Revert "drm/i915: Clean up associated VMAs on context destruction"
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160725"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_engine;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 struct opregion_header;
436 struct opregion_acpi;
437 struct opregion_swsci;
438 struct opregion_asle;
439
440 struct intel_opregion {
441 struct opregion_header *header;
442 struct opregion_acpi *acpi;
443 struct opregion_swsci *swsci;
444 u32 swsci_gbda_sub_functions;
445 u32 swsci_sbcb_sub_functions;
446 struct opregion_asle *asle;
447 void *rvda;
448 const void *vbt;
449 u32 vbt_size;
450 u32 *lid_state;
451 struct work_struct asle_work;
452 };
453 #define OPREGION_SIZE (8*1024)
454
455 struct intel_overlay;
456 struct intel_overlay_error_state;
457
458 #define I915_FENCE_REG_NONE -1
459 #define I915_MAX_NUM_FENCES 32
460 /* 32 fences + sign bit for FENCE_REG_NONE */
461 #define I915_MAX_NUM_FENCE_BITS 6
462
463 struct drm_i915_fence_reg {
464 struct list_head lru_list;
465 struct drm_i915_gem_object *obj;
466 int pin_count;
467 };
468
469 struct sdvo_device_mapping {
470 u8 initialized;
471 u8 dvo_port;
472 u8 slave_addr;
473 u8 dvo_wiring;
474 u8 i2c_pin;
475 u8 ddc_pin;
476 };
477
478 struct intel_display_error_state;
479
480 struct drm_i915_error_state {
481 struct kref ref;
482 struct timeval time;
483
484 char error_msg[128];
485 bool simulated;
486 int iommu;
487 u32 reset_count;
488 u32 suspend_count;
489
490 /* Generic register state */
491 u32 eir;
492 u32 pgtbl_er;
493 u32 ier;
494 u32 gtier[4];
495 u32 ccid;
496 u32 derrmr;
497 u32 forcewake;
498 u32 error; /* gen6+ */
499 u32 err_int; /* gen7 */
500 u32 fault_data0; /* gen8, gen9 */
501 u32 fault_data1; /* gen8, gen9 */
502 u32 done_reg;
503 u32 gac_eco;
504 u32 gam_ecochk;
505 u32 gab_ctl;
506 u32 gfx_mode;
507 u32 extra_instdone[I915_NUM_INSTDONE_REG];
508 u64 fence[I915_MAX_NUM_FENCES];
509 struct intel_overlay_error_state *overlay;
510 struct intel_display_error_state *display;
511 struct drm_i915_error_object *semaphore_obj;
512
513 struct drm_i915_error_engine {
514 int engine_id;
515 /* Software tracked state */
516 bool waiting;
517 int num_waiters;
518 int hangcheck_score;
519 enum intel_engine_hangcheck_action hangcheck_action;
520 int num_requests;
521
522 /* our own tracking of ring head and tail */
523 u32 cpu_ring_head;
524 u32 cpu_ring_tail;
525
526 u32 last_seqno;
527 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
528
529 /* Register state */
530 u32 start;
531 u32 tail;
532 u32 head;
533 u32 ctl;
534 u32 hws;
535 u32 ipeir;
536 u32 ipehr;
537 u32 instdone;
538 u32 bbstate;
539 u32 instpm;
540 u32 instps;
541 u32 seqno;
542 u64 bbaddr;
543 u64 acthd;
544 u32 fault_reg;
545 u64 faddr;
546 u32 rc_psmi; /* sleep state */
547 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
548
549 struct drm_i915_error_object {
550 int page_count;
551 u64 gtt_offset;
552 u32 *pages[0];
553 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
554
555 struct drm_i915_error_object *wa_ctx;
556
557 struct drm_i915_error_request {
558 long jiffies;
559 u32 seqno;
560 u32 tail;
561 } *requests;
562
563 struct drm_i915_error_waiter {
564 char comm[TASK_COMM_LEN];
565 pid_t pid;
566 u32 seqno;
567 } *waiters;
568
569 struct {
570 u32 gfx_mode;
571 union {
572 u64 pdp[4];
573 u32 pp_dir_base;
574 };
575 } vm_info;
576
577 pid_t pid;
578 char comm[TASK_COMM_LEN];
579 } engine[I915_NUM_ENGINES];
580
581 struct drm_i915_error_buffer {
582 u32 size;
583 u32 name;
584 u32 rseqno[I915_NUM_ENGINES], wseqno;
585 u64 gtt_offset;
586 u32 read_domains;
587 u32 write_domain;
588 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
589 s32 pinned:2;
590 u32 tiling:2;
591 u32 dirty:1;
592 u32 purgeable:1;
593 u32 userptr:1;
594 s32 engine:4;
595 u32 cache_level:3;
596 } **active_bo, **pinned_bo;
597
598 u32 *active_bo_count, *pinned_bo_count;
599 u32 vm_count;
600 };
601
602 struct intel_connector;
603 struct intel_encoder;
604 struct intel_crtc_state;
605 struct intel_initial_plane_config;
606 struct intel_crtc;
607 struct intel_limit;
608 struct dpll;
609
610 struct drm_i915_display_funcs {
611 int (*get_display_clock_speed)(struct drm_device *dev);
612 int (*get_fifo_size)(struct drm_device *dev, int plane);
613 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
614 int (*compute_intermediate_wm)(struct drm_device *dev,
615 struct intel_crtc *intel_crtc,
616 struct intel_crtc_state *newstate);
617 void (*initial_watermarks)(struct intel_crtc_state *cstate);
618 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
619 int (*compute_global_watermarks)(struct drm_atomic_state *state);
620 void (*update_wm)(struct drm_crtc *crtc);
621 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
622 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
623 /* Returns the active state of the crtc, and if the crtc is active,
624 * fills out the pipe-config with the hw state. */
625 bool (*get_pipe_config)(struct intel_crtc *,
626 struct intel_crtc_state *);
627 void (*get_initial_plane_config)(struct intel_crtc *,
628 struct intel_initial_plane_config *);
629 int (*crtc_compute_clock)(struct intel_crtc *crtc,
630 struct intel_crtc_state *crtc_state);
631 void (*crtc_enable)(struct drm_crtc *crtc);
632 void (*crtc_disable)(struct drm_crtc *crtc);
633 void (*audio_codec_enable)(struct drm_connector *connector,
634 struct intel_encoder *encoder,
635 const struct drm_display_mode *adjusted_mode);
636 void (*audio_codec_disable)(struct intel_encoder *encoder);
637 void (*fdi_link_train)(struct drm_crtc *crtc);
638 void (*init_clock_gating)(struct drm_device *dev);
639 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
640 struct drm_framebuffer *fb,
641 struct drm_i915_gem_object *obj,
642 struct drm_i915_gem_request *req,
643 uint32_t flags);
644 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
645 /* clock updates for mode set */
646 /* cursor updates */
647 /* render clock increase/decrease */
648 /* display clock increase/decrease */
649 /* pll clock increase/decrease */
650
651 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
652 void (*load_luts)(struct drm_crtc_state *crtc_state);
653 };
654
655 enum forcewake_domain_id {
656 FW_DOMAIN_ID_RENDER = 0,
657 FW_DOMAIN_ID_BLITTER,
658 FW_DOMAIN_ID_MEDIA,
659
660 FW_DOMAIN_ID_COUNT
661 };
662
663 enum forcewake_domains {
664 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
665 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
666 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
667 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
668 FORCEWAKE_BLITTER |
669 FORCEWAKE_MEDIA)
670 };
671
672 #define FW_REG_READ (1)
673 #define FW_REG_WRITE (2)
674
675 enum forcewake_domains
676 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
677 i915_reg_t reg, unsigned int op);
678
679 struct intel_uncore_funcs {
680 void (*force_wake_get)(struct drm_i915_private *dev_priv,
681 enum forcewake_domains domains);
682 void (*force_wake_put)(struct drm_i915_private *dev_priv,
683 enum forcewake_domains domains);
684
685 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
686 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689
690 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
691 uint8_t val, bool trace);
692 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint16_t val, bool trace);
694 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint32_t val, bool trace);
696 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
697 uint64_t val, bool trace);
698 };
699
700 struct intel_uncore {
701 spinlock_t lock; /** lock is also taken in irq contexts. */
702
703 struct intel_uncore_funcs funcs;
704
705 unsigned fifo_count;
706 enum forcewake_domains fw_domains;
707
708 struct intel_uncore_forcewake_domain {
709 struct drm_i915_private *i915;
710 enum forcewake_domain_id id;
711 enum forcewake_domains mask;
712 unsigned wake_count;
713 struct hrtimer timer;
714 i915_reg_t reg_set;
715 u32 val_set;
716 u32 val_clear;
717 i915_reg_t reg_ack;
718 i915_reg_t reg_post;
719 u32 val_reset;
720 } fw_domain[FW_DOMAIN_ID_COUNT];
721
722 int unclaimed_mmio_check;
723 };
724
725 /* Iterate over initialised fw domains */
726 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
727 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
728 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
729 (domain__)++) \
730 for_each_if ((mask__) & (domain__)->mask)
731
732 #define for_each_fw_domain(domain__, dev_priv__) \
733 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
734
735 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
736 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
737 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
738
739 struct intel_csr {
740 struct work_struct work;
741 const char *fw_path;
742 uint32_t *dmc_payload;
743 uint32_t dmc_fw_size;
744 uint32_t version;
745 uint32_t mmio_count;
746 i915_reg_t mmioaddr[8];
747 uint32_t mmiodata[8];
748 uint32_t dc_state;
749 uint32_t allowed_dc_mask;
750 };
751
752 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
753 func(is_mobile) sep \
754 func(is_i85x) sep \
755 func(is_i915g) sep \
756 func(is_i945gm) sep \
757 func(is_g33) sep \
758 func(need_gfx_hws) sep \
759 func(is_g4x) sep \
760 func(is_pineview) sep \
761 func(is_broadwater) sep \
762 func(is_crestline) sep \
763 func(is_ivybridge) sep \
764 func(is_valleyview) sep \
765 func(is_cherryview) sep \
766 func(is_haswell) sep \
767 func(is_broadwell) sep \
768 func(is_skylake) sep \
769 func(is_broxton) sep \
770 func(is_kabylake) sep \
771 func(is_preliminary) sep \
772 func(has_fbc) sep \
773 func(has_pipe_cxsr) sep \
774 func(has_hotplug) sep \
775 func(cursor_needs_physical) sep \
776 func(has_overlay) sep \
777 func(overlay_needs_physical) sep \
778 func(supports_tv) sep \
779 func(has_llc) sep \
780 func(has_snoop) sep \
781 func(has_ddi) sep \
782 func(has_fpga_dbg) sep \
783 func(has_pooled_eu)
784
785 #define DEFINE_FLAG(name) u8 name:1
786 #define SEP_SEMICOLON ;
787
788 struct intel_device_info {
789 u32 display_mmio_offset;
790 u16 device_id;
791 u8 num_pipes;
792 u8 num_sprites[I915_MAX_PIPES];
793 u8 gen;
794 u16 gen_mask;
795 u8 ring_mask; /* Rings supported by the HW */
796 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
797 /* Register offsets for the various display pipes and transcoders */
798 int pipe_offsets[I915_MAX_TRANSCODERS];
799 int trans_offsets[I915_MAX_TRANSCODERS];
800 int palette_offsets[I915_MAX_PIPES];
801 int cursor_offsets[I915_MAX_PIPES];
802
803 /* Slice/subslice/EU info */
804 u8 slice_total;
805 u8 subslice_total;
806 u8 subslice_per_slice;
807 u8 eu_total;
808 u8 eu_per_subslice;
809 u8 min_eu_in_pool;
810 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
811 u8 subslice_7eu[3];
812 u8 has_slice_pg:1;
813 u8 has_subslice_pg:1;
814 u8 has_eu_pg:1;
815
816 struct color_luts {
817 u16 degamma_lut_size;
818 u16 gamma_lut_size;
819 } color;
820 };
821
822 #undef DEFINE_FLAG
823 #undef SEP_SEMICOLON
824
825 enum i915_cache_level {
826 I915_CACHE_NONE = 0,
827 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
828 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
829 caches, eg sampler/render caches, and the
830 large Last-Level-Cache. LLC is coherent with
831 the CPU, but L3 is only visible to the GPU. */
832 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
833 };
834
835 struct i915_ctx_hang_stats {
836 /* This context had batch pending when hang was declared */
837 unsigned batch_pending;
838
839 /* This context had batch active when hang was declared */
840 unsigned batch_active;
841
842 /* Time when this context was last blamed for a GPU reset */
843 unsigned long guilty_ts;
844
845 /* If the contexts causes a second GPU hang within this time,
846 * it is permanently banned from submitting any more work.
