Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
38
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
44 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45 int write);
46 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47 uint64_t offset,
48 uint64_t size);
49 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
50 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
51 bool interruptible);
52 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
53 unsigned alignment);
54 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
55 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56 struct drm_i915_gem_pwrite *args,
57 struct drm_file *file_priv);
58 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
59
60 static int
61 i915_gem_object_get_pages(struct drm_gem_object *obj,
62 gfp_t gfpmask);
63
64 static void
65 i915_gem_object_put_pages(struct drm_gem_object *obj);
66
67 static LIST_HEAD(shrink_list);
68 static DEFINE_SPINLOCK(shrink_list_lock);
69
70 /* some bookkeeping */
71 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count++;
75 dev_priv->mm.object_memory += size;
76 }
77
78 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
79 size_t size)
80 {
81 dev_priv->mm.object_count--;
82 dev_priv->mm.object_memory -= size;
83 }
84
85 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 dev_priv->mm.gtt_count++;
89 dev_priv->mm.gtt_memory += size;
90 }
91
92 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 dev_priv->mm.gtt_count--;
96 dev_priv->mm.gtt_memory -= size;
97 }
98
99 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
100 size_t size)
101 {
102 dev_priv->mm.pin_count++;
103 dev_priv->mm.pin_memory += size;
104 }
105
106 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
107 size_t size)
108 {
109 dev_priv->mm.pin_count--;
110 dev_priv->mm.pin_memory -= size;
111 }
112
113 int
114 i915_gem_check_is_wedged(struct drm_device *dev)
115 {
116 struct drm_i915_private *dev_priv = dev->dev_private;
117 struct completion *x = &dev_priv->error_completion;
118 unsigned long flags;
119 int ret;
120
121 if (!atomic_read(&dev_priv->mm.wedged))
122 return 0;
123
124 ret = wait_for_completion_interruptible(x);
125 if (ret)
126 return ret;
127
128 /* Success, we reset the GPU! */
129 if (!atomic_read(&dev_priv->mm.wedged))
130 return 0;
131
132 /* GPU is hung, bump the completion count to account for
133 * the token we just consumed so that we never hit zero and
134 * end up waiting upon a subsequent completion event that
135 * will never happen.
136 */
137 spin_lock_irqsave(&x->wait.lock, flags);
138 x->done++;
139 spin_unlock_irqrestore(&x->wait.lock, flags);
140 return -EIO;
141 }
142
143 static int i915_mutex_lock_interruptible(struct drm_device *dev)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 int ret;
147
148 ret = i915_gem_check_is_wedged(dev);
149 if (ret)
150 return ret;
151
152 ret = mutex_lock_interruptible(&dev->struct_mutex);
153 if (ret)
154 return ret;
155
156 if (atomic_read(&dev_priv->mm.wedged)) {
157 mutex_unlock(&dev->struct_mutex);
158 return -EAGAIN;
159 }
160
161 WARN_ON(i915_verify_lists(dev));
162 return 0;
163 }
164
165 static inline bool
166 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
167 {
168 return obj_priv->gtt_space &&
169 !obj_priv->active &&
170 obj_priv->pin_count == 0;
171 }
172
173 int i915_gem_do_init(struct drm_device *dev,
174 unsigned long start,
175 unsigned long end)
176 {
177 drm_i915_private_t *dev_priv = dev->dev_private;
178
179 if (start >= end ||
180 (start & (PAGE_SIZE - 1)) != 0 ||
181 (end & (PAGE_SIZE - 1)) != 0) {
182 return -EINVAL;
183 }
184
185 drm_mm_init(&dev_priv->mm.gtt_space, start,
186 end - start);
187
188 dev_priv->mm.gtt_total = end - start;
189
190 return 0;
191 }
192
193 int
194 i915_gem_init_ioctl(struct drm_device *dev, void *data,
195 struct drm_file *file_priv)
196 {
197 struct drm_i915_gem_init *args = data;
198 int ret;
199
200 mutex_lock(&dev->struct_mutex);
201 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
202 mutex_unlock(&dev->struct_mutex);
203
204 return ret;
205 }
206
207 int
208 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
209 struct drm_file *file_priv)
210 {
211 struct drm_i915_private *dev_priv = dev->dev_private;
212 struct drm_i915_gem_get_aperture *args = data;
213
214 if (!(dev->driver->driver_features & DRIVER_GEM))
215 return -ENODEV;
216
217 mutex_lock(&dev->struct_mutex);
218 args->aper_size = dev_priv->mm.gtt_total;
219 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
220 mutex_unlock(&dev->struct_mutex);
221
222 return 0;
223 }
224
225
226 /**
227 * Creates a new mm object and returns a handle to it.
