL_PIPE_CRC_SOURCE_MAX,
1659 };
1660
1661 struct intel_pipe_crc_entry {
1662 uint32_t frame;
1663 uint32_t crc[5];
1664 };
1665
1666 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1667 struct intel_pipe_crc {
1668 spinlock_t lock;
1669 bool opened; /* exclusive access to the result file */
1670 struct intel_pipe_crc_entry *entries;
1671 enum intel_pipe_crc_source source;
1672 int head, tail;
1673 wait_queue_head_t wq;
1674 };
1675
1676 struct i915_frontbuffer_tracking {
1677 struct mutex lock;
1678
1679 /*
1680 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1681 * scheduled flips.
1682 */
1683 unsigned busy_bits;
1684 unsigned flip_bits;
1685 };
1686
1687 struct i915_wa_reg {
1688 i915_reg_t addr;
1689 u32 value;
1690 /* bitmask representing WA bits */
1691 u32 mask;
1692 };
1693
1694 /*
1695 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1696 * allowing it for RCS as we don't foresee any requirement of having
1697 * a whitelist for other engines. When it is really required for
1698 * other engines then the limit need to be increased.
1699 */
1700 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1701
1702 struct i915_workarounds {
1703 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1704 u32 count;
1705 u32 hw_whitelist_count[I915_NUM_ENGINES];
1706 };
1707
1708 struct i915_virtual_gpu {
1709 bool active;
1710 };
1711
1712 struct i915_execbuffer_params {
1713 struct drm_device *dev;
1714 struct drm_file *file;
1715 uint32_t dispatch_flags;
1716 uint32_t args_batch_start_offset;
1717 uint64_t batch_obj_vm_offset;
1718 struct intel_engine_cs *engine;
1719 struct drm_i915_gem_object *batch_obj;
1720 struct i915_gem_context *ctx;
1721 struct drm_i915_gem_request *request;
1722 };
1723
1724 /* used in computing the new watermarks state */
1725 struct intel_wm_config {
1726 unsigned int num_pipes_active;
1727 bool sprites_enabled;
1728 bool sprites_scaled;
1729 };
1730
1731 struct drm_i915_private {
1732 struct drm_device *dev;
1733 struct kmem_cache *objects;
1734 struct kmem_cache *vmas;
1735 struct kmem_cache *requests;
1736
1737 const struct intel_device_info info;
1738
1739 int relative_constants_mode;
1740
1741 void __iomem *regs;
1742
1743 struct intel_uncore uncore;
1744
1745 struct i915_virtual_gpu vgpu;
1746
1747 struct intel_gvt gvt;
1748
1749 struct intel_guc guc;
1750
1751 struct intel_csr csr;
1752
1753 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1754
1755 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1756 * controller on different i2c buses. */
1757 struct mutex gmbus_mutex;
1758
1759 /**
1760 * Base address of the gmbus and gpio block.
1761 */
1762 uint32_t gpio_mmio_base;
1763
1764 /* MMIO base address for MIPI regs */
1765 uint32_t mipi_mmio_base;
1766
1767 uint32_t psr_mmio_base;
1768
1769 wait_queue_head_t gmbus_wait_queue;
1770
1771 struct pci_dev *bridge_dev;
1772 struct i915_gem_context *kernel_context;
1773 struct intel_engine_cs engine[I915_NUM_ENGINES];
1774 struct drm_i915_gem_object *semaphore_obj;
1775 uint32_t last_seqno, next_seqno;
1776
1777 struct drm_dma_handle *status_page_dmah;
1778 struct resource mch_res;
1779
1780 /* protects the irq masks */
1781 spinlock_t irq_lock;
1782
1783 /* protects the mmio flip data */
1784 spinlock_t mmio_flip_lock;
1785
1786 bool display_irqs_enabled;
1787
1788 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1789 struct pm_qos_request pm_qos;
1790
1791 /* Sideband mailbox protection */
1792 struct mutex sb_lock;
1793
1794 /** Cached value of IMR to avoid reads in updating the bitfield */
1795 union {
1796 u32 irq_mask;
1797 u32 de_irq_mask[I915_MAX_PIPES];
1798 };
1799 u32 gt_irq_mask;
1800 u32 pm_irq_mask;
1801 u32 pm_rps_events;
1802 u32 pipestat_irq_mask[I915_MAX_PIPES];
1803
1804 struct i915_hotplug hotplug;
1805 struct intel_fbc fbc;
1806 struct i915_drrs drrs;
1807 struct intel_opregion opregion;
1808 struct intel_vbt_data vbt;
1809
1810 bool preserve_bios_swizzle;
1811
1812 /* overlay */
1813 struct intel_overlay *overlay;
1814
1815 /* backlight registers and fields in struct intel_panel */
1816 struct mutex backlight_lock;
1817
1818 /* LVDS info */
1819 bool no_aux_handshake;
1820
1821 /* protects panel power sequencer state */
1822 struct mutex pps_mutex;
1823
1824 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1825 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1826
1827 unsigned int fsb_freq, mem_freq, is_ddr3;
1828 unsigned int skl_preferred_vco_freq;
1829 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1830 unsigned int max_dotclk_freq;
1831 unsigned int rawclk_freq;
1832 unsigned int hpll_freq;
1833 unsigned int czclk_freq;
1834
1835 struct {
1836 unsigned int vco, ref;
1837 } cdclk_pll;
1838
1839 /**
1840 * wq - Driver workqueue for GEM.
1841 *
1842 * NOTE: Work items scheduled here are not allowed to grab any modeset
1843 * locks, for otherwise the flushing done in the pageflip code will
1844 * result in deadlocks.
1845 */
1846 struct workqueue_struct *wq;
1847
1848 /* Display functions */
1849 struct drm_i915_display_funcs display;
1850
1851 /* PCH chipset type */
1852 enum intel_pch pch_type;
1853 unsigned short pch_id;
1854
1855 unsigned long quirks;
1856
1857 enum modeset_restore modeset_restore;
1858 struct mutex modeset_restore_lock;
1859 struct drm_atomic_state *modeset_restore_state;
1860
1861 struct list_head vm_list; /* Global list of all address spaces */
1862 struct i915_ggtt ggtt; /* VM representing the global address space */
1863
1864 struct i915_gem_mm mm;
1865 DECLARE_HASHTABLE(mm_structs, 7);
1866 struct mutex mm_lock;
1867
1868 /* The hw wants to have a stable context identifier for the lifetime
1869 * of the context (for OA, PASID, faults, etc). This is limited
1870 * in execlists to 21 bits.
1871 */
1872 struct ida context_hw_ida;
1873 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1874
1875 /* Kernel Modesetting */
1876
1877 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1878 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1879 wait_queue_head_t pending_flip_queue;
1880
1881 #ifdef CONFIG_DEBUG_FS
1882 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1883 #endif
1884
1885 /* dpll and cdclk state is protected by connection_mutex */
1886 int num_shared_dpll;
1887 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1888 const struct intel_dpll_mgr *dpll_mgr;
1889
1890 /*
1891 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1892 * Must be global rather than per dpll, because on some platforms
1893 * plls share registers.