847 */
848 unsigned long ban_period_seconds;
849
850 /* This context is banned to submit more work */
851 bool banned;
852 };
853
854 /* This must match up with the value previously used for execbuf2.rsvd1. */
855 #define DEFAULT_CONTEXT_HANDLE 0
856
857 /**
858 * struct i915_gem_context - as the name implies, represents a context.
859 * @ref: reference count.
860 * @user_handle: userspace tracking identity for this context.
861 * @remap_slice: l3 row remapping information.
862 * @flags: context specific flags:
863 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
864 * @file_priv: filp associated with this context (NULL for global default
865 * context).
866 * @hang_stats: information about the role of this context in possible GPU
867 * hangs.
868 * @ppgtt: virtual memory space used by this context.
869 * @legacy_hw_ctx: render context backing object and whether it is correctly
870 * initialized (legacy ring submission mechanism only).
871 * @link: link in the global list of contexts.
872 *
873 * Contexts are memory images used by the hardware to store copies of their
874 * internal state.
875 */
876 struct i915_gem_context {
877 struct kref ref;
878 struct drm_i915_private *i915;
879 struct drm_i915_file_private *file_priv;
880 struct i915_hw_ppgtt *ppgtt;
881
882 struct i915_ctx_hang_stats hang_stats;
883
884 /* Unique identifier for this context, used by the hw for tracking */
885 unsigned long flags;
886 #define CONTEXT_NO_ZEROMAP BIT(0)
887 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
888 unsigned hw_id;
889 u32 user_handle;
890
891 u32 ggtt_alignment;
892
893 struct intel_context {
894 struct drm_i915_gem_object *state;
895 struct intel_ring *ring;
896 struct i915_vma *lrc_vma;
897 uint32_t *lrc_reg_state;
898 u64 lrc_desc;
899 int pin_count;
900 bool initialised;
901 } engine[I915_NUM_ENGINES];
902 u32 ring_size;
903 u32 desc_template;
904 struct atomic_notifier_head status_notifier;
905 bool execlists_force_single_submission;
906
907 struct list_head link;
908
909 u8 remap_slice;
910 bool closed:1;
911 };
912
913 enum fb_op_origin {
914 ORIGIN_GTT,
915 ORIGIN_CPU,
916 ORIGIN_CS,
917 ORIGIN_FLIP,
918 ORIGIN_DIRTYFB,
919 };
920
921 struct intel_fbc {
922 /* This is always the inner lock when overlapping with struct_mutex and
923 * it's the outer lock when overlapping with stolen_lock. */
924 struct mutex lock;
925 unsigned threshold;
926 unsigned int possible_framebuffer_bits;
927 unsigned int busy_bits;
928 unsigned int visible_pipes_mask;
929 struct intel_crtc *crtc;
930
931 struct drm_mm_node compressed_fb;
932 struct drm_mm_node *compressed_llb;
933
934 bool false_color;
935
936 bool enabled;
937 bool active;
938
939 struct intel_fbc_state_cache {
940 struct {
941 unsigned int mode_flags;
942 uint32_t hsw_bdw_pixel_rate;
943 } crtc;
944
945 struct {
946 unsigned int rotation;
947 int src_w;
948 int src_h;
949 bool visible;
950 } plane;
951
952 struct {
953 u64 ilk_ggtt_offset;
954 uint32_t pixel_format;
955 unsigned int stride;
956 int fence_reg;
957 unsigned int tiling_mode;
958 } fb;
959 } state_cache;
960
961 struct intel_fbc_reg_params {
962 struct {
963 enum pipe pipe;
964 enum plane plane;
965 unsigned int fence_y_offset;
966 } crtc;
967
968 struct {
969 u64 ggtt_offset;
970 uint32_t pixel_format;
971 unsigned int stride;
972 int fence_reg;
973 } fb;
974
975 int cfb_size;
976 } params;
977
978 struct intel_fbc_work {
979 bool scheduled;
980 u32 scheduled_vblank;
981 struct work_struct work;
982 } work;
983
984 const char *no_fbc_reason;
985 };
986
987 /**
988 * HIGH_RR is the highest eDP panel refresh rate read from EDID
989 * LOW_RR is the lowest eDP panel refresh rate found from EDID
990 * parsing for same resolution.
991 */
992 enum drrs_refresh_rate_type {
993 DRRS_HIGH_RR,
994 DRRS_LOW_RR,
995 DRRS_MAX_RR, /* RR count */
996 };
997
998 enum drrs_support_type {
999 DRRS_NOT_SUPPORTED = 0,
1000 STATIC_DRRS_SUPPORT = 1,
1001 SEAMLESS_DRRS_SUPPORT = 2
1002 };
1003
1004 struct intel_dp;
1005 struct i915_drrs {
1006 struct mutex mutex;
1007 struct delayed_work work;
1008 struct intel_dp *dp;
1009 unsigned busy_frontbuffer_bits;
1010 enum drrs_refresh_rate_type refresh_rate_type;
1011 enum drrs_support_type type;
1012 };
1013
1014 struct i915_psr {
1015 struct mutex lock;
1016 bool sink_support;
1017 bool source_ok;
1018 struct intel_dp *enabled;
1019 bool active;
1020 struct delayed_work work;
1021 unsigned busy_frontbuffer_bits;
1022 bool psr2_support;
1023 bool aux_frame_sync;
1024 bool link_standby;
1025 };
1026
1027 enum intel_pch {
1028 PCH_NONE = 0, /* No PCH present */
1029 PCH_IBX, /* Ibexpeak PCH */
1030 PCH_CPT, /* Cougarpoint PCH */
1031 PCH_LPT, /* Lynxpoint PCH */
1032 PCH_SPT, /* Sunrisepoint PCH */
1033 PCH_KBP, /* Kabypoint PCH */
1034 PCH_NOP,
1035 };
1036
1037 enum intel_sbi_destination {
1038 SBI_ICLK,
1039 SBI_MPHY,
1040 };
1041
1042 #define QUIRK_PIPEA_FORCE (1<<0)
1043 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1044 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1045 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1046 #define QUIRK_PIPEB_FORCE (1<<4)
1047 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1048
1049 struct intel_fbdev;
1050 struct intel_fbc_work;
1051
1052 struct intel_gmbus {
1053 struct i2c_adapter adapter;
1054 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1055 u32 force_bit;
1056 u32 reg0;
1057 i915_reg_t gpio_reg;
1058 struct i2c_algo_bit_data bit_algo;
1059 struct drm_i915_private *dev_priv;
1060 };
1061
1062 struct i915_suspend_saved_registers {
1063 u32 saveDSPARB;
1064 u32 saveLVDS;
1065 u32 savePP_ON_DELAYS;
1066 u32 savePP_OFF_DELAYS;
1067 u32 savePP_ON;
1068 u32 savePP_OFF;
1069 u32 savePP_CONTROL;
1070 u32 savePP_DIVISOR;
1071 u32 saveFBC_CONTROL;
1072 u32 saveCACHE_MODE_0;
1073 u32 saveMI_ARB_STATE;
1074 u32 saveSWF0[16];
1075 u32 saveSWF1[16];
1076 u32 saveSWF3[3];
1077 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1078 u32 savePCH_PORT_HOTPLUG;
1079 u16 saveGCDGMBUS;
1080 };
1081
1082 struct vlv_s0ix_state {
1083 /* GAM */
1084 u32 wr_watermark;
1085 u32 gfx_prio_ctrl;
1086 u32 arb_mode;
1087 u32 gfx_pend_tlb0;
1088 u32 gfx_pend_tlb1;
1089 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1090 u32 media_max_req_count;
1091 u32 gfx_max_req_count;
1092 u32 render_hwsp;
1093 u32 ecochk;
1094 u32 bsd_hwsp;
1095 u32 blt_hwsp;
1096 u32 tlb_rd_addr;
1097
1098 /* MBC */
1099 u32 g3dctl;
1100 u32 gsckgctl;
1101 u32 mbctl;
1102
1103 /* GCP */
1104 u32 ucgctl1;
1105 u32 ucgctl3;
1106 u32 rcgctl1;
1107 u32 rcgctl2;
1108 u32 rstctl;
1109 u32 misccpctl;
1110
1111 /* GPM */
1112 u32 gfxpause;
1113 u32 rpdeuhwtc;
1114 u32 rpdeuc;
1115 u32 ecobus;
1116 u32 pwrdwnupctl;
1117 u32 rp_down_timeout;
1118 u32 rp_deucsw;
1119 u32 rcubmabdtmr;
1120 u32 rcedata;
1121 u32 spare2gh;
1122
1123 /* Display 1 CZ domain */
1124 u32 gt_imr;
1125 u32 gt_ier;
1126 u32 pm_imr;
1127 u32 pm_ier;
1128 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1129
1130 /* GT SA CZ domain */
1131 u32 tilectl;
1132 u32 gt_fifoctl;
1133 u32 gtlc_wake_ctrl;
1134 u32 gtlc_survive;
1135 u32 pmwgicz;
1136
1137 /* Display 2 CZ domain */
1138 u32 gu_ctl0;
1139 u32 gu_ctl1;
1140 u32 pcbr;
1141 u32 clock_gate_dis2;
1142 };
1143
1144 struct intel_rps_ei {
1145 u32 cz_clock;
1146 u32 render_c0;
1147 u32 media_c0;
1148 };
1149
1150 struct intel_gen6_power_mgmt {
1151 /*
1152 * work, interrupts_enabled and pm_iir are protected by
1153 * dev_priv->irq_lock
1154 */
1155 struct work_struct work;
1156 bool interrupts_enabled;
1157 u32 pm_iir;
1158
1159 u32 pm_intr_keep;
1160
1161 /* Frequencies are stored in potentially platform dependent multiples.
1162 * In other words, *_freq needs to be multiplied by X to be interesting.
1163 * Soft limits are those which are used for the dynamic reclocking done
1164 * by the driver (raise frequencies under heavy loads, and lower for
1165 * lighter loads). Hard limits are those imposed by the hardware.
1166 *
1167 * A distinction is made for overclocking, which is never enabled by
1168 * default, and is considered to be above the hard limit if it's
1169 * possible at all.
1170 */
1171 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1172 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1173 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1174 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1175 u8 min_freq; /* AKA RPn. Minimum frequency */
1176 u8 boost_freq; /* Frequency to request when wait boosting */
1177 u8 idle_freq; /* Frequency to request when we are idle */
1178 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1179 u8 rp1_freq; /* "less than" RP0 power/freqency */
1180 u8 rp0_freq; /* Non-overclocked max frequency. */
1181 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1182
1183 u8 up_threshold; /* Current %busy required to uplock */
1184 u8 down_threshold; /* Current %busy required to downclock */
1185
1186 int last_adj;
1187 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1188
1189 spinlock_t client_lock;
1190 struct list_head clients;
1191 bool client_boost;
1192
1193 bool enabled;
1194 struct delayed_work autoenable_work;
1195 unsigned boosts;
1196
1197 /* manual wa residency calculations */
1198 struct intel_rps_ei up_ei, down_ei;
1199
1200 /*
1201 * Protects RPS/RC6 register access and PCU communication.
1202 * Must be taken after struct_mutex if nested. Note that
1203 * this lock may be held for long periods of time when
1204 * talking to hw - so only take it when talking to hw!
1205 */
1206 struct mutex hw_lock;
1207 };
1208
1209 /* defined intel_pm.c */
1210 extern spinlock_t mchdev_lock;
1211
1212 struct intel_ilk_power_mgmt {
1213 u8 cur_delay;
1214 u8 min_delay;
1215 u8 max_delay;
1216 u8 fmax;
1217 u8 fstart;
1218
1219 u64 last_count1;
1220 unsigned long last_time1;
1221 unsigned long chipset_power;
1222 u64 last_count2;
1223 u64 last_time2;
1224 unsigned long gfx_power;
1225 u8 corr;
1226
1227 int c_m;
1228 int r_t;
1229 };
1230
1231 struct drm_i915_private;
1232 struct i915_power_well;
1233
1234 struct i915_power_well_ops {
1235 /*
1236 * Synchronize the well's hw state to match the current sw state, for
1237 * example enable/disable it based on the current refcount. Called
1238 * during driver init and resume time, possibly after first calling
1239 * the enable/disable handlers.
