ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 int ret;
1159
1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162 ret = 0;
1163 if (req == req->ring->outstanding_lazy_request)
1164 ret = i915_add_request(req->ring);
1165
1166 return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171 wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 struct intel_engine_cs *ring)
1176 {
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static int __i915_spin_request(struct drm_i915_gem_request *req)
1181 {
1182 unsigned long timeout;
1183
1184 if (i915_gem_request_get_ring(req)->irq_refcount)
1185 return -EBUSY;
1186
1187 timeout = jiffies + 1;
1188 while (!need_resched()) {
1189 if (i915_gem_request_completed(req, true))
1190 return 0;
1191
1192 if (time_after_eq(jiffies, timeout))
1193 break;
1194
1195 cpu_relax_lowlatency();
1196 }
1197 if (i915_gem_request_completed(req, false))
1198 return 0;
1199
1200 return -EAGAIN;
1201 }
1202
1203 /**
1204 * __i915_wait_request - wait until execution of request has finished
1205 * @req: duh!
1206 * @reset_counter: reset sequence associated with the given request
1207 * @interruptible: do an interruptible wait (normally yes)
1208 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209 *
1210 * Note: It is of utmost importance that the passed in seqno and reset_counter
1211 * values have been read by the caller in an smp safe manner. Where read-side
1212 * locks are involved, it is sufficient to read the reset_counter before
1213 * unlocking the lock that protects the seqno. For lockless tricks, the
1214 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215 * inserted.
1216 *
1217 * Returns 0 if the request was found within the alloted time. Else returns the
1218 * errno with remaining time filled in timeout argument.
1219 */
1220 int __i915_wait_request(struct drm_i915_gem_request *req,
1221 unsigned reset_counter,
1222 bool interruptible,
1223 s64 *timeout,
1224 struct intel_rps_client *rps)
1225 {
1226 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227 struct drm_device *dev = ring->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 const bool irq_test_in_progress =
1230 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231 DEFINE_WAIT(wait);
1232 unsigned long timeout_expire;
1233 s64 before, now;
1234 int ret;
1235
1236 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237
1238 if (list_empty(&req->list))
1239 return 0;
1240
1241 if (i915_gem_request_completed(req, true))
1242 return 0;
1243
1244 timeout_expire = timeout ?
1245 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246
1247 if (INTEL_INFO(dev_priv)->gen >= 6)
1248 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249
1250 /* Record current time in case interrupted by signal, or wedged */
1251 trace_i915_gem_request_wait_begin(req);
1252 before = ktime_get_raw_ns();
1253
1254 /* Optimistic spin for the next jiffie before touching IRQs */
1255 ret = __i915_spin_request(req);
1256 if (ret == 0)
1257 goto out;
1258
1259 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260 ret = -ENODEV;
1261 goto out;
1262 }
1263
1264 for (;;) {
1265 struct timer_list timer;
1266
1267 prepare_to_wait(&ring->irq_queue, &wait,
1268 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269
1270 /* We need to check whether any gpu reset happened in between
1271 * the caller grabbing the seqno and now ... */
1272 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274 * is truely gone. */
1275 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276 if (ret == 0)
1277 ret = -EAGAIN;
1278 break;
1279 }
1280
1281 if (i915_gem_request_completed(req, false)) {
1282 ret = 0;
1283 break;
1284 }
1285
1286 if (interruptible && signal_pending(current)) {
1287 ret = -ERESTARTSYS;
1288 break;
1289 }
1290
1291 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 ret = -ETIME;
1293 break;
1294 }
1295
1296 timer.function = NULL;
1297 if (timeout || missed_irq(dev_priv, ring)) {
1298 unsigned long expire;
1299
1300 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 mod_timer(&timer, expire);
1303 }
1304
1305 io_schedule();
1306
1307 if (timer.function) {
1308 del_singleshot_timer_sync(&timer);
1309 destroy_timer_on_stack(&timer);
1310 }
1311 }
1312 if (!irq_test_in_progress)
1313 ring->irq_put(ring);
1314
1315 finish_wait(&ring->irq_queue, &wait);
1316
1317 out:
1318 now = ktime_get_raw_ns();
1319 trace_i915_gem_request_wait_end(req);
1320
1321 if (timeout) {
1322 s64 tres = *timeout - (now - before);
1323
1324 *timeout = tres < 0 ? 0 : tres;
1325
1326 /*
1327 * Apparently ktime isn't accurate enough and occasionally has a
1328 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 * things up to make the test happy. We allow up to 1 jiffy.
1330 *
1331 * This is a regrssion from the timespec->ktime conversion.
1332 */
1333 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 *timeout = 0;
1335 }
1336
1337 return ret;
1338 }
1339
1340 static inline void
1341 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342 {
1343 struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345 if (!file_priv)
1346 return;
1347
1348 spin_lock(&file_priv->mm.lock);
1349 list_del(&request->client_list);
1350 request->file_priv = NULL;
1351 spin_unlock(&file_priv->mm.lock);
1352 }
1353
1354 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355 {
1356 trace_i915_gem_request_retire(request);
1357
1358 /* We know the GPU must have read the request to have
1359 * sent us the seqno + interrupt, so use the position
1360 * of tail of the request to update the last known position
1361 * of the GPU head.
1362 *
1363 * Note this requires that we are always called in request
1364 * completion order.
1365 */
1366 request->ringbuf->last_retired_head = request->postfix;
1367
1368 list_del_init(&request->list);
1369 i915_gem_request_remove_from_client(request);
1370
1371 put_pid(request->pid);
1372
1373 i915_gem_request_unreference(request);
1374 }
1375
1376 static void
1377 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378 {
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395 }
1396
1397 /**
1398 * Waits for a request to be signaled, and cleans up the
1399 * request and object lists appropriately for that event.
1400 */
1401 int
1402 i915_wait_request(struct drm_i915_gem_request *req)
1403 {
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
1407 int ret;
1408
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1416
1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 if (ret)
1419 return ret;
1420
1421 ret = i915_gem_check_olr(req);
1422 if (ret)
1423 return ret;
1424
1425 ret = __i915_wait_request(req,
1426 atomic_read(&dev_priv->gpu_error.reset_counter),
1427 interruptible, NULL, NULL);
1428 if (ret)
1429 return ret;
1430
1431 __i915_gem_request_retire__upto(req);
1432 return 0;
1433 }
1434
1435 /**
1436 * Ensures that all rendering to the object has completed and the object is
1437 * safe to unbind from the GTT or access from the CPU.
1438 */
1439 int
1440 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441 bool readonly)
1442 {
1443 int ret, i;
1444
1445 if (!obj->active)
1446 return 0;
1447
1448 if (readonly) {
1449 if (obj->last_write_req != NULL) {
1450 ret = i915_wait_request(obj->last_write_req);
1451 if (ret)
1452 return ret;
1453
1454 i = obj->last_write_req->ring->id;
1455 if (obj->last_read_req[i] == obj->last_write_req)
1456 i915_gem_object_retire__read(obj, i);
1457 else
1458 i915_gem_object_retire__write(obj);
1459 }
1460 } else {
1461 for (i = 0; i < I915_NUM_RINGS; i++) {
1462 if (obj->last_read_req[i] == NULL)
1463 continue;
1464
1465 ret = i915_wait_request(obj->last_read_req[i]);
1466 if (ret)
1467 return ret;
1468
1469 i915_gem_object_retire__read(obj, i);
1470 }
1471 RQ_BUG_ON(obj->active);
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void
1478 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479 struct drm_i915_gem_request *req)
1480 {
1481 int ring = req->ring->id;
1482
1483 if (obj->last_read_req[ring] == req)
1484 i915_gem_object_retire__read(obj, ring);
1485 else if (obj->last_write_req == req)
1486 i915_gem_object_retire__write(obj);
1487
1488 __i915_gem_request_retire__upto(req);
1489 }
1490
1491 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1492 * as the object state may change during this call.
1493 */
1494 static __must_check int
1495 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496 struct intel_rps_client *rps,
1497 bool readonly)
1498 {
1499 struct drm_device *dev = obj->base.dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502 unsigned reset_counter;
1503 int ret, i, n = 0;
1504
1505 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506 BUG_ON(!dev_priv->mm.interruptible);
1507
1508 if (!obj->active)
1509 return 0;
1510
1511 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 if (ret)
1513 return ret;
1514
1515 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516
1517 if (readonly) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_write_req;
1521 if (req == NULL)
1522 return 0;
1523
1524 ret = i915_gem_check_olr(req);
1525 if (ret)
1526 goto err;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 ret = i915_gem_check_olr(req);
1538 if (ret)
1539 goto err;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
1545 mutex_unlock(&dev->struct_mutex);
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
1548 NULL, rps);
1549 mutex_lock(&dev->struct_mutex);
1550
1551 err:
1552 for (i = 0; i < n; i++) {
1553 if (ret == 0)
1554 i915_gem_object_retire_request(obj, requests[i]);
1555 i915_gem_request_unreference(requests[i]);
1556 }
1557
1558 return ret;
1559 }
1560
1561 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1562 {
1563 struct drm_i915_file_private *fpriv = file->driver_priv;
1564 return &fpriv->rps;
1565 }
1566
1567 /**
1568 * Called when user space prepares to use an object with the CPU, either
1569 * through the mmap ioctl's mapping or a GTT mapping.
1570 */
1571 int
1572 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573 struct drm_file *file)
1574 {
1575 struct drm_i915_gem_set_domain *args = data;
1576 struct drm_i915_gem_object *obj;
1577 uint32_t read_domains = args->read_domains;
1578 uint32_t write_domain = args->write_domain;
1579 int ret;
1580
1581 /* Only handle setting domains to types used by the CPU. */
1582 if (write_domain & I915_GEM_GPU_DOMAINS)
1583 return -EINVAL;
1584
1585 if (read_domains & I915_GEM_GPU_DOMAINS)
1586 return -EINVAL;
1587
1588 /* Having something in the write domain implies it's in the read
1589 * domain, and only that read domain. Enforce that in the request.
1590 */
1591 if (write_domain != 0 && read_domains != write_domain)
1592 return -EINVAL;
1593
1594 ret = i915_mutex_lock_interruptible(dev);
1595 if (ret)
1596 return ret;
1597
1598 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599 if (&obj->base == NULL) {
1600 ret = -ENOENT;
1601 goto unlock;
1602 }
1603
1604 /* Try to flush the object off the GPU without holding the lock.
1605 * We will repeat the flush holding the lock in the normal manner
1606 * to catch cases where we are gazumped.
1607 */
1608 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609 to_rps_client(file),
1610 !write_domain);
1611 if (ret)
1612 goto unref;
1613
1614 if (read_domains & I915_GEM_DOMAIN_GTT)
1615 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616 else
1617 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618
1619 unref:
1620 drm_gem_object_unreference(&obj->base);
1621 unlock:
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624 }
1625
1626 /**
1627 * Called when user space has done writes to this buffer
1628 */
1629 int
1630 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631 struct drm_file *file)
1632 {
1633 struct drm_i915_gem_sw_finish *args = data;
1634 struct drm_i915_gem_object *obj;
1635 int ret = 0;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Pinned buffers may be scanout, so flush the cache */
1648 if (obj->pin_display)
1649 i915_gem_object_flush_cpu_write_domain(obj);
1650
1651 drm_gem_object_unreference(&obj->base);
1652 unlock:
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655 }
1656
1657 /**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
1673 */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676 struct drm_file *file)
1677 {
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
1680 unsigned long addr;
1681
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
1688 obj = drm_gem_object_lookup(dev, file, args->handle);
1689 if (obj == NULL)
1690 return -ENOENT;
1691
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
1700 addr = vm_mmap(obj->filp, 0, args->size,
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
1716 drm_gem_object_unreference_unlocked(obj);
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * i915_gem_fault - fault a page into the GTT
1727 * vma: VMA in question
1728 * vmf: fault info
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 {
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751
1752 intel_runtime_pm_get(dev_priv);
1753
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
1761
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775 ret = -EFAULT;
1776 goto unlock;
1777 }
1778
1779 /* Use a partial view if the object is bigger than the aperture. */
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
1782 static const unsigned int chunk_size = 256; // 1 MiB
1783
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 if (ret)
1797 goto unlock;
1798
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
1802
1803 ret = i915_gem_object_get_fence(obj);
1804 if (ret)
1805 goto unpin;
1806
1807 /* Finally, remap it using the new GTT offset */
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
1810 pfn >>= PAGE_SHIFT;
1811
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
1821
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
1850 unpin:
1851 i915_gem_object_ggtt_unpin_view(obj, &view);
1852 unlock:
1853 mutex_unlock(&dev->struct_mutex);
1854 out:
1855 switch (ret) {
1856 case -EIO:
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
1867 case -EAGAIN:
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
1872 */
1873 case 0:
1874 case -ERESTARTSYS:
1875 case -EINTR:
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
1881 ret = VM_FAULT_NOPAGE;
1882 break;
1883 case -ENOMEM:
1884 ret = VM_FAULT_OOM;
1885 break;
1886 case -ENOSPC:
1887 case -EFAULT:
1888 ret = VM_FAULT_SIGBUS;
1889 break;
1890 default:
1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
1898 }
1899
1900 /**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
1904 * Preserve the reservation of the mmapping with the DRM core code, but
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
1914 void
1915 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916 {
1917 if (!obj->fault_mappable)
1918 return;
1919
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
1922 obj->fault_mappable = false;
1923 }
1924
1925 void
1926 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927 {
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932 }
1933
1934 uint32_t
1935 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936 {
1937 uint32_t gtt_size;
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
1945 gtt_size = 1024*1024;
1946 else
1947 gtt_size = 512*1024;
1948
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
1951
1952 return gtt_size;
1953 }
1954
1955 /**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
1960 * potential fence register mapping.