1894 */
1895 struct mutex dpll_lock;
1896
1897 unsigned int active_crtcs;
1898 unsigned int min_pixclk[I915_MAX_PIPES];
1899
1900 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1901
1902 struct i915_workarounds workarounds;
1903
1904 struct i915_frontbuffer_tracking fb_tracking;
1905
1906 u16 orig_clock;
1907
1908 bool mchbar_need_disable;
1909
1910 struct intel_l3_parity l3_parity;
1911
1912 /* Cannot be determined by PCIID. You must always read a register. */
1913 u32 edram_cap;
1914
1915 /* gen6+ rps state */
1916 struct intel_gen6_power_mgmt rps;
1917
1918 /* ilk-only ips/rps state. Everything in here is protected by the global
1919 * mchdev_lock in intel_pm.c */
1920 struct intel_ilk_power_mgmt ips;
1921
1922 struct i915_power_domains power_domains;
1923
1924 struct i915_psr psr;
1925
1926 struct i915_gpu_error gpu_error;
1927
1928 struct drm_i915_gem_object *vlv_pctx;
1929
1930 #ifdef CONFIG_DRM_FBDEV_EMULATION
1931 /* list of fbdev register on this device */
1932 struct intel_fbdev *fbdev;
1933 struct work_struct fbdev_suspend_work;
1934 #endif
1935
1936 struct drm_property *broadcast_rgb_property;
1937 struct drm_property *force_audio_property;
1938
1939 /* hda/i915 audio component */
1940 struct i915_audio_component *audio_component;
1941 bool audio_component_registered;
1942 /**
1943 * av_mutex - mutex for audio/video sync
1944 *
1945 */
1946 struct mutex av_mutex;
1947
1948 uint32_t hw_context_size;
1949 struct list_head context_list;
1950
1951 u32 fdi_rx_config;
1952
1953 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1954 u32 chv_phy_control;
1955 /*
1956 * Shadows for CHV DPLL_MD regs to keep the state
1957 * checker somewhat working in the presence hardware
1958 * crappiness (can't read out DPLL_MD for pipes B & C).
1959 */
1960 u32 chv_dpll_md[I915_MAX_PIPES];
1961 u32 bxt_phy_grc;
1962
1963 u32 suspend_count;
1964 bool suspended_to_idle;
1965 struct i915_suspend_saved_registers regfile;
1966 struct vlv_s0ix_state vlv_s0ix_state;
1967
1968 struct {
1969 /*
1970 * Raw watermark latency values:
1971 * in 0.1us units for WM0,
1972 * in 0.5us units for WM1+.
1973 */
1974 /* primary */
1975 uint16_t pri_latency[5];
1976 /* sprite */
1977 uint16_t spr_latency[5];
1978 /* cursor */
1979 uint16_t cur_latency[5];
1980 /*
1981 * Raw watermark memory latency values
1982 * for SKL for all 8 levels
1983 * in 1us units.
1984 */
1985 uint16_t skl_latency[8];
1986
1987 /*
1988 * The skl_wm_values structure is a bit too big for stack
1989 * allocation, so we keep the staging struct where we store
1990 * intermediate results here instead.
1991 */
1992 struct skl_wm_values skl_results;
1993
1994 /* current hardware state */
1995 union {
1996 struct ilk_wm_values hw;
1997 struct skl_wm_values skl_hw;
1998 struct vlv_wm_values vlv;
1999 };
2000
2001 uint8_t max_level;
2002
2003 /*
2004 * Should be held around atomic WM register writing; also
2005 * protects * intel_crtc->wm.active and
2006 * cstate->wm.need_postvbl_update.
2007 */
2008 struct mutex wm_mutex;
2009
2010 /*
2011 * Set during HW readout of watermarks/DDB. Some platforms
2012 * need to know when we're still using BIOS-provided values
2013 * (which we don't fully trust).
2014 */
2015 bool distrust_bios_wm;
2016 } wm;
2017
2018 struct i915_runtime_pm pm;
2019
2020 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2021 struct {
2022 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2023 struct drm_i915_gem_execbuffer2 *args,
2024 struct list_head *vmas);
2025 int (*init_engines)(struct drm_device *dev);
2026 void (*cleanup_engine)(struct intel_engine_cs *engine);
2027 void (*stop_engine)(struct intel_engine_cs *engine);
2028 } gt;
2029
2030 /* perform PHY state sanity checks? */
2031 bool chv_phy_assert[2];
2032
2033 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2034
2035 /*
2036 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2037 * will be rejected. Instead look for a better place.
2038 */
2039 };
2040
2041 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2042 {
2043 return dev->dev_private;
2044 }
2045
2046 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2047 {
2048 return to_i915(dev_get_drvdata(dev));
2049 }
2050
2051 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2052 {
2053 return container_of(guc, struct drm_i915_private, guc);
2054 }
2055
2056 /* Simple iterator over all initialised engines */
2057 #define for_each_engine(engine__, dev_priv__) \
2058 for ((engine__) = &(dev_priv__)->engine[0]; \
2059 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2060 (engine__)++) \
2061 for_each_if (intel_engine_initialized(engine__))
2062
2063 /* Iterator with engine_id */
2064 #define for_each_engine_id(engine__, dev_priv__, id__) \
2065 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2066 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2067 (engine__)++) \
2068 for_each_if (((id__) = (engine__)->id, \
2069 intel_engine_initialized(engine__)))
2070
2071 /* Iterator over subset of engines selected by mask */
2072 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2073 for ((engine__) = &(dev_priv__)->engine[0]; \
2074 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2075 (engine__)++) \
2076 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2077 intel_engine_initialized(engine__))
2078
2079 enum hdmi_force_audio {
2080 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2081 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2082 HDMI_AUDIO_AUTO, /* trust EDID */
2083 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2084 };
2085
2086 #define I915_GTT_OFFSET_NONE ((u32)-1)
2087
2088 struct drm_i915_gem_object_ops {
2089 unsigned int flags;
2090 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2091
2092 /* Interface between the GEM object and its backing storage.
2093 * get_pages() is called once prior to the use of the associated set
2094 * of pages before to binding them into the GTT, and put_pages() is
2095 * called after we no longer need them. As we expect there to be
2096 * associated cost with migrating pages between the backing storage
2097 * and making them available for the GPU (e.g. clflush), we may hold
2098 * onto the pages after they are no longer referenced by the GPU
2099 * in case they may be used again shortly (for example migrating the
2100 * pages to a different memory domain within the GTT). put_pages()
2101 * will therefore most likely be called when the object itself is
2102 * being released or under memory pressure (where we attempt to
2103 * reap pages for the shrinker).
2104 */
2105 int (*get_pages)(struct drm_i915_gem_object *);
2106 void (*put_pages)(struct drm_i915_gem_object *);
2107
2108 int (*dmabuf_export)(struct drm_i915_gem_object *);
2109 void (*release)(struct drm_i915_gem_object *);
2110 };
2111
2112 /*
2113 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2114 * considered to be the frontbuffer for the given plane interface-wise. This
2115 * doesn't mean that the hw necessarily already scans it out, but that any
2116 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2117 *
2118 * We have one bit per pipe and per scanout plane type.
2119 */
2120 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2121 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2122 #define INTEL_FRONTBUFFER_BITS \
2123 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2124 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2125 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2126 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2127 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2128 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2129 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2130 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2131 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2132 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2133 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2134
2135 struct drm_i915_gem_object {
2136 struct drm_gem_object base;
2137
2138 const struct drm_i915_gem_object_ops *ops;
2139
2140 /** List of VMAs backed by this object */
2141 struct list_head vma_list;
2142
2143 /** Stolen memory for this object, instead of being backed by shmem. */
2144 struct drm_mm_node *stolen;
2145 struct list_head global_list;
2146
2147 struct list_head engine_list[I915_NUM_ENGINES];
2148 /** Used in execbuf to temporarily hold a ref */
2149 struct list_head obj_exec_link;
2150
2151 struct list_head batch_pool_link;
2152
2153 /**
2154 * This is set if the object is on the active lists (has pending
2155 * rendering and so a non-zero seqno), and is not set if it i s on
2156 * inactive (ready to be unbound) list.
2157 */
2158 unsigned int active:I915_NUM_ENGINES;
2159
2160 /**
2161 * This is set if the object has been written to since last bound
2162 * to the GTT
2163 */
2164 unsigned int dirty:1;
2165
2166 /**
2167 * Fence register bits (if any) for this object. Will be set
2168 * as needed when mapped into the GTT.
2169 * Protected by dev->struct_mutex.
2170 */
2171 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2172
2173 /**
2174 * Advice: are the backing pages purgeable?
2175 */
2176 unsigned int madv:2;
2177
2178 /**
2179 * Current tiling mode for the object.
2180 */
2181 unsigned int tiling_mode:2;
2182 /**
2183 * Whether the tiling parameters for the currently associated fence
2184 * register have changed. Note that for the purposes of tracking
2185 * tiling changes we also treat the unfenced register, the register
2186 * slot that the object occupies whilst it executes a fenced
2187 * command (such as BLT on gen2/3), as a "fence".
