drm/i915: Spin after waking up for an interrupt
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64
65 #include "intel_gvt.h"
66
67 /* General customization:
68 */
69
70 #define DRIVER_NAME "i915"
71 #define DRIVER_DESC "Intel Graphics"
72 #define DRIVER_DATE "20160620"
73
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99 #define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105 })
106
107 #define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114 static inline const char *yesno(bool v)
115 {
116 return v ? "yes" : "no";
117 }
118
119 static inline const char *onoff(bool v)
120 {
121 return v ? "on" : "off";
122 }
123
124 enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133
134 enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142 };
143
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162 }
163
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168
169 /*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175 enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186 enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195
196 #define I915_NUM_PHYS_VLV 2
197
198 enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201 };
202
203 enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206 };
207
208 enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241 };
242
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250 enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262 };
263
264 #define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267 struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 /*
288 * if we get a HPD irq from DP and a HPD irq from non-DP
289 * the non-DP HPD could block the workqueue on a mode config
290 * mutex getting, that userspace may have taken. However
291 * userspace is waiting on the DP workqueue to run which is
292 * blocked behind the non-DP one.
293 */
294 struct workqueue_struct *dp_wq;
295 };
296
297 #define I915_GEM_GPU_DOMAINS \
298 (I915_GEM_DOMAIN_RENDER | \
299 I915_GEM_DOMAIN_SAMPLER | \
300 I915_GEM_DOMAIN_COMMAND | \
301 I915_GEM_DOMAIN_INSTRUCTION | \
302 I915_GEM_DOMAIN_VERTEX)
303
304 #define for_each_pipe(__dev_priv, __p) \
305 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
306 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
307 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
308 for_each_if ((__mask) & (1 << (__p)))
309 #define for_each_plane(__dev_priv, __pipe, __p) \
310 for ((__p) = 0; \
311 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
312 (__p)++)
313 #define for_each_sprite(__dev_priv, __p, __s) \
314 for ((__s) = 0; \
315 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
316 (__s)++)
317
318 #define for_each_port_masked(__port, __ports_mask) \
319 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
320 for_each_if ((__ports_mask) & (1 << (__port)))
321
322 #define for_each_crtc(dev, crtc) \
323 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
324
325 #define for_each_intel_plane(dev, intel_plane) \
326 list_for_each_entry(intel_plane, \
327 &dev->mode_config.plane_list, \
328 base.head)
329
330 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
331 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, \
332 base.head) \
333 for_each_if ((plane_mask) & \
334 (1 << drm_plane_index(&intel_plane->base)))
335
336 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
337 list_for_each_entry(intel_plane, \
338 &(dev)->mode_config.plane_list, \
339 base.head) \
340 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
341
342 #define for_each_intel_crtc(dev, intel_crtc) \
343 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
344
345 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
346 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) \
347 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
348
349 #define for_each_intel_encoder(dev, intel_encoder) \
350 list_for_each_entry(intel_encoder, \
351 &(dev)->mode_config.encoder_list, \
352 base.head)
353
354 #define for_each_intel_connector(dev, intel_connector) \
355 list_for_each_entry(intel_connector, \
356 &dev->mode_config.connector_list, \
357 base.head)
358
359 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
360 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
361 for_each_if ((intel_encoder)->base.crtc == (__crtc))
362
363 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
364 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
365 for_each_if ((intel_connector)->base.encoder == (__encoder))
366
367 #define for_each_power_domain(domain, mask) \
368 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
369 for_each_if ((1 << (domain)) & (mask))
370
371 struct drm_i915_private;
372 struct i915_mm_struct;
373 struct i915_mmu_object;
374
375 struct drm_i915_file_private {
376 struct drm_i915_private *dev_priv;
377 struct drm_file *file;
378
379 struct {
380 spinlock_t lock;
381 struct list_head request_list;
382 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
383 * chosen to prevent the CPU getting more than a frame ahead of the GPU
384 * (when using lax throttling for the frontbuffer). We also use it to
385 * offer free GPU waitboosts for severely congested workloads.
386 */
387 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
388 } mm;
389 struct idr context_idr;
390
391 struct intel_rps_client {
392 struct list_head link;
393 unsigned boosts;
394 } rps;
395
396 unsigned int bsd_ring;
397 };
398
399 /* Used by dp and fdi links */
400 struct intel_link_m_n {
401 uint32_t tu;
402 uint32_t gmch_m;
403 uint32_t gmch_n;
404 uint32_t link_m;
405 uint32_t link_n;
406 };
407
408 void intel_link_compute_m_n(int bpp, int nlanes,
409 int pixel_clock, int link_clock,
410 struct intel_link_m_n *m_n);
411
412 /* Interface history:
413 *
414 * 1.1: Original.
415 * 1.2: Add Power Management
416 * 1.3: Add vblank support
417 * 1.4: Fix cmdbuffer path, add heap destroy
418 * 1.5: Add vblank pipe configuration
419 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
420 * - Support vertical blank on secondary display pipe
421 */
422 #define DRIVER_MAJOR 1
423 #define DRIVER_MINOR 6
424 #define DRIVER_PATCHLEVEL 0
425
426 #define WATCH_LISTS 0
427
428 struct opregion_header;
429 struct opregion_acpi;
430 struct opregion_swsci;
431 struct opregion_asle;
432
433 struct intel_opregion {
434 struct opregion_header *header;
435 struct opregion_acpi *acpi;
436 struct opregion_swsci *swsci;
437 u32 swsci_gbda_sub_functions;
438 u32 swsci_sbcb_sub_functions;
439 struct opregion_asle *asle;
440 void *rvda;
441 const void *vbt;
442 u32 vbt_size;
443 u32 *lid_state;
444 struct work_struct asle_work;
445 };
446 #define OPREGION_SIZE (8*1024)
447
448 struct intel_overlay;
449 struct intel_overlay_error_state;
450
451 #define I915_FENCE_REG_NONE -1
452 #define I915_MAX_NUM_FENCES 32
453 /* 32 fences + sign bit for FENCE_REG_NONE */
454 #define I915_MAX_NUM_FENCE_BITS 6
455
456 struct drm_i915_fence_reg {
457 struct list_head lru_list;
458 struct drm_i915_gem_object *obj;
459 int pin_count;
460 };
461
462 struct sdvo_device_mapping {
463 u8 initialized;
464 u8 dvo_port;
465 u8 slave_addr;
466 u8 dvo_wiring;
467 u8 i2c_pin;
468 u8 ddc_pin;
469 };
470
471 struct intel_display_error_state;
472
473 struct drm_i915_error_state {
474 struct kref ref;
475 struct timeval time;
476
477 char error_msg[128];
478 int iommu;
479 u32 reset_count;
480 u32 suspend_count;
481
482 /* Generic register state */
483 u32 eir;
484 u32 pgtbl_er;
485 u32 ier;
486 u32 gtier[4];
487 u32 ccid;
488 u32 derrmr;
489 u32 forcewake;
490 u32 error; /* gen6+ */
491 u32 err_int; /* gen7 */
492 u32 fault_data0; /* gen8, gen9 */
493 u32 fault_data1; /* gen8, gen9 */
494 u32 done_reg;
495 u32 gac_eco;
496 u32 gam_ecochk;
497 u32 gab_ctl;
498 u32 gfx_mode;
499 u32 extra_instdone[I915_NUM_INSTDONE_REG];
500 u64 fence[I915_MAX_NUM_FENCES];
501 struct intel_overlay_error_state *overlay;
502 struct intel_display_error_state *display;
503 struct drm_i915_error_object *semaphore_obj;
504
505 struct drm_i915_error_ring {
506 bool valid;
507 /* Software tracked state */
508 bool waiting;
509 int num_waiters;
510 int hangcheck_score;
511 enum intel_ring_hangcheck_action hangcheck_action;
512 int num_requests;
513
514 /* our own tracking of ring head and tail */
515 u32 cpu_ring_head;
516 u32 cpu_ring_tail;
517
518 u32 last_seqno;
519 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
520
521 /* Register state */
522 u32 start;
523 u32 tail;
524 u32 head;
525 u32 ctl;
526 u32 hws;
527 u32 ipeir;
528 u32 ipehr;
529 u32 instdone;
530 u32 bbstate;
531 u32 instpm;
532 u32 instps;
533 u32 seqno;
534 u64 bbaddr;
535 u64 acthd;
536 u32 fault_reg;
537 u64 faddr;
538 u32 rc_psmi; /* sleep state */
539 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
540
541 struct drm_i915_error_object {
542 int page_count;
543 u64 gtt_offset;
544 u32 *pages[0];
545 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
546
547 struct drm_i915_error_object *wa_ctx;
548
549 struct drm_i915_error_request {
550 long jiffies;
551 u32 seqno;
552 u32 tail;
553 } *requests;
554
555 struct drm_i915_error_waiter {
556 char comm[TASK_COMM_LEN];
557 pid_t pid;
558 u32 seqno;
559 } *waiters;
560
561 struct {
562 u32 gfx_mode;
563 union {
564 u64 pdp[4];
565 u32 pp_dir_base;
566 };
567 } vm_info;
568
569 pid_t pid;
570 char comm[TASK_COMM_LEN];
571 } ring[I915_NUM_ENGINES];
572
573 struct drm_i915_error_buffer {
574 u32 size;
575 u32 name;
576 u32 rseqno[I915_NUM_ENGINES], wseqno;
577 u64 gtt_offset;
578 u32 read_domains;
579 u32 write_domain;
580 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
581 s32 pinned:2;
582 u32 tiling:2;
583 u32 dirty:1;
584 u32 purgeable:1;
585 u32 userptr:1;
586 s32 ring:4;
587 u32 cache_level:3;
588 } **active_bo, **pinned_bo;
589
590 u32 *active_bo_count, *pinned_bo_count;
591 u32 vm_count;
592 };
593
594 struct intel_connector;
595 struct intel_encoder;
596 struct intel_crtc_state;
597 struct intel_initial_plane_config;
598 struct intel_crtc;
599 struct intel_limit;
600 struct dpll;
601
602 struct drm_i915_display_funcs {
603 int (*get_display_clock_speed)(struct drm_device *dev);
604 int (*get_fifo_size)(struct drm_device *dev, int plane);
605 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
606 int (*compute_intermediate_wm)(struct drm_device *dev,
607 struct intel_crtc *intel_crtc,
608 struct intel_crtc_state *newstate);
609 void (*initial_watermarks)(struct intel_crtc_state *cstate);
610 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
611 int (*compute_global_watermarks)(struct drm_atomic_state *state);
612 void (*update_wm)(struct drm_crtc *crtc);
613 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
614 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
615 /* Returns the active state of the crtc, and if the crtc is active,
616 * fills out the pipe-config with the hw state. */
617 bool (*get_pipe_config)(struct intel_crtc *,
618 struct intel_crtc_state *);
619 void (*get_initial_plane_config)(struct intel_crtc *,
620 struct intel_initial_plane_config *);
621 int (*crtc_compute_clock)(struct intel_crtc *crtc,
622 struct intel_crtc_state *crtc_state);
623 void (*crtc_enable)(struct drm_crtc *crtc);
624 void (*crtc_disable)(struct drm_crtc *crtc);
625 void (*audio_codec_enable)(struct drm_connector *connector,
626 struct intel_encoder *encoder,
627 const struct drm_display_mode *adjusted_mode);
628 void (*audio_codec_disable)(struct intel_encoder *encoder);
629 void (*fdi_link_train)(struct drm_crtc *crtc);
630 void (*init_clock_gating)(struct drm_device *dev);
631 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
632 struct drm_framebuffer *fb,
633 struct drm_i915_gem_object *obj,
634 struct drm_i915_gem_request *req,
635 uint32_t flags);
636 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
637 /* clock updates for mode set */
638 /* cursor updates */
639 /* render clock increase/decrease */
640 /* display clock increase/decrease */
641 /* pll clock increase/decrease */
642
643 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
644 void (*load_luts)(struct drm_crtc_state *crtc_state);
645 };
646
647 enum forcewake_domain_id {
648 FW_DOMAIN_ID_RENDER = 0,
649 FW_DOMAIN_ID_BLITTER,
650 FW_DOMAIN_ID_MEDIA,
651
652 FW_DOMAIN_ID_COUNT
653 };
654
655 enum forcewake_domains {
656 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
657 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
658 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
659 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
660 FORCEWAKE_BLITTER |
661 FORCEWAKE_MEDIA)
662 };
663
664 #define FW_REG_READ (1)
665 #define FW_REG_WRITE (2)
666
667 enum forcewake_domains
668 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
669 i915_reg_t reg, unsigned int op);
670
671 struct intel_uncore_funcs {
672 void (*force_wake_get)(struct drm_i915_private *dev_priv,
673 enum forcewake_domains domains);
674 void (*force_wake_put)(struct drm_i915_private *dev_priv,
675 enum forcewake_domains domains);
676
677 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
678 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
679 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
680 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
681
682 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
683 uint8_t val, bool trace);
684 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
685 uint16_t val, bool trace);
686 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
687 uint32_t val, bool trace);
688 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
689 uint64_t val, bool trace);
690 };
691
692 struct intel_uncore {
693 spinlock_t lock; /** lock is also taken in irq contexts. */
694
695 struct intel_uncore_funcs funcs;
696
697 unsigned fifo_count;
698 enum forcewake_domains fw_domains;
699
700 struct intel_uncore_forcewake_domain {
701 struct drm_i915_private *i915;
702 enum forcewake_domain_id id;
703 enum forcewake_domains mask;
704 unsigned wake_count;
705 struct hrtimer timer;
706 i915_reg_t reg_set;
707 u32 val_set;
708 u32 val_clear;
709 i915_reg_t reg_ack;
710 i915_reg_t reg_post;
711 u32 val_reset;
712 } fw_domain[FW_DOMAIN_ID_COUNT];
713
714 int unclaimed_mmio_check;
715 };
716
717 /* Iterate over initialised fw domains */
718 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
719 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
720 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
721 (domain__)++) \
722 for_each_if ((mask__) & (domain__)->mask)
723
724 #define for_each_fw_domain(domain__, dev_priv__) \
725 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
726
727 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
728 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
729 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
730
731 struct intel_csr {
732 struct work_struct work;
733 const char *fw_path;
734 uint32_t *dmc_payload;
735 uint32_t dmc_fw_size;
736 uint32_t version;
737 uint32_t mmio_count;
738 i915_reg_t mmioaddr[8];
739 uint32_t mmiodata[8];
740 uint32_t dc_state;
741 uint32_t allowed_dc_mask;
742 };
743
744 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
745 func(is_mobile) sep \
746 func(is_i85x) sep \
747 func(is_i915g) sep \
748 func(is_i945gm) sep \
749 func(is_g33) sep \
750 func(need_gfx_hws) sep \
751 func(is_g4x) sep \
752 func(is_pineview) sep \
753 func(is_broadwater) sep \
754 func(is_crestline) sep \
755 func(is_ivybridge) sep \
756 func(is_valleyview) sep \
757 func(is_cherryview) sep \
758 func(is_haswell) sep \
759 func(is_broadwell) sep \
760 func(is_skylake) sep \
761 func(is_broxton) sep \
762 func(is_kabylake) sep \
763 func(is_preliminary) sep \
764 func(has_fbc) sep \
765 func(has_pipe_cxsr) sep \
766 func(has_hotplug) sep \
767 func(cursor_needs_physical) sep \
768 func(has_overlay) sep \
769 func(overlay_needs_physical) sep \
770 func(supports_tv) sep \
771 func(has_llc) sep \
772 func(has_snoop) sep \
773 func(has_ddi) sep \
774 func(has_fpga_dbg) sep \
775 func(has_pooled_eu)
776
777 #define DEFINE_FLAG(name) u8 name:1
778 #define SEP_SEMICOLON ;
779
780 struct intel_device_info {
781 u32 display_mmio_offset;
782 u16 device_id;
783 u8 num_pipes;
784 u8 num_sprites[I915_MAX_PIPES];
785 u8 gen;
786 u16 gen_mask;
787 u8 ring_mask; /* Rings supported by the HW */
788 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
789 /* Register offsets for the various display pipes and transcoders */
790 int pipe_offsets[I915_MAX_TRANSCODERS];
791 int trans_offsets[I915_MAX_TRANSCODERS];
792 int palette_offsets[I915_MAX_PIPES];
793 int cursor_offsets[I915_MAX_PIPES];
794
795 /* Slice/subslice/EU info */
796 u8 slice_total;
797 u8 subslice_total;
798 u8 subslice_per_slice;
799 u8 eu_total;
800 u8 eu_per_subslice;
801 u8 min_eu_in_pool;
802 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
803 u8 subslice_7eu[3];
804 u8 has_slice_pg:1;
805 u8 has_subslice_pg:1;
806 u8 has_eu_pg:1;
807
808 struct color_luts {
809 u16 degamma_lut_size;
810 u16 gamma_lut_size;
811 } color;
812 };
813
814 #undef DEFINE_FLAG
815 #undef SEP_SEMICOLON
816
817 enum i915_cache_level {
818 I915_CACHE_NONE = 0,
819 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
820 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
821 caches, eg sampler/render caches, and the
822 large Last-Level-Cache. LLC is coherent with
823 the CPU, but L3 is only visible to the GPU. */
824 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
825 };
826
827 struct i915_ctx_hang_stats {
828 /* This context had batch pending when hang was declared */
829 unsigned batch_pending;
830
831 /* This context had batch active when hang was declared */
832 unsigned batch_active;
833
834 /* Time when this context was last blamed for a GPU reset */
835 unsigned long guilty_ts;
836
837 /* If the contexts causes a second GPU hang within this time,
838 * it is permanently banned from submitting any more work.