1961 */
1962 uint32_t
1963 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
1965 {
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971 tiling_mode == I915_TILING_NONE)
1972 return 4096;
1973
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 }
1980
1981 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982 {
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 return 0;
1988
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
1993 goto out;
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
2009 goto out;
2010
2011 i915_gem_shrink_all(dev_priv);
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013 out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
2017 }
2018
2019 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020 {
2021 drm_gem_free_mmap_offset(&obj->base);
2022 }
2023
2024 int
2025 i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
2027 uint32_t handle,
2028 uint64_t *offset)
2029 {
2030 struct drm_i915_gem_object *obj;
2031 int ret;
2032
2033 ret = i915_mutex_lock_interruptible(dev);
2034 if (ret)
2035 return ret;
2036
2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038 if (&obj->base == NULL) {
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
2042
2043 if (obj->madv != I915_MADV_WILLNEED) {
2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045 ret = -EFAULT;
2046 goto out;
2047 }
2048
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
2052
2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054
2055 out:
2056 drm_gem_object_unreference(&obj->base);
2057 unlock:
2058 mutex_unlock(&dev->struct_mutex);
2059 return ret;
2060 }
2061
2062 /**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077 int
2078 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080 {
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 }
2085
2086 /* Immediately discard the backing storage */
2087 static void
2088 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089 {
2090 i915_gem_object_free_mmap_offset(obj);
2091
2092 if (obj->base.filp == NULL)
2093 return;
2094
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2101 obj->madv = __I915_MADV_PURGED;
2102 }
2103
2104 /* Try to discard unwanted pages */
2105 static void
2106 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2107 {
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 }
2123
2124 static void
2125 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126 {
2127 struct sg_page_iter sg_iter;
2128 int ret;
2129
2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
2131
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2138 i915_gem_clflush_object(obj, true);
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
2142 if (i915_gem_object_needs_bit17_swizzle(obj))
2143 i915_gem_object_save_bit_17_swizzle(obj);
2144
2145 if (obj->madv == I915_MADV_DONTNEED)
2146 obj->dirty = 0;
2147
2148 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149 struct page *page = sg_page_iter_page(&sg_iter);
2150
2151 if (obj->dirty)
2152 set_page_dirty(page);
2153
2154 if (obj->madv == I915_MADV_WILLNEED)
2155 mark_page_accessed(page);
2156
2157 page_cache_release(page);
2158 }
2159 obj->dirty = 0;
2160
2161 sg_free_table(obj->pages);
2162 kfree(obj->pages);
2163 }
2164
2165 int
2166 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2167 {
2168 const struct drm_i915_gem_object_ops *ops = obj->ops;
2169
2170 if (obj->pages == NULL)
2171 return 0;
2172
2173 if (obj->pages_pin_count)
2174 return -EBUSY;
2175
2176 BUG_ON(i915_gem_obj_bound_any(obj));
2177
2178 /* ->put_pages might need to allocate memory for the bit17 swizzle
2179 * array, hence protect them from being reaped by removing them from gtt
2180 * lists early. */
2181 list_del(&obj->global_list);
2182
2183 ops->put_pages(obj);
2184 obj->pages = NULL;
2185
2186 i915_gem_object_invalidate(obj);
2187
2188 return 0;
2189 }
2190
2191 static int
2192 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 int page_count, i;
2196 struct address_space *mapping;
2197 struct sg_table *st;
2198 struct scatterlist *sg;
2199 struct sg_page_iter sg_iter;
2200 struct page *page;
2201 unsigned long last_pfn = 0; /* suppress gcc warning */
2202 gfp_t gfp;
2203
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
2215 page_count = obj->base.size / PAGE_SIZE;
2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217 kfree(st);
2218 return -ENOMEM;
2219 }
2220
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
2226 mapping = file_inode(obj->base.filp)->i_mapping;
2227 gfp = mapping_gfp_mask(mapping);
2228 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2229 gfp &= ~(__GFP_IO | __GFP_WAIT);
2230 sg = st->sgl;
2231 st->nents = 0;
2232 for (i = 0; i < page_count; i++) {
2233 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234 if (IS_ERR(page)) {
2235 i915_gem_shrink(dev_priv,
2236 page_count,
2237 I915_SHRINK_BOUND |
2238 I915_SHRINK_UNBOUND |
2239 I915_SHRINK_PURGEABLE);
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 }
2242 if (IS_ERR(page)) {
2243 /* We've tried hard to allocate the memory by reaping
2244 * our own buffer, now let the real VM do its job and
2245 * go down in flames if truly OOM.
2246 */
2247 i915_gem_shrink_all(dev_priv);
2248 page = shmem_read_mapping_page(mapping, i);
2249 if (IS_ERR(page))
2250 goto err_pages;
2251 }
2252 #ifdef CONFIG_SWIOTLB
2253 if (swiotlb_nr_tbl()) {
2254 st->nents++;
2255 sg_set_page(sg, page, PAGE_SIZE, 0);
2256 sg = sg_next(sg);
2257 continue;
2258 }
2259 #endif
2260 if (!i || page_to_pfn(page) != last_pfn + 1) {
2261 if (i)
2262 sg = sg_next(sg);
2263 st->nents++;
2264 sg_set_page(sg, page, PAGE_SIZE, 0);
2265 } else {
2266 sg->length += PAGE_SIZE;
2267 }
2268 last_pfn = page_to_pfn(page);
2269
2270 /* Check that the i965g/gm workaround works. */
2271 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272 }
2273 #ifdef CONFIG_SWIOTLB
2274 if (!swiotlb_nr_tbl())
2275 #endif
2276 sg_mark_end(sg);
2277 obj->pages = st;
2278
2279 if (i915_gem_object_needs_bit17_swizzle(obj))
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
2282 if (obj->tiling_mode != I915_TILING_NONE &&
2283 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2284 i915_gem_object_pin_pages(obj);
2285
2286 return 0;
2287
2288 err_pages:
2289 sg_mark_end(sg);
2290 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291 page_cache_release(sg_page_iter_page(&sg_iter));
2292 sg_free_table(st);
2293 kfree(st);
2294
2295 /* shmemfs first checks if there is enough memory to allocate the page
2296 * and reports ENOSPC should there be insufficient, along with the usual
2297 * ENOMEM for a genuine allocation failure.
2298 *
2299 * We use ENOSPC in our driver to mean that we have run out of aperture
2300 * space and so want to translate the error from shmemfs back to our
2301 * usual understanding of ENOMEM.
2302 */
2303 if (PTR_ERR(page) == -ENOSPC)
2304 return -ENOMEM;
2305 else
2306 return PTR_ERR(page);
2307 }
2308
2309 /* Ensure that the associated pages are gathered from the backing storage
2310 * and pinned into our object. i915_gem_object_get_pages() may be called
2311 * multiple times before they are released by a single call to
2312 * i915_gem_object_put_pages() - once the pages are no longer referenced
2313 * either as a result of memory pressure (reaping pages under the shrinker)
2314 * or as the object is itself released.
2315 */
2316 int
2317 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2318 {
2319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2320 const struct drm_i915_gem_object_ops *ops = obj->ops;
2321 int ret;
2322
2323 if (obj->pages)
2324 return 0;
2325
2326 if (obj->madv != I915_MADV_WILLNEED) {
2327 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328 return -EFAULT;
2329 }
2330
2331 BUG_ON(obj->pages_pin_count);
2332
2333 ret = ops->get_pages(obj);
2334 if (ret)
2335 return ret;
2336
2337 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338
2339 obj->get_page.sg = obj->pages->sgl;
2340 obj->get_page.last = 0;
2341
2342 return 0;
2343 }
2344
2345 void i915_vma_move_to_active(struct i915_vma *vma,
2346 struct intel_engine_cs *ring)
2347 {
2348 struct drm_i915_gem_object *obj = vma->obj;
2349
2350 /* Add a reference if we're newly entering the active list. */
2351 if (obj->active == 0)
2352 drm_gem_object_reference(&obj->base);
2353 obj->active |= intel_ring_flag(ring);
2354
2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 i915_gem_request_assign(&obj->last_read_req[ring->id],
2357 intel_ring_get_request(ring));
2358
2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
2369 intel_fb_obj_flush(obj, true);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375 struct i915_vma *vma;
2376
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
2389
2390 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2391 if (!list_empty(&vma->mm_list))
2392 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393 }
2394
2395 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396 drm_gem_object_unreference(&obj->base);
2397 }
2398
2399 static int
2400 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401 {
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 struct intel_engine_cs *ring;
2404 int ret, i, j;
2405
2406 /* Carefully retire all requests without writing to the rings */
2407 for_each_ring(ring, dev_priv, i) {
2408 ret = intel_ring_idle(ring);
2409 if (ret)
2410 return ret;
2411 }
2412 i915_gem_retire_requests(dev);
2413
2414 /* Finally reset hw state */
2415 for_each_ring(ring, dev_priv, i) {
2416 intel_ring_init_seqno(ring, seqno);
2417
2418 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2419 ring->semaphore.sync_seqno[j] = 0;
2420 }
2421
2422 return 0;
2423 }
2424
2425 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2426 {
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 int ret;
2429
2430 if (seqno == 0)
2431 return -EINVAL;
2432
2433 /* HWS page needs to be set less than what we
2434 * will inject to ring
2435 */
2436 ret = i915_gem_init_seqno(dev, seqno - 1);
2437 if (ret)
2438 return ret;
2439
2440 /* Carefully set the last_seqno value so that wrap
2441 * detection still works
2442 */
2443 dev_priv->next_seqno = seqno;
2444 dev_priv->last_seqno = seqno - 1;
2445 if (dev_priv->last_seqno == 0)
2446 dev_priv->last_seqno--;
2447
2448 return 0;
2449 }
2450
2451 int
2452 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453 {
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455
2456 /* reserve 0 for non-seqno */
2457 if (dev_priv->next_seqno == 0) {
2458 int ret = i915_gem_init_seqno(dev, 0);
2459 if (ret)
2460 return ret;
2461
2462 dev_priv->next_seqno = 1;
2463 }
2464
2465 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466 return 0;
2467 }
2468
2469 int __i915_add_request(struct intel_engine_cs *ring,
2470 struct drm_file *file,
2471 struct drm_i915_gem_object *obj)
2472 {
2473 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474 struct drm_i915_gem_request *request;
2475 struct intel_ringbuffer *ringbuf;
2476 u32 request_start;
2477 int ret;
2478
2479 request = ring->outstanding_lazy_request;
2480 if (WARN_ON(request == NULL))
2481 return -ENOMEM;
2482
2483 if (i915.enable_execlists) {
2484 ringbuf = request->ctx->engine[ring->id].ringbuf;
2485 } else
2486 ringbuf = ring->buffer;
2487
2488 request_start = intel_ring_get_tail(ringbuf);
2489 /*
2490 * Emit any outstanding flushes - execbuf can fail to emit the flush
2491 * after having emitted the batchbuffer command. Hence we need to fix
2492 * things up similar to emitting the lazy request. The difference here
2493 * is that the flush _must_ happen before the next request, no matter
2494 * what.
2495 */
2496 if (i915.enable_execlists) {
2497 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2498 if (ret)
2499 return ret;
2500 } else {
2501 ret = intel_ring_flush_all_caches(ring);
2502 if (ret)
2503 return ret;
2504 }
2505
2506 /* Record the position of the start of the request so that
2507 * should we detect the updated seqno part-way through the
2508 * GPU processing the request, we never over-estimate the
2509 * position of the head.
2510 */
2511 request->postfix = intel_ring_get_tail(ringbuf);
2512
2513 if (i915.enable_execlists) {
2514 ret = ring->emit_request(ringbuf, request);
2515 if (ret)
2516 return ret;
2517 } else {
2518 ret = ring->add_request(ring);
2519 if (ret)
2520 return ret;
2521
2522 request->tail = intel_ring_get_tail(ringbuf);
2523 }
2524
2525 request->head = request_start;
2526
2527 /* Whilst this request exists, batch_obj will be on the
2528 * active_list, and so will hold the active reference. Only when this
2529 * request is retired will the the batch_obj be moved onto the
2530 * inactive_list and lose its active reference. Hence we do not need
2531 * to explicitly hold another reference here.
2532 */
2533 request->batch_obj = obj;
2534
2535 if (!i915.enable_execlists) {
2536 /* Hold a reference to the current context so that we can inspect
2537 * it later in case a hangcheck error event fires.