228 */
229 int
230 i915_gem_create_ioctl(struct drm_device *dev, void *data,
231 struct drm_file *file_priv)
232 {
233 struct drm_i915_gem_create *args = data;
234 struct drm_gem_object *obj;
235 int ret;
236 u32 handle;
237
238 args->size = roundup(args->size, PAGE_SIZE);
239
240 /* Allocate the new object */
241 obj = i915_gem_alloc_object(dev, args->size);
242 if (obj == NULL)
243 return -ENOMEM;
244
245 ret = drm_gem_handle_create(file_priv, obj, &handle);
246 if (ret) {
247 drm_gem_object_release(obj);
248 i915_gem_info_remove_obj(dev->dev_private, obj->size);
249 kfree(obj);
250 return ret;
251 }
252
253 /* drop reference from allocate - handle holds it now */
254 drm_gem_object_unreference(obj);
255 trace_i915_gem_object_create(obj);
256
257 args->handle = handle;
258 return 0;
259 }
260
261 static inline int
262 fast_shmem_read(struct page **pages,
263 loff_t page_base, int page_offset,
264 char __user *data,
265 int length)
266 {
267 char *vaddr;
268 int ret;
269
270 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
271 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
272 kunmap_atomic(vaddr);
273
274 return ret;
275 }
276
277 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
278 {
279 drm_i915_private_t *dev_priv = obj->dev->dev_private;
280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
281
282 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
283 obj_priv->tiling_mode != I915_TILING_NONE;
284 }
285
286 static inline void
287 slow_shmem_copy(struct page *dst_page,
288 int dst_offset,
289 struct page *src_page,
290 int src_offset,
291 int length)
292 {
293 char *dst_vaddr, *src_vaddr;
294
295 dst_vaddr = kmap(dst_page);
296 src_vaddr = kmap(src_page);
297
298 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
299
300 kunmap(src_page);
301 kunmap(dst_page);
302 }
303
304 static inline void
305 slow_shmem_bit17_copy(struct page *gpu_page,
306 int gpu_offset,
307 struct page *cpu_page,
308 int cpu_offset,
309 int length,
310 int is_read)
311 {
312 char *gpu_vaddr, *cpu_vaddr;
313
314 /* Use the unswizzled path if this page isn't affected. */
315 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
316 if (is_read)
317 return slow_shmem_copy(cpu_page, cpu_offset,
318 gpu_page, gpu_offset, length);
319 else
320 return slow_shmem_copy(gpu_page, gpu_offset,
321 cpu_page, cpu_offset, length);
322 }
323
324 gpu_vaddr = kmap(gpu_page);
325 cpu_vaddr = kmap(cpu_page);
326
327 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
328 * XORing with the other bits (A9 for Y, A9 and A10 for X)
329 */
330 while (length > 0) {
331 int cacheline_end = ALIGN(gpu_offset + 1, 64);
332 int this_length = min(cacheline_end - gpu_offset, length);
333 int swizzled_gpu_offset = gpu_offset ^ 64;
334
335 if (is_read) {
336 memcpy(cpu_vaddr + cpu_offset,
337 gpu_vaddr + swizzled_gpu_offset,
338 this_length);
339 } else {
340 memcpy(gpu_vaddr + swizzled_gpu_offset,
341 cpu_vaddr + cpu_offset,
342 this_length);
343 }
344 cpu_offset += this_length;
345 gpu_offset += this_length;
346 length -= this_length;
347 }
348
349 kunmap(cpu_page);
350 kunmap(gpu_page);
351 }
352
353 /**
354 * This is the fast shmem pread path, which attempts to copy_from_user directly
355 * from the backing pages of the object to the user's address space. On a
356 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
357 */
358 static int
359 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
360 struct drm_i915_gem_pread *args,
361 struct drm_file *file_priv)
362 {
363 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
364 ssize_t remain;
365 loff_t offset, page_base;