1240 */
1241 void (*sync_hw)(struct drm_i915_private *dev_priv,
1242 struct i915_power_well *power_well);
1243 /*
1244 * Enable the well and resources that depend on it (for example
1245 * interrupts located on the well). Called after the 0->1 refcount
1246 * transition.
1247 */
1248 void (*enable)(struct drm_i915_private *dev_priv,
1249 struct i915_power_well *power_well);
1250 /*
1251 * Disable the well and resources that depend on it. Called after
1252 * the 1->0 refcount transition.
1253 */
1254 void (*disable)(struct drm_i915_private *dev_priv,
1255 struct i915_power_well *power_well);
1256 /* Returns the hw enabled state. */
1257 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1258 struct i915_power_well *power_well);
1259 };
1260
1261 /* Power well structure for haswell */
1262 struct i915_power_well {
1263 const char *name;
1264 bool always_on;
1265 /* power well enable/disable usage count */
1266 int count;
1267 /* cached hw enabled state */
1268 bool hw_enabled;
1269 unsigned long domains;
1270 unsigned long data;
1271 const struct i915_power_well_ops *ops;
1272 };
1273
1274 struct i915_power_domains {
1275 /*
1276 * Power wells needed for initialization at driver init and suspend
1277 * time are on. They are kept on until after the first modeset.
1278 */
1279 bool init_power_on;
1280 bool initializing;
1281 int power_well_count;
1282
1283 struct mutex lock;
1284 int domain_use_count[POWER_DOMAIN_NUM];
1285 struct i915_power_well *power_wells;
1286 };
1287
1288 #define MAX_L3_SLICES 2
1289 struct intel_l3_parity {
1290 u32 *remap_info[MAX_L3_SLICES];
1291 struct work_struct error_work;
1292 int which_slice;
1293 };
1294
1295 struct i915_gem_mm {
1296 /** Memory allocator for GTT stolen memory */
1297 struct drm_mm stolen;
1298 /** Protects the usage of the GTT stolen memory allocator. This is
1299 * always the inner lock when overlapping with struct_mutex. */
1300 struct mutex stolen_lock;
1301
1302 /** List of all objects in gtt_space. Used to restore gtt
1303 * mappings on resume */
1304 struct list_head bound_list;
1305 /**
1306 * List of objects which are not bound to the GTT (thus
1307 * are idle and not used by the GPU) but still have
1308 * (presumably uncached) pages still attached.
1309 */
1310 struct list_head unbound_list;
1311
1312 /** Usable portion of the GTT for GEM */
1313 unsigned long stolen_base; /* limited to low memory (32-bit) */
1314
1315 /** PPGTT used for aliasing the PPGTT with the GTT */
1316 struct i915_hw_ppgtt *aliasing_ppgtt;
1317
1318 struct notifier_block oom_notifier;
1319 struct notifier_block vmap_notifier;
1320 struct shrinker shrinker;
1321 bool shrinker_no_lock_stealing;
1322
1323 /** LRU list of objects with fence regs on them. */
1324 struct list_head fence_list;
1325
1326 /**
1327 * Are we in a non-interruptible section of code like
1328 * modesetting?
1329 */
1330 bool interruptible;
1331
1332 /* the indicator for dispatch video commands on two BSD rings */
1333 unsigned int bsd_engine_dispatch_index;
1334
1335 /** Bit 6 swizzling required for X tiling */
1336 uint32_t bit_6_swizzle_x;
1337 /** Bit 6 swizzling required for Y tiling */
1338 uint32_t bit_6_swizzle_y;
1339
1340 /* accounting, useful for userland debugging */
1341 spinlock_t object_stat_lock;
1342 size_t object_memory;
1343 u32 object_count;
1344 };
1345
1346 struct drm_i915_error_state_buf {
1347 struct drm_i915_private *i915;
1348 unsigned bytes;
1349 unsigned size;
1350 int err;
1351 u8 *buf;
1352 loff_t start;
1353 loff_t pos;
1354 };
1355
1356 struct i915_error_state_file_priv {
1357 struct drm_device *dev;
1358 struct drm_i915_error_state *error;
1359 };
1360
1361 struct i915_gpu_error {
1362 /* For hangcheck timer */
1363 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1364 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1365 /* Hang gpu twice in this window and your context gets banned */
1366 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1367
1368 struct delayed_work hangcheck_work;
1369
1370 /* For reset and error_state handling. */
1371 spinlock_t lock;
1372 /* Protected by the above dev->gpu_error.lock. */
1373 struct drm_i915_error_state *first_error;
1374
1375 unsigned long missed_irq_rings;
1376
1377 /**
1378 * State variable controlling the reset flow and count
1379 *
1380 * This is a counter which gets incremented when reset is triggered,
1381 * and again when reset has been handled. So odd values (lowest bit set)
1382 * means that reset is in progress and even values that
1383 * (reset_counter >> 1):th reset was successfully completed.
1384 *
1385 * If reset is not completed succesfully, the I915_WEDGE bit is
1386 * set meaning that hardware is terminally sour and there is no
1387 * recovery. All waiters on the reset_queue will be woken when
1388 * that happens.
1389 *
1390 * This counter is used by the wait_seqno code to notice that reset
1391 * event happened and it needs to restart the entire ioctl (since most
1392 * likely the seqno it waited for won't ever signal anytime soon).
1393 *
1394 * This is important for lock-free wait paths, where no contended lock
1395 * naturally enforces the correct ordering between the bail-out of the
1396 * waiter and the gpu reset work code.
1397 */
1398 atomic_t reset_counter;
1399
1400 #define I915_RESET_IN_PROGRESS_FLAG 1
1401 #define I915_WEDGED (1 << 31)
1402
1403 /**
1404 * Waitqueue to signal when a hang is detected. Used to for waiters
1405 * to release the struct_mutex for the reset to procede.
1406 */
1407 wait_queue_head_t wait_queue;
1408
1409 /**
1410 * Waitqueue to signal when the reset has completed. Used by clients
1411 * that wait for dev_priv->mm.wedged to settle.
1412 */
1413 wait_queue_head_t reset_queue;
1414
1415 /* For missed irq/seqno simulation. */
1416 unsigned long test_irq_rings;
1417 };
1418
1419 enum modeset_restore {
1420 MODESET_ON_LID_OPEN,
1421 MODESET_DONE,
1422 MODESET_SUSPENDED,
1423 };
1424
1425 #define DP_AUX_A 0x40
1426 #define DP_AUX_B 0x10
1427 #define DP_AUX_C 0x20
1428 #define DP_AUX_D 0x30
1429
1430 #define DDC_PIN_B 0x05
1431 #define DDC_PIN_C 0x04
1432 #define DDC_PIN_D 0x06
1433
1434 struct ddi_vbt_port_info {
1435 /*
1436 * This is an index in the HDMI/DVI DDI buffer translation table.
1437 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1438 * populate this field.
1439 */
1440 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1441 uint8_t hdmi_level_shift;
1442
1443 uint8_t supports_dvi:1;
1444 uint8_t supports_hdmi:1;
1445 uint8_t supports_dp:1;
1446
1447 uint8_t alternate_aux_channel;
1448 uint8_t alternate_ddc_pin;
1449
1450 uint8_t dp_boost_level;
1451 uint8_t hdmi_boost_level;
1452 };
1453
1454 enum psr_lines_to_wait {
1455 PSR_0_LINES_TO_WAIT = 0,
1456 PSR_1_LINE_TO_WAIT,
1457 PSR_4_LINES_TO_WAIT,
1458 PSR_8_LINES_TO_WAIT
1459 };
1460
1461 struct intel_vbt_data {
1462 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1463 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1464
1465 /* Feature bits */
1466 unsigned int int_tv_support:1;
1467 unsigned int lvds_dither:1;
1468 unsigned int lvds_vbt:1;
1469 unsigned int int_crt_support:1;
1470 unsigned int lvds_use_ssc:1;
1471 unsigned int display_clock_mode:1;
1472 unsigned int fdi_rx_polarity_inverted:1;
1473 unsigned int panel_type:4;
1474 int lvds_ssc_freq;
1475 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1476
1477 enum drrs_support_type drrs_type;
1478
1479 struct {
1480 int rate;
1481 int lanes;
1482 int preemphasis;
1483 int vswing;
1484 bool low_vswing;
1485 bool initialized;
1486 bool support;
1487 int bpp;
1488 struct edp_power_seq pps;
1489 } edp;
1490
1491 struct {
1492 bool full_link;
1493 bool require_aux_wakeup;
1494 int idle_frames;
1495 enum psr_lines_to_wait lines_to_wait;
1496 int tp1_wakeup_time;
1497 int tp2_tp3_wakeup_time;
1498 } psr;
1499
1500 struct {
1501 u16 pwm_freq_hz;
1502 bool present;
1503 bool active_low_pwm;
1504 u8 min_brightness; /* min_brightness/255 of max */
1505 enum intel_backlight_type type;
1506 } backlight;
1507
1508 /* MIPI DSI */
1509 struct {
1510 u16 panel_id;
1511 struct mipi_config *config;
1512 struct mipi_pps_data *pps;
1513 u8 seq_version;
1514 u32 size;
1515 u8 *data;
1516 const u8 *sequence[MIPI_SEQ_MAX];
1517 } dsi;
1518
1519 int crt_ddc_pin;
1520
1521 int child_dev_num;
1522 union child_device_config *child_dev;
1523
1524 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1525 struct sdvo_device_mapping sdvo_mappings[2];
1526 };
1527
1528 enum intel_ddb_partitioning {
1529 INTEL_DDB_PART_1_2,
1530 INTEL_DDB_PART_5_6, /* IVB+ */
1531 };
1532
1533 struct intel_wm_level {
1534 bool enable;
1535 uint32_t pri_val;
1536 uint32_t spr_val;
1537 uint32_t cur_val;
1538 uint32_t fbc_val;
1539 };
1540
1541 struct ilk_wm_values {
1542 uint32_t wm_pipe[3];
1543 uint32_t wm_lp[3];
1544 uint32_t wm_lp_spr[3];
1545 uint32_t wm_linetime[3];
1546 bool enable_fbc_wm;
1547 enum intel_ddb_partitioning partitioning;
1548 };
1549
1550 struct vlv_pipe_wm {
1551 uint16_t primary;
1552 uint16_t sprite[2];
1553 uint8_t cursor;
1554 };
1555
1556 struct vlv_sr_wm {
1557 uint16_t plane;
1558 uint8_t cursor;
1559 };
1560
1561 struct vlv_wm_values {
1562 struct vlv_pipe_wm pipe[3];
1563 struct vlv_sr_wm sr;
1564 struct {
1565 uint8_t cursor;
1566 uint8_t sprite[2];
1567 uint8_t primary;
1568 } ddl[3];
1569 uint8_t level;
1570 bool cxsr;
1571 };
1572
1573 struct skl_ddb_entry {
1574 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1575 };
1576
1577 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1578 {
1579 return entry->end - entry->start;
1580 }
1581
1582 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1583 const struct skl_ddb_entry *e2)
1584 {
1585 if (e1->start == e2->start && e1->end == e2->end)
1586 return true;
1587
1588 return false;
1589 }
1590
1591 struct skl_ddb_allocation {
1592 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1593 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1594 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1595 };
1596
1597 struct skl_wm_values {
1598 unsigned dirty_pipes;
1599 struct skl_ddb_allocation ddb;
1600 uint32_t wm_linetime[I915_MAX_PIPES];
1601 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1602 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1603 };
1604
1605 struct skl_wm_level {
1606 bool plane_en[I915_MAX_PLANES];
1607 uint16_t plane_res_b[I915_MAX_PLANES];
1608 uint8_t plane_res_l[I915_MAX_PLANES];
1609 };
1610
1611 /*
1612 * This struct helps tracking the state needed for runtime PM, which puts the
1613 * device in PCI D3 state. Notice that when this happens, nothing on the
1614 * graphics device works, even register access, so we don't get interrupts nor
1615 * anything else.
1616 *
1617 * Every piece of our code that needs to actually touch the hardware needs to
1618 * either call intel_runtime_pm_get or call intel_display_power_get with the
1619 * appropriate power domain.
1620 *
1621 * Our driver uses the autosuspend delay feature, which means we'll only really
1622 * suspend if we stay with zero refcount for a certain amount of time. The
1623 * default value is currently very conservative (see intel_runtime_pm_enable), but
1624 * it can be changed with the standard runtime PM files from sysfs.