839 */
840 unsigned long ban_period_seconds;
841
842 /* This context is banned to submit more work */
843 bool banned;
844 };
845
846 /* This must match up with the value previously used for execbuf2.rsvd1. */
847 #define DEFAULT_CONTEXT_HANDLE 0
848
849 /**
850 * struct i915_gem_context - as the name implies, represents a context.
851 * @ref: reference count.
852 * @user_handle: userspace tracking identity for this context.
853 * @remap_slice: l3 row remapping information.
854 * @flags: context specific flags:
855 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
856 * @file_priv: filp associated with this context (NULL for global default
857 * context).
858 * @hang_stats: information about the role of this context in possible GPU
859 * hangs.
860 * @ppgtt: virtual memory space used by this context.
861 * @legacy_hw_ctx: render context backing object and whether it is correctly
862 * initialized (legacy ring submission mechanism only).
863 * @link: link in the global list of contexts.
864 *
865 * Contexts are memory images used by the hardware to store copies of their
866 * internal state.
867 */
868 struct i915_gem_context {
869 struct kref ref;
870 struct drm_i915_private *i915;
871 struct drm_i915_file_private *file_priv;
872 struct i915_hw_ppgtt *ppgtt;
873
874 struct i915_ctx_hang_stats hang_stats;
875
876 /* Unique identifier for this context, used by the hw for tracking */
877 unsigned long flags;
878 unsigned hw_id;
879 u32 user_handle;
880 #define CONTEXT_NO_ZEROMAP (1<<0)
881
882 u32 ggtt_alignment;
883
884 struct intel_context {
885 struct drm_i915_gem_object *state;
886 struct intel_ringbuffer *ringbuf;
887 struct i915_vma *lrc_vma;
888 uint32_t *lrc_reg_state;
889 u64 lrc_desc;
890 int pin_count;
891 bool initialised;
892 } engine[I915_NUM_ENGINES];
893 u32 ring_size;
894 u32 desc_template;
895 struct atomic_notifier_head status_notifier;
896 bool execlists_force_single_submission;
897
898 struct list_head link;
899
900 u8 remap_slice;
901 };
902
903 enum fb_op_origin {
904 ORIGIN_GTT,
905 ORIGIN_CPU,
906 ORIGIN_CS,
907 ORIGIN_FLIP,
908 ORIGIN_DIRTYFB,
909 };
910
911 struct intel_fbc {
912 /* This is always the inner lock when overlapping with struct_mutex and
913 * it's the outer lock when overlapping with stolen_lock. */
914 struct mutex lock;
915 unsigned threshold;
916 unsigned int possible_framebuffer_bits;
917 unsigned int busy_bits;
918 unsigned int visible_pipes_mask;
919 struct intel_crtc *crtc;
920
921 struct drm_mm_node compressed_fb;
922 struct drm_mm_node *compressed_llb;
923
924 bool false_color;
925
926 bool enabled;
927 bool active;
928
929 struct intel_fbc_state_cache {
930 struct {
931 unsigned int mode_flags;
932 uint32_t hsw_bdw_pixel_rate;
933 } crtc;
934
935 struct {
936 unsigned int rotation;
937 int src_w;
938 int src_h;
939 bool visible;
940 } plane;
941
942 struct {
943 u64 ilk_ggtt_offset;
944 uint32_t pixel_format;
945 unsigned int stride;
946 int fence_reg;
947 unsigned int tiling_mode;
948 } fb;
949 } state_cache;
950
951 struct intel_fbc_reg_params {
952 struct {
953 enum pipe pipe;
954 enum plane plane;
955 unsigned int fence_y_offset;
956 } crtc;
957
958 struct {
959 u64 ggtt_offset;
960 uint32_t pixel_format;
961 unsigned int stride;
962 int fence_reg;
963 } fb;
964
965 int cfb_size;
966 } params;
967
968 struct intel_fbc_work {
969 bool scheduled;
970 u32 scheduled_vblank;
971 struct work_struct work;
972 } work;
973
974 const char *no_fbc_reason;
975 };
976
977 /**
978 * HIGH_RR is the highest eDP panel refresh rate read from EDID
979 * LOW_RR is the lowest eDP panel refresh rate found from EDID
980 * parsing for same resolution.
981 */
982 enum drrs_refresh_rate_type {
983 DRRS_HIGH_RR,
984 DRRS_LOW_RR,
985 DRRS_MAX_RR, /* RR count */
986 };
987
988 enum drrs_support_type {
989 DRRS_NOT_SUPPORTED = 0,
990 STATIC_DRRS_SUPPORT = 1,
991 SEAMLESS_DRRS_SUPPORT = 2
992 };
993
994 struct intel_dp;
995 struct i915_drrs {
996 struct mutex mutex;
997 struct delayed_work work;
998 struct intel_dp *dp;
999 unsigned busy_frontbuffer_bits;
1000 enum drrs_refresh_rate_type refresh_rate_type;
1001 enum drrs_support_type type;
1002 };
1003
1004 struct i915_psr {
1005 struct mutex lock;
1006 bool sink_support;
1007 bool source_ok;
1008 struct intel_dp *enabled;
1009 bool active;
1010 struct delayed_work work;
1011 unsigned busy_frontbuffer_bits;
1012 bool psr2_support;
1013 bool aux_frame_sync;
1014 bool link_standby;
1015 };
1016
1017 enum intel_pch {
1018 PCH_NONE = 0, /* No PCH present */
1019 PCH_IBX, /* Ibexpeak PCH */
1020 PCH_CPT, /* Cougarpoint PCH */
1021 PCH_LPT, /* Lynxpoint PCH */
1022 PCH_SPT, /* Sunrisepoint PCH */
1023 PCH_NOP,
1024 };
1025
1026 enum intel_sbi_destination {
1027 SBI_ICLK,
1028 SBI_MPHY,
1029 };
1030
1031 #define QUIRK_PIPEA_FORCE (1<<0)
1032 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1033 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1034 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1035 #define QUIRK_PIPEB_FORCE (1<<4)
1036 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1037
1038 struct intel_fbdev;
1039 struct intel_fbc_work;
1040
1041 struct intel_gmbus {
1042 struct i2c_adapter adapter;
1043 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1044 u32 force_bit;
1045 u32 reg0;
1046 i915_reg_t gpio_reg;
1047 struct i2c_algo_bit_data bit_algo;
1048 struct drm_i915_private *dev_priv;
1049 };
1050
1051 struct i915_suspend_saved_registers {
1052 u32 saveDSPARB;
1053 u32 saveLVDS;
1054 u32 savePP_ON_DELAYS;
1055 u32 savePP_OFF_DELAYS;
1056 u32 savePP_ON;
1057 u32 savePP_OFF;
1058 u32 savePP_CONTROL;
1059 u32 savePP_DIVISOR;
1060 u32 saveFBC_CONTROL;
1061 u32 saveCACHE_MODE_0;
1062 u32 saveMI_ARB_STATE;
1063 u32 saveSWF0[16];
1064 u32 saveSWF1[16];
1065 u32 saveSWF3[3];
1066 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1067 u32 savePCH_PORT_HOTPLUG;
1068 u16 saveGCDGMBUS;
1069 };
1070
1071 struct vlv_s0ix_state {
1072 /* GAM */
1073 u32 wr_watermark;
1074 u32 gfx_prio_ctrl;
1075 u32 arb_mode;
1076 u32 gfx_pend_tlb0;
1077 u32 gfx_pend_tlb1;
1078 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1079 u32 media_max_req_count;
1080 u32 gfx_max_req_count;
1081 u32 render_hwsp;
1082 u32 ecochk;
1083 u32 bsd_hwsp;
1084 u32 blt_hwsp;
1085 u32 tlb_rd_addr;
1086
1087 /* MBC */
1088 u32 g3dctl;
1089 u32 gsckgctl;
1090 u32 mbctl;
1091
1092 /* GCP */
1093 u32 ucgctl1;
1094 u32 ucgctl3;
1095 u32 rcgctl1;
1096 u32 rcgctl2;
1097 u32 rstctl;
1098 u32 misccpctl;
1099
1100 /* GPM */
1101 u32 gfxpause;
1102 u32 rpdeuhwtc;
1103 u32 rpdeuc;
1104 u32 ecobus;
1105 u32 pwrdwnupctl;
1106 u32 rp_down_timeout;
1107 u32 rp_deucsw;
1108 u32 rcubmabdtmr;
1109 u32 rcedata;
1110 u32 spare2gh;
1111
1112 /* Display 1 CZ domain */
1113 u32 gt_imr;
1114 u32 gt_ier;
1115 u32 pm_imr;
1116 u32 pm_ier;
1117 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1118
1119 /* GT SA CZ domain */
1120 u32 tilectl;
1121 u32 gt_fifoctl;
1122 u32 gtlc_wake_ctrl;
1123 u32 gtlc_survive;
1124 u32 pmwgicz;
1125
1126 /* Display 2 CZ domain */
1127 u32 gu_ctl0;
1128 u32 gu_ctl1;
1129 u32 pcbr;
1130 u32 clock_gate_dis2;
1131 };
1132
1133 struct intel_rps_ei {
1134 u32 cz_clock;
1135 u32 render_c0;
1136 u32 media_c0;
1137 };
1138
1139 struct intel_gen6_power_mgmt {
1140 /*
1141 * work, interrupts_enabled and pm_iir are protected by
1142 * dev_priv->irq_lock
1143 */
1144 struct work_struct work;
1145 bool interrupts_enabled;
1146 u32 pm_iir;
1147
1148 u32 pm_intr_keep;
1149
1150 /* Frequencies are stored in potentially platform dependent multiples.
1151 * In other words, *_freq needs to be multiplied by X to be interesting.