366 char __user *user_data;
367 int page_offset, page_length;
368
369 user_data = (char __user *) (uintptr_t) args->data_ptr;
370 remain = args->size;
371
372 obj_priv = to_intel_bo(obj);
373 offset = args->offset;
374
375 while (remain > 0) {
376 /* Operation in this page
377 *
378 * page_base = page offset within aperture
379 * page_offset = offset within page
380 * page_length = bytes to copy for this page
381 */
382 page_base = (offset & ~(PAGE_SIZE-1));
383 page_offset = offset & (PAGE_SIZE-1);
384 page_length = remain;
385 if ((page_offset + remain) > PAGE_SIZE)
386 page_length = PAGE_SIZE - page_offset;
387
388 if (fast_shmem_read(obj_priv->pages,
389 page_base, page_offset,
390 user_data, page_length))
391 return -EFAULT;
392
393 remain -= page_length;
394 user_data += page_length;
395 offset += page_length;
396 }
397
398 return 0;
399 }
400
401 static int
402 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
403 {
404 int ret;
405
406 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
407
408 /* If we've insufficient memory to map in the pages, attempt
409 * to make some space by throwing out some old buffers.
410 */
411 if (ret == -ENOMEM) {
412 struct drm_device *dev = obj->dev;
413
414 ret = i915_gem_evict_something(dev, obj->size,
415 i915_gem_get_gtt_alignment(obj));
416 if (ret)
417 return ret;
418
419 ret = i915_gem_object_get_pages(obj, 0);
420 }
421
422 return ret;
423 }
424
425 /**
426 * This is the fallback shmem pread path, which allocates temporary storage
427 * in kernel space to copy_to_user into outside of the struct_mutex, so we
428 * can copy out of the object's backing pages while holding the struct mutex
429 * and not take page faults.
430 */
431 static int
432 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
433 struct drm_i915_gem_pread *args,
434 struct drm_file *file_priv)
435 {
436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
437 struct mm_struct *mm = current->mm;
438 struct page **user_pages;
439 ssize_t remain;
440 loff_t offset, pinned_pages, i;
441 loff_t first_data_page, last_data_page, num_pages;
442 int shmem_page_index, shmem_page_offset;
443 int data_page_index, data_page_offset;
444 int page_length;
445 int ret;
446 uint64_t data_ptr = args->data_ptr;
447 int do_bit17_swizzling;
448
449 remain = args->size;
450
451 /* Pin the user pages containing the data. We can't fault while
452 * holding the struct mutex, yet we want to hold it while
453 * dereferencing the user data.
454 */
455 first_data_page = data_ptr / PAGE_SIZE;
456 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
457 num_pages = last_data_page - first_data_page + 1;
458
459 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
460 if (user_pages == NULL)
461 return -ENOMEM;
462
463 mutex_unlock(&dev->struct_mutex);
464 down_read(&mm->mmap_sem);
465 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
466 num_pages, 1, 0, user_pages, NULL);
467 up_read(&mm->mmap_sem);
468 mutex_lock(&dev->struct_mutex);
469 if (pinned_pages < num_pages) {
470 ret = -EFAULT;
471 goto out;
472 }
473
474 ret = i915_gem_object_set_cpu_read_domain_range(obj,
475 args->offset,
476 args->size);
477 if (ret)
478 goto out;
479
480 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
481
482 obj_priv = to_intel_bo(obj);
483 offset = args->offset;
484
485 while (remain > 0) {
486 /* Operation in this page
487 *
488 * shmem_page_index = page number within shmem file
489 * shmem_page_offset = offset within page in shmem file
490 * data_page_index = page number in get_user_pages return
491 * data_page_offset = offset with data_page_index page.