1625 *
1626 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1627 * goes back to false exactly before we reenable the IRQs. We use this variable
1628 * to check if someone is trying to enable/disable IRQs while they're supposed
1629 * to be disabled. This shouldn't happen and we'll print some error messages in
1630 * case it happens.
1631 *
1632 * For more, read the Documentation/power/runtime_pm.txt.
1633 */
1634 struct i915_runtime_pm {
1635 atomic_t wakeref_count;
1636 atomic_t atomic_seq;
1637 bool suspended;
1638 bool irqs_enabled;
1639 };
1640
1641 enum intel_pipe_crc_source {
1642 INTEL_PIPE_CRC_SOURCE_NONE,
1643 INTEL_PIPE_CRC_SOURCE_PLANE1,
1644 INTEL_PIPE_CRC_SOURCE_PLANE2,
1645 INTEL_PIPE_CRC_SOURCE_PF,
1646 INTEL_PIPE_CRC_SOURCE_PIPE,
1647 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1648 INTEL_PIPE_CRC_SOURCE_TV,
1649 INTEL_PIPE_CRC_SOURCE_DP_B,
1650 INTEL_PIPE_CRC_SOURCE_DP_C,
1651 INTEL_PIPE_CRC_SOURCE_DP_D,
1652 INTEL_PIPE_CRC_SOURCE_AUTO,
1653 INTEL_PIPE_CRC_SOURCE_MAX,
1654 };
1655
1656 struct intel_pipe_crc_entry {
1657 uint32_t frame;
1658 uint32_t crc[5];
1659 };
1660
1661 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1662 struct intel_pipe_crc {
1663 spinlock_t lock;
1664 bool opened; /* exclusive access to the result file */
1665 struct intel_pipe_crc_entry *entries;
1666 enum intel_pipe_crc_source source;
1667 int head, tail;
1668 wait_queue_head_t wq;
1669 };
1670
1671 struct i915_frontbuffer_tracking {
1672 struct mutex lock;
1673
1674 /*
1675 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1676 * scheduled flips.
1677 */
1678 unsigned busy_bits;
1679 unsigned flip_bits;
1680 };
1681
1682 struct i915_wa_reg {
1683 i915_reg_t addr;
1684 u32 value;
1685 /* bitmask representing WA bits */
1686 u32 mask;
1687 };
1688
1689 /*
1690 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1691 * allowing it for RCS as we don't foresee any requirement of having
1692 * a whitelist for other engines. When it is really required for
1693 * other engines then the limit need to be increased.
1694 */
1695 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1696
1697 struct i915_workarounds {
1698 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1699 u32 count;
1700 u32 hw_whitelist_count[I915_NUM_ENGINES];
1701 };
1702
1703 struct i915_virtual_gpu {
1704 bool active;
1705 };
1706
1707 /* used in computing the new watermarks state */
1708 struct intel_wm_config {
1709 unsigned int num_pipes_active;
1710 bool sprites_enabled;
1711 bool sprites_scaled;
1712 };
1713
1714 struct drm_i915_private {
1715 struct drm_device drm;
1716
1717 struct kmem_cache *objects;
1718 struct kmem_cache *vmas;
1719 struct kmem_cache *requests;
1720
1721 const struct intel_device_info info;
1722
1723 int relative_constants_mode;
1724
1725 void __iomem *regs;
1726
1727 struct intel_uncore uncore;
1728
1729 struct i915_virtual_gpu vgpu;
1730
1731 struct intel_gvt gvt;
1732
1733 struct intel_guc guc;
1734
1735 struct intel_csr csr;
1736
1737 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1738
1739 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1740 * controller on different i2c buses. */
1741 struct mutex gmbus_mutex;
1742
1743 /**
1744 * Base address of the gmbus and gpio block.
1745 */
1746 uint32_t gpio_mmio_base;
1747
1748 /* MMIO base address for MIPI regs */
1749 uint32_t mipi_mmio_base;
1750
1751 uint32_t psr_mmio_base;
1752
1753 wait_queue_head_t gmbus_wait_queue;
1754
1755 struct pci_dev *bridge_dev;
1756 struct i915_gem_context *kernel_context;
1757 struct intel_engine_cs engine[I915_NUM_ENGINES];
1758 struct drm_i915_gem_object *semaphore_obj;
1759 u32 next_seqno;
1760
1761 struct drm_dma_handle *status_page_dmah;
1762 struct resource mch_res;
1763
1764 /* protects the irq masks */
1765 spinlock_t irq_lock;
1766
1767 /* protects the mmio flip data */
1768 spinlock_t mmio_flip_lock;
1769
1770 bool display_irqs_enabled;
1771
1772 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1773 struct pm_qos_request pm_qos;
1774
1775 /* Sideband mailbox protection */
1776 struct mutex sb_lock;
1777
1778 /** Cached value of IMR to avoid reads in updating the bitfield */
1779 union {
1780 u32 irq_mask;
1781 u32 de_irq_mask[I915_MAX_PIPES];
1782 };
1783 u32 gt_irq_mask;
1784 u32 pm_irq_mask;
1785 u32 pm_rps_events;
1786 u32 pipestat_irq_mask[I915_MAX_PIPES];
1787
1788 struct i915_hotplug hotplug;
1789 struct intel_fbc fbc;
1790 struct i915_drrs drrs;
1791 struct intel_opregion opregion;
1792 struct intel_vbt_data vbt;
1793
1794 bool preserve_bios_swizzle;
1795
1796 /* overlay */
1797 struct intel_overlay *overlay;
1798
1799 /* backlight registers and fields in struct intel_panel */
1800 struct mutex backlight_lock;
1801
1802 /* LVDS info */
1803 bool no_aux_handshake;
1804
1805 /* protects panel power sequencer state */
1806 struct mutex pps_mutex;
1807
1808 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1809 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1810
1811 unsigned int fsb_freq, mem_freq, is_ddr3;
1812 unsigned int skl_preferred_vco_freq;
1813 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1814 unsigned int max_dotclk_freq;
1815 unsigned int rawclk_freq;
1816 unsigned int hpll_freq;
1817 unsigned int czclk_freq;
1818
1819 struct {
1820 unsigned int vco, ref;
1821 } cdclk_pll;
1822
1823 /**
1824 * wq - Driver workqueue for GEM.
1825 *
1826 * NOTE: Work items scheduled here are not allowed to grab any modeset
1827 * locks, for otherwise the flushing done in the pageflip code will
1828 * result in deadlocks.
1829 */
1830 struct workqueue_struct *wq;
1831
1832 /* Display functions */
1833 struct drm_i915_display_funcs display;
1834
1835 /* PCH chipset type */
1836 enum intel_pch pch_type;
1837 unsigned short pch_id;
1838
1839 unsigned long quirks;
1840
1841 enum modeset_restore modeset_restore;
1842 struct mutex modeset_restore_lock;
1843 struct drm_atomic_state *modeset_restore_state;
1844
1845 struct list_head vm_list; /* Global list of all address spaces */
1846 struct i915_ggtt ggtt; /* VM representing the global address space */
1847
1848 struct i915_gem_mm mm;
1849 DECLARE_HASHTABLE(mm_structs, 7);
1850 struct mutex mm_lock;
1851
1852 /* The hw wants to have a stable context identifier for the lifetime
1853 * of the context (for OA, PASID, faults, etc). This is limited
1854 * in execlists to 21 bits.
1855 */
1856 struct ida context_hw_ida;
1857 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1858
1859 /* Kernel Modesetting */
1860
1861 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1862 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1863 wait_queue_head_t pending_flip_queue;
1864
1865 #ifdef CONFIG_DEBUG_FS
1866 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1867 #endif
1868
1869 /* dpll and cdclk state is protected by connection_mutex */
1870 int num_shared_dpll;
1871 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1872 const struct intel_dpll_mgr *dpll_mgr;
1873
1874 /*
1875 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1876 * Must be global rather than per dpll, because on some platforms
1877 * plls share registers.
1878 */
1879 struct mutex dpll_lock;
1880
1881 unsigned int active_crtcs;
1882 unsigned int min_pixclk[I915_MAX_PIPES];
1883
1884 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1885
1886 struct i915_workarounds workarounds;
1887
1888 struct i915_frontbuffer_tracking fb_tracking;
1889
1890 u16 orig_clock;
1891
1892 bool mchbar_need_disable;
1893
1894 struct intel_l3_parity l3_parity;
1895
1896 /* Cannot be determined by PCIID. You must always read a register. */
1897 u32 edram_cap;
1898
1899 /* gen6+ rps state */
1900 struct intel_gen6_power_mgmt rps;
1901
1902 /* ilk-only ips/rps state. Everything in here is protected by the global
1903 * mchdev_lock in intel_pm.c */
1904 struct intel_ilk_power_mgmt ips;
1905
1906 struct i915_power_domains power_domains;
1907
1908 struct i915_psr psr;
1909
1910 struct i915_gpu_error gpu_error;
1911
1912 struct drm_i915_gem_object *vlv_pctx;
1913
1914 #ifdef CONFIG_DRM_FBDEV_EMULATION
1915 /* list of fbdev register on this device */
1916 struct intel_fbdev *fbdev;
1917 struct work_struct fbdev_suspend_work;
1918 #endif
1919
1920 struct drm_property *broadcast_rgb_property;
1921 struct drm_property *force_audio_property;
1922
1923 /* hda/i915 audio component */
1924 struct i915_audio_component *audio_component;
1925 bool audio_component_registered;
1926 /**
1927 * av_mutex - mutex for audio/video sync
1928 *
1929 */
1930 struct mutex av_mutex;
1931
1932 uint32_t hw_context_size;
1933 struct list_head context_list;
1934
1935 u32 fdi_rx_config;
1936
1937 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1938 u32 chv_phy_control;
1939 /*
1940 * Shadows for CHV DPLL_MD regs to keep the state
1941 * checker somewhat working in the presence hardware
1942 * crappiness (can't read out DPLL_MD for pipes B & C).
1943 */
1944 u32 chv_dpll_md[I915_MAX_PIPES];
1945 u32 bxt_phy_grc;
1946
1947 u32 suspend_count;
1948 bool suspended_to_idle;
1949 struct i915_suspend_saved_registers regfile;
1950 struct vlv_s0ix_state vlv_s0ix_state;
1951
1952 struct {
1953 /*
1954 * Raw watermark latency values:
1955 * in 0.1us units for WM0,
1956 * in 0.5us units for WM1+.
1957 */
1958 /* primary */
1959 uint16_t pri_latency[5];
1960 /* sprite */
1961 uint16_t spr_latency[5];
1962 /* cursor */
1963 uint16_t cur_latency[5];
1964 /*
1965 * Raw watermark memory latency values
1966 * for SKL for all 8 levels
1967 * in 1us units.
1968 */
1969 uint16_t skl_latency[8];
1970
1971 /*
1972 * The skl_wm_values structure is a bit too big for stack
1973 * allocation, so we keep the staging struct where we store
1974 * intermediate results here instead.
1975 */
1976 struct skl_wm_values skl_results;
1977
1978 /* current hardware state */
1979 union {
1980 struct ilk_wm_values hw;
1981 struct skl_wm_values skl_hw;
1982 struct vlv_wm_values vlv;
1983 };
1984
1985 uint8_t max_level;
1986
1987 /*
1988 * Should be held around atomic WM register writing; also
1989 * protects * intel_crtc->wm.active and
1990 * cstate->wm.need_postvbl_update.
1991 */
1992 struct mutex wm_mutex;
1993
1994 /*
1995 * Set during HW readout of watermarks/DDB. Some platforms
1996 * need to know when we're still using BIOS-provided values
1997 * (which we don't fully trust).
1998 */
1999 bool distrust_bios_wm;
2000 } wm;
2001
2002 struct i915_runtime_pm pm;
2003
2004 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2005 struct {
2006 void (*cleanup_engine)(struct intel_engine_cs *engine);
2007 void (*stop_engine)(struct intel_engine_cs *engine);
2008
2009 /**
2010 * Is the GPU currently considered idle, or busy executing
2011 * userspace requests? Whilst idle, we allow runtime power
2012 * management to power down the hardware and display clocks.
2013 * In order to reduce the effect on performance, there
2014 * is a slight delay before we do so.
2015 */
2016 unsigned int active_engines;
2017 bool awake;
2018
2019 /**
2020 * We leave the user IRQ off as much as possible,
2021 * but this means that requests will finish and never
2022 * be retired once the system goes idle. Set a timer to
2023 * fire periodically while the ring is running. When it
2024 * fires, go retire requests.