1152 * Soft limits are those which are used for the dynamic reclocking done
1153 * by the driver (raise frequencies under heavy loads, and lower for
1154 * lighter loads). Hard limits are those imposed by the hardware.
1155 *
1156 * A distinction is made for overclocking, which is never enabled by
1157 * default, and is considered to be above the hard limit if it's
1158 * possible at all.
1159 */
1160 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1161 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1162 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1163 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1164 u8 min_freq; /* AKA RPn. Minimum frequency */
1165 u8 idle_freq; /* Frequency to request when we are idle */
1166 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1167 u8 rp1_freq; /* "less than" RP0 power/freqency */
1168 u8 rp0_freq; /* Non-overclocked max frequency. */
1169 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1170
1171 u8 up_threshold; /* Current %busy required to uplock */
1172 u8 down_threshold; /* Current %busy required to downclock */
1173
1174 int last_adj;
1175 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1176
1177 spinlock_t client_lock;
1178 struct list_head clients;
1179 bool client_boost;
1180
1181 bool enabled;
1182 struct delayed_work delayed_resume_work;
1183 unsigned boosts;
1184
1185 struct intel_rps_client semaphores, mmioflips;
1186
1187 /* manual wa residency calculations */
1188 struct intel_rps_ei up_ei, down_ei;
1189
1190 /*
1191 * Protects RPS/RC6 register access and PCU communication.
1192 * Must be taken after struct_mutex if nested. Note that
1193 * this lock may be held for long periods of time when
1194 * talking to hw - so only take it when talking to hw!
1195 */
1196 struct mutex hw_lock;
1197 };
1198
1199 /* defined intel_pm.c */
1200 extern spinlock_t mchdev_lock;
1201
1202 struct intel_ilk_power_mgmt {
1203 u8 cur_delay;
1204 u8 min_delay;
1205 u8 max_delay;
1206 u8 fmax;
1207 u8 fstart;
1208
1209 u64 last_count1;
1210 unsigned long last_time1;
1211 unsigned long chipset_power;
1212 u64 last_count2;
1213 u64 last_time2;
1214 unsigned long gfx_power;
1215 u8 corr;
1216
1217 int c_m;
1218 int r_t;
1219 };
1220
1221 struct drm_i915_private;
1222 struct i915_power_well;
1223
1224 struct i915_power_well_ops {
1225 /*
1226 * Synchronize the well's hw state to match the current sw state, for
1227 * example enable/disable it based on the current refcount. Called
1228 * during driver init and resume time, possibly after first calling
1229 * the enable/disable handlers.
1230 */
1231 void (*sync_hw)(struct drm_i915_private *dev_priv,
1232 struct i915_power_well *power_well);
1233 /*
1234 * Enable the well and resources that depend on it (for example
1235 * interrupts located on the well). Called after the 0->1 refcount
1236 * transition.
1237 */
1238 void (*enable)(struct drm_i915_private *dev_priv,
1239 struct i915_power_well *power_well);
1240 /*
1241 * Disable the well and resources that depend on it. Called after
1242 * the 1->0 refcount transition.
1243 */
1244 void (*disable)(struct drm_i915_private *dev_priv,
1245 struct i915_power_well *power_well);
1246 /* Returns the hw enabled state. */
1247 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1248 struct i915_power_well *power_well);
1249 };
1250
1251 /* Power well structure for haswell */
1252 struct i915_power_well {
1253 const char *name;
1254 bool always_on;
1255 /* power well enable/disable usage count */
1256 int count;
1257 /* cached hw enabled state */
1258 bool hw_enabled;
1259 unsigned long domains;
1260 unsigned long data;
1261 const struct i915_power_well_ops *ops;
1262 };
1263
1264 struct i915_power_domains {
1265 /*
1266 * Power wells needed for initialization at driver init and suspend
1267 * time are on. They are kept on until after the first modeset.
1268 */
1269 bool init_power_on;
1270 bool initializing;
1271 int power_well_count;
1272
1273 struct mutex lock;
1274 int domain_use_count[POWER_DOMAIN_NUM];
1275 struct i915_power_well *power_wells;
1276 };
1277
1278 #define MAX_L3_SLICES 2
1279 struct intel_l3_parity {
1280 u32 *remap_info[MAX_L3_SLICES];
1281 struct work_struct error_work;
1282 int which_slice;
1283 };
1284
1285 struct i915_gem_mm {
1286 /** Memory allocator for GTT stolen memory */
1287 struct drm_mm stolen;
1288 /** Protects the usage of the GTT stolen memory allocator. This is
1289 * always the inner lock when overlapping with struct_mutex. */
1290 struct mutex stolen_lock;
1291
1292 /** List of all objects in gtt_space. Used to restore gtt
1293 * mappings on resume */
1294 struct list_head bound_list;
1295 /**
1296 * List of objects which are not bound to the GTT (thus
1297 * are idle and not used by the GPU) but still have
1298 * (presumably uncached) pages still attached.
1299 */
1300 struct list_head unbound_list;
1301
1302 /** Usable portion of the GTT for GEM */
1303 unsigned long stolen_base; /* limited to low memory (32-bit) */
1304
1305 /** PPGTT used for aliasing the PPGTT with the GTT */
1306 struct i915_hw_ppgtt *aliasing_ppgtt;
1307
1308 struct notifier_block oom_notifier;
1309 struct notifier_block vmap_notifier;
1310 struct shrinker shrinker;
1311 bool shrinker_no_lock_stealing;
1312
1313 /** LRU list of objects with fence regs on them. */
1314 struct list_head fence_list;
1315
1316 /**
1317 * We leave the user IRQ off as much as possible,
1318 * but this means that requests will finish and never
1319 * be retired once the system goes idle. Set a timer to
1320 * fire periodically while the ring is running. When it
1321 * fires, go retire requests.
1322 */
1323 struct delayed_work retire_work;
1324
1325 /**
1326 * When we detect an idle GPU, we want to turn on
1327 * powersaving features. So once we see that there
1328 * are no more requests outstanding and no more
1329 * arrive within a small period of time, we fire
1330 * off the idle_work.
1331 */
1332 struct delayed_work idle_work;
1333
1334 /**
1335 * Are we in a non-interruptible section of code like
1336 * modesetting?
1337 */
1338 bool interruptible;
1339
1340 /**
1341 * Is the GPU currently considered idle, or busy executing userspace
1342 * requests? Whilst idle, we attempt to power down the hardware and
1343 * display clocks. In order to reduce the effect on performance, there
1344 * is a slight delay before we do so.
1345 */
1346 bool busy;
1347
1348 /* the indicator for dispatch video commands on two BSD rings */
1349 unsigned int bsd_ring_dispatch_index;
1350
1351 /** Bit 6 swizzling required for X tiling */
1352 uint32_t bit_6_swizzle_x;
1353 /** Bit 6 swizzling required for Y tiling */
1354 uint32_t bit_6_swizzle_y;
1355
1356 /* accounting, useful for userland debugging */
1357 spinlock_t object_stat_lock;
1358 size_t object_memory;
1359 u32 object_count;
1360 };
1361
1362 struct drm_i915_error_state_buf {
1363 struct drm_i915_private *i915;
1364 unsigned bytes;
1365 unsigned size;
1366 int err;
1367 u8 *buf;
1368 loff_t start;
1369 loff_t pos;
1370 };
1371
1372 struct i915_error_state_file_priv {
1373 struct drm_device *dev;
1374 struct drm_i915_error_state *error;
1375 };
1376
1377 struct i915_gpu_error {
1378 /* For hangcheck timer */
1379 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1380 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1381 /* Hang gpu twice in this window and your context gets banned */
1382 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1383
1384 struct delayed_work hangcheck_work;
1385
1386 /* For reset and error_state handling. */
1387 spinlock_t lock;
1388 /* Protected by the above dev->gpu_error.lock. */
1389 struct drm_i915_error_state *first_error;
1390
1391 unsigned long missed_irq_rings;
1392
1393 /**
1394 * State variable controlling the reset flow and count
1395 *
1396 * This is a counter which gets incremented when reset is triggered,
1397 * and again when reset has been handled. So odd values (lowest bit set)
1398 * means that reset is in progress and even values that
1399 * (reset_counter >> 1):th reset was successfully completed.
1400 *
1401 * If reset is not completed succesfully, the I915_WEDGE bit is
1402 * set meaning that hardware is terminally sour and there is no
1403 * recovery. All waiters on the reset_queue will be woken when
1404 * that happens.
1405 *
1406 * This counter is used by the wait_seqno code to notice that reset
1407 * event happened and it needs to restart the entire ioctl (since most
1408 * likely the seqno it waited for won't ever signal anytime soon).
1409 *
1410 * This is important for lock-free wait paths, where no contended lock
1411 * naturally enforces the correct ordering between the bail-out of the
1412 * waiter and the gpu reset work code.
1413 */
1414 atomic_t reset_counter;
1415
1416 #define I915_RESET_IN_PROGRESS_FLAG 1
1417 #define I915_WEDGED (1 << 31)
1418
1419 /**
1420 * Waitqueue to signal when a hang is detected. Used to for waiters
1421 * to release the struct_mutex for the reset to procede.
1422 */
1423 wait_queue_head_t wait_queue;
1424
1425 /**
1426 * Waitqueue to signal when the reset has completed. Used by clients
1427 * that wait for dev_priv->mm.wedged to settle.
1428 */
1429 wait_queue_head_t reset_queue;
1430
1431 /* Userspace knobs for gpu hang simulation;
1432 * combines both a ring mask, and extra flags
1433 */
1434 u32 stop_rings;
1435 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1436 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1437
1438 /* For missed irq/seqno simulation. */
1439 unsigned long test_irq_rings;
1440 };
1441
1442 enum modeset_restore {
1443 MODESET_ON_LID_OPEN,
1444 MODESET_DONE,
1445 MODESET_SUSPENDED,
1446 };
1447
1448 #define DP_AUX_A 0x40
1449 #define DP_AUX_B 0x10
1450 #define DP_AUX_C 0x20
1451 #define DP_AUX_D 0x30
1452
1453 #define DDC_PIN_B 0x05
1454 #define DDC_PIN_C 0x04
1455 #define DDC_PIN_D 0x06
1456
1457 struct ddi_vbt_port_info {
1458 /*
1459 * This is an index in the HDMI/DVI DDI buffer translation table.
1460 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1461 * populate this field.
1462 */
1463 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1464 uint8_t hdmi_level_shift;
1465
1466 uint8_t supports_dvi:1;
1467 uint8_t supports_hdmi:1;
1468 uint8_t supports_dp:1;
1469
1470 uint8_t alternate_aux_channel;
1471 uint8_t alternate_ddc_pin;
1472
1473 uint8_t dp_boost_level;
1474 uint8_t hdmi_boost_level;
1475 };
1476
1477 enum psr_lines_to_wait {
1478 PSR_0_LINES_TO_WAIT = 0,
1479 PSR_1_LINE_TO_WAIT,
1480 PSR_4_LINES_TO_WAIT,
1481 PSR_8_LINES_TO_WAIT
1482 };
1483
1484 struct intel_vbt_data {
1485 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1486 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1487
1488 /* Feature bits */
1489 unsigned int int_tv_support:1;
1490 unsigned int lvds_dither:1;
1491 unsigned int lvds_vbt:1;
1492 unsigned int int_crt_support:1;
1493 unsigned int lvds_use_ssc:1;
1494 unsigned int display_clock_mode:1;
1495 unsigned int fdi_rx_polarity_inverted:1;
1496 unsigned int panel_type:4;
1497 int lvds_ssc_freq;
1498 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1499
1500 enum drrs_support_type drrs_type;
1501
1502 struct {
1503 int rate;
1504 int lanes;
1505 int preemphasis;
1506 int vswing;
1507 bool low_vswing;
1508 bool initialized;
1509 bool support;
1510 int bpp;
1511 struct edp_power_seq pps;
1512 } edp;
1513
1514 struct {
1515 bool full_link;
1516 bool require_aux_wakeup;
1517 int idle_frames;
1518 enum psr_lines_to_wait lines_to_wait;
1519 int tp1_wakeup_time;
1520 int tp2_tp3_wakeup_time;
1521 } psr;
1522
1523 struct {
1524 u16 pwm_freq_hz;
1525 bool present;
1526 bool active_low_pwm;
1527 u8 min_brightness; /* min_brightness/255 of max */
1528 enum intel_backlight_type type;
1529 } backlight;
1530
1531 /* MIPI DSI */
1532 struct {
1533 u16 panel_id;
1534 struct mipi_config *config;
1535 struct mipi_pps_data *pps;
1536 u8 seq_version;
1537 u32 size;
1538 u8 *data;
1539 const u8 *sequence[MIPI_SEQ_MAX];
1540 } dsi;
1541
1542 int crt_ddc_pin;
1543
1544 int child_dev_num;
1545 union child_device_config *child_dev;
1546
1547 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1548 struct sdvo_device_mapping sdvo_mappings[2];
1549 };
1550
1551 enum intel_ddb_partitioning {
1552 INTEL_DDB_PART_1_2,
1553 INTEL_DDB_PART_5_6, /* IVB+ */
1554 };
1555
1556 struct intel_wm_level {
1557 bool enable;
1558 uint32_t pri_val;
1559 uint32_t spr_val;
1560 uint32_t cur_val;
1561 uint32_t fbc_val;
1562 };
1563
1564 struct ilk_wm_values {
1565 uint32_t wm_pipe[3];
1566 uint32_t wm_lp[3];
1567 uint32_t wm_lp_spr[3];
1568 uint32_t wm_linetime[3];
1569 bool enable_fbc_wm;
1570 enum intel_ddb_partitioning partitioning;
1571 };
1572
1573 struct vlv_pipe_wm {
1574 uint16_t primary;
1575 uint16_t sprite[2];
1576 uint8_t cursor;
1577 };
1578
1579 struct vlv_sr_wm {
1580 uint16_t plane;
1581 uint8_t cursor;
1582 };
1583
1584 struct vlv_wm_values {
1585 struct vlv_pipe_wm pipe[3];
1586 struct vlv_sr_wm sr;
1587 struct {
1588 uint8_t cursor;
1589 uint8_t sprite[2];
1590 uint8_t primary;
1591 } ddl[3];
1592 uint8_t level;
1593 bool cxsr;
1594 };
1595
1596 struct skl_ddb_entry {
1597 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1598 };
1599
1600 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1601 {
1602 return entry->end - entry->start;
1603 }
1604
1605 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1606 const struct skl_ddb_entry *e2)
1607 {
1608 if (e1->start == e2->start && e1->end == e2->end)
1609 return true;
1610
1611 return false;
1612 }
1613
1614 struct skl_ddb_allocation {
1615 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1616 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1617 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1618 };
1619
1620 struct skl_wm_values {
1621 unsigned dirty_pipes;
1622 struct skl_ddb_allocation ddb;
1623 uint32_t wm_linetime[I915_MAX_PIPES];
1624 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1625 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1626 };
1627
1628 struct skl_wm_level {
1629 bool plane_en[I915_MAX_PLANES];
1630 uint16_t plane_res_b[I915_MAX_PLANES];
1631 uint8_t plane_res_l[I915_MAX_PLANES];
1632 };
1633
1634 /*
1635 * This struct helps tracking the state needed for runtime PM, which puts the
1636 * device in PCI D3 state. Notice that when this happens, nothing on the
1637 * graphics device works, even register access, so we don't get interrupts nor
1638 * anything else.