2188 */
2189 unsigned int fence_dirty:1;
2190
2191 /**
2192 * Is the object at the current location in the gtt mappable and
2193 * fenceable? Used to avoid costly recalculations.
2194 */
2195 unsigned int map_and_fenceable:1;
2196
2197 /**
2198 * Whether the current gtt mapping needs to be mappable (and isn't just
2199 * mappable by accident). Track pin and fault separate for a more
2200 * accurate mappable working set.
2201 */
2202 unsigned int fault_mappable:1;
2203
2204 /*
2205 * Is the object to be mapped as read-only to the GPU
2206 * Only honoured if hardware has relevant pte bit
2207 */
2208 unsigned long gt_ro:1;
2209 unsigned int cache_level:3;
2210 unsigned int cache_dirty:1;
2211
2212 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2213
2214 unsigned int pin_display;
2215
2216 struct sg_table *pages;
2217 int pages_pin_count;
2218 struct get_page {
2219 struct scatterlist *sg;
2220 int last;
2221 } get_page;
2222 void *mapping;
2223
2224 /** Breadcrumb of last rendering to the buffer.
2225 * There can only be one writer, but we allow for multiple readers.
2226 * If there is a writer that necessarily implies that all other
2227 * read requests are complete - but we may only be lazily clearing
2228 * the read requests. A read request is naturally the most recent
2229 * request on a ring, so we may have two different write and read
2230 * requests on one ring where the write request is older than the
2231 * read request. This allows for the CPU to read from an active
2232 * buffer by only waiting for the write to complete.
2233 * */
2234 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2235 struct drm_i915_gem_request *last_write_req;
2236 /** Breadcrumb of last fenced GPU access to the buffer. */
2237 struct drm_i915_gem_request *last_fenced_req;
2238
2239 /** Current tiling stride for the object, if it's tiled. */
2240 uint32_t stride;
2241
2242 /** References from framebuffers, locks out tiling changes. */
2243 unsigned long framebuffer_references;
2244
2245 /** Record of address bit 17 of each page at last unbind. */
2246 unsigned long *bit_17;
2247
2248 union {
2249 /** for phy allocated objects */
2250 struct drm_dma_handle *phys_handle;
2251
2252 struct i915_gem_userptr {
2253 uintptr_t ptr;
2254 unsigned read_only :1;
2255 unsigned workers :4;
2256 #define I915_GEM_USERPTR_MAX_WORKERS 15
2257
2258 struct i915_mm_struct *mm;
2259 struct i915_mmu_object *mmu_object;
2260 struct work_struct *work;
2261 } userptr;
2262 };
2263 };
2264 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2265
2266 /*
2267 * Optimised SGL iterator for GEM objects
2268 */
2269 static __always_inline struct sgt_iter {
2270 struct scatterlist *sgp;
2271 union {
2272 unsigned long pfn;
2273 dma_addr_t dma;
2274 };
2275 unsigned int curr;
2276 unsigned int max;
2277 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2278 struct sgt_iter s = { .sgp = sgl };
2279
2280 if (s.sgp) {
2281 s.max = s.curr = s.sgp->offset;
2282 s.max += s.sgp->length;
2283 if (dma)
2284 s.dma = sg_dma_address(s.sgp);
2285 else
2286 s.pfn = page_to_pfn(sg_page(s.sgp));
2287 }
2288
2289 return s;
2290 }
2291
2292 /**
2293 * __sg_next - return the next scatterlist entry in a list
2294 * @sg: The current sg entry
2295 *
2296 * Description:
2297 * If the entry is the last, return NULL; otherwise, step to the next
2298 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2299 * otherwise just return the pointer to the current element.
2300 **/
2301 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2302 {
2303 #ifdef CONFIG_DEBUG_SG
2304 BUG_ON(sg->sg_magic != SG_MAGIC);
2305 #endif
2306 return sg_is_last(sg) ? NULL :
2307 likely(!sg_is_chain(++sg)) ? sg :
2308 sg_chain_ptr(sg);
2309 }
2310
2311 /**
2312 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2313 * @__dmap: DMA address (output)
2314 * @__iter: 'struct sgt_iter' (iterator state, internal)
2315 * @__sgt: sg_table to iterate over (input)
2316 */
2317 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2318 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2319 ((__dmap) = (__iter).dma + (__iter).curr); \
2320 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2321 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2322
2323 /**
2324 * for_each_sgt_page - iterate over the pages of the given sg_table
2325 * @__pp: page pointer (output)
2326 * @__iter: 'struct sgt_iter' (iterator state, internal)
2327 * @__sgt: sg_table to iterate over (input)
2328 */
2329 #define for_each_sgt_page(__pp, __iter, __sgt) \
2330 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2331 ((__pp) = (__iter).pfn == 0 ? NULL : \
2332 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2333 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2334 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2335
2336 /**
2337 * Request queue structure.
2338 *
2339 * The request queue allows us to note sequence numbers that have been emitted
2340 * and may be associated with active buffers to be retired.
2341 *
2342 * By keeping this list, we can avoid having to do questionable sequence
2343 * number comparisons on buffer last_read|write_seqno. It also allows an
2344 * emission time to be associated with the request for tracking how far ahead
2345 * of the GPU the submission is.
2346 *
2347 * The requests are reference counted, so upon creation they should have an
2348 * initial reference taken using kref_init
2349 */
2350 struct drm_i915_gem_request {
2351 struct kref ref;
2352
2353 /** On Which ring this request was generated */
2354 struct drm_i915_private *i915;
2355 struct intel_engine_cs *engine;
2356 unsigned reset_counter;
2357
2358 /** GEM sequence number associated with the previous request,
2359 * when the HWS breadcrumb is equal to this the GPU is processing
2360 * this request.
2361 */
2362 u32 previous_seqno;
2363
2364 /** GEM sequence number associated with this request,
2365 * when the HWS breadcrumb is equal or greater than this the GPU
2366 * has finished processing this request.
2367 */
2368 u32 seqno;
2369
2370 /** Position in the ringbuffer of the start of the request */
2371 u32 head;
2372
2373 /**
2374 * Position in the ringbuffer of the start of the postfix.
2375 * This is required to calculate the maximum available ringbuffer
2376 * space without overwriting the postfix.
2377 */
2378 u32 postfix;
2379
2380 /** Position in the ringbuffer of the end of the whole request */
2381 u32 tail;
2382
2383 /** Preallocate space in the ringbuffer for the emitting the request */
2384 u32 reserved_space;
2385
2386 /**
2387 * Context and ring buffer related to this request
2388 * Contexts are refcounted, so when this request is associated with a
2389 * context, we must increment the context's refcount, to guarantee that
2390 * it persists while any request is linked to it. Requests themselves
2391 * are also refcounted, so the request will only be freed when the last
2392 * reference to it is dismissed, and the code in
2393 * i915_gem_request_free() will then decrement the refcount on the
2394 * context.
2395 */
2396 struct i915_gem_context *ctx;
2397 struct intel_ringbuffer *ringbuf;
2398
2399 /**
2400 * Context related to the previous request.
2401 * As the contexts are accessed by the hardware until the switch is
2402 * completed to a new context, the hardware may still be writing
2403 * to the context object after the breadcrumb is visible. We must
2404 * not unpin/unbind/prune that object whilst still active and so
2405 * we keep the previous context pinned until the following (this)
2406 * request is retired.
2407 */
2408 struct i915_gem_context *previous_context;
2409
2410 /** Batch buffer related to this request if any (used for
2411 error state dump only) */
2412 struct drm_i915_gem_object *batch_obj;
2413
2414 /** Time at which this request was emitted, in jiffies. */
2415 unsigned long emitted_jiffies;
2416
2417 /** global list entry for this request */
2418 struct list_head list;
2419
2420 struct drm_i915_file_private *file_priv;
2421 /** file_priv list entry for this request */
2422 struct list_head client_list;
2423
2424 /** process identifier submitting this request */
2425 struct pid *pid;
2426
2427 /**
2428 * The ELSP only accepts two elements at a time, so we queue
2429 * context/tail pairs on a given queue (ring->execlist_queue) until the
2430 * hardware is available. The queue serves a double purpose: we also use
2431 * it to keep track of the up to 2 contexts currently in the hardware
2432 * (usually one in execution and the other queued up by the GPU): We
2433 * only remove elements from the head of the queue when the hardware
2434 * informs us that an element has been completed.