2538 */
2539 request->ctx = ring->last_context;
2540 if (request->ctx)
2541 i915_gem_context_reference(request->ctx);
2542 }
2543
2544 request->emitted_jiffies = jiffies;
2545 list_add_tail(&request->list, &ring->request_list);
2546 request->file_priv = NULL;
2547
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
2551 spin_lock(&file_priv->mm.lock);
2552 request->file_priv = file_priv;
2553 list_add_tail(&request->client_list,
2554 &file_priv->mm.request_list);
2555 spin_unlock(&file_priv->mm.lock);
2556
2557 request->pid = get_pid(task_pid(current));
2558 }
2559
2560 trace_i915_gem_request_add(request);
2561 ring->outstanding_lazy_request = NULL;
2562
2563 i915_queue_hangcheck(ring->dev);
2564
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
2569
2570 return 0;
2571 }
2572
2573 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574 const struct intel_context *ctx)
2575 {
2576 unsigned long elapsed;
2577
2578 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580 if (ctx->hang_stats.banned)
2581 return true;
2582
2583 if (ctx->hang_stats.ban_period_seconds &&
2584 elapsed <= ctx->hang_stats.ban_period_seconds) {
2585 if (!i915_gem_context_is_default(ctx)) {
2586 DRM_DEBUG("context hanging too fast, banning!\n");
2587 return true;
2588 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589 if (i915_stop_ring_allow_warn(dev_priv))
2590 DRM_ERROR("gpu hanging too fast, banning!\n");
2591 return true;
2592 }
2593 }
2594
2595 return false;
2596 }
2597
2598 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599 struct intel_context *ctx,
2600 const bool guilty)
2601 {
2602 struct i915_ctx_hang_stats *hs;
2603
2604 if (WARN_ON(!ctx))
2605 return;
2606
2607 hs = &ctx->hang_stats;
2608
2609 if (guilty) {
2610 hs->banned = i915_context_is_banned(dev_priv, ctx);
2611 hs->batch_active++;
2612 hs->guilty_ts = get_seconds();
2613 } else {
2614 hs->batch_pending++;
2615 }
2616 }
2617
2618 void i915_gem_request_free(struct kref *req_ref)
2619 {
2620 struct drm_i915_gem_request *req = container_of(req_ref,
2621 typeof(*req), ref);
2622 struct intel_context *ctx = req->ctx;
2623
2624 if (ctx) {
2625 if (i915.enable_execlists) {
2626 struct intel_engine_cs *ring = req->ring;
2627
2628 if (ctx != ring->default_context)
2629 intel_lr_context_unpin(ring, ctx);
2630 }
2631
2632 i915_gem_context_unreference(ctx);
2633 }
2634
2635 kmem_cache_free(req->i915->requests, req);
2636 }
2637
2638 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2639 struct intel_context *ctx)
2640 {
2641 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2642 struct drm_i915_gem_request *req;
2643 int ret;
2644
2645 if (ring->outstanding_lazy_request)
2646 return 0;
2647
2648 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2649 if (req == NULL)
2650 return -ENOMEM;
2651
2652 kref_init(&req->ref);
2653 req->i915 = dev_priv;
2654
2655 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2656 if (ret)
2657 goto err;
2658
2659 req->ring = ring;
2660
2661 if (i915.enable_execlists)
2662 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2663 else
2664 ret = intel_ring_alloc_request_extras(req);
2665 if (ret)
2666 goto err;
2667
2668 ring->outstanding_lazy_request = req;
2669 return 0;
2670
2671 err:
2672 kmem_cache_free(dev_priv->requests, req);
2673 return ret;
2674 }
2675
2676 struct drm_i915_gem_request *
2677 i915_gem_find_active_request(struct intel_engine_cs *ring)
2678 {
2679 struct drm_i915_gem_request *request;
2680
2681 list_for_each_entry(request, &ring->request_list, list) {
2682 if (i915_gem_request_completed(request, false))
2683 continue;
2684
2685 return request;
2686 }
2687
2688 return NULL;
2689 }
2690
2691 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2692 struct intel_engine_cs *ring)
2693 {
2694 struct drm_i915_gem_request *request;
2695 bool ring_hung;
2696
2697 request = i915_gem_find_active_request(ring);
2698
2699 if (request == NULL)
2700 return;
2701
2702 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2703
2704 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2705
2706 list_for_each_entry_continue(request, &ring->request_list, list)
2707 i915_set_reset_status(dev_priv, request->ctx, false);
2708 }
2709
2710 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2711 struct intel_engine_cs *ring)
2712 {
2713 while (!list_empty(&ring->active_list)) {
2714 struct drm_i915_gem_object *obj;
2715
2716 obj = list_first_entry(&ring->active_list,
2717 struct drm_i915_gem_object,
2718 ring_list[ring->id]);
2719
2720 i915_gem_object_retire__read(obj, ring->id);
2721 }
2722
2723 /*
2724 * Clear the execlists queue up before freeing the requests, as those
2725 * are the ones that keep the context and ringbuffer backing objects
2726 * pinned in place.
2727 */
2728 while (!list_empty(&ring->execlist_queue)) {
2729 struct drm_i915_gem_request *submit_req;
2730
2731 submit_req = list_first_entry(&ring->execlist_queue,
2732 struct drm_i915_gem_request,
2733 execlist_link);
2734 list_del(&submit_req->execlist_link);
2735
2736 if (submit_req->ctx != ring->default_context)
2737 intel_lr_context_unpin(ring, submit_req->ctx);
2738
2739 i915_gem_request_unreference(submit_req);
2740 }
2741
2742 /*
2743 * We must free the requests after all the corresponding objects have
2744 * been moved off active lists. Which is the same order as the normal
2745 * retire_requests function does. This is important if object hold
2746 * implicit references on things like e.g. ppgtt address spaces through
2747 * the request.
2748 */
2749 while (!list_empty(&ring->request_list)) {
2750 struct drm_i915_gem_request *request;
2751
2752 request = list_first_entry(&ring->request_list,
2753 struct drm_i915_gem_request,
2754 list);
2755
2756 i915_gem_request_retire(request);
2757 }
2758
2759 /* This may not have been flushed before the reset, so clean it now */
2760 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2761 }
2762
2763 void i915_gem_restore_fences(struct drm_device *dev)
2764 {
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 int i;
2767
2768 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2769 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2770
2771 /*
2772 * Commit delayed tiling changes if we have an object still
2773 * attached to the fence, otherwise just clear the fence.
2774 */
2775 if (reg->obj) {
2776 i915_gem_object_update_fence(reg->obj, reg,
2777 reg->obj->tiling_mode);
2778 } else {
2779 i915_gem_write_fence(dev, i, NULL);
2780 }
2781 }
2782 }
2783
2784 void i915_gem_reset(struct drm_device *dev)
2785 {
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct intel_engine_cs *ring;
2788 int i;
2789
2790 /*
2791 * Before we free the objects from the requests, we need to inspect
2792 * them for finding the guilty party. As the requests only borrow
2793 * their reference to the objects, the inspection must be done first.
2794 */
2795 for_each_ring(ring, dev_priv, i)
2796 i915_gem_reset_ring_status(dev_priv, ring);
2797
2798 for_each_ring(ring, dev_priv, i)
2799 i915_gem_reset_ring_cleanup(dev_priv, ring);
2800
2801 i915_gem_context_reset(dev);
2802
2803 i915_gem_restore_fences(dev);
2804
2805 WARN_ON(i915_verify_lists(dev));
2806 }
2807
2808 /**
2809 * This function clears the request list as sequence numbers are passed.
2810 */
2811 void
2812 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2813 {
2814 WARN_ON(i915_verify_lists(ring->dev));
2815
2816 /* Retire requests first as we use it above for the early return.
2817 * If we retire requests last, we may use a later seqno and so clear
2818 * the requests lists without clearing the active list, leading to
2819 * confusion.
2820 */
2821 while (!list_empty(&ring->request_list)) {
2822 struct drm_i915_gem_request *request;
2823
2824 request = list_first_entry(&ring->request_list,
2825 struct drm_i915_gem_request,
2826 list);
2827
2828 if (!i915_gem_request_completed(request, true))
2829 break;
2830
2831 i915_gem_request_retire(request);
2832 }
2833
2834 /* Move any buffers on the active list that are no longer referenced
2835 * by the ringbuffer to the flushing/inactive lists as appropriate,
2836 * before we free the context associated with the requests.
2837 */
2838 while (!list_empty(&ring->active_list)) {
2839 struct drm_i915_gem_object *obj;
2840
2841 obj = list_first_entry(&ring->active_list,
2842 struct drm_i915_gem_object,
2843 ring_list[ring->id]);
2844
2845 if (!list_empty(&obj->last_read_req[ring->id]->list))
2846 break;
2847
2848 i915_gem_object_retire__read(obj, ring->id);
2849 }
2850
2851 if (unlikely(ring->trace_irq_req &&
2852 i915_gem_request_completed(ring->trace_irq_req, true))) {
2853 ring->irq_put(ring);
2854 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2855 }
2856
2857 WARN_ON(i915_verify_lists(ring->dev));
2858 }
2859
2860 bool
2861 i915_gem_retire_requests(struct drm_device *dev)
2862 {
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 struct intel_engine_cs *ring;
2865 bool idle = true;
2866 int i;
2867
2868 for_each_ring(ring, dev_priv, i) {
2869 i915_gem_retire_requests_ring(ring);
2870 idle &= list_empty(&ring->request_list);
2871 if (i915.enable_execlists) {
2872 unsigned long flags;
2873
2874 spin_lock_irqsave(&ring->execlist_lock, flags);
2875 idle &= list_empty(&ring->execlist_queue);
2876 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2877
2878 intel_execlists_retire_requests(ring);
2879 }
2880 }
2881
2882 if (idle)
2883 mod_delayed_work(dev_priv->wq,
2884 &dev_priv->mm.idle_work,
2885 msecs_to_jiffies(100));
2886
2887 return idle;
2888 }
2889
2890 static void
2891 i915_gem_retire_work_handler(struct work_struct *work)
2892 {
2893 struct drm_i915_private *dev_priv =
2894 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2895 struct drm_device *dev = dev_priv->dev;
2896 bool idle;
2897
2898 /* Come back later if the device is busy... */
2899 idle = false;
2900 if (mutex_trylock(&dev->struct_mutex)) {
2901 idle = i915_gem_retire_requests(dev);
2902 mutex_unlock(&dev->struct_mutex);
2903 }
2904 if (!idle)
2905 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2906 round_jiffies_up_relative(HZ));
2907 }
2908
2909 static void
2910 i915_gem_idle_work_handler(struct work_struct *work)
2911 {
2912 struct drm_i915_private *dev_priv =
2913 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2914 struct drm_device *dev = dev_priv->dev;
2915 struct intel_engine_cs *ring;
2916 int i;
2917
2918 for_each_ring(ring, dev_priv, i)
2919 if (!list_empty(&ring->request_list))
2920 return;
2921
2922 intel_mark_idle(dev);
2923
2924 if (mutex_trylock(&dev->struct_mutex)) {
2925 struct intel_engine_cs *ring;
2926 int i;
2927
2928 for_each_ring(ring, dev_priv, i)
2929 i915_gem_batch_pool_fini(&ring->batch_pool);
2930
2931 mutex_unlock(&dev->struct_mutex);
2932 }
2933 }
2934
2935 /**
2936 * Ensures that an object will eventually get non-busy by flushing any required
2937 * write domains, emitting any outstanding lazy request and retiring and
2938 * completed requests.
2939 */
2940 static int
2941 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2942 {
2943 int ret, i;
2944
2945 if (!obj->active)
2946 return 0;
2947
2948 for (i = 0; i < I915_NUM_RINGS; i++) {
2949 struct drm_i915_gem_request *req;
2950
2951 req = obj->last_read_req[i];
2952 if (req == NULL)
2953 continue;
2954
2955 if (list_empty(&req->list))
2956 goto retire;
2957
2958 ret = i915_gem_check_olr(req);
2959 if (ret)
2960 return ret;
2961
2962 if (i915_gem_request_completed(req, true)) {
2963 __i915_gem_request_retire__upto(req);
2964 retire:
2965 i915_gem_object_retire__read(obj, i);
2966 }
2967 }
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2974 * @DRM_IOCTL_ARGS: standard ioctl arguments
2975 *
2976 * Returns 0 if successful, else an error is returned with the remaining time in
2977 * the timeout parameter.