1639 *
1640 * Every piece of our code that needs to actually touch the hardware needs to
1641 * either call intel_runtime_pm_get or call intel_display_power_get with the
1642 * appropriate power domain.
1643 *
1644 * Our driver uses the autosuspend delay feature, which means we'll only really
1645 * suspend if we stay with zero refcount for a certain amount of time. The
1646 * default value is currently very conservative (see intel_runtime_pm_enable), but
1647 * it can be changed with the standard runtime PM files from sysfs.
1648 *
1649 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1650 * goes back to false exactly before we reenable the IRQs. We use this variable
1651 * to check if someone is trying to enable/disable IRQs while they're supposed
1652 * to be disabled. This shouldn't happen and we'll print some error messages in
1653 * case it happens.
1654 *
1655 * For more, read the Documentation/power/runtime_pm.txt.
1656 */
1657 struct i915_runtime_pm {
1658 atomic_t wakeref_count;
1659 atomic_t atomic_seq;
1660 bool suspended;
1661 bool irqs_enabled;
1662 };
1663
1664 enum intel_pipe_crc_source {
1665 INTEL_PIPE_CRC_SOURCE_NONE,
1666 INTEL_PIPE_CRC_SOURCE_PLANE1,
1667 INTEL_PIPE_CRC_SOURCE_PLANE2,
1668 INTEL_PIPE_CRC_SOURCE_PF,
1669 INTEL_PIPE_CRC_SOURCE_PIPE,
1670 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1671 INTEL_PIPE_CRC_SOURCE_TV,
1672 INTEL_PIPE_CRC_SOURCE_DP_B,
1673 INTEL_PIPE_CRC_SOURCE_DP_C,
1674 INTEL_PIPE_CRC_SOURCE_DP_D,
1675 INTEL_PIPE_CRC_SOURCE_AUTO,
1676 INTEL_PIPE_CRC_SOURCE_MAX,
1677 };
1678
1679 struct intel_pipe_crc_entry {
1680 uint32_t frame;
1681 uint32_t crc[5];
1682 };
1683
1684 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1685 struct intel_pipe_crc {
1686 spinlock_t lock;
1687 bool opened; /* exclusive access to the result file */
1688 struct intel_pipe_crc_entry *entries;
1689 enum intel_pipe_crc_source source;
1690 int head, tail;
1691 wait_queue_head_t wq;
1692 };
1693
1694 struct i915_frontbuffer_tracking {
1695 struct mutex lock;
1696
1697 /*
1698 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1699 * scheduled flips.
1700 */
1701 unsigned busy_bits;
1702 unsigned flip_bits;
1703 };
1704
1705 struct i915_wa_reg {
1706 i915_reg_t addr;
1707 u32 value;
1708 /* bitmask representing WA bits */
1709 u32 mask;
1710 };
1711
1712 /*
1713 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1714 * allowing it for RCS as we don't foresee any requirement of having
1715 * a whitelist for other engines. When it is really required for
1716 * other engines then the limit need to be increased.
1717 */
1718 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1719
1720 struct i915_workarounds {
1721 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1722 u32 count;
1723 u32 hw_whitelist_count[I915_NUM_ENGINES];
1724 };
1725
1726 struct i915_virtual_gpu {
1727 bool active;
1728 };
1729
1730 struct i915_execbuffer_params {
1731 struct drm_device *dev;
1732 struct drm_file *file;
1733 uint32_t dispatch_flags;
1734 uint32_t args_batch_start_offset;
1735 uint64_t batch_obj_vm_offset;
1736 struct intel_engine_cs *engine;
1737 struct drm_i915_gem_object *batch_obj;
1738 struct i915_gem_context *ctx;
1739 struct drm_i915_gem_request *request;
1740 };
1741
1742 /* used in computing the new watermarks state */
1743 struct intel_wm_config {
1744 unsigned int num_pipes_active;
1745 bool sprites_enabled;
1746 bool sprites_scaled;
1747 };
1748
1749 struct drm_i915_private {
1750 struct drm_device drm;
1751
1752 struct drm_device *dev;
1753 struct kmem_cache *objects;
1754 struct kmem_cache *vmas;
1755 struct kmem_cache *requests;
1756
1757 const struct intel_device_info info;
1758
1759 int relative_constants_mode;
1760
1761 void __iomem *regs;
1762
1763 struct intel_uncore uncore;
1764
1765 struct i915_virtual_gpu vgpu;
1766
1767 struct intel_gvt gvt;
1768
1769 struct intel_guc guc;
1770
1771 struct intel_csr csr;
1772
1773 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1774
1775 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1776 * controller on different i2c buses. */
1777 struct mutex gmbus_mutex;
1778
1779 /**
1780 * Base address of the gmbus and gpio block.
1781 */
1782 uint32_t gpio_mmio_base;
1783
1784 /* MMIO base address for MIPI regs */
1785 uint32_t mipi_mmio_base;
1786
1787 uint32_t psr_mmio_base;
1788
1789 wait_queue_head_t gmbus_wait_queue;
1790
1791 struct pci_dev *bridge_dev;
1792 struct i915_gem_context *kernel_context;
1793 struct intel_engine_cs engine[I915_NUM_ENGINES];
1794 struct drm_i915_gem_object *semaphore_obj;
1795 uint32_t last_seqno, next_seqno;
1796
1797 struct drm_dma_handle *status_page_dmah;
1798 struct resource mch_res;
1799
1800 /* protects the irq masks */
1801 spinlock_t irq_lock;
1802
1803 /* protects the mmio flip data */
1804 spinlock_t mmio_flip_lock;
1805
1806 bool display_irqs_enabled;
1807
1808 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1809 struct pm_qos_request pm_qos;
1810
1811 /* Sideband mailbox protection */
1812 struct mutex sb_lock;
1813
1814 /** Cached value of IMR to avoid reads in updating the bitfield */
1815 union {
1816 u32 irq_mask;
1817 u32 de_irq_mask[I915_MAX_PIPES];
1818 };
1819 u32 gt_irq_mask;
1820 u32 pm_irq_mask;
1821 u32 pm_rps_events;
1822 u32 pipestat_irq_mask[I915_MAX_PIPES];
1823
1824 struct i915_hotplug hotplug;
1825 struct intel_fbc fbc;
1826 struct i915_drrs drrs;
1827 struct intel_opregion opregion;
1828 struct intel_vbt_data vbt;
1829
1830 bool preserve_bios_swizzle;
1831
1832 /* overlay */
1833 struct intel_overlay *overlay;
1834
1835 /* backlight registers and fields in struct intel_panel */
1836 struct mutex backlight_lock;
1837
1838 /* LVDS info */
1839 bool no_aux_handshake;
1840
1841 /* protects panel power sequencer state */
1842 struct mutex pps_mutex;
1843
1844 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1845 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1846
1847 unsigned int fsb_freq, mem_freq, is_ddr3;
1848 unsigned int skl_preferred_vco_freq;
1849 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1850 unsigned int max_dotclk_freq;
1851 unsigned int rawclk_freq;
1852 unsigned int hpll_freq;
1853 unsigned int czclk_freq;
1854
1855 struct {
1856 unsigned int vco, ref;
1857 } cdclk_pll;
1858
1859 /**
1860 * wq - Driver workqueue for GEM.
1861 *
1862 * NOTE: Work items scheduled here are not allowed to grab any modeset
1863 * locks, for otherwise the flushing done in the pageflip code will
1864 * result in deadlocks.
1865 */
1866 struct workqueue_struct *wq;
1867
1868 /* Display functions */
1869 struct drm_i915_display_funcs display;
1870
1871 /* PCH chipset type */
1872 enum intel_pch pch_type;
1873 unsigned short pch_id;
1874
1875 unsigned long quirks;
1876
1877 enum modeset_restore modeset_restore;
1878 struct mutex modeset_restore_lock;
1879 struct drm_atomic_state *modeset_restore_state;
1880
1881 struct list_head vm_list; /* Global list of all address spaces */
1882 struct i915_ggtt ggtt; /* VM representing the global address space */
1883
1884 struct i915_gem_mm mm;
1885 DECLARE_HASHTABLE(mm_structs, 7);
1886 struct mutex mm_lock;
1887
1888 /* The hw wants to have a stable context identifier for the lifetime
1889 * of the context (for OA, PASID, faults, etc). This is limited
1890 * in execlists to 21 bits.
1891 */
1892 struct ida context_hw_ida;
1893 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1894
1895 /* Kernel Modesetting */
1896
1897 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1898 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1899 wait_queue_head_t pending_flip_queue;
1900
1901 #ifdef CONFIG_DEBUG_FS
1902 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1903 #endif
1904
1905 /* dpll and cdclk state is protected by connection_mutex */
1906 int num_shared_dpll;
1907 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1908 const struct intel_dpll_mgr *dpll_mgr;
1909
1910 /*
1911 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1912 * Must be global rather than per dpll, because on some platforms
1913 * plls share registers.
1914 */
1915 struct mutex dpll_lock;
1916
1917 unsigned int active_crtcs;
1918 unsigned int min_pixclk[I915_MAX_PIPES];
1919
1920 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1921
1922 struct i915_workarounds workarounds;
1923
1924 struct i915_frontbuffer_tracking fb_tracking;
1925
1926 u16 orig_clock;
1927
1928 bool mchbar_need_disable;
1929
1930 struct intel_l3_parity l3_parity;
1931
1932 /* Cannot be determined by PCIID. You must always read a register. */
1933 u32 edram_cap;
1934
1935 /* gen6+ rps state */
1936 struct intel_gen6_power_mgmt rps;
1937
1938 /* ilk-only ips/rps state. Everything in here is protected by the global
1939 * mchdev_lock in intel_pm.c */
1940 struct intel_ilk_power_mgmt ips;
1941
1942 struct i915_power_domains power_domains;
1943
1944 struct i915_psr psr;
1945
1946 struct i915_gpu_error gpu_error;
1947
1948 struct drm_i915_gem_object *vlv_pctx;
1949
1950 #ifdef CONFIG_DRM_FBDEV_EMULATION
1951 /* list of fbdev register on this device */
1952 struct intel_fbdev *fbdev;
1953 struct work_struct fbdev_suspend_work;
1954 #endif
1955
1956 struct drm_property *broadcast_rgb_property;
1957 struct drm_property *force_audio_property;
1958
1959 /* hda/i915 audio component */
1960 struct i915_audio_component *audio_component;
1961 bool audio_component_registered;
1962 /**
1963 * av_mutex - mutex for audio/video sync
1964 *
1965 */
1966 struct mutex av_mutex;
1967
1968 uint32_t hw_context_size;
1969 struct list_head context_list;
1970
1971 u32 fdi_rx_config;
1972
1973 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1974 u32 chv_phy_control;
1975 /*
1976 * Shadows for CHV DPLL_MD regs to keep the state
1977 * checker somewhat working in the presence hardware
1978 * crappiness (can't read out DPLL_MD for pipes B & C).
1979 */
1980 u32 chv_dpll_md[I915_MAX_PIPES];
1981 u32 bxt_phy_grc;
1982
1983 u32 suspend_count;
1984 bool suspended_to_idle;
1985 struct i915_suspend_saved_registers regfile;
1986 struct vlv_s0ix_state vlv_s0ix_state;
1987
1988 struct {
1989 /*
1990 * Raw watermark latency values:
1991 * in 0.1us units for WM0,
1992 * in 0.5us units for WM1+.
1993 */
1994 /* primary */
1995 uint16_t pri_latency[5];
1996 /* sprite */
1997 uint16_t spr_latency[5];
1998 /* cursor */
1999 uint16_t cur_latency[5];
2000 /*
2001 * Raw watermark memory latency values
2002 * for SKL for all 8 levels
2003 * in 1us units.
2004 */
2005 uint16_t skl_latency[8];
2006
2007 /*
2008 * The skl_wm_values structure is a bit too big for stack
2009 * allocation, so we keep the staging struct where we store
2010 * intermediate results here instead.