492 * page_length = bytes to copy for this page
493 */
494 shmem_page_index = offset / PAGE_SIZE;
495 shmem_page_offset = offset & ~PAGE_MASK;
496 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
497 data_page_offset = data_ptr & ~PAGE_MASK;
498
499 page_length = remain;
500 if ((shmem_page_offset + page_length) > PAGE_SIZE)
501 page_length = PAGE_SIZE - shmem_page_offset;
502 if ((data_page_offset + page_length) > PAGE_SIZE)
503 page_length = PAGE_SIZE - data_page_offset;
504
505 if (do_bit17_swizzling) {
506 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
507 shmem_page_offset,
508 user_pages[data_page_index],
509 data_page_offset,
510 page_length,
511 1);
512 } else {
513 slow_shmem_copy(user_pages[data_page_index],
514 data_page_offset,
515 obj_priv->pages[shmem_page_index],
516 shmem_page_offset,
517 page_length);
518 }
519
520 remain -= page_length;
521 data_ptr += page_length;
522 offset += page_length;
523 }
524
525 out:
526 for (i = 0; i < pinned_pages; i++) {
527 SetPageDirty(user_pages[i]);
528 page_cache_release(user_pages[i]);
529 }
530 drm_free_large(user_pages);
531
532 return ret;
533 }
534
535 /**
536 * Reads data from the object referenced by handle.
537 *
538 * On error, the contents of *data are undefined.
539 */
540 int
541 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
542 struct drm_file *file_priv)
543 {
544 struct drm_i915_gem_pread *args = data;
545 struct drm_gem_object *obj;
546 struct drm_i915_gem_object *obj_priv;
547 int ret = 0;
548
549 if (args->size == 0)
550 return 0;
551
552 if (!access_ok(VERIFY_WRITE,
553 (char __user *)(uintptr_t)args->data_ptr,
554 args->size))
555 return -EFAULT;
556
557 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
558 args->size);
559 if (ret)
560 return -EFAULT;
561
562 ret = i915_mutex_lock_interruptible(dev);
563 if (ret)
564 return ret;
565
566 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
567 if (obj == NULL) {
568 ret = -ENOENT;
569 goto unlock;
570 }
571 obj_priv = to_intel_bo(obj);
572
573 /* Bounds check source. */
574 if (args->offset > obj->size || args->size > obj->size - args->offset) {
575 ret = -EINVAL;
576 goto out;
577 }
578
579 ret = i915_gem_object_get_pages_or_evict(obj);
580 if (ret)
581 goto out;
582
583 ret = i915_gem_object_set_cpu_read_domain_range(obj,
584 args->offset,
585 args->size);
586 if (ret)
587 goto out_put;
588
589 ret = -EFAULT;
590 if (!i915_gem_object_needs_bit17_swizzle(obj))
591 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
592 if (ret == -EFAULT)
593 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
594
595 out_put:
596 i915_gem_object_put_pages(obj);
597 out:
598 drm_gem_object_unreference(obj);
599 unlock:
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603
604 /* This is the fast write path which cannot handle
605 * page faults in the source data
606 */
607
608 static inline int
609 fast_user_write(struct io_mapping *mapping,
610 loff_t page_base, int page_offset,
611 char __user *user_data,
612 int length)
613 {
614 char *vaddr_atomic;
615 unsigned long unwritten;
616
617 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
618 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
619 user_data, length);
620 io_mapping_unmap_atomic(vaddr_atomic);
621 return unwritten;
622 }
623
624 /* Here's the write path which can sleep for
625 * page faults
626 */
627
628 static inline void
629 slow_kernel_write(struct io_mapping *mapping,
630 loff_t gtt_base, int gtt_offset,
631 struct page *user_page, int user_offset,
632 int length)
633 {
634 char __iomem *dst_vaddr;
635 char *src_vaddr;
636
637 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
638 src_vaddr = kmap(user_page);
639
640 memcpy_toio(dst_vaddr + gtt_offset,
641 src_vaddr + user_offset,
642 length);
643
644 kunmap(user_page);
645 io_mapping_unmap(dst_vaddr);
646 }
647
648 static inline int
649 fast_shmem_write(struct page **pages,
650 loff_t page_base, int page_offset,
651 char __user *data,
652 int length)
653 {
654 char *vaddr;
655 int ret;
656
657 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
658 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
659 kunmap_atomic(vaddr);
660
661 return ret;
662 }
663
664 /**
665 * This is the fast pwrite path, where we copy the data directly from the
666 * user into the GTT, uncached.