2978 * -ETIME: object is still busy after timeout
2979 * -ERESTARTSYS: signal interrupted the wait
2980 * -ENONENT: object doesn't exist
2981 * Also possible, but rare:
2982 * -EAGAIN: GPU wedged
2983 * -ENOMEM: damn
2984 * -ENODEV: Internal IRQ fail
2985 * -E?: The add request failed
2986 *
2987 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2988 * non-zero timeout parameter the wait ioctl will wait for the given number of
2989 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2990 * without holding struct_mutex the object may become re-busied before this
2991 * function completes. A similar but shorter * race condition exists in the busy
2992 * ioctl
2993 */
2994 int
2995 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2996 {
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2998 struct drm_i915_gem_wait *args = data;
2999 struct drm_i915_gem_object *obj;
3000 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3001 unsigned reset_counter;
3002 int i, n = 0;
3003 int ret;
3004
3005 if (args->flags != 0)
3006 return -EINVAL;
3007
3008 ret = i915_mutex_lock_interruptible(dev);
3009 if (ret)
3010 return ret;
3011
3012 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3013 if (&obj->base == NULL) {
3014 mutex_unlock(&dev->struct_mutex);
3015 return -ENOENT;
3016 }
3017
3018 /* Need to make sure the object gets inactive eventually. */
3019 ret = i915_gem_object_flush_active(obj);
3020 if (ret)
3021 goto out;
3022
3023 if (!obj->active)
3024 goto out;
3025
3026 /* Do this after OLR check to make sure we make forward progress polling
3027 * on this IOCTL with a timeout == 0 (like busy ioctl)
3028 */
3029 if (args->timeout_ns == 0) {
3030 ret = -ETIME;
3031 goto out;
3032 }
3033
3034 drm_gem_object_unreference(&obj->base);
3035 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3036
3037 for (i = 0; i < I915_NUM_RINGS; i++) {
3038 if (obj->last_read_req[i] == NULL)
3039 continue;
3040
3041 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3042 }
3043
3044 mutex_unlock(&dev->struct_mutex);
3045
3046 for (i = 0; i < n; i++) {
3047 if (ret == 0)
3048 ret = __i915_wait_request(req[i], reset_counter, true,
3049 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3050 file->driver_priv);
3051 i915_gem_request_unreference__unlocked(req[i]);
3052 }
3053 return ret;
3054
3055 out:
3056 drm_gem_object_unreference(&obj->base);
3057 mutex_unlock(&dev->struct_mutex);
3058 return ret;
3059 }
3060
3061 static int
3062 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3063 struct intel_engine_cs *to,
3064 struct drm_i915_gem_request *req)
3065 {
3066 struct intel_engine_cs *from;
3067 int ret;
3068
3069 from = i915_gem_request_get_ring(req);
3070 if (to == from)
3071 return 0;
3072
3073 if (i915_gem_request_completed(req, true))
3074 return 0;
3075
3076 ret = i915_gem_check_olr(req);
3077 if (ret)
3078 return ret;
3079
3080 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3081 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3082 ret = __i915_wait_request(req,
3083 atomic_read(&i915->gpu_error.reset_counter),
3084 i915->mm.interruptible,
3085 NULL,
3086 &i915->rps.semaphores);
3087 if (ret)
3088 return ret;
3089
3090 i915_gem_object_retire_request(obj, req);
3091 } else {
3092 int idx = intel_ring_sync_index(from, to);
3093 u32 seqno = i915_gem_request_get_seqno(req);
3094
3095 if (seqno <= from->semaphore.sync_seqno[idx])
3096 return 0;
3097
3098 trace_i915_gem_ring_sync_to(from, to, req);
3099 ret = to->semaphore.sync_to(to, from, seqno);
3100 if (ret)
3101 return ret;
3102
3103 /* We use last_read_req because sync_to()
3104 * might have just caused seqno wrap under
3105 * the radar.
3106 */
3107 from->semaphore.sync_seqno[idx] =
3108 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3109 }
3110
3111 return 0;
3112 }
3113
3114 /**
3115 * i915_gem_object_sync - sync an object to a ring.
3116 *
3117 * @obj: object which may be in use on another ring.
3118 * @to: ring we wish to use the object on. May be NULL.
3119 *
3120 * This code is meant to abstract object synchronization with the GPU.
3121 * Calling with NULL implies synchronizing the object with the CPU
3122 * rather than a particular GPU ring. Conceptually we serialise writes
3123 * between engines inside the GPU. We only allow on engine to write
3124 * into a buffer at any time, but multiple readers. To ensure each has
3125 * a coherent view of memory, we must:
3126 *
3127 * - If there is an outstanding write request to the object, the new
3128 * request must wait for it to complete (either CPU or in hw, requests
3129 * on the same ring will be naturally ordered).
3130 *
3131 * - If we are a write request (pending_write_domain is set), the new
3132 * request must wait for outstanding read requests to complete.
3133 *
3134 * Returns 0 if successful, else propagates up the lower layer error.
3135 */
3136 int
3137 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138 struct intel_engine_cs *to)
3139 {
3140 const bool readonly = obj->base.pending_write_domain == 0;
3141 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3142 int ret, i, n;
3143
3144 if (!obj->active)
3145 return 0;
3146
3147 if (to == NULL)
3148 return i915_gem_object_wait_rendering(obj, readonly);
3149
3150 n = 0;
3151 if (readonly) {
3152 if (obj->last_write_req)
3153 req[n++] = obj->last_write_req;
3154 } else {
3155 for (i = 0; i < I915_NUM_RINGS; i++)
3156 if (obj->last_read_req[i])
3157 req[n++] = obj->last_read_req[i];
3158 }
3159 for (i = 0; i < n; i++) {
3160 ret = __i915_gem_object_sync(obj, to, req[i]);
3161 if (ret)
3162 return ret;
3163 }
3164
3165 return 0;
3166 }
3167
3168 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3169 {
3170 u32 old_write_domain, old_read_domains;
3171
3172 /* Force a pagefault for domain tracking on next user access */
3173 i915_gem_release_mmap(obj);
3174
3175 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3176 return;
3177
3178 /* Wait for any direct GTT access to complete */
3179 mb();
3180
3181 old_read_domains = obj->base.read_domains;
3182 old_write_domain = obj->base.write_domain;
3183
3184 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3185 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190 }
3191
3192 int i915_vma_unbind(struct i915_vma *vma)
3193 {
3194 struct drm_i915_gem_object *obj = vma->obj;
3195 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3196 int ret;
3197
3198 if (list_empty(&vma->vma_link))
3199 return 0;
3200
3201 if (!drm_mm_node_allocated(&vma->node)) {
3202 i915_gem_vma_destroy(vma);
3203 return 0;
3204 }
3205
3206 if (vma->pin_count)
3207 return -EBUSY;
3208
3209 BUG_ON(obj->pages == NULL);
3210
3211 ret = i915_gem_object_wait_rendering(obj, false);
3212 if (ret)
3213 return ret;
3214 /* Continue on if we fail due to EIO, the GPU is hung so we
3215 * should be safe and we need to cleanup or else we might
3216 * cause memory corruption through use-after-free.
3217 */
3218
3219 if (i915_is_ggtt(vma->vm) &&
3220 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3221 i915_gem_object_finish_gtt(obj);
3222
3223 /* release the fence reg _after_ flushing */
3224 ret = i915_gem_object_put_fence(obj);
3225 if (ret)
3226 return ret;
3227 }
3228
3229 trace_i915_vma_unbind(vma);
3230
3231 vma->vm->unbind_vma(vma);
3232 vma->bound = 0;
3233
3234 list_del_init(&vma->mm_list);
3235 if (i915_is_ggtt(vma->vm)) {
3236 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3237 obj->map_and_fenceable = false;
3238 } else if (vma->ggtt_view.pages) {
3239 sg_free_table(vma->ggtt_view.pages);
3240 kfree(vma->ggtt_view.pages);
3241 }
3242 vma->ggtt_view.pages = NULL;
3243 }
3244
3245 drm_mm_remove_node(&vma->node);
3246 i915_gem_vma_destroy(vma);
3247
3248 /* Since the unbound list is global, only move to that list if
3249 * no more VMAs exist. */
3250 if (list_empty(&obj->vma_list)) {
3251 i915_gem_gtt_finish_object(obj);
3252 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3253 }
3254
3255 /* And finally now the object is completely decoupled from this vma,
3256 * we can drop its hold on the backing storage and allow it to be
3257 * reaped by the shrinker.
3258 */
3259 i915_gem_object_unpin_pages(obj);
3260
3261 return 0;
3262 }
3263
3264 int i915_gpu_idle(struct drm_device *dev)
3265 {
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_engine_cs *ring;
3268 int ret, i;
3269
3270 /* Flush everything onto the inactive list. */
3271 for_each_ring(ring, dev_priv, i) {
3272 if (!i915.enable_execlists) {
3273 ret = i915_switch_context(ring, ring->default_context);
3274 if (ret)
3275 return ret;
3276 }
3277
3278 ret = intel_ring_idle(ring);
3279 if (ret)
3280 return ret;
3281 }
3282
3283 WARN_ON(i915_verify_lists(dev));
3284 return 0;
3285 }
3286
3287 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3288 struct drm_i915_gem_object *obj)
3289 {
3290 struct drm_i915_private *dev_priv = dev->dev_private;
3291 int fence_reg;
3292 int fence_pitch_shift;
3293
3294 if (INTEL_INFO(dev)->gen >= 6) {
3295 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3296 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3297 } else {
3298 fence_reg = FENCE_REG_965_0;
3299 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3300 }
3301
3302 fence_reg += reg * 8;
3303
3304 /* To w/a incoherency with non-atomic 64-bit register updates,
3305 * we split the 64-bit update into two 32-bit writes. In order
3306 * for a partial fence not to be evaluated between writes, we
3307 * precede the update with write to turn off the fence register,
3308 * and only enable the fence as the last step.
3309 *
3310 * For extra levels of paranoia, we make sure each step lands
3311 * before applying the next step.
3312 */
3313 I915_WRITE(fence_reg, 0);
3314 POSTING_READ(fence_reg);
3315
3316 if (obj) {
3317 u32 size = i915_gem_obj_ggtt_size(obj);
3318 uint64_t val;
3319
3320 /* Adjust fence size to match tiled area */
3321 if (obj->tiling_mode != I915_TILING_NONE) {
3322 uint32_t row_size = obj->stride *
3323 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3324 size = (size / row_size) * row_size;
3325 }
3326
3327 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3328 0xfffff000) << 32;
3329 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3330 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3331 if (obj->tiling_mode == I915_TILING_Y)
3332 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3333 val |= I965_FENCE_REG_VALID;
3334
3335 I915_WRITE(fence_reg + 4, val >> 32);
3336 POSTING_READ(fence_reg + 4);
3337
3338 I915_WRITE(fence_reg + 0, val);
3339 POSTING_READ(fence_reg);
3340 } else {
3341 I915_WRITE(fence_reg + 4, 0);
3342 POSTING_READ(fence_reg + 4);
3343 }
3344 }
3345
3346 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3347 struct drm_i915_gem_object *obj)
3348 {
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 u32 val;
3351
3352 if (obj) {
3353 u32 size = i915_gem_obj_ggtt_size(obj);
3354 int pitch_val;
3355 int tile_width;
3356
3357 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3358 (size & -size) != size ||
3359 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3360 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3361 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3362
3363 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3364 tile_width = 128;
3365 else
3366 tile_width = 512;
3367
3368 /* Note: pitch better be a power of two tile widths */
3369 pitch_val = obj->stride / tile_width;
3370 pitch_val = ffs(pitch_val) - 1;
3371
3372 val = i915_gem_obj_ggtt_offset(obj);
3373 if (obj->tiling_mode == I915_TILING_Y)
3374 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3375 val |= I915_FENCE_SIZE_BITS(size);
3376 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3377 val |= I830_FENCE_REG_VALID;
3378 } else
3379 val = 0;
3380
3381 if (reg < 8)
3382 reg = FENCE_REG_830_0 + reg * 4;
3383 else
3384 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3385
3386 I915_WRITE(reg, val);
3387 POSTING_READ(reg);
3388 }
3389
3390 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3391 struct drm_i915_gem_object *obj)
3392 {
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 uint32_t val;
3395
3396 if (obj) {
3397 u32 size = i915_gem_obj_ggtt_size(obj);
3398 uint32_t pitch_val;
3399
3400 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3401 (size & -size) != size ||
3402 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3403 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3404 i915_gem_obj_ggtt_offset(obj), size);
3405
3406 pitch_val = obj->stride / 128;
3407 pitch_val = ffs(pitch_val) - 1;
3408
3409 val = i915_gem_obj_ggtt_offset(obj);
3410 if (obj->tiling_mode == I915_TILING_Y)
3411 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3412 val |= I830_FENCE_SIZE_BITS(size);
3413 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3414 val |= I830_FENCE_REG_VALID;
3415 } else
3416 val = 0;
3417
3418 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3419 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3420 }
3421
3422 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3423 {
3424 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3425 }
3426
3427 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3428 struct drm_i915_gem_object *obj)
3429 {
3430 struct drm_i915_private *dev_priv = dev->dev_private;
3431
3432 /* Ensure that all CPU reads are completed before installing a fence
3433 * and all writes before removing the fence.
3434 */
3435 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3436 mb();
3437
3438 WARN(obj && (!obj->stride || !obj->tiling_mode),
3439 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3440 obj->stride, obj->tiling_mode);
3441
3442 if (IS_GEN2(dev))
3443 i830_write_fence_reg(dev, reg, obj);
3444 else if (IS_GEN3(dev))
3445 i915_write_fence_reg(dev, reg, obj);
3446 else if (INTEL_INFO(dev)->gen >= 4)
3447 i965_write_fence_reg(dev, reg, obj);
3448
3449 /* And similarly be paranoid that no direct access to this region
3450 * is reordered to before the fence is installed.