2011 */
2012 struct skl_wm_values skl_results;
2013
2014 /* current hardware state */
2015 union {
2016 struct ilk_wm_values hw;
2017 struct skl_wm_values skl_hw;
2018 struct vlv_wm_values vlv;
2019 };
2020
2021 uint8_t max_level;
2022
2023 /*
2024 * Should be held around atomic WM register writing; also
2025 * protects * intel_crtc->wm.active and
2026 * cstate->wm.need_postvbl_update.
2027 */
2028 struct mutex wm_mutex;
2029
2030 /*
2031 * Set during HW readout of watermarks/DDB. Some platforms
2032 * need to know when we're still using BIOS-provided values
2033 * (which we don't fully trust).
2034 */
2035 bool distrust_bios_wm;
2036 } wm;
2037
2038 struct i915_runtime_pm pm;
2039
2040 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2041 struct {
2042 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2043 struct drm_i915_gem_execbuffer2 *args,
2044 struct list_head *vmas);
2045 int (*init_engines)(struct drm_device *dev);
2046 void (*cleanup_engine)(struct intel_engine_cs *engine);
2047 void (*stop_engine)(struct intel_engine_cs *engine);
2048 } gt;
2049
2050 /* perform PHY state sanity checks? */
2051 bool chv_phy_assert[2];
2052
2053 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2054
2055 /*
2056 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2057 * will be rejected. Instead look for a better place.
2058 */
2059 };
2060
2061 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2062 {
2063 return container_of(dev, struct drm_i915_private, drm);
2064 }
2065
2066 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2067 {
2068 return to_i915(dev_get_drvdata(dev));
2069 }
2070
2071 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2072 {
2073 return container_of(guc, struct drm_i915_private, guc);
2074 }
2075
2076 /* Simple iterator over all initialised engines */
2077 #define for_each_engine(engine__, dev_priv__) \
2078 for ((engine__) = &(dev_priv__)->engine[0]; \
2079 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2080 (engine__)++) \
2081 for_each_if (intel_engine_initialized(engine__))
2082
2083 /* Iterator with engine_id */
2084 #define for_each_engine_id(engine__, dev_priv__, id__) \
2085 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2086 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2087 (engine__)++) \
2088 for_each_if (((id__) = (engine__)->id, \
2089 intel_engine_initialized(engine__)))
2090
2091 /* Iterator over subset of engines selected by mask */
2092 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2093 for ((engine__) = &(dev_priv__)->engine[0]; \
2094 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2095 (engine__)++) \
2096 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2097 intel_engine_initialized(engine__))
2098
2099 enum hdmi_force_audio {
2100 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2101 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2102 HDMI_AUDIO_AUTO, /* trust EDID */
2103 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2104 };
2105
2106 #define I915_GTT_OFFSET_NONE ((u32)-1)
2107
2108 struct drm_i915_gem_object_ops {
2109 unsigned int flags;
2110 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2111
2112 /* Interface between the GEM object and its backing storage.
2113 * get_pages() is called once prior to the use of the associated set
2114 * of pages before to binding them into the GTT, and put_pages() is
2115 * called after we no longer need them. As we expect there to be
2116 * associated cost with migrating pages between the backing storage
2117 * and making them available for the GPU (e.g. clflush), we may hold
2118 * onto the pages after they are no longer referenced by the GPU
2119 * in case they may be used again shortly (for example migrating the
2120 * pages to a different memory domain within the GTT). put_pages()
2121 * will therefore most likely be called when the object itself is
2122 * being released or under memory pressure (where we attempt to
2123 * reap pages for the shrinker).
2124 */
2125 int (*get_pages)(struct drm_i915_gem_object *);
2126 void (*put_pages)(struct drm_i915_gem_object *);
2127
2128 int (*dmabuf_export)(struct drm_i915_gem_object *);
2129 void (*release)(struct drm_i915_gem_object *);
2130 };
2131
2132 /*
2133 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2134 * considered to be the frontbuffer for the given plane interface-wise. This
2135 * doesn't mean that the hw necessarily already scans it out, but that any
2136 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2137 *
2138 * We have one bit per pipe and per scanout plane type.
2139 */
2140 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2141 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2142 #define INTEL_FRONTBUFFER_BITS \
2143 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2144 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2145 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2146 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2147 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2148 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2149 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2150 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2151 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2152 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2153 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2154
2155 struct drm_i915_gem_object {
2156 struct drm_gem_object base;
2157
2158 const struct drm_i915_gem_object_ops *ops;
2159
2160 /** List of VMAs backed by this object */
2161 struct list_head vma_list;
2162
2163 /** Stolen memory for this object, instead of being backed by shmem. */
2164 struct drm_mm_node *stolen;
2165 struct list_head global_list;
2166
2167 struct list_head engine_list[I915_NUM_ENGINES];
2168 /** Used in execbuf to temporarily hold a ref */
2169 struct list_head obj_exec_link;
2170
2171 struct list_head batch_pool_link;
2172
2173 /**
2174 * This is set if the object is on the active lists (has pending
2175 * rendering and so a non-zero seqno), and is not set if it i s on
2176 * inactive (ready to be unbound) list.
2177 */
2178 unsigned int active:I915_NUM_ENGINES;
2179
2180 /**
2181 * This is set if the object has been written to since last bound
2182 * to the GTT
2183 */
2184 unsigned int dirty:1;
2185
2186 /**
2187 * Fence register bits (if any) for this object. Will be set
2188 * as needed when mapped into the GTT.
2189 * Protected by dev->struct_mutex.
2190 */
2191 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2192
2193 /**
2194 * Advice: are the backing pages purgeable?
2195 */
2196 unsigned int madv:2;
2197
2198 /**
2199 * Current tiling mode for the object.
2200 */
2201 unsigned int tiling_mode:2;
2202 /**
2203 * Whether the tiling parameters for the currently associated fence
2204 * register have changed. Note that for the purposes of tracking
2205 * tiling changes we also treat the unfenced register, the register
2206 * slot that the object occupies whilst it executes a fenced
2207 * command (such as BLT on gen2/3), as a "fence".
2208 */
2209 unsigned int fence_dirty:1;
2210
2211 /**
2212 * Is the object at the current location in the gtt mappable and
2213 * fenceable? Used to avoid costly recalculations.
2214 */
2215 unsigned int map_and_fenceable:1;
2216
2217 /**
2218 * Whether the current gtt mapping needs to be mappable (and isn't just
2219 * mappable by accident). Track pin and fault separate for a more
2220 * accurate mappable working set.
2221 */
2222 unsigned int fault_mappable:1;
2223
2224 /*
2225 * Is the object to be mapped as read-only to the GPU
2226 * Only honoured if hardware has relevant pte bit
2227 */
2228 unsigned long gt_ro:1;
2229 unsigned int cache_level:3;
2230 unsigned int cache_dirty:1;
2231
2232 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2233
2234 unsigned int has_wc_mmap;
2235 unsigned int pin_display;
2236
2237 struct sg_table *pages;
2238 int pages_pin_count;
2239 struct get_page {
2240 struct scatterlist *sg;
2241 int last;
2242 } get_page;
2243 void *mapping;
2244
2245 /** Breadcrumb of last rendering to the buffer.
2246 * There can only be one writer, but we allow for multiple readers.
2247 * If there is a writer that necessarily implies that all other
2248 * read requests are complete - but we may only be lazily clearing
2249 * the read requests. A read request is naturally the most recent
2250 * request on a ring, so we may have two different write and read
2251 * requests on one ring where the write request is older than the
2252 * read request. This allows for the CPU to read from an active
2253 * buffer by only waiting for the write to complete.
2254 * */
2255 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2256 struct drm_i915_gem_request *last_write_req;
2257 /** Breadcrumb of last fenced GPU access to the buffer. */
2258 struct drm_i915_gem_request *last_fenced_req;
2259
2260 /** Current tiling stride for the object, if it's tiled. */
2261 uint32_t stride;
2262
2263 /** References from framebuffers, locks out tiling changes. */
2264 unsigned long framebuffer_references;
2265
2266 /** Record of address bit 17 of each page at last unbind. */
2267 unsigned long *bit_17;
2268
2269 union {
2270 /** for phy allocated objects */
2271 struct drm_dma_handle *phys_handle;
2272
2273 struct i915_gem_userptr {
2274 uintptr_t ptr;
2275 unsigned read_only :1;
2276 unsigned workers :4;
2277 #define I915_GEM_USERPTR_MAX_WORKERS 15
2278
2279 struct i915_mm_struct *mm;
2280 struct i915_mmu_object *mmu_object;
2281 struct work_struct *work;
2282 } userptr;
2283 };
2284 };
2285 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2286
2287 static inline bool
2288 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2289 {
2290 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2291 }
2292
2293 /*
2294 * Optimised SGL iterator for GEM objects
2295 */
2296 static __always_inline struct sgt_iter {
2297 struct scatterlist *sgp;
2298 union {
2299 unsigned long pfn;
2300 dma_addr_t dma;
2301 };
2302 unsigned int curr;
2303 unsigned int max;
2304 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2305 struct sgt_iter s = { .sgp = sgl };
2306
2307 if (s.sgp) {
2308 s.max = s.curr = s.sgp->offset;
2309 s.max += s.sgp->length;
2310 if (dma)
2311 s.dma = sg_dma_address(s.sgp);
2312 else
2313 s.pfn = page_to_pfn(sg_page(s.sgp));
2314 }
2315
2316 return s;
2317 }
2318
2319 /**
2320 * __sg_next - return the next scatterlist entry in a list
2321 * @sg: The current sg entry
2322 *
2323 * Description:
2324 * If the entry is the last, return NULL; otherwise, step to the next
2325 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2326 * otherwise just return the pointer to the current element.
2327 **/
2328 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2329 {
2330 #ifdef CONFIG_DEBUG_SG
2331 BUG_ON(sg->sg_magic != SG_MAGIC);
2332 #endif
2333 return sg_is_last(sg) ? NULL :
2334 likely(!sg_is_chain(++sg)) ? sg :
2335 sg_chain_ptr(sg);
2336 }
2337
2338 /**
2339 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2340 * @__dmap: DMA address (output)
2341 * @__iter: 'struct sgt_iter' (iterator state, internal)
2342 * @__sgt: sg_table to iterate over (input)
2343 */
2344 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2345 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2346 ((__dmap) = (__iter).dma + (__iter).curr); \
2347 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2348 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2349
2350 /**
2351 * for_each_sgt_page - iterate over the pages of the given sg_table
2352 * @__pp: page pointer (output)
2353 * @__iter: 'struct sgt_iter' (iterator state, internal)
2354 * @__sgt: sg_table to iterate over (input)
2355 */
2356 #define for_each_sgt_page(__pp, __iter, __sgt) \
2357 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2358 ((__pp) = (__iter).pfn == 0 ? NULL : \
2359 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2360 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2361 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2362
2363 /**
2364 * Request queue structure.
2365 *
2366 * The request queue allows us to note sequence numbers that have been emitted
2367 * and may be associated with active buffers to be retired.
2368 *
2369 * By keeping this list, we can avoid having to do questionable sequence
2370 * number comparisons on buffer last_read|write_seqno. It also allows an
2371 * emission time to be associated with the request for tracking how far ahead
2372 * of the GPU the submission is.
2373 *
2374 * The requests are reference counted, so upon creation they should have an
2375 * initial reference taken using kref_init
2376 */
2377 struct drm_i915_gem_request {
2378 struct kref ref;
2379
2380 /** On Which ring this request was generated */
2381 struct drm_i915_private *i915;
2382 struct intel_engine_cs *engine;
2383
2384 /** GEM sequence number associated with the previous request,
2385 * when the HWS breadcrumb is equal to this the GPU is processing
2386 * this request.
2387 */
2388 u32 previous_seqno;
2389
2390 /** GEM sequence number associated with this request,
2391 * when the HWS breadcrumb is equal or greater than this the GPU
2392 * has finished processing this request.
2393 */
2394 u32 seqno;
2395
2396 /** Position in the ringbuffer of the start of the request */
2397 u32 head;
2398
2399 /**
2400 * Position in the ringbuffer of the start of the postfix.
2401 * This is required to calculate the maximum available ringbuffer
2402 * space without overwriting the postfix.
2403 */
2404 u32 postfix;
2405
2406 /** Position in the ringbuffer of the end of the whole request */
2407 u32 tail;
2408
2409 /** Preallocate space in the ringbuffer for the emitting the request */
2410 u32 reserved_space;
2411
2412 /**
2413 * Context and ring buffer related to this request
2414 * Contexts are refcounted, so when this request is associated with a
2415 * context, we must increment the context's refcount, to guarantee that
2416 * it persists while any request is linked to it. Requests themselves
2417 * are also refcounted, so the request will only be freed when the last
2418 * reference to it is dismissed, and the code in
2419 * i915_gem_request_free() will then decrement the refcount on the
2420 * context.
2421 */
2422 struct i915_gem_context *ctx;
2423 struct intel_ringbuffer *ringbuf;
2424
2425 /**
2426 * Context related to the previous request.
2427 * As the contexts are accessed by the hardware until the switch is
2428 * completed to a new context, the hardware may still be writing
2429 * to the context object after the breadcrumb is visible. We must
2430 * not unpin/unbind/prune that object whilst still active and so
2431 * we keep the previous context pinned until the following (this)
2432 * request is retired.