2025 */
2026 struct delayed_work retire_work;
2027
2028 /**
2029 * When we detect an idle GPU, we want to turn on
2030 * powersaving features. So once we see that there
2031 * are no more requests outstanding and no more
2032 * arrive within a small period of time, we fire
2033 * off the idle_work.
2034 */
2035 struct delayed_work idle_work;
2036 } gt;
2037
2038 /* perform PHY state sanity checks? */
2039 bool chv_phy_assert[2];
2040
2041 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2042
2043 /*
2044 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2045 * will be rejected. Instead look for a better place.
2046 */
2047 };
2048
2049 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2050 {
2051 return container_of(dev, struct drm_i915_private, drm);
2052 }
2053
2054 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2055 {
2056 return to_i915(dev_get_drvdata(dev));
2057 }
2058
2059 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2060 {
2061 return container_of(guc, struct drm_i915_private, guc);
2062 }
2063
2064 /* Simple iterator over all initialised engines */
2065 #define for_each_engine(engine__, dev_priv__) \
2066 for ((engine__) = &(dev_priv__)->engine[0]; \
2067 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2068 (engine__)++) \
2069 for_each_if (intel_engine_initialized(engine__))
2070
2071 /* Iterator with engine_id */
2072 #define for_each_engine_id(engine__, dev_priv__, id__) \
2073 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2074 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2075 (engine__)++) \
2076 for_each_if (((id__) = (engine__)->id, \
2077 intel_engine_initialized(engine__)))
2078
2079 /* Iterator over subset of engines selected by mask */
2080 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2081 for ((engine__) = &(dev_priv__)->engine[0]; \
2082 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2083 (engine__)++) \
2084 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2085 intel_engine_initialized(engine__))
2086
2087 enum hdmi_force_audio {
2088 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2089 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2090 HDMI_AUDIO_AUTO, /* trust EDID */
2091 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2092 };
2093
2094 #define I915_GTT_OFFSET_NONE ((u32)-1)
2095
2096 struct drm_i915_gem_object_ops {
2097 unsigned int flags;
2098 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2099
2100 /* Interface between the GEM object and its backing storage.
2101 * get_pages() is called once prior to the use of the associated set
2102 * of pages before to binding them into the GTT, and put_pages() is
2103 * called after we no longer need them. As we expect there to be
2104 * associated cost with migrating pages between the backing storage
2105 * and making them available for the GPU (e.g. clflush), we may hold
2106 * onto the pages after they are no longer referenced by the GPU
2107 * in case they may be used again shortly (for example migrating the
2108 * pages to a different memory domain within the GTT). put_pages()
2109 * will therefore most likely be called when the object itself is
2110 * being released or under memory pressure (where we attempt to
2111 * reap pages for the shrinker).
2112 */
2113 int (*get_pages)(struct drm_i915_gem_object *);
2114 void (*put_pages)(struct drm_i915_gem_object *);
2115
2116 int (*dmabuf_export)(struct drm_i915_gem_object *);
2117 void (*release)(struct drm_i915_gem_object *);
2118 };
2119
2120 /*
2121 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2122 * considered to be the frontbuffer for the given plane interface-wise. This
2123 * doesn't mean that the hw necessarily already scans it out, but that any
2124 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2125 *
2126 * We have one bit per pipe and per scanout plane type.
2127 */
2128 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2129 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2130 #define INTEL_FRONTBUFFER_BITS \
2131 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2132 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2133 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2134 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2135 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2136 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2137 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2138 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2139 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2140 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2141 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2142
2143 struct drm_i915_gem_object {
2144 struct drm_gem_object base;
2145
2146 const struct drm_i915_gem_object_ops *ops;
2147
2148 /** List of VMAs backed by this object */
2149 struct list_head vma_list;
2150
2151 /** Stolen memory for this object, instead of being backed by shmem. */
2152 struct drm_mm_node *stolen;
2153 struct list_head global_list;
2154
2155 /** Used in execbuf to temporarily hold a ref */
2156 struct list_head obj_exec_link;
2157
2158 struct list_head batch_pool_link;
2159
2160 /**
2161 * This is set if the object is on the active lists (has pending
2162 * rendering and so a non-zero seqno), and is not set if it i s on
2163 * inactive (ready to be unbound) list.
2164 */
2165 unsigned int active:I915_NUM_ENGINES;
2166
2167 /**
2168 * This is set if the object has been written to since last bound
2169 * to the GTT
2170 */
2171 unsigned int dirty:1;
2172
2173 /**
2174 * Fence register bits (if any) for this object. Will be set
2175 * as needed when mapped into the GTT.
2176 * Protected by dev->struct_mutex.
2177 */
2178 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2179
2180 /**
2181 * Advice: are the backing pages purgeable?
2182 */
2183 unsigned int madv:2;
2184
2185 /**
2186 * Current tiling mode for the object.
2187 */
2188 unsigned int tiling_mode:2;
2189 /**
2190 * Whether the tiling parameters for the currently associated fence
2191 * register have changed. Note that for the purposes of tracking
2192 * tiling changes we also treat the unfenced register, the register
2193 * slot that the object occupies whilst it executes a fenced
2194 * command (such as BLT on gen2/3), as a "fence".
2195 */
2196 unsigned int fence_dirty:1;
2197
2198 /**
2199 * Is the object at the current location in the gtt mappable and
2200 * fenceable? Used to avoid costly recalculations.
2201 */
2202 unsigned int map_and_fenceable:1;
2203
2204 /**
2205 * Whether the current gtt mapping needs to be mappable (and isn't just
2206 * mappable by accident). Track pin and fault separate for a more
2207 * accurate mappable working set.
2208 */
2209 unsigned int fault_mappable:1;
2210
2211 /*
2212 * Is the object to be mapped as read-only to the GPU
2213 * Only honoured if hardware has relevant pte bit
2214 */
2215 unsigned long gt_ro:1;
2216 unsigned int cache_level:3;
2217 unsigned int cache_dirty:1;
2218
2219 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2220
2221 unsigned int has_wc_mmap;
2222 /** Count of VMA actually bound by this object */
2223 unsigned int bind_count;
2224 unsigned int pin_display;
2225
2226 struct sg_table *pages;
2227 int pages_pin_count;
2228 struct get_page {
2229 struct scatterlist *sg;
2230 int last;
2231 } get_page;
2232 void *mapping;
2233
2234 /** Breadcrumb of last rendering to the buffer.
2235 * There can only be one writer, but we allow for multiple readers.
2236 * If there is a writer that necessarily implies that all other
2237 * read requests are complete - but we may only be lazily clearing
2238 * the read requests. A read request is naturally the most recent
2239 * request on a ring, so we may have two different write and read
2240 * requests on one ring where the write request is older than the
2241 * read request. This allows for the CPU to read from an active
2242 * buffer by only waiting for the write to complete.
2243 */
2244 struct i915_gem_active last_read[I915_NUM_ENGINES];
2245 struct i915_gem_active last_write;
2246 struct i915_gem_active last_fence;
2247
2248 /** Current tiling stride for the object, if it's tiled. */
2249 uint32_t stride;
2250
2251 /** References from framebuffers, locks out tiling changes. */
2252 unsigned long framebuffer_references;
2253
2254 /** Record of address bit 17 of each page at last unbind. */
2255 unsigned long *bit_17;
2256
2257 union {
2258 /** for phy allocated objects */
2259 struct drm_dma_handle *phys_handle;
2260
2261 struct i915_gem_userptr {
2262 uintptr_t ptr;
2263 unsigned read_only :1;
2264 unsigned workers :4;
2265 #define I915_GEM_USERPTR_MAX_WORKERS 15
2266
2267 struct i915_mm_struct *mm;
2268 struct i915_mmu_object *mmu_object;
2269 struct work_struct *work;
2270 } userptr;
2271 };
2272 };
2273
2274 static inline struct drm_i915_gem_object *
2275 to_intel_bo(struct drm_gem_object *gem)
2276 {
2277 /* Assert that to_intel_bo(NULL) == NULL */
2278 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2279
2280 return container_of(gem, struct drm_i915_gem_object, base);
2281 }
2282
2283 static inline struct drm_i915_gem_object *
2284 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2285 {
2286 return to_intel_bo(drm_gem_object_lookup(file, handle));
2287 }
2288
2289 __deprecated
2290 extern struct drm_gem_object *
2291 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2292
2293 __attribute__((nonnull))
2294 static inline struct drm_i915_gem_object *
2295 i915_gem_object_get(struct drm_i915_gem_object *obj)
2296 {
2297 drm_gem_object_reference(&obj->base);
2298 return obj;
2299 }
2300
2301 __deprecated
2302 extern void drm_gem_object_reference(struct drm_gem_object *);
2303
2304 __attribute__((nonnull))
2305 static inline void
2306 i915_gem_object_put(struct drm_i915_gem_object *obj)
2307 {
2308 drm_gem_object_unreference(&obj->base);
2309 }
2310
2311 __deprecated
2312 extern void drm_gem_object_unreference(struct drm_gem_object *);
2313
2314 __attribute__((nonnull))
2315 static inline void
2316 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2317 {
2318 drm_gem_object_unreference_unlocked(&obj->base);
2319 }
2320
2321 __deprecated
2322 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2323
2324 static inline bool
2325 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2326 {
2327 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2328 }
2329
2330 /*
2331 * Optimised SGL iterator for GEM objects
2332 */
2333 static __always_inline struct sgt_iter {
2334 struct scatterlist *sgp;
2335 union {
2336 unsigned long pfn;
2337 dma_addr_t dma;
2338 };
2339 unsigned int curr;
2340 unsigned int max;
2341 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2342 struct sgt_iter s = { .sgp = sgl };
2343
2344 if (s.sgp) {
2345 s.max = s.curr = s.sgp->offset;
2346 s.max += s.sgp->length;
2347 if (dma)
2348 s.dma = sg_dma_address(s.sgp);
2349 else
2350 s.pfn = page_to_pfn(sg_page(s.sgp));
2351 }
2352
2353 return s;
2354 }
2355
2356 /**
2357 * __sg_next - return the next scatterlist entry in a list
2358 * @sg: The current sg entry
2359 *
2360 * Description:
2361 * If the entry is the last, return NULL; otherwise, step to the next
2362 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2363 * otherwise just return the pointer to the current element.
2364 **/
2365 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2366 {
2367 #ifdef CONFIG_DEBUG_SG
2368 BUG_ON(sg->sg_magic != SG_MAGIC);
2369 #endif
2370 return sg_is_last(sg) ? NULL :
2371 likely(!sg_is_chain(++sg)) ? sg :
2372 sg_chain_ptr(sg);
2373 }
2374
2375 /**
2376 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2377 * @__dmap: DMA address (output)
2378 * @__iter: 'struct sgt_iter' (iterator state, internal)
2379 * @__sgt: sg_table to iterate over (input)
2380 */
2381 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2382 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2383 ((__dmap) = (__iter).dma + (__iter).curr); \
2384 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2385 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2386
2387 /**
2388 * for_each_sgt_page - iterate over the pages of the given sg_table
2389 * @__pp: page pointer (output)
2390 * @__iter: 'struct sgt_iter' (iterator state, internal)
2391 * @__sgt: sg_table to iterate over (input)
2392 */
2393 #define for_each_sgt_page(__pp, __iter, __sgt) \
2394 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2395 ((__pp) = (__iter).pfn == 0 ? NULL : \
2396 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2397 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2398 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2399
2400 /*
2401 * A command that requires special handling by the command parser.
2402 */
2403 struct drm_i915_cmd_descriptor {
2404 /*
2405 * Flags describing how the command parser processes the command.
2406 *
2407 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2408 * a length mask if not set
2409 * CMD_DESC_SKIP: The command is allowed but does not follow the
2410 * standard length encoding for the opcode range in
2411 * which it falls
2412 * CMD_DESC_REJECT: The command is never allowed
2413 * CMD_DESC_REGISTER: The command should be checked against the
2414 * register whitelist for the appropriate ring
2415 * CMD_DESC_MASTER: The command is allowed if the submitting process
2416 * is the DRM master
2417 */
2418 u32 flags;
2419 #define CMD_DESC_FIXED (1<<0)
2420 #define CMD_DESC_SKIP (1<<1)
2421 #define CMD_DESC_REJECT (1<<2)
2422 #define CMD_DESC_REGISTER (1<<3)
2423 #define CMD_DESC_BITMASK (1<<4)
2424 #define CMD_DESC_MASTER (1<<5)
2425
2426 /*
2427 * The command's unique identification bits and the bitmask to get them.