3451 */
3452 if (i915_gem_object_needs_mb(obj))
3453 mb();
3454 }
3455
3456 static inline int fence_number(struct drm_i915_private *dev_priv,
3457 struct drm_i915_fence_reg *fence)
3458 {
3459 return fence - dev_priv->fence_regs;
3460 }
3461
3462 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3463 struct drm_i915_fence_reg *fence,
3464 bool enable)
3465 {
3466 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3467 int reg = fence_number(dev_priv, fence);
3468
3469 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3470
3471 if (enable) {
3472 obj->fence_reg = reg;
3473 fence->obj = obj;
3474 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3475 } else {
3476 obj->fence_reg = I915_FENCE_REG_NONE;
3477 fence->obj = NULL;
3478 list_del_init(&fence->lru_list);
3479 }
3480 obj->fence_dirty = false;
3481 }
3482
3483 static int
3484 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3485 {
3486 if (obj->last_fenced_req) {
3487 int ret = i915_wait_request(obj->last_fenced_req);
3488 if (ret)
3489 return ret;
3490
3491 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3492 }
3493
3494 return 0;
3495 }
3496
3497 int
3498 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3499 {
3500 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3501 struct drm_i915_fence_reg *fence;
3502 int ret;
3503
3504 ret = i915_gem_object_wait_fence(obj);
3505 if (ret)
3506 return ret;
3507
3508 if (obj->fence_reg == I915_FENCE_REG_NONE)
3509 return 0;
3510
3511 fence = &dev_priv->fence_regs[obj->fence_reg];
3512
3513 if (WARN_ON(fence->pin_count))
3514 return -EBUSY;
3515
3516 i915_gem_object_fence_lost(obj);
3517 i915_gem_object_update_fence(obj, fence, false);
3518
3519 return 0;
3520 }
3521
3522 static struct drm_i915_fence_reg *
3523 i915_find_fence_reg(struct drm_device *dev)
3524 {
3525 struct drm_i915_private *dev_priv = dev->dev_private;
3526 struct drm_i915_fence_reg *reg, *avail;
3527 int i;
3528
3529 /* First try to find a free reg */
3530 avail = NULL;
3531 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3532 reg = &dev_priv->fence_regs[i];
3533 if (!reg->obj)
3534 return reg;
3535
3536 if (!reg->pin_count)
3537 avail = reg;
3538 }
3539
3540 if (avail == NULL)
3541 goto deadlock;
3542
3543 /* None available, try to steal one or wait for a user to finish */
3544 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3545 if (reg->pin_count)
3546 continue;
3547
3548 return reg;
3549 }
3550
3551 deadlock:
3552 /* Wait for completion of pending flips which consume fences */
3553 if (intel_has_pending_fb_unpin(dev))
3554 return ERR_PTR(-EAGAIN);
3555
3556 return ERR_PTR(-EDEADLK);
3557 }
3558
3559 /**
3560 * i915_gem_object_get_fence - set up fencing for an object
3561 * @obj: object to map through a fence reg
3562 *
3563 * When mapping objects through the GTT, userspace wants to be able to write
3564 * to them without having to worry about swizzling if the object is tiled.
3565 * This function walks the fence regs looking for a free one for @obj,
3566 * stealing one if it can't find any.
3567 *
3568 * It then sets up the reg based on the object's properties: address, pitch
3569 * and tiling format.
3570 *
3571 * For an untiled surface, this removes any existing fence.
3572 */
3573 int
3574 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3575 {
3576 struct drm_device *dev = obj->base.dev;
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578 bool enable = obj->tiling_mode != I915_TILING_NONE;
3579 struct drm_i915_fence_reg *reg;
3580 int ret;
3581
3582 /* Have we updated the tiling parameters upon the object and so
3583 * will need to serialise the write to the associated fence register?
3584 */
3585 if (obj->fence_dirty) {
3586 ret = i915_gem_object_wait_fence(obj);
3587 if (ret)
3588 return ret;
3589 }
3590
3591 /* Just update our place in the LRU if our fence is getting reused. */
3592 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3593 reg = &dev_priv->fence_regs[obj->fence_reg];
3594 if (!obj->fence_dirty) {
3595 list_move_tail(&reg->lru_list,
3596 &dev_priv->mm.fence_list);
3597 return 0;
3598 }
3599 } else if (enable) {
3600 if (WARN_ON(!obj->map_and_fenceable))
3601 return -EINVAL;
3602
3603 reg = i915_find_fence_reg(dev);
3604 if (IS_ERR(reg))
3605 return PTR_ERR(reg);
3606
3607 if (reg->obj) {
3608 struct drm_i915_gem_object *old = reg->obj;
3609
3610 ret = i915_gem_object_wait_fence(old);
3611 if (ret)
3612 return ret;
3613
3614 i915_gem_object_fence_lost(old);
3615 }
3616 } else
3617 return 0;
3618
3619 i915_gem_object_update_fence(obj, reg, enable);
3620
3621 return 0;
3622 }
3623
3624 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3625 unsigned long cache_level)
3626 {
3627 struct drm_mm_node *gtt_space = &vma->node;
3628 struct drm_mm_node *other;
3629
3630 /*
3631 * On some machines we have to be careful when putting differing types
3632 * of snoopable memory together to avoid the prefetcher crossing memory
3633 * domains and dying. During vm initialisation, we decide whether or not
3634 * these constraints apply and set the drm_mm.color_adjust
3635 * appropriately.
3636 */
3637 if (vma->vm->mm.color_adjust == NULL)
3638 return true;
3639
3640 if (!drm_mm_node_allocated(gtt_space))
3641 return true;
3642
3643 if (list_empty(&gtt_space->node_list))
3644 return true;
3645
3646 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3647 if (other->allocated && !other->hole_follows && other->color != cache_level)
3648 return false;
3649
3650 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3651 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3652 return false;
3653
3654 return true;
3655 }
3656
3657 /**
3658 * Finds free space in the GTT aperture and binds the object or a view of it
3659 * there.
3660 */
3661 static struct i915_vma *
3662 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3663 struct i915_address_space *vm,
3664 const struct i915_ggtt_view *ggtt_view,
3665 unsigned alignment,
3666 uint64_t flags)
3667 {
3668 struct drm_device *dev = obj->base.dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 u32 size, fence_size, fence_alignment, unfenced_alignment;
3671 unsigned long start =
3672 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3673 unsigned long end =
3674 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3675 struct i915_vma *vma;
3676 int ret;
3677
3678 if (i915_is_ggtt(vm)) {
3679 u32 view_size;
3680
3681 if (WARN_ON(!ggtt_view))
3682 return ERR_PTR(-EINVAL);
3683
3684 view_size = i915_ggtt_view_size(obj, ggtt_view);
3685
3686 fence_size = i915_gem_get_gtt_size(dev,
3687 view_size,
3688 obj->tiling_mode);
3689 fence_alignment = i915_gem_get_gtt_alignment(dev,
3690 view_size,
3691 obj->tiling_mode,
3692 true);
3693 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3694 view_size,
3695 obj->tiling_mode,
3696 false);
3697 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3698 } else {
3699 fence_size = i915_gem_get_gtt_size(dev,
3700 obj->base.size,
3701 obj->tiling_mode);
3702 fence_alignment = i915_gem_get_gtt_alignment(dev,
3703 obj->base.size,
3704 obj->tiling_mode,
3705 true);
3706 unfenced_alignment =
3707 i915_gem_get_gtt_alignment(dev,
3708 obj->base.size,
3709 obj->tiling_mode,
3710 false);
3711 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3712 }
3713
3714 if (alignment == 0)
3715 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3716 unfenced_alignment;
3717 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3718 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3719 ggtt_view ? ggtt_view->type : 0,
3720 alignment);
3721 return ERR_PTR(-EINVAL);
3722 }
3723
3724 /* If binding the object/GGTT view requires more space than the entire
3725 * aperture has, reject it early before evicting everything in a vain
3726 * attempt to find space.
3727 */
3728 if (size > end) {
3729 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3730 ggtt_view ? ggtt_view->type : 0,
3731 size,
3732 flags & PIN_MAPPABLE ? "mappable" : "total",
3733 end);
3734 return ERR_PTR(-E2BIG);
3735 }
3736
3737 ret = i915_gem_object_get_pages(obj);
3738 if (ret)
3739 return ERR_PTR(ret);
3740
3741 i915_gem_object_pin_pages(obj);
3742
3743 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3744 i915_gem_obj_lookup_or_create_vma(obj, vm);
3745
3746 if (IS_ERR(vma))
3747 goto err_unpin;
3748
3749 search_free:
3750 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3751 size, alignment,
3752 obj->cache_level,
3753 start, end,
3754 DRM_MM_SEARCH_DEFAULT,
3755 DRM_MM_CREATE_DEFAULT);
3756 if (ret) {
3757 ret = i915_gem_evict_something(dev, vm, size, alignment,
3758 obj->cache_level,
3759 start, end,
3760 flags);
3761 if (ret == 0)
3762 goto search_free;
3763
3764 goto err_free_vma;
3765 }
3766 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3767 ret = -EINVAL;
3768 goto err_remove_node;
3769 }
3770
3771 ret = i915_gem_gtt_prepare_object(obj);
3772 if (ret)
3773 goto err_remove_node;
3774
3775 trace_i915_vma_bind(vma, flags);
3776 ret = i915_vma_bind(vma, obj->cache_level, flags);
3777 if (ret)
3778 goto err_finish_gtt;
3779
3780 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3781 list_add_tail(&vma->mm_list, &vm->inactive_list);
3782
3783 return vma;
3784
3785 err_finish_gtt:
3786 i915_gem_gtt_finish_object(obj);
3787 err_remove_node:
3788 drm_mm_remove_node(&vma->node);
3789 err_free_vma:
3790 i915_gem_vma_destroy(vma);
3791 vma = ERR_PTR(ret);
3792 err_unpin:
3793 i915_gem_object_unpin_pages(obj);
3794 return vma;
3795 }
3796
3797 bool
3798 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3799 bool force)
3800 {
3801 /* If we don't have a page list set up, then we're not pinned
3802 * to GPU, and we can ignore the cache flush because it'll happen
3803 * again at bind time.
3804 */
3805 if (obj->pages == NULL)
3806 return false;
3807
3808 /*
3809 * Stolen memory is always coherent with the GPU as it is explicitly
3810 * marked as wc by the system, or the system is cache-coherent.
3811 */
3812 if (obj->stolen || obj->phys_handle)
3813 return false;
3814
3815 /* If the GPU is snooping the contents of the CPU cache,
3816 * we do not need to manually clear the CPU cache lines. However,
3817 * the caches are only snooped when the render cache is
3818 * flushed/invalidated. As we always have to emit invalidations
3819 * and flushes when moving into and out of the RENDER domain, correct
3820 * snooping behaviour occurs naturally as the result of our domain
3821 * tracking.
3822 */
3823 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3824 obj->cache_dirty = true;
3825 return false;
3826 }
3827
3828 trace_i915_gem_object_clflush(obj);
3829 drm_clflush_sg(obj->pages);
3830 obj->cache_dirty = false;
3831
3832 return true;
3833 }
3834
3835 /** Flushes the GTT write domain for the object if it's dirty. */
3836 static void
3837 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3838 {
3839 uint32_t old_write_domain;
3840
3841 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3842 return;
3843
3844 /* No actual flushing is required for the GTT write domain. Writes
3845 * to it immediately go to main memory as far as we know, so there's
3846 * no chipset flush. It also doesn't land in render cache.
3847 *
3848 * However, we do have to enforce the order so that all writes through
3849 * the GTT land before any writes to the device, such as updates to
3850 * the GATT itself.
3851 */
3852 wmb();
3853
3854 old_write_domain = obj->base.write_domain;
3855 obj->base.write_domain = 0;
3856
3857 intel_fb_obj_flush(obj, false);
3858
3859 trace_i915_gem_object_change_domain(obj,
3860 obj->base.read_domains,
3861 old_write_domain);
3862 }
3863
3864 /** Flushes the CPU write domain for the object if it's dirty. */
3865 static void
3866 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3867 {
3868 uint32_t old_write_domain;
3869
3870 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3871 return;
3872
3873 if (i915_gem_clflush_object(obj, obj->pin_display))
3874 i915_gem_chipset_flush(obj->base.dev);
3875
3876 old_write_domain = obj->base.write_domain;
3877 obj->base.write_domain = 0;
3878
3879 intel_fb_obj_flush(obj, false);
3880
3881 trace_i915_gem_object_change_domain(obj,
3882 obj->base.read_domains,
3883 old_write_domain);
3884 }
3885
3886 /**
3887 * Moves a single object to the GTT read, and possibly write domain.
3888 *
3889 * This function returns when the move is complete, including waiting on
3890 * flushes to occur.
3891 */
3892 int
3893 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3894 {
3895 uint32_t old_write_domain, old_read_domains;
3896 struct i915_vma *vma;
3897 int ret;
3898
3899 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3900 return 0;
3901
3902 ret = i915_gem_object_wait_rendering(obj, !write);
3903 if (ret)
3904 return ret;
3905
3906 /* Flush and acquire obj->pages so that we are coherent through
3907 * direct access in memory with previous cached writes through
3908 * shmemfs and that our cache domain tracking remains valid.
3909 * For example, if the obj->filp was moved to swap without us
3910 * being notified and releasing the pages, we would mistakenly
3911 * continue to assume that the obj remained out of the CPU cached
3912 * domain.
3913 */
3914 ret = i915_gem_object_get_pages(obj);
3915 if (ret)
3916 return ret;
3917
3918 i915_gem_object_flush_cpu_write_domain(obj);
3919
3920 /* Serialise direct access to this object with the barriers for
3921 * coherent writes from the GPU, by effectively invalidating the
3922 * GTT domain upon first access.
3923 */
3924 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3925 mb();
3926
3927 old_write_domain = obj->base.write_domain;
3928 old_read_domains = obj->base.read_domains;
3929
3930 /* It should now be out of any other write domains, and we can update
3931 * the domain values for our changes.