2433 */
2434 struct i915_gem_context *previous_context;
2435
2436 /** Batch buffer related to this request if any (used for
2437 error state dump only) */
2438 struct drm_i915_gem_object *batch_obj;
2439
2440 /** Time at which this request was emitted, in jiffies. */
2441 unsigned long emitted_jiffies;
2442
2443 /** global list entry for this request */
2444 struct list_head list;
2445
2446 struct drm_i915_file_private *file_priv;
2447 /** file_priv list entry for this request */
2448 struct list_head client_list;
2449
2450 /** process identifier submitting this request */
2451 struct pid *pid;
2452
2453 /**
2454 * The ELSP only accepts two elements at a time, so we queue
2455 * context/tail pairs on a given queue (ring->execlist_queue) until the
2456 * hardware is available. The queue serves a double purpose: we also use
2457 * it to keep track of the up to 2 contexts currently in the hardware
2458 * (usually one in execution and the other queued up by the GPU): We
2459 * only remove elements from the head of the queue when the hardware
2460 * informs us that an element has been completed.
2461 *
2462 * All accesses to the queue are mediated by a spinlock
2463 * (ring->execlist_lock).
2464 */
2465
2466 /** Execlist link in the submission queue.*/
2467 struct list_head execlist_link;
2468
2469 /** Execlists no. of times this request has been sent to the ELSP */
2470 int elsp_submitted;
2471
2472 /** Execlists context hardware id. */
2473 unsigned ctx_hw_id;
2474 };
2475
2476 struct drm_i915_gem_request * __must_check
2477 i915_gem_request_alloc(struct intel_engine_cs *engine,
2478 struct i915_gem_context *ctx);
2479 void i915_gem_request_free(struct kref *req_ref);
2480 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2481 struct drm_file *file);
2482
2483 static inline uint32_t
2484 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2485 {
2486 return req ? req->seqno : 0;
2487 }
2488
2489 static inline struct intel_engine_cs *
2490 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2491 {
2492 return req ? req->engine : NULL;
2493 }
2494
2495 static inline struct drm_i915_gem_request *
2496 i915_gem_request_reference(struct drm_i915_gem_request *req)
2497 {
2498 if (req)
2499 kref_get(&req->ref);
2500 return req;
2501 }
2502
2503 static inline void
2504 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2505 {
2506 kref_put(&req->ref, i915_gem_request_free);
2507 }
2508
2509 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2510 struct drm_i915_gem_request *src)
2511 {
2512 if (src)
2513 i915_gem_request_reference(src);
2514
2515 if (*pdst)
2516 i915_gem_request_unreference(*pdst);
2517
2518 *pdst = src;
2519 }
2520
2521 /*
2522 * XXX: i915_gem_request_completed should be here but currently needs the
2523 * definition of i915_seqno_passed() which is below. It will be moved in
2524 * a later patch when the call to i915_seqno_passed() is obsoleted...
2525 */
2526
2527 /*
2528 * A command that requires special handling by the command parser.
2529 */
2530 struct drm_i915_cmd_descriptor {
2531 /*
2532 * Flags describing how the command parser processes the command.
2533 *
2534 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2535 * a length mask if not set
2536 * CMD_DESC_SKIP: The command is allowed but does not follow the
2537 * standard length encoding for the opcode range in
2538 * which it falls
2539 * CMD_DESC_REJECT: The command is never allowed
2540 * CMD_DESC_REGISTER: The command should be checked against the
2541 * register whitelist for the appropriate ring
2542 * CMD_DESC_MASTER: The command is allowed if the submitting process
2543 * is the DRM master
2544 */
2545 u32 flags;
2546 #define CMD_DESC_FIXED (1<<0)
2547 #define CMD_DESC_SKIP (1<<1)
2548 #define CMD_DESC_REJECT (1<<2)
2549 #define CMD_DESC_REGISTER (1<<3)
2550 #define CMD_DESC_BITMASK (1<<4)
2551 #define CMD_DESC_MASTER (1<<5)
2552
2553 /*
2554 * The command's unique identification bits and the bitmask to get them.
2555 * This isn't strictly the opcode field as defined in the spec and may
2556 * also include type, subtype, and/or subop fields.
2557 */
2558 struct {
2559 u32 value;
2560 u32 mask;
2561 } cmd;
2562
2563 /*
2564 * The command's length. The command is either fixed length (i.e. does
2565 * not include a length field) or has a length field mask. The flag
2566 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2567 * a length mask. All command entries in a command table must include
2568 * length information.
2569 */
2570 union {
2571 u32 fixed;
2572 u32 mask;
2573 } length;
2574
2575 /*
2576 * Describes where to find a register address in the command to check
2577 * against the ring's register whitelist. Only valid if flags has the
2578 * CMD_DESC_REGISTER bit set.
2579 *
2580 * A non-zero step value implies that the command may access multiple
2581 * registers in sequence (e.g. LRI), in that case step gives the
2582 * distance in dwords between individual offset fields.
2583 */
2584 struct {
2585 u32 offset;
2586 u32 mask;
2587 u32 step;
2588 } reg;
2589
2590 #define MAX_CMD_DESC_BITMASKS 3
2591 /*
2592 * Describes command checks where a particular dword is masked and
2593 * compared against an expected value. If the command does not match
2594 * the expected value, the parser rejects it. Only valid if flags has
2595 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2596 * are valid.
2597 *
2598 * If the check specifies a non-zero condition_mask then the parser
2599 * only performs the check when the bits specified by condition_mask
2600 * are non-zero.
2601 */
2602 struct {
2603 u32 offset;
2604 u32 mask;
2605 u32 expected;
2606 u32 condition_offset;
2607 u32 condition_mask;
2608 } bits[MAX_CMD_DESC_BITMASKS];
2609 };
2610
2611 /*
2612 * A table of commands requiring special handling by the command parser.
2613 *
2614 * Each ring has an array of tables. Each table consists of an array of command
2615 * descriptors, which must be sorted with command opcodes in ascending order.
2616 */
2617 struct drm_i915_cmd_table {
2618 const struct drm_i915_cmd_descriptor *table;
2619 int count;
2620 };
2621
2622 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2623 #define __I915__(p) ({ \
2624 struct drm_i915_private *__p; \
2625 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2626 __p = (struct drm_i915_private *)p; \
2627 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2628 __p = to_i915((struct drm_device *)p); \
2629 else \
2630 BUILD_BUG(); \
2631 __p; \
2632 })
2633 #define INTEL_INFO(p) (&__I915__(p)->info)
2634 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2635 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2636
2637 #define REVID_FOREVER 0xff
2638 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2639
2640 #define GEN_FOREVER (0)
2641 /*
2642 * Returns true if Gen is in inclusive range [Start, End].
2643 *
2644 * Use GEN_FOREVER for unbound start and or end.
2645 */
2646 #define IS_GEN(p, s, e) ({ \
2647 unsigned int __s = (s), __e = (e); \
2648 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2649 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2650 if ((__s) != GEN_FOREVER) \
2651 __s = (s) - 1; \
2652 if ((__e) == GEN_FOREVER) \
2653 __e = BITS_PER_LONG - 1; \
2654 else \
2655 __e = (e) - 1; \
2656 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2657 })
2658
2659 /*
2660 * Return true if revision is in range [since,until] inclusive.
2661 *
2662 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2663 */
2664 #define IS_REVID(p, since, until) \
2665 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2666
2667 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2668 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2669 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2670 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2671 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2672 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2673 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2674 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2675 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2676 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2677 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2678 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2679 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2680 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2681 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2682 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2683 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2684 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2685 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2686 INTEL_DEVID(dev) == 0x0152 || \
2687 INTEL_DEVID(dev) == 0x015a)
2688 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2689 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2690 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2691 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2692 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2693 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2694 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2695 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2696 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2697 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2698 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2699 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2700 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2701 (INTEL_DEVID(dev) & 0xf) == 0xe))
2702 /* ULX machines are also considered ULT. */
2703 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2704 (INTEL_DEVID(dev) & 0xf) == 0xe)
2705 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2706 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2707 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2708 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2709 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2710 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2711 /* ULX machines are also considered ULT. */
2712 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2713 INTEL_DEVID(dev) == 0x0A1E)
2714 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2715 INTEL_DEVID(dev) == 0x1913 || \
2716 INTEL_DEVID(dev) == 0x1916 || \
2717 INTEL_DEVID(dev) == 0x1921 || \
2718 INTEL_DEVID(dev) == 0x1926)
2719 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2720 INTEL_DEVID(dev) == 0x1915 || \
2721 INTEL_DEVID(dev) == 0x191E)
2722 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2723 INTEL_DEVID(dev) == 0x5913 || \
2724 INTEL_DEVID(dev) == 0x5916 || \
2725 INTEL_DEVID(dev) == 0x5921 || \
2726 INTEL_DEVID(dev) == 0x5926)
2727 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2728 INTEL_DEVID(dev) == 0x5915 || \
2729 INTEL_DEVID(dev) == 0x591E)
2730 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2731 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2732 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2733 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2734
2735 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2736
2737 #define SKL_REVID_A0 0x0
2738 #define SKL_REVID_B0 0x1
2739 #define SKL_REVID_C0 0x2
2740 #define SKL_REVID_D0 0x3
2741 #define SKL_REVID_E0 0x4
2742 #define SKL_REVID_F0 0x5
2743
2744 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2745
2746 #define BXT_REVID_A0 0x0
2747 #define BXT_REVID_A1 0x1
2748 #define BXT_REVID_B0 0x3
2749 #define BXT_REVID_C0 0x9
2750
2751 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2752
2753 #define KBL_REVID_A0 0x0
2754 #define KBL_REVID_B0 0x1
2755 #define KBL_REVID_C0 0x2
2756 #define KBL_REVID_D0 0x3
2757 #define KBL_REVID_E0 0x4
2758
2759 #define IS_KBL_REVID(p, since, until) \
2760 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2761
2762 /*
2763 * The genX designation typically refers to the render engine, so render
2764 * capability related checks should use IS_GEN, while display and other checks
2765 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2766 * chips, etc.).
2767 */
2768 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen_mask & BIT(1))
2769 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen_mask & BIT(2))
2770 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen_mask & BIT(3))
2771 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen_mask & BIT(4))
2772 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen_mask & BIT(5))
2773 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen_mask & BIT(6))
2774 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen_mask & BIT(7))
2775 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen_mask & BIT(8))
2776
2777 #define ENGINE_MASK(id) BIT(id)
2778 #define RENDER_RING ENGINE_MASK(RCS)
2779 #define BSD_RING ENGINE_MASK(VCS)
2780 #define BLT_RING ENGINE_MASK(BCS)
2781 #define VEBOX_RING ENGINE_MASK(VECS)
2782 #define BSD2_RING ENGINE_MASK(VCS2)
2783 #define ALL_ENGINES (~0)
2784
2785 #define HAS_ENGINE(dev_priv, id) \
2786 (INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))
2787
2788 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2789 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2790 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2791 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2792
2793 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2794 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2795 #define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
2796 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2797 HAS_EDRAM(dev))
2798 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2799
2800 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2801 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2802 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2803 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2804 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2805
2806 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2807 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2808
2809 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2810 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2811
2812 /* WaRsDisableCoarsePowerGating:skl,bxt */
2813 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2814 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2815 IS_SKL_GT3(dev_priv) || \
2816 IS_SKL_GT4(dev_priv))
2817
2818 /*
2819 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2820 * even when in MSI mode. This results in spurious interrupt warnings if the
2821 * legacy irq no. is shared with another device. The kernel then disables that
2822 * interrupt source and so prevents the other device from working properly.
2823 */
2824 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2825 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2826
2827 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2828 * rows, which changed the alignment requirements and fence programming.
2829 */
2830 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2831 IS_I915GM(dev)))
2832 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2833 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2834
2835 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2836 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2837 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2838
2839 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2840
2841 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2842 INTEL_INFO(dev)->gen >= 9)
2843
2844 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2845 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2846 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2847 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2848 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2849 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2850 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2851 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2852 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2853 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2854 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2855
2856 #define HAS_CSR(dev) (IS_GEN9(dev))
2857
2858 /*
2859 * For now, anything with a GuC requires uCode loading, and then supports
2860 * command submission once loaded. But these are logically independent
2861 * properties, so we have separate macros to test them.
2862 */
2863 #define HAS_GUC(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
2864 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2865 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2866
2867 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2868 INTEL_INFO(dev)->gen >= 8)
2869
2870 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2871 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2872 !IS_BROXTON(dev))
2873
2874 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2875
2876 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2877 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2878 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2879 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2880 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2881 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2882 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2883 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2884 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2885 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2886 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2887
2888 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2889 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2890 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2891 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2892 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2893 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2894 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2895 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2896 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2897
2898 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2899 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2900
2901 /* DPF == dynamic parity feature */
2902 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2903 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2904
2905 #define GT_FREQUENCY_MULTIPLIER 50
2906 #define GEN9_FREQ_SCALER 3
2907
2908 #include "i915_trace.h"
2909
2910 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2911 extern int i915_resume_switcheroo(struct drm_device *dev);
2912
2913 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2914 int enable_ppgtt);
2915
2916 /* i915_drv.c */
2917 void __printf(3, 4)
2918 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2919 const char *fmt, ...);
2920
2921 #define i915_report_error(dev_priv, fmt, ...) \
2922 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2923
2924 #ifdef CONFIG_COMPAT
2925 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2926 unsigned long arg);
2927 #endif
2928 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2929 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2930 extern int i915_reset(struct drm_i915_private *dev_priv);
2931 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2932 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2933 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2934 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2935 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2936 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2937 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2938
2939 /* intel_hotplug.c */
2940 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2941 u32 pin_mask, u32 long_mask);
2942 void intel_hpd_init(struct drm_i915_private *dev_priv);
2943 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2944 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2945 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2946
2947 /* i915_irq.c */
2948 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2949 {
2950 unsigned long delay;
2951
2952 if (unlikely(!i915.enable_hangcheck))
2953 return;
2954
2955 /* Don't continually defer the hangcheck so that it is always run at
2956 * least once after work has been scheduled on any ring. Otherwise,
2957 * we will ignore a hung ring if a second ring is kept busy.