2435 *
2436 * All accesses to the queue are mediated by a spinlock
2437 * (ring->execlist_lock).
2438 */
2439
2440 /** Execlist link in the submission queue.*/
2441 struct list_head execlist_link;
2442
2443 /** Execlists no. of times this request has been sent to the ELSP */
2444 int elsp_submitted;
2445
2446 /** Execlists context hardware id. */
2447 unsigned ctx_hw_id;
2448 };
2449
2450 struct drm_i915_gem_request * __must_check
2451 i915_gem_request_alloc(struct intel_engine_cs *engine,
2452 struct i915_gem_context *ctx);
2453 void i915_gem_request_free(struct kref *req_ref);
2454 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2455 struct drm_file *file);
2456
2457 static inline uint32_t
2458 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2459 {
2460 return req ? req->seqno : 0;
2461 }
2462
2463 static inline struct intel_engine_cs *
2464 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2465 {
2466 return req ? req->engine : NULL;
2467 }
2468
2469 static inline struct drm_i915_gem_request *
2470 i915_gem_request_reference(struct drm_i915_gem_request *req)
2471 {
2472 if (req)
2473 kref_get(&req->ref);
2474 return req;
2475 }
2476
2477 static inline void
2478 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2479 {
2480 kref_put(&req->ref, i915_gem_request_free);
2481 }
2482
2483 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2484 struct drm_i915_gem_request *src)
2485 {
2486 if (src)
2487 i915_gem_request_reference(src);
2488
2489 if (*pdst)
2490 i915_gem_request_unreference(*pdst);
2491
2492 *pdst = src;
2493 }
2494
2495 /*
2496 * XXX: i915_gem_request_completed should be here but currently needs the
2497 * definition of i915_seqno_passed() which is below. It will be moved in
2498 * a later patch when the call to i915_seqno_passed() is obsoleted...
2499 */
2500
2501 /*
2502 * A command that requires special handling by the command parser.
2503 */
2504 struct drm_i915_cmd_descriptor {
2505 /*
2506 * Flags describing how the command parser processes the command.
2507 *
2508 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2509 * a length mask if not set
2510 * CMD_DESC_SKIP: The command is allowed but does not follow the
2511 * standard length encoding for the opcode range in
2512 * which it falls
2513 * CMD_DESC_REJECT: The command is never allowed
2514 * CMD_DESC_REGISTER: The command should be checked against the
2515 * register whitelist for the appropriate ring
2516 * CMD_DESC_MASTER: The command is allowed if the submitting process
2517 * is the DRM master
2518 */
2519 u32 flags;
2520 #define CMD_DESC_FIXED (1<<0)
2521 #define CMD_DESC_SKIP (1<<1)
2522 #define CMD_DESC_REJECT (1<<2)
2523 #define CMD_DESC_REGISTER (1<<3)
2524 #define CMD_DESC_BITMASK (1<<4)
2525 #define CMD_DESC_MASTER (1<<5)
2526
2527 /*
2528 * The command's unique identification bits and the bitmask to get them.
2529 * This isn't strictly the opcode field as defined in the spec and may
2530 * also include type, subtype, and/or subop fields.
2531 */
2532 struct {
2533 u32 value;
2534 u32 mask;
2535 } cmd;
2536
2537 /*
2538 * The command's length. The command is either fixed length (i.e. does
2539 * not include a length field) or has a length field mask. The flag
2540 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2541 * a length mask. All command entries in a command table must include
2542 * length information.
2543 */
2544 union {
2545 u32 fixed;
2546 u32 mask;
2547 } length;
2548
2549 /*
2550 * Describes where to find a register address in the command to check
2551 * against the ring's register whitelist. Only valid if flags has the
2552 * CMD_DESC_REGISTER bit set.
2553 *
2554 * A non-zero step value implies that the command may access multiple
2555 * registers in sequence (e.g. LRI), in that case step gives the
2556 * distance in dwords between individual offset fields.
2557 */
2558 struct {
2559 u32 offset;
2560 u32 mask;
2561 u32 step;
2562 } reg;
2563
2564 #define MAX_CMD_DESC_BITMASKS 3
2565 /*
2566 * Describes command checks where a particular dword is masked and
2567 * compared against an expected value. If the command does not match
2568 * the expected value, the parser rejects it. Only valid if flags has
2569 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2570 * are valid.
2571 *
2572 * If the check specifies a non-zero condition_mask then the parser
2573 * only performs the check when the bits specified by condition_mask
2574 * are non-zero.
2575 */
2576 struct {
2577 u32 offset;
2578 u32 mask;
2579 u32 expected;
2580 u32 condition_offset;
2581 u32 condition_mask;
2582 } bits[MAX_CMD_DESC_BITMASKS];
2583 };
2584
2585 /*
2586 * A table of commands requiring special handling by the command parser.
2587 *
2588 * Each ring has an array of tables. Each table consists of an array of command
2589 * descriptors, which must be sorted with command opcodes in ascending order.
2590 */
2591 struct drm_i915_cmd_table {
2592 const struct drm_i915_cmd_descriptor *table;
2593 int count;
2594 };
2595
2596 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2597 #define __I915__(p) ({ \
2598 struct drm_i915_private *__p; \
2599 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2600 __p = (struct drm_i915_private *)p; \
2601 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2602 __p = to_i915((struct drm_device *)p); \
2603 else \
2604 BUILD_BUG(); \
2605 __p; \
2606 })
2607 #define INTEL_INFO(p) (&__I915__(p)->info)
2608 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2609 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2610
2611 #define REVID_FOREVER 0xff
2612 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2613
2614 #define GEN_FOREVER (0)
2615 /*
2616 * Returns true if Gen is in inclusive range [Start, End].
2617 *
2618 * Use GEN_FOREVER for unbound start and or end.
2619 */
2620 #define IS_GEN(p, s, e) ({ \
2621 unsigned int __s = (s), __e = (e); \
2622 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2623 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2624 if ((__s) != GEN_FOREVER) \
2625 __s = (s) - 1; \
2626 if ((__e) == GEN_FOREVER) \
2627 __e = BITS_PER_LONG - 1; \
2628 else \
2629 __e = (e) - 1; \
2630 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2631 })
2632
2633 /*
2634 * Return true if revision is in range [since,until] inclusive.