3932 */
3933 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3934 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3935 if (write) {
3936 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3937 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3938 obj->dirty = 1;
3939 }
3940
3941 if (write)
3942 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3943
3944 trace_i915_gem_object_change_domain(obj,
3945 old_read_domains,
3946 old_write_domain);
3947
3948 /* And bump the LRU for this access */
3949 vma = i915_gem_obj_to_ggtt(obj);
3950 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3951 list_move_tail(&vma->mm_list,
3952 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3953
3954 return 0;
3955 }
3956
3957 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3958 enum i915_cache_level cache_level)
3959 {
3960 struct drm_device *dev = obj->base.dev;
3961 struct i915_vma *vma, *next;
3962 int ret;
3963
3964 if (obj->cache_level == cache_level)
3965 return 0;
3966
3967 if (i915_gem_obj_is_pinned(obj)) {
3968 DRM_DEBUG("can not change the cache level of pinned objects\n");
3969 return -EBUSY;
3970 }
3971
3972 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3973 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3974 ret = i915_vma_unbind(vma);
3975 if (ret)
3976 return ret;
3977 }
3978 }
3979
3980 if (i915_gem_obj_bound_any(obj)) {
3981 ret = i915_gem_object_wait_rendering(obj, false);
3982 if (ret)
3983 return ret;
3984
3985 i915_gem_object_finish_gtt(obj);
3986
3987 /* Before SandyBridge, you could not use tiling or fence
3988 * registers with snooped memory, so relinquish any fences
3989 * currently pointing to our region in the aperture.
3990 */
3991 if (INTEL_INFO(dev)->gen < 6) {
3992 ret = i915_gem_object_put_fence(obj);
3993 if (ret)
3994 return ret;
3995 }
3996
3997 list_for_each_entry(vma, &obj->vma_list, vma_link)
3998 if (drm_mm_node_allocated(&vma->node)) {
3999 ret = i915_vma_bind(vma, cache_level,
4000 PIN_UPDATE);
4001 if (ret)
4002 return ret;
4003 }
4004 }
4005
4006 list_for_each_entry(vma, &obj->vma_list, vma_link)
4007 vma->node.color = cache_level;
4008 obj->cache_level = cache_level;
4009
4010 if (obj->cache_dirty &&
4011 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4012 cpu_write_needs_clflush(obj)) {
4013 if (i915_gem_clflush_object(obj, true))
4014 i915_gem_chipset_flush(obj->base.dev);
4015 }
4016
4017 return 0;
4018 }
4019
4020 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4021 struct drm_file *file)
4022 {
4023 struct drm_i915_gem_caching *args = data;
4024 struct drm_i915_gem_object *obj;
4025
4026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4027 if (&obj->base == NULL)
4028 return -ENOENT;
4029
4030 switch (obj->cache_level) {
4031 case I915_CACHE_LLC:
4032 case I915_CACHE_L3_LLC:
4033 args->caching = I915_CACHING_CACHED;
4034 break;
4035
4036 case I915_CACHE_WT:
4037 args->caching = I915_CACHING_DISPLAY;
4038 break;
4039
4040 default:
4041 args->caching = I915_CACHING_NONE;
4042 break;
4043 }
4044
4045 drm_gem_object_unreference_unlocked(&obj->base);
4046 return 0;
4047 }
4048
4049 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4050 struct drm_file *file)
4051 {
4052 struct drm_i915_gem_caching *args = data;
4053 struct drm_i915_gem_object *obj;
4054 enum i915_cache_level level;
4055 int ret;
4056
4057 switch (args->caching) {
4058 case I915_CACHING_NONE:
4059 level = I915_CACHE_NONE;
4060 break;
4061 case I915_CACHING_CACHED:
4062 level = I915_CACHE_LLC;
4063 break;
4064 case I915_CACHING_DISPLAY:
4065 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4066 break;
4067 default:
4068 return -EINVAL;
4069 }
4070
4071 ret = i915_mutex_lock_interruptible(dev);
4072 if (ret)
4073 return ret;
4074
4075 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4076 if (&obj->base == NULL) {
4077 ret = -ENOENT;
4078 goto unlock;
4079 }
4080
4081 ret = i915_gem_object_set_cache_level(obj, level);
4082
4083 drm_gem_object_unreference(&obj->base);
4084 unlock:
4085 mutex_unlock(&dev->struct_mutex);
4086 return ret;
4087 }
4088
4089 /*
4090 * Prepare buffer for display plane (scanout, cursors, etc).
4091 * Can be called from an uninterruptible phase (modesetting) and allows
4092 * any flushes to be pipelined (for pageflips).
4093 */
4094 int
4095 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4096 u32 alignment,
4097 struct intel_engine_cs *pipelined,
4098 const struct i915_ggtt_view *view)
4099 {
4100 u32 old_read_domains, old_write_domain;
4101 int ret;
4102
4103 ret = i915_gem_object_sync(obj, pipelined);
4104 if (ret)
4105 return ret;
4106
4107 /* Mark the pin_display early so that we account for the
4108 * display coherency whilst setting up the cache domains.
4109 */
4110 obj->pin_display++;
4111
4112 /* The display engine is not coherent with the LLC cache on gen6. As
4113 * a result, we make sure that the pinning that is about to occur is
4114 * done with uncached PTEs. This is lowest common denominator for all
4115 * chipsets.
4116 *
4117 * However for gen6+, we could do better by using the GFDT bit instead
4118 * of uncaching, which would allow us to flush all the LLC-cached data
4119 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4120 */
4121 ret = i915_gem_object_set_cache_level(obj,
4122 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4123 if (ret)
4124 goto err_unpin_display;
4125
4126 /* As the user may map the buffer once pinned in the display plane
4127 * (e.g. libkms for the bootup splash), we have to ensure that we
4128 * always use map_and_fenceable for all scanout buffers.
4129 */
4130 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4131 view->type == I915_GGTT_VIEW_NORMAL ?
4132 PIN_MAPPABLE : 0);
4133 if (ret)
4134 goto err_unpin_display;
4135
4136 i915_gem_object_flush_cpu_write_domain(obj);
4137
4138 old_write_domain = obj->base.write_domain;
4139 old_read_domains = obj->base.read_domains;
4140
4141 /* It should now be out of any other write domains, and we can update
4142 * the domain values for our changes.
4143 */
4144 obj->base.write_domain = 0;
4145 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4146
4147 trace_i915_gem_object_change_domain(obj,
4148 old_read_domains,
4149 old_write_domain);
4150
4151 return 0;
4152
4153 err_unpin_display:
4154 obj->pin_display--;
4155 return ret;
4156 }
4157
4158 void
4159 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4160 const struct i915_ggtt_view *view)
4161 {
4162 if (WARN_ON(obj->pin_display == 0))
4163 return;
4164
4165 i915_gem_object_ggtt_unpin_view(obj, view);
4166
4167 obj->pin_display--;
4168 }
4169
4170 /**
4171 * Moves a single object to the CPU read, and possibly write domain.
4172 *
4173 * This function returns when the move is complete, including waiting on
4174 * flushes to occur.
4175 */
4176 int
4177 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4178 {
4179 uint32_t old_write_domain, old_read_domains;
4180 int ret;
4181
4182 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4183 return 0;
4184
4185 ret = i915_gem_object_wait_rendering(obj, !write);
4186 if (ret)
4187 return ret;
4188
4189 i915_gem_object_flush_gtt_write_domain(obj);
4190
4191 old_write_domain = obj->base.write_domain;
4192 old_read_domains = obj->base.read_domains;
4193
4194 /* Flush the CPU cache if it's still invalid. */
4195 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4196 i915_gem_clflush_object(obj, false);
4197
4198 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4199 }
4200
4201 /* It should now be out of any other write domains, and we can update
4202 * the domain values for our changes.
4203 */
4204 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4205
4206 /* If we're writing through the CPU, then the GPU read domains will
4207 * need to be invalidated at next use.
4208 */
4209 if (write) {
4210 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4211 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4212 }
4213
4214 if (write)
4215 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4216
4217 trace_i915_gem_object_change_domain(obj,
4218 old_read_domains,
4219 old_write_domain);
4220
4221 return 0;
4222 }
4223
4224 /* Throttle our rendering by waiting until the ring has completed our requests
4225 * emitted over 20 msec ago.
4226 *
4227 * Note that if we were to use the current jiffies each time around the loop,
4228 * we wouldn't escape the function with any frames outstanding if the time to
4229 * render a frame was over 20ms.
4230 *
4231 * This should get us reasonable parallelism between CPU and GPU but also
4232 * relatively low latency when blocking on a particular request to finish.
4233 */
4234 static int
4235 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4236 {
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 struct drm_i915_file_private *file_priv = file->driver_priv;
4239 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4240 struct drm_i915_gem_request *request, *target = NULL;
4241 unsigned reset_counter;
4242 int ret;
4243
4244 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4245 if (ret)
4246 return ret;
4247
4248 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4249 if (ret)
4250 return ret;
4251
4252 spin_lock(&file_priv->mm.lock);
4253 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4254 if (time_after_eq(request->emitted_jiffies, recent_enough))
4255 break;
4256
4257 target = request;
4258 }
4259 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4260 if (target)
4261 i915_gem_request_reference(target);
4262 spin_unlock(&file_priv->mm.lock);
4263
4264 if (target == NULL)
4265 return 0;
4266
4267 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4268 if (ret == 0)
4269 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4270
4271 i915_gem_request_unreference__unlocked(target);
4272
4273 return ret;
4274 }
4275
4276 static bool
4277 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4278 {
4279 struct drm_i915_gem_object *obj = vma->obj;
4280
4281 if (alignment &&
4282 vma->node.start & (alignment - 1))
4283 return true;
4284
4285 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4286 return true;
4287
4288 if (flags & PIN_OFFSET_BIAS &&
4289 vma->node.start < (flags & PIN_OFFSET_MASK))
4290 return true;
4291
4292 return false;
4293 }
4294
4295 static int
4296 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4297 struct i915_address_space *vm,
4298 const struct i915_ggtt_view *ggtt_view,
4299 uint32_t alignment,
4300 uint64_t flags)
4301 {
4302 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4303 struct i915_vma *vma;
4304 unsigned bound;
4305 int ret;
4306
4307 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4308 return -ENODEV;
4309
4310 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4311 return -EINVAL;
4312
4313 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4314 return -EINVAL;
4315
4316 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4317 return -EINVAL;
4318
4319 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4320 i915_gem_obj_to_vma(obj, vm);
4321
4322 if (IS_ERR(vma))
4323 return PTR_ERR(vma);
4324
4325 if (vma) {
4326 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4327 return -EBUSY;
4328
4329 if (i915_vma_misplaced(vma, alignment, flags)) {
4330 unsigned long offset;
4331 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4332 i915_gem_obj_offset(obj, vm);
4333 WARN(vma->pin_count,
4334 "bo is already pinned in %s with incorrect alignment:"
4335 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4336 " obj->map_and_fenceable=%d\n",
4337 ggtt_view ? "ggtt" : "ppgtt",
4338 offset,
4339 alignment,
4340 !!(flags & PIN_MAPPABLE),
4341 obj->map_and_fenceable);
4342 ret = i915_vma_unbind(vma);
4343 if (ret)
4344 return ret;
4345
4346 vma = NULL;
4347 }
4348 }
4349
4350 bound = vma ? vma->bound : 0;
4351 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4352 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4353 flags);
4354 if (IS_ERR(vma))
4355 return PTR_ERR(vma);
4356 } else {
4357 ret = i915_vma_bind(vma, obj->cache_level, flags);
4358 if (ret)
4359 return ret;
4360 }
4361
4362 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4363 (bound ^ vma->bound) & GLOBAL_BIND) {
4364 bool mappable, fenceable;
4365 u32 fence_size, fence_alignment;
4366
4367 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4368 obj->base.size,
4369 obj->tiling_mode);
4370 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4371 obj->base.size,
4372 obj->tiling_mode,
4373 true);
4374
4375 fenceable = (vma->node.size == fence_size &&
4376 (vma->node.start & (fence_alignment - 1)) == 0);
4377
4378 mappable = (vma->node.start + fence_size <=
4379 dev_priv->gtt.mappable_end);
4380
4381 obj->map_and_fenceable = mappable && fenceable;
4382
4383 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4384 }
4385
4386 vma->pin_count++;
4387 return 0;
4388 }
4389
4390 int
4391 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4392 struct i915_address_space *vm,
4393 uint32_t alignment,
4394 uint64_t flags)
4395 {
4396 return i915_gem_object_do_pin(obj, vm,
4397 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4398 alignment, flags);
4399 }
4400
4401 int
4402 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4403 const struct i915_ggtt_view *view,
4404 uint32_t alignment,
4405 uint64_t flags)
4406 {
4407 if (WARN_ONCE(!view, "no view specified"))
4408 return -EINVAL;
4409
4410 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4411 alignment, flags | PIN_GLOBAL);
4412 }
4413
4414 void
4415 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4416 const struct i915_ggtt_view *view)
4417 {
4418 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4419
4420 BUG_ON(!vma);
4421 WARN_ON(vma->pin_count == 0);
4422 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4423
4424 --vma->pin_count;
4425 }
4426
4427 bool
4428 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4429 {
4430 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4431 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4432 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4433
4434 WARN_ON(!ggtt_vma ||
4435 dev_priv->fence_regs[obj->fence_reg].pin_count >
4436 ggtt_vma->pin_count);
4437 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4438 return true;
4439 } else
4440 return false;
4441 }
4442
4443 void
4444 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4445 {
4446 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4447 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4448 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4449 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4450 }
4451 }
4452
4453 int
4454 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4455 struct drm_file *file)
4456 {
4457 struct drm_i915_gem_busy *args = data;
4458 struct drm_i915_gem_object *obj;
4459 int ret;
4460
4461 ret = i915_mutex_lock_interruptible(dev);
4462 if (ret)
4463 return ret;
4464
4465 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4466 if (&obj->base == NULL) {
4467 ret = -ENOENT;
4468 goto unlock;
4469 }
4470
4471 /* Count all active objects as busy, even if they are currently not used
4472 * by the gpu. Users of this interface expect objects to eventually
4473 * become non-busy without any further actions, therefore emit any
4474 * necessary flushes here.