667 */
668 static int
669 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
670 struct drm_i915_gem_pwrite *args,
671 struct drm_file *file_priv)
672 {
673 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
674 drm_i915_private_t *dev_priv = dev->dev_private;
675 ssize_t remain;
676 loff_t offset, page_base;
677 char __user *user_data;
678 int page_offset, page_length;
679
680 user_data = (char __user *) (uintptr_t) args->data_ptr;
681 remain = args->size;
682
683 obj_priv = to_intel_bo(obj);
684 offset = obj_priv->gtt_offset + args->offset;
685
686 while (remain > 0) {
687 /* Operation in this page
688 *
689 * page_base = page offset within aperture
690 * page_offset = offset within page
691 * page_length = bytes to copy for this page
692 */
693 page_base = (offset & ~(PAGE_SIZE-1));
694 page_offset = offset & (PAGE_SIZE-1);
695 page_length = remain;
696 if ((page_offset + remain) > PAGE_SIZE)
697 page_length = PAGE_SIZE - page_offset;
698
699 /* If we get a fault while copying data, then (presumably) our
700 * source page isn't available. Return the error and we'll
701 * retry in the slow path.
702 */
703 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
704 page_offset, user_data, page_length))
705
706 return -EFAULT;
707
708 remain -= page_length;
709 user_data += page_length;
710 offset += page_length;
711 }
712
713 return 0;
714 }
715
716 /**
717 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
718 * the memory and maps it using kmap_atomic for copying.
719 *
720 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
721 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
722 */
723 static int
724 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
725 struct drm_i915_gem_pwrite *args,
726 struct drm_file *file_priv)
727 {
728 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
729 drm_i915_private_t *dev_priv = dev->dev_private;
730 ssize_t remain;
731 loff_t gtt_page_base, offset;
732 loff_t first_data_page, last_data_page, num_pages;
733 loff_t pinned_pages, i;
734 struct page **user_pages;
735 struct mm_struct *mm = current->mm;
736 int gtt_page_offset, data_page_offset, data_page_index, page_length;
737 int ret;
738 uint64_t data_ptr = args->data_ptr;
739
740 remain = args->size;
741
742 /* Pin the user pages containing the data. We can't fault while
743 * holding the struct mutex, and all of the pwrite implementations
744 * want to hold it while dereferencing the user data.
745 */
746 first_data_page = data_ptr / PAGE_SIZE;
747 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
748 num_pages = last_data_page - first_data_page + 1;
749
750 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
751 if (user_pages == NULL)
752 return -ENOMEM;
753
754 mutex_unlock(&dev->struct_mutex);
755 down_read(&mm->mmap_sem);
756 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
757 num_pages, 0, 0, user_pages, NULL);
758 up_read(&mm->mmap_sem);
759 mutex_lock(&dev->struct_mutex);
760 if (pinned_pages < num_pages) {
761 ret = -EFAULT;
762 goto out_unpin_pages;
763 }
764
765 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
766 if (ret)
767 goto out_unpin_pages;
768
769 obj_priv = to_intel_bo(obj);
770 offset = obj_priv->gtt_offset + args->offset;
771
772 while (remain > 0) {
773 /* Operation in this page
774 *
775 * gtt_page_base = page offset within aperture
776 * gtt_page_offset = offset within page in aperture
777 * data_page_index = page number in get_user_pages return
778 * data_page_offset = offset with data_page_index page.