2635 *
2636 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2637 */
2638 #define IS_REVID(p, since, until) \
2639 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2640
2641 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2642 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2643 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2644 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2645 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2646 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2647 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2648 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2649 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2650 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2651 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2652 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2653 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2654 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2655 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2656 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2657 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2658 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2659 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2660 INTEL_DEVID(dev) == 0x0152 || \
2661 INTEL_DEVID(dev) == 0x015a)
2662 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2663 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2664 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2665 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2666 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2667 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2668 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2669 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2670 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2671 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2672 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2673 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2674 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2675 (INTEL_DEVID(dev) & 0xf) == 0xe))
2676 /* ULX machines are also considered ULT. */
2677 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2678 (INTEL_DEVID(dev) & 0xf) == 0xe)
2679 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2680 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2681 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2682 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2683 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2684 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2685 /* ULX machines are also considered ULT. */
2686 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2687 INTEL_DEVID(dev) == 0x0A1E)
2688 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2689 INTEL_DEVID(dev) == 0x1913 || \
2690 INTEL_DEVID(dev) == 0x1916 || \
2691 INTEL_DEVID(dev) == 0x1921 || \
2692 INTEL_DEVID(dev) == 0x1926)
2693 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2694 INTEL_DEVID(dev) == 0x1915 || \
2695 INTEL_DEVID(dev) == 0x191E)
2696 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2697 INTEL_DEVID(dev) == 0x5913 || \
2698 INTEL_DEVID(dev) == 0x5916 || \
2699 INTEL_DEVID(dev) == 0x5921 || \
2700 INTEL_DEVID(dev) == 0x5926)
2701 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2702 INTEL_DEVID(dev) == 0x5915 || \
2703 INTEL_DEVID(dev) == 0x591E)
2704 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2705 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2706 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2707 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2708
2709 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2710
2711 #define SKL_REVID_A0 0x0
2712 #define SKL_REVID_B0 0x1
2713 #define SKL_REVID_C0 0x2
2714 #define SKL_REVID_D0 0x3
2715 #define SKL_REVID_E0 0x4
2716 #define SKL_REVID_F0 0x5
2717
2718 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2719
2720 #define BXT_REVID_A0 0x0
2721 #define BXT_REVID_A1 0x1
2722 #define BXT_REVID_B0 0x3
2723 #define BXT_REVID_C0 0x9
2724
2725 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2726
2727 #define KBL_REVID_A0 0x0
2728 #define KBL_REVID_B0 0x1
2729 #define KBL_REVID_C0 0x2
2730 #define KBL_REVID_D0 0x3
2731 #define KBL_REVID_E0 0x4
2732
2733 #define IS_KBL_REVID(p, since, until) \
2734 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2735
2736 /*
2737 * The genX designation typically refers to the render engine, so render
2738 * capability related checks should use IS_GEN, while display and other checks
2739 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2740 * chips, etc.).
2741 */
2742 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen_mask & BIT(1))
2743 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen_mask & BIT(2))
2744 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen_mask & BIT(3))
2745 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen_mask & BIT(4))
2746 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen_mask & BIT(5))
2747 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen_mask & BIT(6))
2748 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen_mask & BIT(7))
2749 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen_mask & BIT(8))
2750
2751 #define RENDER_RING (1<<RCS)
2752 #define BSD_RING (1<<VCS)
2753 #define BLT_RING (1<<BCS)
2754 #define VEBOX_RING (1<<VECS)
2755 #define BSD2_RING (1<<VCS2)
2756 #define ALL_ENGINES (~0)
2757
2758 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2759 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2760 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2761 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2762 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2763 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2764 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
2765 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2766 HAS_EDRAM(dev))
2767 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2768
2769 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2770 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2771 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2772 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2773 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2774
2775 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2776 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2777
2778 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2779 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2780
2781 /* WaRsDisableCoarsePowerGating:skl,bxt */
2782 #define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \
2783 IS_SKL_GT3(dev) || \
2784 IS_SKL_GT4(dev))
2785
2786 /*
2787 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2788 * even when in MSI mode. This results in spurious interrupt warnings if the
2789 * legacy irq no. is shared with another device. The kernel then disables that
2790 * interrupt source and so prevents the other device from working properly.
2791 */
2792 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2793 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2794
2795 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2796 * rows, which changed the alignment requirements and fence programming.
2797 */
2798 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2799 IS_I915GM(dev)))
2800 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2801 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2802
2803 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2804 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2805 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2806
2807 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2808
2809 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2810 INTEL_INFO(dev)->gen >= 9)
2811
2812 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2813 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2814 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2815 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2816 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2817 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2818 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2819 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2820 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2821 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2822 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2823
2824 #define HAS_CSR(dev) (IS_GEN9(dev))
2825
2826 /*
2827 * For now, anything with a GuC requires uCode loading, and then supports
2828 * command submission once loaded. But these are logically independent
2829 * properties, so we have separate macros to test them.
2830 */
2831 #define HAS_GUC(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2832 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2833 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2834
2835 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2836 INTEL_INFO(dev)->gen >= 8)
2837
2838 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2839 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2840 !IS_BROXTON(dev))
2841
2842 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2843
2844 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2845 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2846 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2847 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2848 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2849 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2850 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2851 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2852 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2853 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2854 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2855
2856 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2857 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2858 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2859 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2860 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2861 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2862 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2863 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2864 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2865
2866 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2867 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2868
2869 /* DPF == dynamic parity feature */
2870 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2871 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2872
2873 #define GT_FREQUENCY_MULTIPLIER 50
2874 #define GEN9_FREQ_SCALER 3
2875
2876 #include "i915_trace.h"
2877
2878 extern const struct drm_ioctl_desc i915_ioctls[];
2879 extern int i915_max_ioctl;
2880
2881 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2882 extern int i915_resume_switcheroo(struct drm_device *dev);
2883
2884 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2885 int enable_ppgtt);
2886
2887 /* i915_dma.c */
2888 void __printf(3, 4)
2889 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2890 const char *fmt, ...);
2891
2892 #define i915_report_error(dev_priv, fmt, ...) \
2893 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2894
2895 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2896 extern int i915_driver_unload(struct drm_device *);
2897 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2898 extern void i915_driver_lastclose(struct drm_device * dev);
2899 extern void i915_driver_preclose(struct drm_device *dev,
2900 struct drm_file *file);
2901 extern void i915_driver_postclose(struct drm_device *dev,
2902 struct drm_file *file);
2903 #ifdef CONFIG_COMPAT
2904 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2905 unsigned long arg);
2906 #endif
2907 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2908 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2909 extern int i915_reset(struct drm_i915_private *dev_priv);
2910 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2911 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2912 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2913 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2914 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2915 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2916 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2917
2918 /* intel_hotplug.c */
2919 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2920 u32 pin_mask, u32 long_mask);
2921 void intel_hpd_init(struct drm_i915_private *dev_priv);
2922 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2923 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2924 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2925
2926 /* i915_irq.c */
2927 void i915_queue_hangcheck(struct drm_i915_private *dev_priv);
2928 __printf(3, 4)
2929 void i915_handle_error(struct drm_i915_private *dev_priv,
2930 u32 engine_mask,
2931 const char *fmt, ...);
2932
2933 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2934 int intel_irq_install(struct drm_i915_private *dev_priv);
2935 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2936
2937 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2938 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2939 bool restore_forcewake);
2940 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2941 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2942 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2943 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2944 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2945 bool restore);
2946 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2947 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2948 enum forcewake_domains domains);
2949 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2950 enum forcewake_domains domains);
2951 /* Like above but the caller must manage the uncore.lock itself.
2952 * Must be used with I915_READ_FW and friends.