4475 */
4476 ret = i915_gem_object_flush_active(obj);
4477 if (ret)
4478 goto unref;
4479
4480 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4481 args->busy = obj->active << 16;
4482 if (obj->last_write_req)
4483 args->busy |= obj->last_write_req->ring->id;
4484
4485 unref:
4486 drm_gem_object_unreference(&obj->base);
4487 unlock:
4488 mutex_unlock(&dev->struct_mutex);
4489 return ret;
4490 }
4491
4492 int
4493 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4494 struct drm_file *file_priv)
4495 {
4496 return i915_gem_ring_throttle(dev, file_priv);
4497 }
4498
4499 int
4500 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4501 struct drm_file *file_priv)
4502 {
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 struct drm_i915_gem_madvise *args = data;
4505 struct drm_i915_gem_object *obj;
4506 int ret;
4507
4508 switch (args->madv) {
4509 case I915_MADV_DONTNEED:
4510 case I915_MADV_WILLNEED:
4511 break;
4512 default:
4513 return -EINVAL;
4514 }
4515
4516 ret = i915_mutex_lock_interruptible(dev);
4517 if (ret)
4518 return ret;
4519
4520 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4521 if (&obj->base == NULL) {
4522 ret = -ENOENT;
4523 goto unlock;
4524 }
4525
4526 if (i915_gem_obj_is_pinned(obj)) {
4527 ret = -EINVAL;
4528 goto out;
4529 }
4530
4531 if (obj->pages &&
4532 obj->tiling_mode != I915_TILING_NONE &&
4533 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4534 if (obj->madv == I915_MADV_WILLNEED)
4535 i915_gem_object_unpin_pages(obj);
4536 if (args->madv == I915_MADV_WILLNEED)
4537 i915_gem_object_pin_pages(obj);
4538 }
4539
4540 if (obj->madv != __I915_MADV_PURGED)
4541 obj->madv = args->madv;
4542
4543 /* if the object is no longer attached, discard its backing storage */
4544 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4545 i915_gem_object_truncate(obj);
4546
4547 args->retained = obj->madv != __I915_MADV_PURGED;
4548
4549 out:
4550 drm_gem_object_unreference(&obj->base);
4551 unlock:
4552 mutex_unlock(&dev->struct_mutex);
4553 return ret;
4554 }
4555
4556 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4557 const struct drm_i915_gem_object_ops *ops)
4558 {
4559 int i;
4560
4561 INIT_LIST_HEAD(&obj->global_list);
4562 for (i = 0; i < I915_NUM_RINGS; i++)
4563 INIT_LIST_HEAD(&obj->ring_list[i]);
4564 INIT_LIST_HEAD(&obj->obj_exec_link);
4565 INIT_LIST_HEAD(&obj->vma_list);
4566 INIT_LIST_HEAD(&obj->batch_pool_link);
4567
4568 obj->ops = ops;
4569
4570 obj->fence_reg = I915_FENCE_REG_NONE;
4571 obj->madv = I915_MADV_WILLNEED;
4572
4573 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4574 }
4575
4576 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4577 .get_pages = i915_gem_object_get_pages_gtt,
4578 .put_pages = i915_gem_object_put_pages_gtt,
4579 };
4580
4581 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4582 size_t size)
4583 {
4584 struct drm_i915_gem_object *obj;
4585 struct address_space *mapping;
4586 gfp_t mask;
4587
4588 obj = i915_gem_object_alloc(dev);
4589 if (obj == NULL)
4590 return NULL;
4591
4592 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4593 i915_gem_object_free(obj);
4594 return NULL;
4595 }
4596
4597 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4598 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4599 /* 965gm cannot relocate objects above 4GiB. */
4600 mask &= ~__GFP_HIGHMEM;
4601 mask |= __GFP_DMA32;
4602 }
4603
4604 mapping = file_inode(obj->base.filp)->i_mapping;
4605 mapping_set_gfp_mask(mapping, mask);
4606
4607 i915_gem_object_init(obj, &i915_gem_object_ops);
4608
4609 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4610 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4611
4612 if (HAS_LLC(dev)) {
4613 /* On some devices, we can have the GPU use the LLC (the CPU
4614 * cache) for about a 10% performance improvement
4615 * compared to uncached. Graphics requests other than
4616 * display scanout are coherent with the CPU in
4617 * accessing this cache. This means in this mode we
4618 * don't need to clflush on the CPU side, and on the
4619 * GPU side we only need to flush internal caches to
4620 * get data visible to the CPU.
4621 *
4622 * However, we maintain the display planes as UC, and so
4623 * need to rebind when first used as such.
4624 */
4625 obj->cache_level = I915_CACHE_LLC;
4626 } else
4627 obj->cache_level = I915_CACHE_NONE;
4628
4629 trace_i915_gem_object_create(obj);
4630
4631 return obj;
4632 }
4633
4634 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4635 {
4636 /* If we are the last user of the backing storage (be it shmemfs
4637 * pages or stolen etc), we know that the pages are going to be
4638 * immediately released. In this case, we can then skip copying
4639 * back the contents from the GPU.
4640 */
4641
4642 if (obj->madv != I915_MADV_WILLNEED)
4643 return false;
4644
4645 if (obj->base.filp == NULL)
4646 return true;
4647
4648 /* At first glance, this looks racy, but then again so would be
4649 * userspace racing mmap against close. However, the first external
4650 * reference to the filp can only be obtained through the
4651 * i915_gem_mmap_ioctl() which safeguards us against the user
4652 * acquiring such a reference whilst we are in the middle of
4653 * freeing the object.
4654 */
4655 return atomic_long_read(&obj->base.filp->f_count) == 1;
4656 }
4657
4658 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4659 {
4660 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4661 struct drm_device *dev = obj->base.dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 struct i915_vma *vma, *next;
4664
4665 intel_runtime_pm_get(dev_priv);
4666
4667 trace_i915_gem_object_destroy(obj);
4668
4669 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4670 int ret;
4671
4672 vma->pin_count = 0;
4673 ret = i915_vma_unbind(vma);
4674 if (WARN_ON(ret == -ERESTARTSYS)) {
4675 bool was_interruptible;
4676
4677 was_interruptible = dev_priv->mm.interruptible;
4678 dev_priv->mm.interruptible = false;
4679
4680 WARN_ON(i915_vma_unbind(vma));
4681
4682 dev_priv->mm.interruptible = was_interruptible;
4683 }
4684 }
4685
4686 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4687 * before progressing. */
4688 if (obj->stolen)
4689 i915_gem_object_unpin_pages(obj);
4690
4691 WARN_ON(obj->frontbuffer_bits);
4692
4693 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4694 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4695 obj->tiling_mode != I915_TILING_NONE)
4696 i915_gem_object_unpin_pages(obj);
4697
4698 if (WARN_ON(obj->pages_pin_count))
4699 obj->pages_pin_count = 0;
4700 if (discard_backing_storage(obj))
4701 obj->madv = I915_MADV_DONTNEED;
4702 i915_gem_object_put_pages(obj);
4703 i915_gem_object_free_mmap_offset(obj);
4704
4705 BUG_ON(obj->pages);
4706
4707 if (obj->base.import_attach)
4708 drm_prime_gem_destroy(&obj->base, NULL);
4709
4710 if (obj->ops->release)
4711 obj->ops->release(obj);
4712
4713 drm_gem_object_release(&obj->base);
4714 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4715
4716 kfree(obj->bit_17);
4717 i915_gem_object_free(obj);
4718
4719 intel_runtime_pm_put(dev_priv);
4720 }
4721
4722 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4723 struct i915_address_space *vm)
4724 {
4725 struct i915_vma *vma;
4726 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4727 if (i915_is_ggtt(vma->vm) &&
4728 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4729 continue;
4730 if (vma->vm == vm)
4731 return vma;
4732 }
4733 return NULL;
4734 }
4735
4736 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4737 const struct i915_ggtt_view *view)
4738 {
4739 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4740 struct i915_vma *vma;
4741
4742 if (WARN_ONCE(!view, "no view specified"))
4743 return ERR_PTR(-EINVAL);
4744
4745 list_for_each_entry(vma, &obj->vma_list, vma_link)
4746 if (vma->vm == ggtt &&
4747 i915_ggtt_view_equal(&vma->ggtt_view, view))
4748 return vma;
4749 return NULL;
4750 }
4751
4752 void i915_gem_vma_destroy(struct i915_vma *vma)
4753 {
4754 struct i915_address_space *vm = NULL;
4755 WARN_ON(vma->node.allocated);
4756
4757 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4758 if (!list_empty(&vma->exec_list))
4759 return;
4760
4761 vm = vma->vm;
4762
4763 if (!i915_is_ggtt(vm))
4764 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4765
4766 list_del(&vma->vma_link);
4767
4768 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4769 }
4770
4771 static void
4772 i915_gem_stop_ringbuffers(struct drm_device *dev)
4773 {
4774 struct drm_i915_private *dev_priv = dev->dev_private;
4775 struct intel_engine_cs *ring;
4776 int i;
4777
4778 for_each_ring(ring, dev_priv, i)
4779 dev_priv->gt.stop_ring(ring);
4780 }
4781
4782 int
4783 i915_gem_suspend(struct drm_device *dev)
4784 {
4785 struct drm_i915_private *dev_priv = dev->dev_private;
4786 int ret = 0;
4787
4788 mutex_lock(&dev->struct_mutex);
4789 ret = i915_gpu_idle(dev);
4790 if (ret)
4791 goto err;
4792
4793 i915_gem_retire_requests(dev);
4794
4795 i915_gem_stop_ringbuffers(dev);
4796 mutex_unlock(&dev->struct_mutex);
4797
4798 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4799 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4800 flush_delayed_work(&dev_priv->mm.idle_work);
4801
4802 /* Assert that we sucessfully flushed all the work and
4803 * reset the GPU back to its idle, low power state.
4804 */
4805 WARN_ON(dev_priv->mm.busy);
4806
4807 return 0;
4808
4809 err:
4810 mutex_unlock(&dev->struct_mutex);
4811 return ret;
4812 }
4813
4814 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4815 {
4816 struct drm_device *dev = ring->dev;
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4819 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4820 int i, ret;
4821
4822 if (!HAS_L3_DPF(dev) || !remap_info)
4823 return 0;
4824
4825 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4826 if (ret)
4827 return ret;
4828
4829 /*
4830 * Note: We do not worry about the concurrent register cacheline hang
4831 * here because no other code should access these registers other than
4832 * at initialization time.
4833 */
4834 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4835 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4836 intel_ring_emit(ring, reg_base + i);
4837 intel_ring_emit(ring, remap_info[i/4]);
4838 }
4839
4840 intel_ring_advance(ring);
4841
4842 return ret;
4843 }
4844
4845 void i915_gem_init_swizzling(struct drm_device *dev)
4846 {
4847 struct drm_i915_private *dev_priv = dev->dev_private;
4848
4849 if (INTEL_INFO(dev)->gen < 5 ||
4850 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4851 return;
4852
4853 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4854 DISP_TILE_SURFACE_SWIZZLING);
4855
4856 if (IS_GEN5(dev))
4857 return;
4858
4859 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4860 if (IS_GEN6(dev))
4861 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4862 else if (IS_GEN7(dev))
4863 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4864 else if (IS_GEN8(dev))
4865 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4866 else
4867 BUG();
4868 }
4869
4870 static bool
4871 intel_enable_blt(struct drm_device *dev)
4872 {
4873 if (!HAS_BLT(dev))
4874 return false;
4875
4876 /* The blitter was dysfunctional on early prototypes */
4877 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4878 DRM_INFO("BLT not supported on this pre-production hardware;"
4879 " graphics performance will be degraded.\n");
4880 return false;
4881 }
4882
4883 return true;
4884 }
4885
4886 static void init_unused_ring(struct drm_device *dev, u32 base)
4887 {
4888 struct drm_i915_private *dev_priv = dev->dev_private;
4889
4890 I915_WRITE(RING_CTL(base), 0);
4891 I915_WRITE(RING_HEAD(base), 0);
4892 I915_WRITE(RING_TAIL(base), 0);
4893 I915_WRITE(RING_START(base), 0);
4894 }
4895
4896 static void init_unused_rings(struct drm_device *dev)
4897 {
4898 if (IS_I830(dev)) {
4899 init_unused_ring(dev, PRB1_BASE);
4900 init_unused_ring(dev, SRB0_BASE);
4901 init_unused_ring(dev, SRB1_BASE);
4902 init_unused_ring(dev, SRB2_BASE);
4903 init_unused_ring(dev, SRB3_BASE);
4904 } else if (IS_GEN2(dev)) {
4905 init_unused_ring(dev, SRB0_BASE);
4906 init_unused_ring(dev, SRB1_BASE);
4907 } else if (IS_GEN3(dev)) {
4908 init_unused_ring(dev, PRB1_BASE);
4909 init_unused_ring(dev, PRB2_BASE);
4910 }
4911 }
4912
4913 int i915_gem_init_rings(struct drm_device *dev)
4914 {
4915 struct drm_i915_private *dev_priv = dev->dev_private;
4916 int ret;
4917
4918 ret = intel_init_render_ring_buffer(dev);
4919 if (ret)
4920 return ret;
4921
4922 if (HAS_BSD(dev)) {
4923 ret = intel_init_bsd_ring_buffer(dev);
4924 if (ret)
4925 goto cleanup_render_ring;
4926 }
4927
4928 if (intel_enable_blt(dev)) {
4929 ret = intel_init_blt_ring_buffer(dev);
4930 if (ret)
4931 goto cleanup_bsd_ring;
4932 }
4933
4934 if (HAS_VEBOX(dev)) {
4935 ret = intel_init_vebox_ring_buffer(dev);
4936 if (ret)
4937 goto cleanup_blt_ring;
4938 }
4939
4940 if (HAS_BSD2(dev)) {
4941 ret = intel_init_bsd2_ring_buffer(dev);
4942 if (ret)
4943 goto cleanup_vebox_ring;
4944 }
4945
4946 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4947 if (ret)
4948 goto cleanup_bsd2_ring;
4949
4950 return 0;
4951
4952 cleanup_bsd2_ring:
4953 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4954 cleanup_vebox_ring:
4955 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4956 cleanup_blt_ring:
4957 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4958 cleanup_bsd_ring:
4959 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4960 cleanup_render_ring:
4961 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4962
4963 return ret;
4964 }
4965
4966 int
4967 i915_gem_init_hw(struct drm_device *dev)
4968 {
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 struct intel_engine_cs *ring;
4971 int ret, i;
4972
4973 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4974 return -EIO;
4975
4976 /* Double layer security blanket, see i915_gem_init() */
4977 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4978
4979 if (dev_priv->ellc_size)
4980 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4981
4982 if (IS_HASWELL(dev))
4983 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4984 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4985
4986 if (HAS_PCH_NOP(dev)) {
4987 if (IS_IVYBRIDGE(dev)) {
4988 u32 temp = I915_READ(GEN7_MSG_CTL);
4989 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4990 I915_WRITE(GEN7_MSG_CTL, temp);
4991 } else if (INTEL_INFO(dev)->gen >= 7) {
4992 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4993 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4994 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4995 }
4996 }
4997
4998 i915_gem_init_swizzling(dev);
4999
5000 /*
5001 * At least 830 can leave some of the unused rings
5002 * "active" (ie. head != tail) after resume which
5003 * will prevent c3 entry. Makes sure all unused rings
5004 * are totally idle.