2428 * This isn't strictly the opcode field as defined in the spec and may
2429 * also include type, subtype, and/or subop fields.
2430 */
2431 struct {
2432 u32 value;
2433 u32 mask;
2434 } cmd;
2435
2436 /*
2437 * The command's length. The command is either fixed length (i.e. does
2438 * not include a length field) or has a length field mask. The flag
2439 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2440 * a length mask. All command entries in a command table must include
2441 * length information.
2442 */
2443 union {
2444 u32 fixed;
2445 u32 mask;
2446 } length;
2447
2448 /*
2449 * Describes where to find a register address in the command to check
2450 * against the ring's register whitelist. Only valid if flags has the
2451 * CMD_DESC_REGISTER bit set.
2452 *
2453 * A non-zero step value implies that the command may access multiple
2454 * registers in sequence (e.g. LRI), in that case step gives the
2455 * distance in dwords between individual offset fields.
2456 */
2457 struct {
2458 u32 offset;
2459 u32 mask;
2460 u32 step;
2461 } reg;
2462
2463 #define MAX_CMD_DESC_BITMASKS 3
2464 /*
2465 * Describes command checks where a particular dword is masked and
2466 * compared against an expected value. If the command does not match
2467 * the expected value, the parser rejects it. Only valid if flags has
2468 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2469 * are valid.
2470 *
2471 * If the check specifies a non-zero condition_mask then the parser
2472 * only performs the check when the bits specified by condition_mask
2473 * are non-zero.
2474 */
2475 struct {
2476 u32 offset;
2477 u32 mask;
2478 u32 expected;
2479 u32 condition_offset;
2480 u32 condition_mask;
2481 } bits[MAX_CMD_DESC_BITMASKS];
2482 };
2483
2484 /*
2485 * A table of commands requiring special handling by the command parser.
2486 *
2487 * Each engine has an array of tables. Each table consists of an array of
2488 * command descriptors, which must be sorted with command opcodes in
2489 * ascending order.
2490 */
2491 struct drm_i915_cmd_table {
2492 const struct drm_i915_cmd_descriptor *table;
2493 int count;
2494 };
2495
2496 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2497 #define __I915__(p) ({ \
2498 struct drm_i915_private *__p; \
2499 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2500 __p = (struct drm_i915_private *)p; \
2501 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2502 __p = to_i915((struct drm_device *)p); \
2503 else \
2504 BUILD_BUG(); \
2505 __p; \
2506 })
2507 #define INTEL_INFO(p) (&__I915__(p)->info)
2508 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2509 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2510
2511 #define REVID_FOREVER 0xff
2512 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2513
2514 #define GEN_FOREVER (0)
2515 /*
2516 * Returns true if Gen is in inclusive range [Start, End].
2517 *
2518 * Use GEN_FOREVER for unbound start and or end.
2519 */
2520 #define IS_GEN(p, s, e) ({ \
2521 unsigned int __s = (s), __e = (e); \
2522 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2523 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2524 if ((__s) != GEN_FOREVER) \
2525 __s = (s) - 1; \
2526 if ((__e) == GEN_FOREVER) \
2527 __e = BITS_PER_LONG - 1; \
2528 else \
2529 __e = (e) - 1; \
2530 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2531 })
2532
2533 /*
2534 * Return true if revision is in range [since,until] inclusive.
2535 *
2536 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2537 */
2538 #define IS_REVID(p, since, until) \
2539 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2540
2541 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2542 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2543 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2544 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2545 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2546 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2547 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2548 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2549 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2550 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2551 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2552 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2553 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2554 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2555 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2556 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2557 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2558 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2559 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2560 INTEL_DEVID(dev) == 0x0152 || \
2561 INTEL_DEVID(dev) == 0x015a)
2562 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2563 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2564 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2565 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2566 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2567 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2568 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2569 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2570 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2571 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2572 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2573 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2574 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2575 (INTEL_DEVID(dev) & 0xf) == 0xe))
2576 /* ULX machines are also considered ULT. */
2577 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2578 (INTEL_DEVID(dev) & 0xf) == 0xe)
2579 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2580 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2581 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2582 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2583 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2584 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2585 /* ULX machines are also considered ULT. */
2586 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2587 INTEL_DEVID(dev) == 0x0A1E)
2588 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2589 INTEL_DEVID(dev) == 0x1913 || \
2590 INTEL_DEVID(dev) == 0x1916 || \
2591 INTEL_DEVID(dev) == 0x1921 || \
2592 INTEL_DEVID(dev) == 0x1926)
2593 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2594 INTEL_DEVID(dev) == 0x1915 || \
2595 INTEL_DEVID(dev) == 0x191E)
2596 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2597 INTEL_DEVID(dev) == 0x5913 || \
2598 INTEL_DEVID(dev) == 0x5916 || \
2599 INTEL_DEVID(dev) == 0x5921 || \
2600 INTEL_DEVID(dev) == 0x5926)
2601 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2602 INTEL_DEVID(dev) == 0x5915 || \
2603 INTEL_DEVID(dev) == 0x591E)
2604 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2605 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2606 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2607 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2608
2609 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2610
2611 #define SKL_REVID_A0 0x0
2612 #define SKL_REVID_B0 0x1
2613 #define SKL_REVID_C0 0x2
2614 #define SKL_REVID_D0 0x3
2615 #define SKL_REVID_E0 0x4
2616 #define SKL_REVID_F0 0x5
2617 #define SKL_REVID_G0 0x6
2618 #define SKL_REVID_H0 0x7
2619
2620 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2621
2622 #define BXT_REVID_A0 0x0
2623 #define BXT_REVID_A1 0x1
2624 #define BXT_REVID_B0 0x3
2625 #define BXT_REVID_C0 0x9
2626
2627 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2628
2629 #define KBL_REVID_A0 0x0
2630 #define KBL_REVID_B0 0x1
2631 #define KBL_REVID_C0 0x2
2632 #define KBL_REVID_D0 0x3
2633 #define KBL_REVID_E0 0x4
2634
2635 #define IS_KBL_REVID(p, since, until) \
2636 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2637
2638 /*
2639 * The genX designation typically refers to the render engine, so render
2640 * capability related checks should use IS_GEN, while display and other checks
2641 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2642 * chips, etc.).
2643 */
2644 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2645 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2646 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2647 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2648 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2649 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2650 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2651 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2652
2653 #define ENGINE_MASK(id) BIT(id)
2654 #define RENDER_RING ENGINE_MASK(RCS)
2655 #define BSD_RING ENGINE_MASK(VCS)
2656 #define BLT_RING ENGINE_MASK(BCS)
2657 #define VEBOX_RING ENGINE_MASK(VECS)
2658 #define BSD2_RING ENGINE_MASK(VCS2)
2659 #define ALL_ENGINES (~0)
2660
2661 #define HAS_ENGINE(dev_priv, id) \
2662 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2663
2664 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2665 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2666 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2667 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2668
2669 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2670 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2671 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2672 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2673 HAS_EDRAM(dev))
2674 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2675
2676 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2677 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2678 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2679 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2680 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2681
2682 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2683 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2684
2685 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2686 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2687
2688 /* WaRsDisableCoarsePowerGating:skl,bxt */
2689 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2690 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2691 IS_SKL_GT3(dev_priv) || \
2692 IS_SKL_GT4(dev_priv))
2693
2694 /*
2695 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2696 * even when in MSI mode. This results in spurious interrupt warnings if the
2697 * legacy irq no. is shared with another device. The kernel then disables that
2698 * interrupt source and so prevents the other device from working properly.
2699 */
2700 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2701 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2702
2703 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2704 * rows, which changed the alignment requirements and fence programming.
2705 */
2706 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2707 IS_I915GM(dev)))
2708 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2709 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2710
2711 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2712 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2713 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2714
2715 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2716
2717 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2718 INTEL_INFO(dev)->gen >= 9)
2719
2720 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2721 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2722 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2723 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2724 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2725 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2726 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2727 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2728 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2729 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2730 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2731
2732 #define HAS_CSR(dev) (IS_GEN9(dev))
2733
2734 /*
2735 * For now, anything with a GuC requires uCode loading, and then supports
2736 * command submission once loaded. But these are logically independent
2737 * properties, so we have separate macros to test them.
2738 */
2739 #define HAS_GUC(dev) (IS_GEN9(dev))
2740 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2741 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2742
2743 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2744 INTEL_INFO(dev)->gen >= 8)
2745
2746 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2747 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2748 !IS_BROXTON(dev))
2749
2750 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2751
2752 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2753 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2754 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2755 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2756 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2757 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2758 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2759 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2760 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2761 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2762 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2763 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2764
2765 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2766 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2767 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2768 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2769 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2770 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2771 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2772 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2773 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2774 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2775
2776 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2777 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2778
2779 /* DPF == dynamic parity feature */
2780 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2781 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2782
2783 #define GT_FREQUENCY_MULTIPLIER 50
2784 #define GEN9_FREQ_SCALER 3
2785
2786 #include "i915_trace.h"
2787
2788 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2789 {
2790 #ifdef CONFIG_INTEL_IOMMU
2791 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2792 return true;
2793 #endif
2794 return false;
2795 }
2796
2797 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2798 extern int i915_resume_switcheroo(struct drm_device *dev);
2799
2800 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2801 int enable_ppgtt);
2802
2803 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2804
2805 /* i915_drv.c */
2806 void __printf(3, 4)
2807 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2808 const char *fmt, ...);
2809
2810 #define i915_report_error(dev_priv, fmt, ...) \
2811 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2812
2813 #ifdef CONFIG_COMPAT
2814 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2815 unsigned long arg);
2816 #endif
2817 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2818 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2819 extern int i915_reset(struct drm_i915_private *dev_priv);
2820 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2821 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2822 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2823 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2824 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2825 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2826 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2827
2828 /* intel_hotplug.c */
2829 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2830 u32 pin_mask, u32 long_mask);
2831 void intel_hpd_init(struct drm_i915_private *dev_priv);
2832 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2833 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2834 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2835 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2836 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2837
2838 /* i915_irq.c */
2839 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2840 {
2841 unsigned long delay;
2842
2843 if (unlikely(!i915.enable_hangcheck))
2844 return;
2845
2846 /* Don't continually defer the hangcheck so that it is always run at
2847 * least once after work has been scheduled on any ring. Otherwise,
2848 * we will ignore a hung ring if a second ring is kept busy.
2849 */
2850
2851 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2852 queue_delayed_work(system_long_wq,
2853 &dev_priv->gpu_error.hangcheck_work, delay);
2854 }
2855
2856 __printf(3, 4)
2857 void i915_handle_error(struct drm_i915_private *dev_priv,
2858 u32 engine_mask,
2859 const char *fmt, ...);
2860
2861 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2862 int intel_irq_install(struct drm_i915_private *dev_priv);
2863 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2864
2865 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2866 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2867 bool restore_forcewake);
2868 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2869 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2870 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2871 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2872 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2873 bool restore);
2874 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2875 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2876 enum forcewake_domains domains);
2877 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2878 enum forcewake_domains domains);
2879 /* Like above but the caller must manage the uncore.lock itself.
2880 * Must be used with I915_READ_FW and friends.