2953 */
2954 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2955 enum forcewake_domains domains);
2956 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2957 enum forcewake_domains domains);
2958 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2959
2960 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2961
2962 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2963 {
2964 return dev_priv->gvt.initialized;
2965 }
2966
2967 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2968 {
2969 return dev_priv->vgpu.active;
2970 }
2971
2972 void
2973 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2974 u32 status_mask);
2975
2976 void
2977 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2978 u32 status_mask);
2979
2980 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2981 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2982 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2983 uint32_t mask,
2984 uint32_t bits);
2985 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2986 uint32_t interrupt_mask,
2987 uint32_t enabled_irq_mask);
2988 static inline void
2989 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2990 {
2991 ilk_update_display_irq(dev_priv, bits, bits);
2992 }
2993 static inline void
2994 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2995 {
2996 ilk_update_display_irq(dev_priv, bits, 0);
2997 }
2998 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2999 enum pipe pipe,
3000 uint32_t interrupt_mask,
3001 uint32_t enabled_irq_mask);
3002 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3003 enum pipe pipe, uint32_t bits)
3004 {
3005 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3006 }
3007 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3008 enum pipe pipe, uint32_t bits)
3009 {
3010 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3011 }
3012 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3013 uint32_t interrupt_mask,
3014 uint32_t enabled_irq_mask);
3015 static inline void
3016 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3017 {
3018 ibx_display_interrupt_update(dev_priv, bits, bits);
3019 }
3020 static inline void
3021 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3022 {
3023 ibx_display_interrupt_update(dev_priv, bits, 0);
3024 }
3025
3026
3027 /* i915_gem.c */
3028 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3029 struct drm_file *file_priv);
3030 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3031 struct drm_file *file_priv);
3032 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3033 struct drm_file *file_priv);
3034 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3035 struct drm_file *file_priv);
3036 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3037 struct drm_file *file_priv);
3038 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3039 struct drm_file *file_priv);
3040 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3041 struct drm_file *file_priv);
3042 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3043 struct drm_i915_gem_request *req);
3044 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3045 struct drm_i915_gem_execbuffer2 *args,
3046 struct list_head *vmas);
3047 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3048 struct drm_file *file_priv);
3049 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3050 struct drm_file *file_priv);
3051 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3052 struct drm_file *file_priv);
3053 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3054 struct drm_file *file);
3055 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3056 struct drm_file *file);
3057 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3058 struct drm_file *file_priv);
3059 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3060 struct drm_file *file_priv);
3061 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3062 struct drm_file *file_priv);
3063 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3064 struct drm_file *file_priv);
3065 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3066 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3067 struct drm_file *file);
3068 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3069 struct drm_file *file_priv);
3070 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3071 struct drm_file *file_priv);
3072 void i915_gem_load_init(struct drm_device *dev);
3073 void i915_gem_load_cleanup(struct drm_device *dev);
3074 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3075 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3076
3077 void *i915_gem_object_alloc(struct drm_device *dev);
3078 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3079 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3080 const struct drm_i915_gem_object_ops *ops);
3081 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3082 size_t size);
3083 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3084 struct drm_device *dev, const void *data, size_t size);
3085 void i915_gem_free_object(struct drm_gem_object *obj);
3086 void i915_gem_vma_destroy(struct i915_vma *vma);
3087
3088 /* Flags used by pin/bind&friends. */
3089 #define PIN_MAPPABLE (1<<0)
3090 #define PIN_NONBLOCK (1<<1)
3091 #define PIN_GLOBAL (1<<2)
3092 #define PIN_OFFSET_BIAS (1<<3)
3093 #define PIN_USER (1<<4)
3094 #define PIN_UPDATE (1<<5)
3095 #define PIN_ZONE_4G (1<<6)
3096 #define PIN_HIGH (1<<7)
3097 #define PIN_OFFSET_FIXED (1<<8)
3098 #define PIN_OFFSET_MASK (~4095)
3099 int __must_check
3100 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3101 struct i915_address_space *vm,
3102 uint32_t alignment,
3103 uint64_t flags);
3104 int __must_check
3105 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3106 const struct i915_ggtt_view *view,
3107 uint32_t alignment,
3108 uint64_t flags);
3109
3110 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3111 u32 flags);
3112 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3113 int __must_check i915_vma_unbind(struct i915_vma *vma);
3114 /*
3115 * BEWARE: Do not use the function below unless you can _absolutely_
3116 * _guarantee_ VMA in question is _not in use_ anywhere.
3117 */
3118 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3119 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3120 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3121 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3122
3123 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3124 int *needs_clflush);
3125
3126 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3127
3128 static inline int __sg_page_count(struct scatterlist *sg)
3129 {
3130 return sg->length >> PAGE_SHIFT;
3131 }
3132
3133 struct page *
3134 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3135
3136 static inline dma_addr_t
3137 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3138 {
3139 if (n < obj->get_page.last) {
3140 obj->get_page.sg = obj->pages->sgl;
3141 obj->get_page.last = 0;
3142 }
3143
3144 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3145 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3146 if (unlikely(sg_is_chain(obj->get_page.sg)))
3147 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3148 }
3149
3150 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3151 }
3152
3153 static inline struct page *
3154 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3155 {
3156 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3157 return NULL;
3158
3159 if (n < obj->get_page.last) {
3160 obj->get_page.sg = obj->pages->sgl;
3161 obj->get_page.last = 0;
3162 }
3163
3164 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3165 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3166 if (unlikely(sg_is_chain(obj->get_page.sg)))
3167 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3168 }
3169
3170 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3171 }
3172
3173 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3174 {
3175 BUG_ON(obj->pages == NULL);
3176 obj->pages_pin_count++;
3177 }
3178
3179 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3180 {
3181 BUG_ON(obj->pages_pin_count == 0);
3182 obj->pages_pin_count--;
3183 }
3184
3185 /**
3186 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3187 * @obj - the object to map into kernel address space
3188 *
3189 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3190 * pages and then returns a contiguous mapping of the backing storage into
3191 * the kernel address space.
3192 *
3193 * The caller must hold the struct_mutex, and is responsible for calling
3194 * i915_gem_object_unpin_map() when the mapping is no longer required.
3195 *
3196 * Returns the pointer through which to access the mapped object, or an
3197 * ERR_PTR() on error.
3198 */
3199 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3200
3201 /**
3202 * i915_gem_object_unpin_map - releases an earlier mapping
3203 * @obj - the object to unmap
3204 *
3205 * After pinning the object and mapping its pages, once you are finished
3206 * with your access, call i915_gem_object_unpin_map() to release the pin
3207 * upon the mapping. Once the pin count reaches zero, that mapping may be
3208 * removed.
3209 *
3210 * The caller must hold the struct_mutex.
3211 */
3212 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3213 {
3214 lockdep_assert_held(&obj->base.dev->struct_mutex);
3215 i915_gem_object_unpin_pages(obj);
3216 }
3217
3218 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3219 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3220 struct intel_engine_cs *to,
3221 struct drm_i915_gem_request **to_req);
3222 void i915_vma_move_to_active(struct i915_vma *vma,
3223 struct drm_i915_gem_request *req);
3224 int i915_gem_dumb_create(struct drm_file *file_priv,
3225 struct drm_device *dev,
3226 struct drm_mode_create_dumb *args);
3227 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3228 uint32_t handle, uint64_t *offset);
3229
3230 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3231 struct drm_i915_gem_object *new,
3232 unsigned frontbuffer_bits);
3233
3234 /**
3235 * Returns true if seq1 is later than seq2.