2958 */
2959
2960 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2961 queue_delayed_work(system_long_wq,
2962 &dev_priv->gpu_error.hangcheck_work, delay);
2963 }
2964
2965 __printf(3, 4)
2966 void i915_handle_error(struct drm_i915_private *dev_priv,
2967 u32 engine_mask,
2968 const char *fmt, ...);
2969
2970 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2971 int intel_irq_install(struct drm_i915_private *dev_priv);
2972 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2973
2974 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2975 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2976 bool restore_forcewake);
2977 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2978 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2979 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2980 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2981 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2982 bool restore);
2983 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2984 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2985 enum forcewake_domains domains);
2986 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2987 enum forcewake_domains domains);
2988 /* Like above but the caller must manage the uncore.lock itself.
2989 * Must be used with I915_READ_FW and friends.
2990 */
2991 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2992 enum forcewake_domains domains);
2993 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2994 enum forcewake_domains domains);
2995 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2996
2997 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2998
2999 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3000 i915_reg_t reg,
3001 const u32 mask,
3002 const u32 value,
3003 const unsigned long timeout_ms);
3004 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3005 i915_reg_t reg,
3006 const u32 mask,
3007 const u32 value,
3008 const unsigned long timeout_ms);
3009
3010 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3011 {
3012 return dev_priv->gvt.initialized;
3013 }
3014
3015 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3016 {
3017 return dev_priv->vgpu.active;
3018 }
3019
3020 void
3021 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3022 u32 status_mask);
3023
3024 void
3025 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3026 u32 status_mask);
3027
3028 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3029 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3030 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3031 uint32_t mask,
3032 uint32_t bits);
3033 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3034 uint32_t interrupt_mask,
3035 uint32_t enabled_irq_mask);
3036 static inline void
3037 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3038 {
3039 ilk_update_display_irq(dev_priv, bits, bits);
3040 }
3041 static inline void
3042 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3043 {
3044 ilk_update_display_irq(dev_priv, bits, 0);
3045 }
3046 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3047 enum pipe pipe,
3048 uint32_t interrupt_mask,
3049 uint32_t enabled_irq_mask);
3050 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3051 enum pipe pipe, uint32_t bits)
3052 {
3053 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3054 }
3055 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3056 enum pipe pipe, uint32_t bits)
3057 {
3058 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3059 }
3060 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3061 uint32_t interrupt_mask,
3062 uint32_t enabled_irq_mask);
3063 static inline void
3064 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3065 {
3066 ibx_display_interrupt_update(dev_priv, bits, bits);
3067 }
3068 static inline void
3069 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3070 {
3071 ibx_display_interrupt_update(dev_priv, bits, 0);
3072 }
3073
3074 /* i915_gem.c */
3075 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3076 struct drm_file *file_priv);
3077 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3078 struct drm_file *file_priv);
3079 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3080 struct drm_file *file_priv);
3081 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3082 struct drm_file *file_priv);
3083 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3084 struct drm_file *file_priv);
3085 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3086 struct drm_file *file_priv);
3087 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3088 struct drm_file *file_priv);
3089 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3090 struct drm_i915_gem_request *req);
3091 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3092 struct drm_i915_gem_execbuffer2 *args,
3093 struct list_head *vmas);
3094 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3095 struct drm_file *file_priv);
3096 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3097 struct drm_file *file_priv);
3098 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file_priv);
3100 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file);
3102 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file);
3104 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3109 struct drm_file *file_priv);
3110 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3111 struct drm_file *file_priv);
3112 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3113 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3114 struct drm_file *file);
3115 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3116 struct drm_file *file_priv);
3117 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3118 struct drm_file *file_priv);
3119 void i915_gem_load_init(struct drm_device *dev);
3120 void i915_gem_load_cleanup(struct drm_device *dev);
3121 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3122 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3123
3124 void *i915_gem_object_alloc(struct drm_device *dev);
3125 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3126 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3127 const struct drm_i915_gem_object_ops *ops);
3128 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3129 size_t size);
3130 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3131 struct drm_device *dev, const void *data, size_t size);
3132 void i915_gem_free_object(struct drm_gem_object *obj);
3133 void i915_gem_vma_destroy(struct i915_vma *vma);
3134
3135 /* Flags used by pin/bind&friends. */
3136 #define PIN_MAPPABLE (1<<0)
3137 #define PIN_NONBLOCK (1<<1)
3138 #define PIN_GLOBAL (1<<2)
3139 #define PIN_OFFSET_BIAS (1<<3)
3140 #define PIN_USER (1<<4)
3141 #define PIN_UPDATE (1<<5)
3142 #define PIN_ZONE_4G (1<<6)
3143 #define PIN_HIGH (1<<7)
3144 #define PIN_OFFSET_FIXED (1<<8)
3145 #define PIN_OFFSET_MASK (~4095)
3146 int __must_check
3147 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3148 struct i915_address_space *vm,
3149 uint32_t alignment,
3150 uint64_t flags);
3151 int __must_check
3152 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3153 const struct i915_ggtt_view *view,
3154 uint32_t alignment,
3155 uint64_t flags);
3156
3157 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3158 u32 flags);
3159 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3160 int __must_check i915_vma_unbind(struct i915_vma *vma);
3161 /*
3162 * BEWARE: Do not use the function below unless you can _absolutely_
3163 * _guarantee_ VMA in question is _not in use_ anywhere.
3164 */
3165 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3166 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3167 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3168 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3169
3170 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3171 int *needs_clflush);
3172
3173 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3174
3175 static inline int __sg_page_count(struct scatterlist *sg)
3176 {
3177 return sg->length >> PAGE_SHIFT;
3178 }
3179
3180 struct page *
3181 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3182
3183 static inline dma_addr_t
3184 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3185 {
3186 if (n < obj->get_page.last) {
3187 obj->get_page.sg = obj->pages->sgl;
3188 obj->get_page.last = 0;
3189 }
3190
3191 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3192 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3193 if (unlikely(sg_is_chain(obj->get_page.sg)))
3194 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3195 }
3196
3197 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3198 }
3199
3200 static inline struct page *
3201 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3202 {
3203 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3204 return NULL;
3205
3206 if (n < obj->get_page.last) {
3207 obj->get_page.sg = obj->pages->sgl;
3208 obj->get_page.last = 0;
3209 }
3210
3211 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3212 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3213 if (unlikely(sg_is_chain(obj->get_page.sg)))
3214 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3215 }
3216
3217 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3218 }
3219
3220 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3221 {
3222 BUG_ON(obj->pages == NULL);
3223 obj->pages_pin_count++;
3224 }
3225
3226 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3227 {
3228 BUG_ON(obj->pages_pin_count == 0);
3229 obj->pages_pin_count--;
3230 }
3231
3232 /**
3233 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3234 * @obj - the object to map into kernel address space
3235 *
3236 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3237 * pages and then returns a contiguous mapping of the backing storage into
3238 * the kernel address space.
3239 *
3240 * The caller must hold the struct_mutex, and is responsible for calling
3241 * i915_gem_object_unpin_map() when the mapping is no longer required.
3242 *
3243 * Returns the pointer through which to access the mapped object, or an
3244 * ERR_PTR() on error.
3245 */
3246 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3247
3248 /**
3249 * i915_gem_object_unpin_map - releases an earlier mapping
3250 * @obj - the object to unmap
3251 *
3252 * After pinning the object and mapping its pages, once you are finished
3253 * with your access, call i915_gem_object_unpin_map() to release the pin
3254 * upon the mapping. Once the pin count reaches zero, that mapping may be
3255 * removed.
3256 *
3257 * The caller must hold the struct_mutex.
3258 */
3259 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3260 {
3261 lockdep_assert_held(&obj->base.dev->struct_mutex);
3262 i915_gem_object_unpin_pages(obj);
3263 }
3264
3265 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3266 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3267 struct intel_engine_cs *to,
3268 struct drm_i915_gem_request **to_req);
3269 void i915_vma_move_to_active(struct i915_vma *vma,
3270 struct drm_i915_gem_request *req);
3271 int i915_gem_dumb_create(struct drm_file *file_priv,
3272 struct drm_device *dev,
3273 struct drm_mode_create_dumb *args);
3274 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3275 uint32_t handle, uint64_t *offset);
3276
3277 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3278 struct drm_i915_gem_object *new,
3279 unsigned frontbuffer_bits);
3280
3281 /**
3282 * Returns true if seq1 is later than seq2.
3283 */
3284 static inline bool
3285 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3286 {
3287 return (int32_t)(seq1 - seq2) >= 0;
3288 }
3289
3290 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3291 {
3292 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3293 req->previous_seqno);
3294 }
3295
3296 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3297 {
3298 return i915_seqno_passed(req->engine->get_seqno(req->engine),
3299 req->seqno);
3300 }
3301
3302 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3303 int state, unsigned long timeout_us);
3304 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3305 int state, unsigned long timeout_us)
3306 {
3307 return (i915_gem_request_started(request) &&
3308 __i915_spin_request(request, state, timeout_us));
3309 }
3310
3311 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3312 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3313
3314 struct drm_i915_gem_request *
3315 i915_gem_find_active_request(struct intel_engine_cs *engine);
3316
3317 bool i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3318 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3319
3320 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3321 {
3322 return atomic_read(&error->reset_counter);
3323 }
3324
3325 static inline bool __i915_reset_in_progress(u32 reset)
3326 {
3327 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3328 }
3329
3330 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3331 {
3332 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3333 }
3334
3335 static inline bool __i915_terminally_wedged(u32 reset)
3336 {
3337 return unlikely(reset & I915_WEDGED);
3338 }
3339
3340 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3341 {
3342 return __i915_reset_in_progress(i915_reset_counter(error));
3343 }
3344
3345 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3346 {
3347 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3348 }
3349
3350 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3351 {
3352 return __i915_terminally_wedged(i915_reset_counter(error));
3353 }
3354
3355 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3356 {
3357 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3358 }
3359
3360 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
3361 {
3362 return dev_priv->gpu_error.stop_rings == 0 ||
3363 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
3364 }
3365
3366 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
3367 {
3368 return dev_priv->gpu_error.stop_rings == 0 ||
3369 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
3370 }
3371
3372 void i915_gem_reset(struct drm_device *dev);
3373 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3374 int __must_check i915_gem_init(struct drm_device *dev);
3375 int i915_gem_init_engines(struct drm_device *dev);
3376 int __must_check i915_gem_init_hw(struct drm_device *dev);
3377 void i915_gem_init_swizzling(struct drm_device *dev);
3378 void i915_gem_cleanup_engines(struct drm_device *dev);
3379 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3380 int __must_check i915_gem_suspend(struct drm_device *dev);
3381 void __i915_add_request(struct drm_i915_gem_request *req,
3382 struct drm_i915_gem_object *batch_obj,
3383 bool flush_caches);
3384 #define i915_add_request(req) \
3385 __i915_add_request(req, NULL, true)
3386 #define i915_add_request_no_flush(req) \
3387 __i915_add_request(req, NULL, false)
3388 int __i915_wait_request(struct drm_i915_gem_request *req,
3389 bool interruptible,
3390 s64 *timeout,
3391 struct intel_rps_client *rps);
3392 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3393 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3394 int __must_check
3395 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3396 bool readonly);
3397 int __must_check
3398 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3399 bool write);
3400 int __must_check
3401 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3402 int __must_check
3403 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3404 u32 alignment,
3405 const struct i915_ggtt_view *view);
3406 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3407 const struct i915_ggtt_view *view);
3408 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3409 int align);
3410 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3411 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3412
3413 uint32_t
3414 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3415 uint32_t
3416 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3417 int tiling_mode, bool fenced);
3418
3419 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3420 enum i915_cache_level cache_level);
3421
3422 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3423 struct dma_buf *dma_buf);
3424
3425 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3426 struct drm_gem_object *gem_obj, int flags);
3427
3428 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3429 const struct i915_ggtt_view *view);
3430 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3431 struct i915_address_space *vm);
3432 static inline u64
3433 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3434 {
3435 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3436 }
3437
3438 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3439 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3440 const struct i915_ggtt_view *view);
3441 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3442 struct i915_address_space *vm);
3443
3444 struct i915_vma *
3445 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3446 struct i915_address_space *vm);
3447 struct i915_vma *
3448 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3449 const struct i915_ggtt_view *view);
3450
3451 struct i915_vma *
3452 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3453 struct i915_address_space *vm);
3454 struct i915_vma *
3455 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3456 const struct i915_ggtt_view *view);
3457
3458 static inline struct i915_vma *
3459 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3460 {
3461 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3462 }
3463 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3464
3465 /* Some GGTT VM helpers */
3466 static inline struct i915_hw_ppgtt *
3467 i915_vm_to_ppgtt(struct i915_address_space *vm)
3468 {
3469 return container_of(vm, struct i915_hw_ppgtt, base);
3470 }
3471
3472
3473 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3474 {
3475 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3476 }
3477
3478 unsigned long
3479 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3480
3481 static inline int __must_check
3482 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3483 uint32_t alignment,
3484 unsigned flags)
3485 {
3486 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3487 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3488
3489 return i915_gem_object_pin(obj, &ggtt->base,
3490 alignment, flags | PIN_GLOBAL);
3491 }
3492
3493 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3494 const struct i915_ggtt_view *view);
3495 static inline void
3496 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3497 {
3498 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3499 }
3500
3501 /* i915_gem_fence.c */
3502 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3503 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3504
3505 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3506 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3507
3508 void i915_gem_restore_fences(struct drm_device *dev);
3509
3510 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3511 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3512 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3513