2881 */
2882 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2883 enum forcewake_domains domains);
2884 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2885 enum forcewake_domains domains);
2886 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2887
2888 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2889
2890 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2891 i915_reg_t reg,
2892 const u32 mask,
2893 const u32 value,
2894 const unsigned long timeout_ms);
2895 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2896 i915_reg_t reg,
2897 const u32 mask,
2898 const u32 value,
2899 const unsigned long timeout_ms);
2900
2901 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2902 {
2903 return dev_priv->gvt.initialized;
2904 }
2905
2906 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2907 {
2908 return dev_priv->vgpu.active;
2909 }
2910
2911 void
2912 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2913 u32 status_mask);
2914
2915 void
2916 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2917 u32 status_mask);
2918
2919 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2920 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2921 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2922 uint32_t mask,
2923 uint32_t bits);
2924 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2925 uint32_t interrupt_mask,
2926 uint32_t enabled_irq_mask);
2927 static inline void
2928 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2929 {
2930 ilk_update_display_irq(dev_priv, bits, bits);
2931 }
2932 static inline void
2933 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2934 {
2935 ilk_update_display_irq(dev_priv, bits, 0);
2936 }
2937 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2938 enum pipe pipe,
2939 uint32_t interrupt_mask,
2940 uint32_t enabled_irq_mask);
2941 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2942 enum pipe pipe, uint32_t bits)
2943 {
2944 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2945 }
2946 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2947 enum pipe pipe, uint32_t bits)
2948 {
2949 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2950 }
2951 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2952 uint32_t interrupt_mask,
2953 uint32_t enabled_irq_mask);
2954 static inline void
2955 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2956 {
2957 ibx_display_interrupt_update(dev_priv, bits, bits);
2958 }
2959 static inline void
2960 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2961 {
2962 ibx_display_interrupt_update(dev_priv, bits, 0);
2963 }
2964
2965 /* i915_gem.c */
2966 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2967 struct drm_file *file_priv);
2968 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2969 struct drm_file *file_priv);
2970 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2971 struct drm_file *file_priv);
2972 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2973 struct drm_file *file_priv);
2974 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2975 struct drm_file *file_priv);
2976 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2977 struct drm_file *file_priv);
2978 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2979 struct drm_file *file_priv);
2980 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2981 struct drm_file *file_priv);
2982 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2983 struct drm_file *file_priv);
2984 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2985 struct drm_file *file_priv);
2986 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2987 struct drm_file *file);
2988 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2989 struct drm_file *file);
2990 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2991 struct drm_file *file_priv);
2992 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2993 struct drm_file *file_priv);
2994 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2995 struct drm_file *file_priv);
2996 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2997 struct drm_file *file_priv);
2998 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2999 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3000 struct drm_file *file);
3001 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3002 struct drm_file *file_priv);
3003 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3004 struct drm_file *file_priv);
3005 void i915_gem_load_init(struct drm_device *dev);
3006 void i915_gem_load_cleanup(struct drm_device *dev);
3007 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3008 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3009
3010 void *i915_gem_object_alloc(struct drm_device *dev);
3011 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3012 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3013 const struct drm_i915_gem_object_ops *ops);
3014 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3015 size_t size);
3016 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3017 struct drm_device *dev, const void *data, size_t size);
3018 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3019 void i915_gem_free_object(struct drm_gem_object *obj);
3020
3021 /* Flags used by pin/bind&friends. */
3022 #define PIN_MAPPABLE (1<<0)
3023 #define PIN_NONBLOCK (1<<1)
3024 #define PIN_GLOBAL (1<<2)
3025 #define PIN_OFFSET_BIAS (1<<3)
3026 #define PIN_USER (1<<4)
3027 #define PIN_UPDATE (1<<5)
3028 #define PIN_ZONE_4G (1<<6)
3029 #define PIN_HIGH (1<<7)
3030 #define PIN_OFFSET_FIXED (1<<8)
3031 #define PIN_OFFSET_MASK (~4095)
3032 int __must_check
3033 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3034 struct i915_address_space *vm,
3035 uint32_t alignment,
3036 uint64_t flags);
3037 int __must_check
3038 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3039 const struct i915_ggtt_view *view,
3040 uint32_t alignment,
3041 uint64_t flags);
3042
3043 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3044 u32 flags);
3045 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3046 int __must_check i915_vma_unbind(struct i915_vma *vma);
3047 void i915_vma_close(struct i915_vma *vma);
3048 void i915_vma_destroy(struct i915_vma *vma);
3049
3050 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3051 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3052 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3053 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3054
3055 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3056 int *needs_clflush);
3057
3058 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3059
3060 static inline int __sg_page_count(struct scatterlist *sg)
3061 {
3062 return sg->length >> PAGE_SHIFT;
3063 }
3064
3065 struct page *
3066 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3067
3068 static inline dma_addr_t
3069 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3070 {
3071 if (n < obj->get_page.last) {
3072 obj->get_page.sg = obj->pages->sgl;
3073 obj->get_page.last = 0;
3074 }
3075
3076 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3077 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3078 if (unlikely(sg_is_chain(obj->get_page.sg)))
3079 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3080 }
3081
3082 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3083 }
3084
3085 static inline struct page *
3086 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3087 {
3088 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3089 return NULL;
3090
3091 if (n < obj->get_page.last) {
3092 obj->get_page.sg = obj->pages->sgl;
3093 obj->get_page.last = 0;
3094 }
3095
3096 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3097 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3098 if (unlikely(sg_is_chain(obj->get_page.sg)))
3099 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3100 }
3101
3102 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3103 }
3104
3105 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3106 {
3107 BUG_ON(obj->pages == NULL);
3108 obj->pages_pin_count++;
3109 }
3110
3111 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3112 {
3113 BUG_ON(obj->pages_pin_count == 0);
3114 obj->pages_pin_count--;
3115 }
3116
3117 /**
3118 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3119 * @obj - the object to map into kernel address space
3120 *
3121 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3122 * pages and then returns a contiguous mapping of the backing storage into
3123 * the kernel address space.
3124 *
3125 * The caller must hold the struct_mutex, and is responsible for calling
3126 * i915_gem_object_unpin_map() when the mapping is no longer required.
3127 *
3128 * Returns the pointer through which to access the mapped object, or an
3129 * ERR_PTR() on error.
3130 */
3131 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3132
3133 /**
3134 * i915_gem_object_unpin_map - releases an earlier mapping
3135 * @obj - the object to unmap
3136 *
3137 * After pinning the object and mapping its pages, once you are finished
3138 * with your access, call i915_gem_object_unpin_map() to release the pin
3139 * upon the mapping. Once the pin count reaches zero, that mapping may be
3140 * removed.
3141 *
3142 * The caller must hold the struct_mutex.
3143 */
3144 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3145 {
3146 lockdep_assert_held(&obj->base.dev->struct_mutex);
3147 i915_gem_object_unpin_pages(obj);
3148 }
3149
3150 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3151 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3152 struct drm_i915_gem_request *to);
3153 void i915_vma_move_to_active(struct i915_vma *vma,
3154 struct drm_i915_gem_request *req,
3155 unsigned int flags);
3156 int i915_gem_dumb_create(struct drm_file *file_priv,
3157 struct drm_device *dev,
3158 struct drm_mode_create_dumb *args);
3159 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3160 uint32_t handle, uint64_t *offset);
3161
3162 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3163 struct drm_i915_gem_object *new,
3164 unsigned frontbuffer_bits);
3165
3166 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3167
3168 struct drm_i915_gem_request *
3169 i915_gem_find_active_request(struct intel_engine_cs *engine);
3170
3171 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3172 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3173
3174 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3175 {
3176 return atomic_read(&error->reset_counter);
3177 }
3178
3179 static inline bool __i915_reset_in_progress(u32 reset)
3180 {
3181 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3182 }
3183
3184 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3185 {
3186 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3187 }
3188
3189 static inline bool __i915_terminally_wedged(u32 reset)
3190 {
3191 return unlikely(reset & I915_WEDGED);
3192 }
3193
3194 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3195 {
3196 return __i915_reset_in_progress(i915_reset_counter(error));
3197 }
3198
3199 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3200 {
3201 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3202 }
3203
3204 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3205 {
3206 return __i915_terminally_wedged(i915_reset_counter(error));
3207 }
3208
3209 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3210 {
3211 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3212 }
3213
3214 void i915_gem_reset(struct drm_device *dev);
3215 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3216 int __must_check i915_gem_init(struct drm_device *dev);
3217 int __must_check i915_gem_init_hw(struct drm_device *dev);
3218 void i915_gem_init_swizzling(struct drm_device *dev);
3219 void i915_gem_cleanup_engines(struct drm_device *dev);
3220 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3221 int __must_check i915_gem_suspend(struct drm_device *dev);
3222 void i915_gem_resume(struct drm_device *dev);
3223 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3224 int __must_check
3225 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3226 bool readonly);
3227 int __must_check
3228 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3229 bool write);
3230 int __must_check
3231 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3232 int __must_check
3233 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3234 u32 alignment,
3235 const struct i915_ggtt_view *view);
3236 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3237 const struct i915_ggtt_view *view);
3238 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3239 int align);
3240 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3241 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3242
3243 uint32_t
3244 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3245 uint32_t
3246 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3247 int tiling_mode, bool fenced);
3248
3249 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3250 enum i915_cache_level cache_level);
3251
3252 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3253 struct dma_buf *dma_buf);
3254
3255 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3256 struct drm_gem_object *gem_obj, int flags);
3257
3258 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3259 const struct i915_ggtt_view *view);
3260 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3261 struct i915_address_space *vm);
3262 static inline u64
3263 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3264 {
3265 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3266 }
3267
3268 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3269 const struct i915_ggtt_view *view);
3270 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3271 struct i915_address_space *vm);
3272
3273 struct i915_vma *
3274 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3275 struct i915_address_space *vm);
3276 struct i915_vma *
3277 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3278 const struct i915_ggtt_view *view);
3279
3280 struct i915_vma *
3281 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3282 struct i915_address_space *vm);
3283 struct i915_vma *
3284 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3285 const struct i915_ggtt_view *view);
3286
3287 static inline struct i915_vma *
3288 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3289 {
3290 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3291 }
3292 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3293
3294 /* Some GGTT VM helpers */
3295 static inline struct i915_hw_ppgtt *
3296 i915_vm_to_ppgtt(struct i915_address_space *vm)
3297 {
3298 return container_of(vm, struct i915_hw_ppgtt, base);
3299 }
3300
3301 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3302 {
3303 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3304 }
3305
3306 unsigned long
3307 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3308
3309 static inline int __must_check
3310 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3311 uint32_t alignment,
3312 unsigned flags)
3313 {
3314 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3315 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3316
3317 return i915_gem_object_pin(obj, &ggtt->base,
3318 alignment, flags | PIN_GLOBAL);
3319 }
3320
3321 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3322 const struct i915_ggtt_view *view);
3323 static inline void
3324 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3325 {
3326 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3327 }
3328
3329 /* i915_gem_fence.c */
3330 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3331 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3332
3333 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3334 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3335
3336 void i915_gem_restore_fences(struct drm_device *dev);
3337
3338 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3339 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3340 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3341
3342 /* i915_gem_context.c */
3343 int __must_check i915_gem_context_init(struct drm_device *dev);
3344 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3345 void i915_gem_context_fini(struct drm_device *dev);
3346 void i915_gem_context_reset(struct drm_device *dev);
3347 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3348 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3349 int i915_switch_context(struct drm_i915_gem_request *req);
3350 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3351 void i915_gem_context_free(struct kref *ctx_ref);
3352 struct drm_i915_gem_object *
3353 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3354 struct i915_gem_context *
3355 i915_gem_context_create_gvt(struct drm_device *dev);
3356
3357 static inline struct i915_gem_context *
3358 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3359 {
3360 struct i915_gem_context *ctx;
3361
3362 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3363
3364 ctx = idr_find(&file_priv->context_idr, id);
3365 if (!ctx)
3366 return ERR_PTR(-ENOENT);
3367
3368 return ctx;
3369 }
3370
3371 static inline struct i915_gem_context *
3372 i915_gem_context_get(struct i915_gem_context *ctx)
3373 {
3374 kref_get(&ctx->ref);
3375 return ctx;
3376 }
3377
3378 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3379 {
3380 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3381 kref_put(&ctx->ref, i915_gem_context_free);
3382 }
3383
3384 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3385 {
3386 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3387 }
3388
3389 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3390 struct drm_file *file);
3391 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3392 struct drm_file *file);
3393 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file_priv);
3395 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3396 struct drm_file *file_priv);
3397 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file);
3399
3400 /* i915_gem_evict.c */
3401 int __must_check i915_gem_evict_something(struct drm_device *dev,
3402 struct i915_address_space *vm,
3403 int min_size,
3404 unsigned alignment,
3405 unsigned cache_level,
3406 unsigned long start,
3407 unsigned long end,
3408 unsigned flags);
3409 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3410 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3411