3236 */
3237 static inline bool
3238 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3239 {
3240 return (int32_t)(seq1 - seq2) >= 0;
3241 }
3242
3243 static inline bool i915_gem_request_started(struct drm_i915_gem_request *req,
3244 bool lazy_coherency)
3245 {
3246 if (!lazy_coherency && req->engine->irq_seqno_barrier)
3247 req->engine->irq_seqno_barrier(req->engine);
3248 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3249 req->previous_seqno);
3250 }
3251
3252 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
3253 bool lazy_coherency)
3254 {
3255 if (!lazy_coherency && req->engine->irq_seqno_barrier)
3256 req->engine->irq_seqno_barrier(req->engine);
3257 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3258 req->seqno);
3259 }
3260
3261 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3262 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3263
3264 struct drm_i915_gem_request *
3265 i915_gem_find_active_request(struct intel_engine_cs *engine);
3266
3267 bool i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3268 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3269
3270 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3271 {
3272 return atomic_read(&error->reset_counter);
3273 }
3274
3275 static inline bool __i915_reset_in_progress(u32 reset)
3276 {
3277 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3278 }
3279
3280 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3281 {
3282 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3283 }
3284
3285 static inline bool __i915_terminally_wedged(u32 reset)
3286 {
3287 return unlikely(reset & I915_WEDGED);
3288 }
3289
3290 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3291 {
3292 return __i915_reset_in_progress(i915_reset_counter(error));
3293 }
3294
3295 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3296 {
3297 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3298 }
3299
3300 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3301 {
3302 return __i915_terminally_wedged(i915_reset_counter(error));
3303 }
3304
3305 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3306 {
3307 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3308 }
3309
3310 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
3311 {
3312 return dev_priv->gpu_error.stop_rings == 0 ||
3313 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
3314 }
3315
3316 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
3317 {
3318 return dev_priv->gpu_error.stop_rings == 0 ||
3319 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
3320 }
3321
3322 void i915_gem_reset(struct drm_device *dev);
3323 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3324 int __must_check i915_gem_init(struct drm_device *dev);
3325 int i915_gem_init_engines(struct drm_device *dev);
3326 int __must_check i915_gem_init_hw(struct drm_device *dev);
3327 void i915_gem_init_swizzling(struct drm_device *dev);
3328 void i915_gem_cleanup_engines(struct drm_device *dev);
3329 int __must_check i915_gpu_idle(struct drm_device *dev);
3330 int __must_check i915_gem_suspend(struct drm_device *dev);
3331 void __i915_add_request(struct drm_i915_gem_request *req,
3332 struct drm_i915_gem_object *batch_obj,
3333 bool flush_caches);
3334 #define i915_add_request(req) \
3335 __i915_add_request(req, NULL, true)
3336 #define i915_add_request_no_flush(req) \
3337 __i915_add_request(req, NULL, false)
3338 int __i915_wait_request(struct drm_i915_gem_request *req,
3339 bool interruptible,
3340 s64 *timeout,
3341 struct intel_rps_client *rps);
3342 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3343 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3344 int __must_check
3345 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3346 bool readonly);
3347 int __must_check
3348 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3349 bool write);
3350 int __must_check
3351 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3352 int __must_check
3353 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3354 u32 alignment,
3355 const struct i915_ggtt_view *view);
3356 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3357 const struct i915_ggtt_view *view);
3358 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3359 int align);
3360 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3361 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3362
3363 uint32_t
3364 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3365 uint32_t
3366 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3367 int tiling_mode, bool fenced);
3368
3369 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3370 enum i915_cache_level cache_level);
3371
3372 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3373 struct dma_buf *dma_buf);
3374
3375 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3376 struct drm_gem_object *gem_obj, int flags);
3377
3378 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3379 const struct i915_ggtt_view *view);
3380 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3381 struct i915_address_space *vm);
3382 static inline u64
3383 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3384 {
3385 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3386 }
3387
3388 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3389 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3390 const struct i915_ggtt_view *view);
3391 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3392 struct i915_address_space *vm);
3393
3394 struct i915_vma *
3395 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3396 struct i915_address_space *vm);
3397 struct i915_vma *
3398 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3399 const struct i915_ggtt_view *view);
3400
3401 struct i915_vma *
3402 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3403 struct i915_address_space *vm);
3404 struct i915_vma *
3405 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3406 const struct i915_ggtt_view *view);
3407
3408 static inline struct i915_vma *
3409 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3410 {
3411 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3412 }
3413 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3414
3415 /* Some GGTT VM helpers */
3416 static inline struct i915_hw_ppgtt *
3417 i915_vm_to_ppgtt(struct i915_address_space *vm)
3418 {
3419 return container_of(vm, struct i915_hw_ppgtt, base);
3420 }
3421
3422
3423 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3424 {
3425 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3426 }
3427
3428 unsigned long
3429 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3430
3431 static inline int __must_check
3432 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3433 uint32_t alignment,
3434 unsigned flags)
3435 {
3436 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3437 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3438
3439 return i915_gem_object_pin(obj, &ggtt->base,
3440 alignment, flags | PIN_GLOBAL);
3441 }
3442
3443 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3444 const struct i915_ggtt_view *view);
3445 static inline void
3446 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3447 {
3448 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3449 }
3450
3451 /* i915_gem_fence.c */
3452 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3453 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3454
3455 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3456 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3457
3458 void i915_gem_restore_fences(struct drm_device *dev);
3459
3460 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3461 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3462 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3463
3464 /* i915_gem_context.c */
3465 int __must_check i915_gem_context_init(struct drm_device *dev);
3466 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3467 void i915_gem_context_fini(struct drm_device *dev);
3468 void i915_gem_context_reset(struct drm_device *dev);
3469 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3470 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3471 int i915_switch_context(struct drm_i915_gem_request *req);
3472 void i915_gem_context_free(struct kref *ctx_ref);
3473 struct drm_i915_gem_object *
3474 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3475
3476 static inline struct i915_gem_context *
3477 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3478 {
3479 struct i915_gem_context *ctx;
3480
3481 lockdep_assert_held(&file_priv->dev_priv->dev->struct_mutex);
3482
3483 ctx = idr_find(&file_priv->context_idr, id);
3484 if (!ctx)
3485 return ERR_PTR(-ENOENT);
3486
3487 return ctx;
3488 }
3489
3490 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3491 {
3492 kref_get(&ctx->ref);
3493 }
3494
3495 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3496 {
3497 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
3498 kref_put(&ctx->ref, i915_gem_context_free);
3499 }
3500
3501 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3502 {
3503 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3504 }
3505
3506 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3507 struct drm_file *file);
3508 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3509 struct drm_file *file);
3510 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3511 struct drm_file *file_priv);
3512 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3513 struct drm_file *file_priv);
3514 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3515 struct drm_file *file);
3516
3517 /* i915_gem_evict.c */
3518 int __must_check i915_gem_evict_something(struct drm_device *dev,
3519 struct i915_address_space *vm,
3520 int min_size,
3521 unsigned alignment,
3522 unsigned cache_level,
3523 unsigned long start,
3524 unsigned long end,
3525 unsigned flags);
3526 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3527 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3528
3529 /* belongs in i915_gem_gtt.h */
3530 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3531 {
3532 if (INTEL_GEN(dev_priv) < 6)
3533 intel_gtt_chipset_flush();
3534 }
3535
3536 /* i915_gem_stolen.c */
3537 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3538 struct drm_mm_node *node, u64 size,
3539 unsigned alignment);
3540 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3541 struct drm_mm_node *node, u64 size,
3542 unsigned alignment, u64 start,
3543 u64 end);
3544 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3545 struct drm_mm_node *node);
3546 int i915_gem_init_stolen(struct drm_device *dev);
3547 void i915_gem_cleanup_stolen(struct drm_device *dev);
3548 struct drm_i915_gem_object *
3549 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3550 struct drm_i915_gem_object *
3551 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3552 u32 stolen_offset,
3553 u32 gtt_offset,
3554 u32 size);
3555
3556 /* i915_gem_shrinker.c */
3557 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3558 unsigned long target,
3559 unsigned flags);
3560 #define I915_SHRINK_PURGEABLE 0x1
3561 #define I915_SHRINK_UNBOUND 0x2
3562 #define I915_SHRINK_BOUND 0x4
3563 #define I915_SHRINK_ACTIVE 0x8
3564 #define I915_SHRINK_VMAPS 0x10
3565 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3566 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3567 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3568
3569
3570 /* i915_gem_tiling.c */
3571 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3572 {
3573 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3574
3575 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3576 obj->tiling_mode != I915_TILING_NONE;
3577 }
3578
3579 /* i915_gem_debug.c */
3580 #if WATCH_LISTS
3581 int i915_verify_lists(struct drm_device *dev);
3582 #else
3583 #define i915_verify_lists(dev) 0
3584 #endif
3585
3586 /* i915_debugfs.c */
3587 int i915_debugfs_init(struct drm_minor *minor);
3588 void i915_debugfs_cleanup(struct drm_minor *minor);
3589 #ifdef CONFIG_DEBUG_FS
3590 int i915_debugfs_connector_add(struct drm_connector *connector);
3591 void intel_display_crc_init(struct drm_device *dev);
3592 #else
3593 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3594 { return 0; }
3595 static inline void intel_display_crc_init(struct drm_device *dev) {}
3596 #endif
3597
3598 /* i915_gpu_error.c */
3599 __printf(2, 3)
3600 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3601 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3602 const struct i915_error_state_file_priv *error);
3603 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3604 struct drm_i915_private *i915,
3605 size_t count, loff_t pos);