3514 /* i915_gem_context.c */
3515 int __must_check i915_gem_context_init(struct drm_device *dev);
3516 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3517 void i915_gem_context_fini(struct drm_device *dev);
3518 void i915_gem_context_reset(struct drm_device *dev);
3519 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3520 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3521 int i915_switch_context(struct drm_i915_gem_request *req);
3522 void i915_gem_context_free(struct kref *ctx_ref);
3523 struct drm_i915_gem_object *
3524 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3525 struct i915_gem_context *
3526 i915_gem_context_create_gvt(struct drm_device *dev);
3527
3528 static inline struct i915_gem_context *
3529 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3530 {
3531 struct i915_gem_context *ctx;
3532
3533 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3534
3535 ctx = idr_find(&file_priv->context_idr, id);
3536 if (!ctx)
3537 return ERR_PTR(-ENOENT);
3538
3539 return ctx;
3540 }
3541
3542 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3543 {
3544 kref_get(&ctx->ref);
3545 }
3546
3547 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3548 {
3549 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3550 kref_put(&ctx->ref, i915_gem_context_free);
3551 }
3552
3553 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3554 {
3555 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3556 }
3557
3558 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3559 struct drm_file *file);
3560 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3561 struct drm_file *file);
3562 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3563 struct drm_file *file_priv);
3564 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file_priv);
3566 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3567 struct drm_file *file);
3568
3569 /* i915_gem_evict.c */
3570 int __must_check i915_gem_evict_something(struct drm_device *dev,
3571 struct i915_address_space *vm,
3572 int min_size,
3573 unsigned alignment,
3574 unsigned cache_level,
3575 unsigned long start,
3576 unsigned long end,
3577 unsigned flags);
3578 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3579 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3580
3581 /* belongs in i915_gem_gtt.h */
3582 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3583 {
3584 if (INTEL_GEN(dev_priv) < 6)
3585 intel_gtt_chipset_flush();
3586 }
3587
3588 /* i915_gem_stolen.c */
3589 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3590 struct drm_mm_node *node, u64 size,
3591 unsigned alignment);
3592 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3593 struct drm_mm_node *node, u64 size,
3594 unsigned alignment, u64 start,
3595 u64 end);
3596 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3597 struct drm_mm_node *node);
3598 int i915_gem_init_stolen(struct drm_device *dev);
3599 void i915_gem_cleanup_stolen(struct drm_device *dev);
3600 struct drm_i915_gem_object *
3601 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3602 struct drm_i915_gem_object *
3603 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3604 u32 stolen_offset,
3605 u32 gtt_offset,
3606 u32 size);
3607
3608 /* i915_gem_shrinker.c */
3609 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3610 unsigned long target,
3611 unsigned flags);
3612 #define I915_SHRINK_PURGEABLE 0x1
3613 #define I915_SHRINK_UNBOUND 0x2
3614 #define I915_SHRINK_BOUND 0x4
3615 #define I915_SHRINK_ACTIVE 0x8
3616 #define I915_SHRINK_VMAPS 0x10
3617 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3618 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3619 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3620
3621
3622 /* i915_gem_tiling.c */
3623 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3624 {
3625 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3626
3627 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3628 obj->tiling_mode != I915_TILING_NONE;
3629 }
3630
3631 /* i915_gem_debug.c */
3632 #if WATCH_LISTS
3633 int i915_verify_lists(struct drm_device *dev);
3634 #else
3635 #define i915_verify_lists(dev) 0
3636 #endif
3637
3638 /* i915_debugfs.c */
3639 #ifdef CONFIG_DEBUG_FS
3640 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3641 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3642 int i915_debugfs_connector_add(struct drm_connector *connector);
3643 void intel_display_crc_init(struct drm_device *dev);
3644 #else
3645 static inline int i915_debugfs_register(struct drm_i915_private *) {return 0;}
3646 static inline void i915_debugfs_unregister(struct drm_i915_private *) {}
3647 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3648 { return 0; }
3649 static inline void intel_display_crc_init(struct drm_device *dev) {}
3650 #endif
3651
3652 /* i915_gpu_error.c */
3653 __printf(2, 3)
3654 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3655 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3656 const struct i915_error_state_file_priv *error);
3657 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3658 struct drm_i915_private *i915,
3659 size_t count, loff_t pos);
3660 static inline void i915_error_state_buf_release(
3661 struct drm_i915_error_state_buf *eb)
3662 {
3663 kfree(eb->buf);
3664 }
3665 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3666 u32 engine_mask,
3667 const char *error_msg);
3668 void i915_error_state_get(struct drm_device *dev,
3669 struct i915_error_state_file_priv *error_priv);
3670 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3671 void i915_destroy_error_state(struct drm_device *dev);
3672
3673 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3674 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3675
3676 /* i915_cmd_parser.c */
3677 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3678 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3679 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3680 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3681 int i915_parse_cmds(struct intel_engine_cs *engine,
3682 struct drm_i915_gem_object *batch_obj,
3683 struct drm_i915_gem_object *shadow_batch_obj,
3684 u32 batch_start_offset,
3685 u32 batch_len,
3686 bool is_master);
3687
3688 /* i915_suspend.c */
3689 extern int i915_save_state(struct drm_device *dev);
3690 extern int i915_restore_state(struct drm_device *dev);
3691
3692 /* i915_sysfs.c */
3693 void i915_setup_sysfs(struct drm_device *dev_priv);
3694 void i915_teardown_sysfs(struct drm_device *dev_priv);
3695
3696 /* intel_i2c.c */
3697 extern int intel_setup_gmbus(struct drm_device *dev);
3698 extern void intel_teardown_gmbus(struct drm_device *dev);
3699 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3700 unsigned int pin);
3701
3702 extern struct i2c_adapter *
3703 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3704 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3705 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3706 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3707 {
3708 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3709 }
3710 extern void intel_i2c_reset(struct drm_device *dev);
3711
3712 /* intel_bios.c */
3713 int intel_bios_init(struct drm_i915_private *dev_priv);
3714 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3715 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3716 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3717 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3718 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3719 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3720 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3721 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3722 enum port port);
3723
3724 /* intel_opregion.c */
3725 #ifdef CONFIG_ACPI
3726 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3727 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3728 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3729 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3730 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3731 bool enable);
3732 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3733 pci_power_t state);
3734 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3735 #else
3736 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3737 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3738 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3739 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3740 {
3741 }
3742 static inline int
3743 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3744 {
3745 return 0;
3746 }
3747 static inline int
3748 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3749 {
3750 return 0;
3751 }
3752 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3753 {
3754 return -ENODEV;
3755 }
3756 #endif
3757
3758 /* intel_acpi.c */
3759 #ifdef CONFIG_ACPI
3760 extern void intel_register_dsm_handler(void);
3761 extern void intel_unregister_dsm_handler(void);
3762 #else
3763 static inline void intel_register_dsm_handler(void) { return; }
3764 static inline void intel_unregister_dsm_handler(void) { return; }
3765 #endif /* CONFIG_ACPI */
3766
3767 /* modesetting */
3768 extern void intel_modeset_init_hw(struct drm_device *dev);
3769 extern void intel_modeset_init(struct drm_device *dev);
3770 extern void intel_modeset_gem_init(struct drm_device *dev);
3771 extern void intel_modeset_cleanup(struct drm_device *dev);
3772 extern int intel_connector_register(struct drm_connector *);
3773 extern void intel_connector_unregister(struct drm_connector *);
3774 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3775 extern void intel_display_resume(struct drm_device *dev);
3776 extern void i915_redisable_vga(struct drm_device *dev);
3777 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3778 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3779 extern void intel_init_pch_refclk(struct drm_device *dev);
3780 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3781 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3782 bool enable);
3783
3784 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3785 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3786 struct drm_file *file);
3787
3788 /* overlay */
3789 extern struct intel_overlay_error_state *
3790 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3791 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3792 struct intel_overlay_error_state *error);
3793
3794 extern struct intel_display_error_state *
3795 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3796 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3797 struct drm_device *dev,
3798 struct intel_display_error_state *error);
3799
3800 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3801 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3802
3803 /* intel_sideband.c */
3804 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3805 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3806 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3807 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3808 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3809 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3810 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3811 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3812 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3813 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3814 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3815 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3816 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3817 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3818 enum intel_sbi_destination destination);
3819 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3820 enum intel_sbi_destination destination);
3821 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3822 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3823
3824 /* intel_dpio_phy.c */
3825 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3826 u32 deemph_reg_value, u32 margin_reg_value,
3827 bool uniq_trans_scale);
3828 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3829 bool reset);
3830 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3831 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3832 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3833 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3834
3835 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3836 u32 demph_reg_value, u32 preemph_reg_value,
3837 u32 uniqtranscale_reg_value, u32 tx3_demph);
3838 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3839 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3840 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3841
3842 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3843 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3844
3845 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3846 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3847
3848 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3849 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3850 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3851 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3852
3853 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3854 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3855 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3856 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3857
3858 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3859 * will be implemented using 2 32-bit writes in an arbitrary order with
3860 * an arbitrary delay between them. This can cause the hardware to
3861 * act upon the intermediate value, possibly leading to corruption and
3862 * machine death. You have been warned.
3863 */
3864 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3865 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3866
3867 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3868 u32 upper, lower, old_upper, loop = 0; \
3869 upper = I915_READ(upper_reg); \
3870 do { \
3871 old_upper = upper; \
3872 lower = I915_READ(lower_reg); \
3873 upper = I915_READ(upper_reg); \
3874 } while (upper != old_upper && loop++ < 2); \
3875 (u64)upper << 32 | lower; })
3876
3877 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3878 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3879
3880 #define __raw_read(x, s) \
3881 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3882 i915_reg_t reg) \
3883 { \
3884 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3885 }
3886
3887 #define __raw_write(x, s) \
3888 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3889 i915_reg_t reg, uint##x##_t val) \
3890 { \
3891 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3892 }
3893 __raw_read(8, b)
3894 __raw_read(16, w)
3895 __raw_read(32, l)
3896 __raw_read(64, q)
3897
3898 __raw_write(8, b)
3899 __raw_write(16, w)
3900 __raw_write(32, l)
3901 __raw_write(64, q)
3902
3903 #undef __raw_read
3904 #undef __raw_write
3905
3906 /* These are untraced mmio-accessors that are only valid to be used inside
3907 * criticial sections inside IRQ handlers where forcewake is explicitly
3908 * controlled.
3909 * Think twice, and think again, before using these.
3910 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3911 * intel_uncore_forcewake_irqunlock().
3912 */
3913 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3914 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3915 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3916 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3917
3918 /* "Broadcast RGB" property */
3919 #define INTEL_BROADCAST_RGB_AUTO 0
3920 #define INTEL_BROADCAST_RGB_FULL 1
3921 #define INTEL_BROADCAST_RGB_LIMITED 2
3922
3923 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3924 {
3925 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3926 return VLV_VGACNTRL;
3927 else if (INTEL_INFO(dev)->gen >= 5)
3928 return CPU_VGACNTRL;
3929 else
3930 return VGACNTRL;
3931 }
3932
3933 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3934 {
3935 unsigned long j = msecs_to_jiffies(m);
3936
3937 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3938 }
3939
3940 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3941 {
3942 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3943 }
3944
3945 static inline unsigned long
3946 timespec_to_jiffies_timeout(const struct timespec *value)
3947 {
3948 unsigned long j = timespec_to_jiffies(value);
3949
3950 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3951 }
3952
3953 /*
3954 * If you need to wait X milliseconds between events A and B, but event B
3955 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3956 * when event A happened, then just before event B you call this function and
3957 * pass the timestamp as the first argument, and X as the second argument.
3958 */
3959 static inline void
3960 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3961 {
3962 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3963
3964 /*
3965 * Don't re-read the value of "jiffies" every time since it may change
3966 * behind our back and break the math.
3967 */
3968 tmp_jiffies = jiffies;
3969 target_jiffies = timestamp_jiffies +
3970 msecs_to_jiffies_timeout(to_wait_ms);
3971
3972 if (time_after(target_jiffies, tmp_jiffies)) {
3973 remaining_jiffies = target_jiffies - tmp_jiffies;
3974 while (remaining_jiffies)
3975 remaining_jiffies =
3976 schedule_timeout_uninterruptible(remaining_jiffies);
3977 }
3978 }
3979
3980 static inline void i915_trace_irq_get(struct intel_engine_cs *engine,
3981 struct drm_i915_gem_request *req)
3982 {
3983 if (engine->trace_irq_req == NULL && engine->irq_get(engine))
3984 i915_gem_request_assign(&engine->trace_irq_req, req);
3985 }
3986
3987 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3988 {
3989 struct intel_engine_cs *engine = req->engine;
3990
3991 /* Ensure our read of the seqno is coherent so that we
3992 * do not "miss an interrupt" (i.e. if this is the last
3993 * request and the seqno write from the GPU is not visible
3994 * by the time the interrupt fires, we will see that the
3995 * request is incomplete and go back to sleep awaiting
3996 * another interrupt that will never come.)
3997 *
3998 * Strictly, we only need to do this once after an interrupt,
3999 * but it is easier and safer to do it every time the waiter
4000 * is woken.
4001 */
4002 if (engine->irq_seqno_barrier)
4003 engine->irq_seqno_barrier(engine);
4004
4005 if (i915_gem_request_completed(req))
4006 return true;
4007
4008 /* We need to check whether any gpu reset happened in between
4009 * the request being submitted and now. If a reset has occurred,
4010 * the seqno will have been advance past ours and our request
4011 * is complete. If we are in the process of handling a reset,
4012 * the request is effectively complete as the rendering will
4013 * be discarded, but we need to return in order to drop the
4014 * struct_mutex.
4015 */
4016 if (i915_reset_in_progress(&req->i915->gpu_error))
4017 return true;
4018
4019 return false;
4020 }
4021
4022 #endif
This page took 0.119821 seconds and 6 git commands to generate.