3412 /* belongs in i915_gem_gtt.h */
3413 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3414 {
3415 if (INTEL_GEN(dev_priv) < 6)
3416 intel_gtt_chipset_flush();
3417 }
3418
3419 /* i915_gem_stolen.c */
3420 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3421 struct drm_mm_node *node, u64 size,
3422 unsigned alignment);
3423 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3424 struct drm_mm_node *node, u64 size,
3425 unsigned alignment, u64 start,
3426 u64 end);
3427 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3428 struct drm_mm_node *node);
3429 int i915_gem_init_stolen(struct drm_device *dev);
3430 void i915_gem_cleanup_stolen(struct drm_device *dev);
3431 struct drm_i915_gem_object *
3432 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3433 struct drm_i915_gem_object *
3434 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3435 u32 stolen_offset,
3436 u32 gtt_offset,
3437 u32 size);
3438
3439 /* i915_gem_shrinker.c */
3440 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3441 unsigned long target,
3442 unsigned flags);
3443 #define I915_SHRINK_PURGEABLE 0x1
3444 #define I915_SHRINK_UNBOUND 0x2
3445 #define I915_SHRINK_BOUND 0x4
3446 #define I915_SHRINK_ACTIVE 0x8
3447 #define I915_SHRINK_VMAPS 0x10
3448 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3449 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3450 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3451
3452
3453 /* i915_gem_tiling.c */
3454 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3455 {
3456 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3457
3458 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3459 obj->tiling_mode != I915_TILING_NONE;
3460 }
3461
3462 /* i915_debugfs.c */
3463 #ifdef CONFIG_DEBUG_FS
3464 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3465 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3466 int i915_debugfs_connector_add(struct drm_connector *connector);
3467 void intel_display_crc_init(struct drm_device *dev);
3468 #else
3469 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3470 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3471 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3472 { return 0; }
3473 static inline void intel_display_crc_init(struct drm_device *dev) {}
3474 #endif
3475
3476 /* i915_gpu_error.c */
3477 __printf(2, 3)
3478 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3479 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3480 const struct i915_error_state_file_priv *error);
3481 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3482 struct drm_i915_private *i915,
3483 size_t count, loff_t pos);
3484 static inline void i915_error_state_buf_release(
3485 struct drm_i915_error_state_buf *eb)
3486 {
3487 kfree(eb->buf);
3488 }
3489 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3490 u32 engine_mask,
3491 const char *error_msg);
3492 void i915_error_state_get(struct drm_device *dev,
3493 struct i915_error_state_file_priv *error_priv);
3494 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3495 void i915_destroy_error_state(struct drm_device *dev);
3496
3497 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3498 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3499
3500 /* i915_cmd_parser.c */
3501 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3502 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3503 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3504 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3505 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3506 struct drm_i915_gem_object *batch_obj,
3507 struct drm_i915_gem_object *shadow_batch_obj,
3508 u32 batch_start_offset,
3509 u32 batch_len,
3510 bool is_master);
3511
3512 /* i915_suspend.c */
3513 extern int i915_save_state(struct drm_device *dev);
3514 extern int i915_restore_state(struct drm_device *dev);
3515
3516 /* i915_sysfs.c */
3517 void i915_setup_sysfs(struct drm_device *dev_priv);
3518 void i915_teardown_sysfs(struct drm_device *dev_priv);
3519
3520 /* intel_i2c.c */
3521 extern int intel_setup_gmbus(struct drm_device *dev);
3522 extern void intel_teardown_gmbus(struct drm_device *dev);
3523 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3524 unsigned int pin);
3525
3526 extern struct i2c_adapter *
3527 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3528 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3529 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3530 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3531 {
3532 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3533 }
3534 extern void intel_i2c_reset(struct drm_device *dev);
3535
3536 /* intel_bios.c */
3537 int intel_bios_init(struct drm_i915_private *dev_priv);
3538 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3539 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3540 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3541 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3542 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3543 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3544 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3545 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3546 enum port port);
3547
3548 /* intel_opregion.c */
3549 #ifdef CONFIG_ACPI
3550 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3551 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3552 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3553 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3554 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3555 bool enable);
3556 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3557 pci_power_t state);
3558 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3559 #else
3560 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3561 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3562 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3563 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3564 {
3565 }
3566 static inline int
3567 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3568 {
3569 return 0;
3570 }
3571 static inline int
3572 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3573 {
3574 return 0;
3575 }
3576 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3577 {
3578 return -ENODEV;
3579 }
3580 #endif
3581
3582 /* intel_acpi.c */
3583 #ifdef CONFIG_ACPI
3584 extern void intel_register_dsm_handler(void);
3585 extern void intel_unregister_dsm_handler(void);
3586 #else
3587 static inline void intel_register_dsm_handler(void) { return; }
3588 static inline void intel_unregister_dsm_handler(void) { return; }
3589 #endif /* CONFIG_ACPI */
3590
3591 /* intel_device_info.c */
3592 static inline struct intel_device_info *
3593 mkwrite_device_info(struct drm_i915_private *dev_priv)
3594 {
3595 return (struct intel_device_info *)&dev_priv->info;
3596 }
3597
3598 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3599 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3600
3601 /* modesetting */
3602 extern void intel_modeset_init_hw(struct drm_device *dev);
3603 extern void intel_modeset_init(struct drm_device *dev);
3604 extern void intel_modeset_gem_init(struct drm_device *dev);
3605 extern void intel_modeset_cleanup(struct drm_device *dev);
3606 extern int intel_connector_register(struct drm_connector *);
3607 extern void intel_connector_unregister(struct drm_connector *);
3608 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3609 extern void intel_display_resume(struct drm_device *dev);
3610 extern void i915_redisable_vga(struct drm_device *dev);
3611 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3612 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3613 extern void intel_init_pch_refclk(struct drm_device *dev);
3614 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3615 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3616 bool enable);
3617
3618 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3619 struct drm_file *file);
3620
3621 /* overlay */
3622 extern struct intel_overlay_error_state *
3623 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3624 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3625 struct intel_overlay_error_state *error);
3626
3627 extern struct intel_display_error_state *
3628 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3629 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3630 struct drm_device *dev,
3631 struct intel_display_error_state *error);
3632
3633 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3634 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3635
3636 /* intel_sideband.c */
3637 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3638 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3639 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3640 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3641 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3642 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3643 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3644 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3645 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3646 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3647 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3648 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3649 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3650 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3651 enum intel_sbi_destination destination);
3652 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3653 enum intel_sbi_destination destination);
3654 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3655 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3656
3657 /* intel_dpio_phy.c */
3658 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3659 u32 deemph_reg_value, u32 margin_reg_value,
3660 bool uniq_trans_scale);
3661 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3662 bool reset);
3663 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3664 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3665 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3666 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3667
3668 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3669 u32 demph_reg_value, u32 preemph_reg_value,
3670 u32 uniqtranscale_reg_value, u32 tx3_demph);
3671 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3672 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3673 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3674
3675 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3676 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3677
3678 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3679 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3680
3681 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3682 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3683 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3684 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3685
3686 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3687 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3688 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3689 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3690
3691 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3692 * will be implemented using 2 32-bit writes in an arbitrary order with
3693 * an arbitrary delay between them. This can cause the hardware to
3694 * act upon the intermediate value, possibly leading to corruption and
3695 * machine death. You have been warned.
3696 */
3697 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3698 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3699
3700 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3701 u32 upper, lower, old_upper, loop = 0; \
3702 upper = I915_READ(upper_reg); \
3703 do { \
3704 old_upper = upper; \
3705 lower = I915_READ(lower_reg); \
3706 upper = I915_READ(upper_reg); \
3707 } while (upper != old_upper && loop++ < 2); \
3708 (u64)upper << 32 | lower; })
3709
3710 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3711 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3712
3713 #define __raw_read(x, s) \
3714 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3715 i915_reg_t reg) \
3716 { \
3717 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3718 }
3719
3720 #define __raw_write(x, s) \
3721 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3722 i915_reg_t reg, uint##x##_t val) \
3723 { \
3724 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3725 }
3726 __raw_read(8, b)
3727 __raw_read(16, w)
3728 __raw_read(32, l)
3729 __raw_read(64, q)
3730
3731 __raw_write(8, b)
3732 __raw_write(16, w)
3733 __raw_write(32, l)
3734 __raw_write(64, q)
3735
3736 #undef __raw_read
3737 #undef __raw_write
3738
3739 /* These are untraced mmio-accessors that are only valid to be used inside
3740 * criticial sections inside IRQ handlers where forcewake is explicitly
3741 * controlled.
3742 * Think twice, and think again, before using these.
3743 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3744 * intel_uncore_forcewake_irqunlock().
3745 */
3746 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3747 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3748 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3749 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3750
3751 /* "Broadcast RGB" property */
3752 #define INTEL_BROADCAST_RGB_AUTO 0
3753 #define INTEL_BROADCAST_RGB_FULL 1
3754 #define INTEL_BROADCAST_RGB_LIMITED 2
3755
3756 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3757 {
3758 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3759 return VLV_VGACNTRL;
3760 else if (INTEL_INFO(dev)->gen >= 5)
3761 return CPU_VGACNTRL;
3762 else
3763 return VGACNTRL;
3764 }
3765
3766 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3767 {
3768 unsigned long j = msecs_to_jiffies(m);
3769
3770 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3771 }
3772
3773 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3774 {
3775 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3776 }
3777
3778 static inline unsigned long
3779 timespec_to_jiffies_timeout(const struct timespec *value)
3780 {
3781 unsigned long j = timespec_to_jiffies(value);
3782
3783 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3784 }
3785
3786 /*
3787 * If you need to wait X milliseconds between events A and B, but event B
3788 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3789 * when event A happened, then just before event B you call this function and
3790 * pass the timestamp as the first argument, and X as the second argument.
3791 */
3792 static inline void
3793 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3794 {
3795 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3796
3797 /*
3798 * Don't re-read the value of "jiffies" every time since it may change
3799 * behind our back and break the math.
3800 */
3801 tmp_jiffies = jiffies;
3802 target_jiffies = timestamp_jiffies +
3803 msecs_to_jiffies_timeout(to_wait_ms);
3804
3805 if (time_after(target_jiffies, tmp_jiffies)) {
3806 remaining_jiffies = target_jiffies - tmp_jiffies;
3807 while (remaining_jiffies)
3808 remaining_jiffies =
3809 schedule_timeout_uninterruptible(remaining_jiffies);
3810 }
3811 }
3812 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3813 {
3814 struct intel_engine_cs *engine = req->engine;
3815
3816 /* Before we do the heavier coherent read of the seqno,
3817 * check the value (hopefully) in the CPU cacheline.
3818 */
3819 if (i915_gem_request_completed(req))
3820 return true;
3821
3822 /* Ensure our read of the seqno is coherent so that we
3823 * do not "miss an interrupt" (i.e. if this is the last
3824 * request and the seqno write from the GPU is not visible
3825 * by the time the interrupt fires, we will see that the
3826 * request is incomplete and go back to sleep awaiting
3827 * another interrupt that will never come.)
3828 *
3829 * Strictly, we only need to do this once after an interrupt,
3830 * but it is easier and safer to do it every time the waiter
3831 * is woken.
3832 */
3833 if (engine->irq_seqno_barrier &&
3834 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
3835 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3836 struct task_struct *tsk;
3837
3838 /* The ordering of irq_posted versus applying the barrier
3839 * is crucial. The clearing of the current irq_posted must
3840 * be visible before we perform the barrier operation,
3841 * such that if a subsequent interrupt arrives, irq_posted
3842 * is reasserted and our task rewoken (which causes us to
3843 * do another __i915_request_irq_complete() immediately
3844 * and reapply the barrier). Conversely, if the clear
3845 * occurs after the barrier, then an interrupt that arrived
3846 * whilst we waited on the barrier would not trigger a
3847 * barrier on the next pass, and the read may not see the
3848 * seqno update.
3849 */
3850 engine->irq_seqno_barrier(engine);
3851
3852 /* If we consume the irq, but we are no longer the bottom-half,
3853 * the real bottom-half may not have serialised their own
3854 * seqno check with the irq-barrier (i.e. may have inspected
3855 * the seqno before we believe it coherent since they see
3856 * irq_posted == false but we are still running).
3857 */
3858 rcu_read_lock();
3859 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
3860 if (tsk && tsk != current)
3861 /* Note that if the bottom-half is changed as we
3862 * are sending the wake-up, the new bottom-half will
3863 * be woken by whomever made the change. We only have
3864 * to worry about when we steal the irq-posted for
3865 * ourself.
3866 */
3867 wake_up_process(tsk);
3868 rcu_read_unlock();
3869
3870 if (i915_gem_request_completed(req))
3871 return true;
3872 }
3873
3874 /* We need to check whether any gpu reset happened in between
3875 * the request being submitted and now. If a reset has occurred,
3876 * the seqno will have been advance past ours and our request
3877 * is complete. If we are in the process of handling a reset,
3878 * the request is effectively complete as the rendering will
3879 * be discarded, but we need to return in order to drop the
3880 * struct_mutex.
3881 */
3882 if (i915_reset_in_progress(&req->i915->gpu_error))
3883 return true;
3884
3885 return false;
3886 }
3887
3888 #endif
This page took 0.113905 seconds and 6 git commands to generate.