3606 static inline void i915_error_state_buf_release(
3607 struct drm_i915_error_state_buf *eb)
3608 {
3609 kfree(eb->buf);
3610 }
3611 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3612 u32 engine_mask,
3613 const char *error_msg);
3614 void i915_error_state_get(struct drm_device *dev,
3615 struct i915_error_state_file_priv *error_priv);
3616 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3617 void i915_destroy_error_state(struct drm_device *dev);
3618
3619 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3620 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3621
3622 /* i915_cmd_parser.c */
3623 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3624 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3625 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3626 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3627 int i915_parse_cmds(struct intel_engine_cs *engine,
3628 struct drm_i915_gem_object *batch_obj,
3629 struct drm_i915_gem_object *shadow_batch_obj,
3630 u32 batch_start_offset,
3631 u32 batch_len,
3632 bool is_master);
3633
3634 /* i915_suspend.c */
3635 extern int i915_save_state(struct drm_device *dev);
3636 extern int i915_restore_state(struct drm_device *dev);
3637
3638 /* i915_sysfs.c */
3639 void i915_setup_sysfs(struct drm_device *dev_priv);
3640 void i915_teardown_sysfs(struct drm_device *dev_priv);
3641
3642 /* intel_i2c.c */
3643 extern int intel_setup_gmbus(struct drm_device *dev);
3644 extern void intel_teardown_gmbus(struct drm_device *dev);
3645 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3646 unsigned int pin);
3647
3648 extern struct i2c_adapter *
3649 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3650 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3651 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3652 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3653 {
3654 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3655 }
3656 extern void intel_i2c_reset(struct drm_device *dev);
3657
3658 /* intel_bios.c */
3659 int intel_bios_init(struct drm_i915_private *dev_priv);
3660 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3661 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3662 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3663 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3664 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3665 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3666 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3667 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3668 enum port port);
3669
3670 /* intel_opregion.c */
3671 #ifdef CONFIG_ACPI
3672 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3673 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3674 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3675 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3676 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3677 bool enable);
3678 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3679 pci_power_t state);
3680 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3681 #else
3682 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3683 static inline void intel_opregion_init(struct drm_i915_private *dev) { }
3684 static inline void intel_opregion_fini(struct drm_i915_private *dev) { }
3685 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3686 {
3687 }
3688 static inline int
3689 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3690 {
3691 return 0;
3692 }
3693 static inline int
3694 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3695 {
3696 return 0;
3697 }
3698 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3699 {
3700 return -ENODEV;
3701 }
3702 #endif
3703
3704 /* intel_acpi.c */
3705 #ifdef CONFIG_ACPI
3706 extern void intel_register_dsm_handler(void);
3707 extern void intel_unregister_dsm_handler(void);
3708 #else
3709 static inline void intel_register_dsm_handler(void) { return; }
3710 static inline void intel_unregister_dsm_handler(void) { return; }
3711 #endif /* CONFIG_ACPI */
3712
3713 /* modesetting */
3714 extern void intel_modeset_init_hw(struct drm_device *dev);
3715 extern void intel_modeset_init(struct drm_device *dev);
3716 extern void intel_modeset_gem_init(struct drm_device *dev);
3717 extern void intel_modeset_cleanup(struct drm_device *dev);
3718 extern void intel_connector_unregister(struct intel_connector *);
3719 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3720 extern void intel_display_resume(struct drm_device *dev);
3721 extern void i915_redisable_vga(struct drm_device *dev);
3722 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3723 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3724 extern void intel_init_pch_refclk(struct drm_device *dev);
3725 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3726 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3727 bool enable);
3728 extern void intel_detect_pch(struct drm_device *dev);
3729
3730 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3731 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3732 struct drm_file *file);
3733
3734 /* overlay */
3735 extern struct intel_overlay_error_state *
3736 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3737 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3738 struct intel_overlay_error_state *error);
3739
3740 extern struct intel_display_error_state *
3741 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3742 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3743 struct drm_device *dev,
3744 struct intel_display_error_state *error);
3745
3746 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3747 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3748
3749 /* intel_sideband.c */
3750 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3751 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3752 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3753 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3754 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3755 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3756 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3757 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3758 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3759 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3760 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3761 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3762 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3763 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3764 enum intel_sbi_destination destination);
3765 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3766 enum intel_sbi_destination destination);
3767 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3768 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3769
3770 /* intel_dpio_phy.c */
3771 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3772 u32 deemph_reg_value, u32 margin_reg_value,
3773 bool uniq_trans_scale);
3774 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3775 bool reset);
3776 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3777 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3778 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3779 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3780
3781 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3782 u32 demph_reg_value, u32 preemph_reg_value,
3783 u32 uniqtranscale_reg_value, u32 tx3_demph);
3784 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3785 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3786 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3787
3788 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3789 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3790
3791 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3792 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3793
3794 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3795 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3796 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3797 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3798
3799 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3800 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3801 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3802 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3803
3804 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3805 * will be implemented using 2 32-bit writes in an arbitrary order with
3806 * an arbitrary delay between them. This can cause the hardware to
3807 * act upon the intermediate value, possibly leading to corruption and
3808 * machine death. You have been warned.
3809 */
3810 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3811 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3812
3813 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3814 u32 upper, lower, old_upper, loop = 0; \
3815 upper = I915_READ(upper_reg); \
3816 do { \
3817 old_upper = upper; \
3818 lower = I915_READ(lower_reg); \
3819 upper = I915_READ(upper_reg); \
3820 } while (upper != old_upper && loop++ < 2); \
3821 (u64)upper << 32 | lower; })
3822
3823 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3824 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3825
3826 #define __raw_read(x, s) \
3827 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3828 i915_reg_t reg) \
3829 { \
3830 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3831 }
3832
3833 #define __raw_write(x, s) \
3834 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3835 i915_reg_t reg, uint##x##_t val) \
3836 { \
3837 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3838 }
3839 __raw_read(8, b)
3840 __raw_read(16, w)
3841 __raw_read(32, l)
3842 __raw_read(64, q)
3843
3844 __raw_write(8, b)
3845 __raw_write(16, w)
3846 __raw_write(32, l)
3847 __raw_write(64, q)
3848
3849 #undef __raw_read
3850 #undef __raw_write
3851
3852 /* These are untraced mmio-accessors that are only valid to be used inside
3853 * criticial sections inside IRQ handlers where forcewake is explicitly
3854 * controlled.
3855 * Think twice, and think again, before using these.
3856 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3857 * intel_uncore_forcewake_irqunlock().
3858 */
3859 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3860 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3861 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3862
3863 /* "Broadcast RGB" property */
3864 #define INTEL_BROADCAST_RGB_AUTO 0
3865 #define INTEL_BROADCAST_RGB_FULL 1
3866 #define INTEL_BROADCAST_RGB_LIMITED 2
3867
3868 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3869 {
3870 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3871 return VLV_VGACNTRL;
3872 else if (INTEL_INFO(dev)->gen >= 5)
3873 return CPU_VGACNTRL;
3874 else
3875 return VGACNTRL;
3876 }
3877
3878 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3879 {
3880 unsigned long j = msecs_to_jiffies(m);
3881
3882 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3883 }
3884
3885 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3886 {
3887 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3888 }
3889
3890 static inline unsigned long
3891 timespec_to_jiffies_timeout(const struct timespec *value)
3892 {
3893 unsigned long j = timespec_to_jiffies(value);
3894
3895 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3896 }
3897
3898 /*
3899 * If you need to wait X milliseconds between events A and B, but event B
3900 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3901 * when event A happened, then just before event B you call this function and
3902 * pass the timestamp as the first argument, and X as the second argument.
3903 */
3904 static inline void
3905 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3906 {
3907 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3908
3909 /*
3910 * Don't re-read the value of "jiffies" every time since it may change
3911 * behind our back and break the math.
3912 */
3913 tmp_jiffies = jiffies;
3914 target_jiffies = timestamp_jiffies +
3915 msecs_to_jiffies_timeout(to_wait_ms);
3916
3917 if (time_after(target_jiffies, tmp_jiffies)) {
3918 remaining_jiffies = target_jiffies - tmp_jiffies;
3919 while (remaining_jiffies)
3920 remaining_jiffies =
3921 schedule_timeout_uninterruptible(remaining_jiffies);
3922 }
3923 }
3924
3925 static inline void i915_trace_irq_get(struct intel_engine_cs *engine,
3926 struct drm_i915_gem_request *req)
3927 {
3928 if (engine->trace_irq_req == NULL && engine->irq_get(engine))
3929 i915_gem_request_assign(&engine->trace_irq_req, req);
3930 }
3931
3932 #endif
This page took 0.140834 seconds and 6 git commands to generate.