5005 */
5006 init_unused_rings(dev);
5007
5008 for_each_ring(ring, dev_priv, i) {
5009 ret = ring->init_hw(ring);
5010 if (ret)
5011 goto out;
5012 }
5013
5014 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5015 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5016
5017 ret = i915_ppgtt_init_hw(dev);
5018 if (ret && ret != -EIO) {
5019 DRM_ERROR("PPGTT enable failed %d\n", ret);
5020 i915_gem_cleanup_ringbuffer(dev);
5021 }
5022
5023 ret = i915_gem_context_enable(dev_priv);
5024 if (ret && ret != -EIO) {
5025 DRM_ERROR("Context enable failed %d\n", ret);
5026 i915_gem_cleanup_ringbuffer(dev);
5027
5028 goto out;
5029 }
5030
5031 out:
5032 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5033 return ret;
5034 }
5035
5036 int i915_gem_init(struct drm_device *dev)
5037 {
5038 struct drm_i915_private *dev_priv = dev->dev_private;
5039 int ret;
5040
5041 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5042 i915.enable_execlists);
5043
5044 mutex_lock(&dev->struct_mutex);
5045
5046 if (IS_VALLEYVIEW(dev)) {
5047 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5048 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5049 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5050 VLV_GTLC_ALLOWWAKEACK), 10))
5051 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5052 }
5053
5054 if (!i915.enable_execlists) {
5055 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5056 dev_priv->gt.init_rings = i915_gem_init_rings;
5057 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5058 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5059 } else {
5060 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5061 dev_priv->gt.init_rings = intel_logical_rings_init;
5062 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5063 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5064 }
5065
5066 /* This is just a security blanket to placate dragons.
5067 * On some systems, we very sporadically observe that the first TLBs
5068 * used by the CS may be stale, despite us poking the TLB reset. If
5069 * we hold the forcewake during initialisation these problems
5070 * just magically go away.
5071 */
5072 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5073
5074 ret = i915_gem_init_userptr(dev);
5075 if (ret)
5076 goto out_unlock;
5077
5078 i915_gem_init_global_gtt(dev);
5079
5080 ret = i915_gem_context_init(dev);
5081 if (ret)
5082 goto out_unlock;
5083
5084 ret = dev_priv->gt.init_rings(dev);
5085 if (ret)
5086 goto out_unlock;
5087
5088 ret = i915_gem_init_hw(dev);
5089 if (ret == -EIO) {
5090 /* Allow ring initialisation to fail by marking the GPU as
5091 * wedged. But we only want to do this where the GPU is angry,
5092 * for all other failure, such as an allocation failure, bail.
5093 */
5094 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5095 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5096 ret = 0;
5097 }
5098
5099 out_unlock:
5100 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5101 mutex_unlock(&dev->struct_mutex);
5102
5103 return ret;
5104 }
5105
5106 void
5107 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5108 {
5109 struct drm_i915_private *dev_priv = dev->dev_private;
5110 struct intel_engine_cs *ring;
5111 int i;
5112
5113 for_each_ring(ring, dev_priv, i)
5114 dev_priv->gt.cleanup_ring(ring);
5115 }
5116
5117 static void
5118 init_ring_lists(struct intel_engine_cs *ring)
5119 {
5120 INIT_LIST_HEAD(&ring->active_list);
5121 INIT_LIST_HEAD(&ring->request_list);
5122 }
5123
5124 void i915_init_vm(struct drm_i915_private *dev_priv,
5125 struct i915_address_space *vm)
5126 {
5127 if (!i915_is_ggtt(vm))
5128 drm_mm_init(&vm->mm, vm->start, vm->total);
5129 vm->dev = dev_priv->dev;
5130 INIT_LIST_HEAD(&vm->active_list);
5131 INIT_LIST_HEAD(&vm->inactive_list);
5132 INIT_LIST_HEAD(&vm->global_link);
5133 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5134 }
5135
5136 void
5137 i915_gem_load(struct drm_device *dev)
5138 {
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140 int i;
5141
5142 dev_priv->objects =
5143 kmem_cache_create("i915_gem_object",
5144 sizeof(struct drm_i915_gem_object), 0,
5145 SLAB_HWCACHE_ALIGN,
5146 NULL);
5147 dev_priv->vmas =
5148 kmem_cache_create("i915_gem_vma",
5149 sizeof(struct i915_vma), 0,
5150 SLAB_HWCACHE_ALIGN,
5151 NULL);
5152 dev_priv->requests =
5153 kmem_cache_create("i915_gem_request",
5154 sizeof(struct drm_i915_gem_request), 0,
5155 SLAB_HWCACHE_ALIGN,
5156 NULL);
5157
5158 INIT_LIST_HEAD(&dev_priv->vm_list);
5159 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5160
5161 INIT_LIST_HEAD(&dev_priv->context_list);
5162 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5163 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5164 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5165 for (i = 0; i < I915_NUM_RINGS; i++)
5166 init_ring_lists(&dev_priv->ring[i]);
5167 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5168 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5169 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5170 i915_gem_retire_work_handler);
5171 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5172 i915_gem_idle_work_handler);
5173 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5174
5175 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5176
5177 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5178 dev_priv->num_fence_regs = 32;
5179 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5180 dev_priv->num_fence_regs = 16;
5181 else
5182 dev_priv->num_fence_regs = 8;
5183
5184 if (intel_vgpu_active(dev))
5185 dev_priv->num_fence_regs =
5186 I915_READ(vgtif_reg(avail_rs.fence_num));
5187
5188 /* Initialize fence registers to zero */
5189 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5190 i915_gem_restore_fences(dev);
5191
5192 i915_gem_detect_bit_6_swizzle(dev);
5193 init_waitqueue_head(&dev_priv->pending_flip_queue);
5194
5195 dev_priv->mm.interruptible = true;
5196
5197 i915_gem_shrinker_init(dev_priv);
5198
5199 mutex_init(&dev_priv->fb_tracking.lock);
5200 }
5201
5202 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5203 {
5204 struct drm_i915_file_private *file_priv = file->driver_priv;
5205
5206 /* Clean up our request list when the client is going away, so that
5207 * later retire_requests won't dereference our soon-to-be-gone
5208 * file_priv.
5209 */
5210 spin_lock(&file_priv->mm.lock);
5211 while (!list_empty(&file_priv->mm.request_list)) {
5212 struct drm_i915_gem_request *request;
5213
5214 request = list_first_entry(&file_priv->mm.request_list,
5215 struct drm_i915_gem_request,
5216 client_list);
5217 list_del(&request->client_list);
5218 request->file_priv = NULL;
5219 }
5220 spin_unlock(&file_priv->mm.lock);
5221
5222 if (!list_empty(&file_priv->rps.link)) {
5223 spin_lock(&to_i915(dev)->rps.client_lock);
5224 list_del(&file_priv->rps.link);
5225 spin_unlock(&to_i915(dev)->rps.client_lock);
5226 }
5227 }
5228
5229 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5230 {
5231 struct drm_i915_file_private *file_priv;
5232 int ret;
5233
5234 DRM_DEBUG_DRIVER("\n");
5235
5236 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5237 if (!file_priv)
5238 return -ENOMEM;
5239
5240 file->driver_priv = file_priv;
5241 file_priv->dev_priv = dev->dev_private;
5242 file_priv->file = file;
5243 INIT_LIST_HEAD(&file_priv->rps.link);
5244
5245 spin_lock_init(&file_priv->mm.lock);
5246 INIT_LIST_HEAD(&file_priv->mm.request_list);
5247
5248 ret = i915_gem_context_open(dev, file);
5249 if (ret)
5250 kfree(file_priv);
5251
5252 return ret;
5253 }
5254
5255 /**
5256 * i915_gem_track_fb - update frontbuffer tracking
5257 * old: current GEM buffer for the frontbuffer slots
5258 * new: new GEM buffer for the frontbuffer slots
5259 * frontbuffer_bits: bitmask of frontbuffer slots
5260 *
5261 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5262 * from @old and setting them in @new. Both @old and @new can be NULL.
5263 */
5264 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5265 struct drm_i915_gem_object *new,
5266 unsigned frontbuffer_bits)
5267 {
5268 if (old) {
5269 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5270 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5271 old->frontbuffer_bits &= ~frontbuffer_bits;
5272 }
5273
5274 if (new) {
5275 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5276 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5277 new->frontbuffer_bits |= frontbuffer_bits;
5278 }
5279 }
5280
5281 /* All the new VM stuff */
5282 unsigned long
5283 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5284 struct i915_address_space *vm)
5285 {
5286 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5287 struct i915_vma *vma;
5288
5289 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5290
5291 list_for_each_entry(vma, &o->vma_list, vma_link) {
5292 if (i915_is_ggtt(vma->vm) &&
5293 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5294 continue;
5295 if (vma->vm == vm)
5296 return vma->node.start;
5297 }
5298
5299 WARN(1, "%s vma for this object not found.\n",
5300 i915_is_ggtt(vm) ? "global" : "ppgtt");
5301 return -1;
5302 }
5303
5304 unsigned long
5305 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5306 const struct i915_ggtt_view *view)
5307 {
5308 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5309 struct i915_vma *vma;
5310
5311 list_for_each_entry(vma, &o->vma_list, vma_link)
5312 if (vma->vm == ggtt &&
5313 i915_ggtt_view_equal(&vma->ggtt_view, view))
5314 return vma->node.start;
5315
5316 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5317 return -1;
5318 }
5319
5320 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5321 struct i915_address_space *vm)
5322 {
5323 struct i915_vma *vma;
5324
5325 list_for_each_entry(vma, &o->vma_list, vma_link) {
5326 if (i915_is_ggtt(vma->vm) &&
5327 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5328 continue;
5329 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5330 return true;
5331 }
5332
5333 return false;
5334 }
5335
5336 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5337 const struct i915_ggtt_view *view)
5338 {
5339 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5340 struct i915_vma *vma;
5341
5342 list_for_each_entry(vma, &o->vma_list, vma_link)
5343 if (vma->vm == ggtt &&
5344 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5345 drm_mm_node_allocated(&vma->node))
5346 return true;
5347
5348 return false;
5349 }
5350
5351 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5352 {
5353 struct i915_vma *vma;
5354
5355 list_for_each_entry(vma, &o->vma_list, vma_link)
5356 if (drm_mm_node_allocated(&vma->node))
5357 return true;
5358
5359 return false;
5360 }
5361
5362 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5363 struct i915_address_space *vm)
5364 {
5365 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5366 struct i915_vma *vma;
5367
5368 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5369
5370 BUG_ON(list_empty(&o->vma_list));
5371
5372 list_for_each_entry(vma, &o->vma_list, vma_link) {
5373 if (i915_is_ggtt(vma->vm) &&
5374 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5375 continue;
5376 if (vma->vm == vm)
5377 return vma->node.size;
5378 }
5379 return 0;
5380 }
5381
5382 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5383 {
5384 struct i915_vma *vma;
5385 list_for_each_entry(vma, &obj->vma_list, vma_link)
5386 if (vma->pin_count > 0)
5387 return true;
5388
5389 return false;
5390 }
5391
This page took 0.161004 seconds and 5 git commands to generate.