779 * page_length = bytes to copy for this page
780 */
781 gtt_page_base = offset & PAGE_MASK;
782 gtt_page_offset = offset & ~PAGE_MASK;
783 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
784 data_page_offset = data_ptr & ~PAGE_MASK;
785
786 page_length = remain;
787 if ((gtt_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - gtt_page_offset;
789 if ((data_page_offset + page_length) > PAGE_SIZE)
790 page_length = PAGE_SIZE - data_page_offset;
791
792 slow_kernel_write(dev_priv->mm.gtt_mapping,
793 gtt_page_base, gtt_page_offset,
794 user_pages[data_page_index],
795 data_page_offset,
796 page_length);
797
798 remain -= page_length;
799 offset += page_length;
800 data_ptr += page_length;
801 }
802
803 out_unpin_pages:
804 for (i = 0; i < pinned_pages; i++)
805 page_cache_release(user_pages[i]);
806 drm_free_large(user_pages);
807
808 return ret;
809 }
810
811 /**
812 * This is the fast shmem pwrite path, which attempts to directly
813 * copy_from_user into the kmapped pages backing the object.
814 */
815 static int
816 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
817 struct drm_i915_gem_pwrite *args,
818 struct drm_file *file_priv)
819 {
820 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
821 ssize_t remain;
822 loff_t offset, page_base;
823 char __user *user_data;
824 int page_offset, page_length;
825
826 user_data = (char __user *) (uintptr_t) args->data_ptr;
827 remain = args->size;
828
829 obj_priv = to_intel_bo(obj);
830 offset = args->offset;
831 obj_priv->dirty = 1;
832
833 while (remain > 0) {
834 /* Operation in this page
835 *
836 * page_base = page offset within aperture
837 * page_offset = offset within page
838 * page_length = bytes to copy for this page
839 */
840 page_base = (offset & ~(PAGE_SIZE-1));
841 page_offset = offset & (PAGE_SIZE-1);
842 page_length = remain;
843 if ((page_offset + remain) > PAGE_SIZE)
844 page_length = PAGE_SIZE - page_offset;
845
846 if (fast_shmem_write(obj_priv->pages,
847 page_base, page_offset,
848 user_data, page_length))
849 return -EFAULT;
850
851 remain -= page_length;
852 user_data += page_length;
853 offset += page_length;
854 }
855
856 return 0;
857 }
858
859 /**
860 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
861 * the memory and maps it using kmap_atomic for copying.
862 *
863 * This avoids taking mmap_sem for faulting on the user's address while the
864 * struct_mutex is held.
865 */
866 static int
867 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
868 struct drm_i915_gem_pwrite *args,
869 struct drm_file *file_priv)
870 {
871 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
872 struct mm_struct *mm = current->mm;
873 struct page **user_pages;
874 ssize_t remain;
875 loff_t offset, pinned_pages, i;
876 loff_t first_data_page, last_data_page, num_pages;
877 int shmem_page_index, shmem_page_offset;
878 int data_page_index, data_page_offset;
879 int page_length;
880 int ret;
881 uint64_t data_ptr = args->data_ptr;
882 int do_bit17_swizzling;
883
884 remain = args->size;
885
886 /* Pin the user pages containing the data. We can't fault while
887 * holding the struct mutex, and all of the pwrite implementations
888 * want to hold it while dereferencing the user data.
889 */
890 first_data_page = data_ptr / PAGE_SIZE;
891 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
892 num_pages = last_data_page - first_data_page + 1;
893
894 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
895 if (user_pages == NULL)
896 return -ENOMEM;
897
898 mutex_unlock(&dev->struct_mutex);
899 down_read(&mm->mmap_sem);
900 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
901 num_pages, 0, 0, user_pages, NULL);
902 up_read(&mm->mmap_sem);
903 mutex_lock(&dev->struct_mutex);
904 if (pinned_pages < num_pages) {
905 ret = -EFAULT;
906 goto out;
907 }
908
909 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
910 if (ret)
911 goto out;
912
913 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 obj_priv = to_intel_bo(obj);
916 offset = args->offset;
917 obj_priv->dirty = 1;
918
919 while (remain > 0) {
920 /* Operation in this page
921 *
922 * shmem_page_index = page number within shmem file
923 * shmem_page_offset = offset within page in shmem file
924 * data_page_index = page number in get_user_pages return
925 * data_page_offset = offset with data_page_index page.
926 * page_length = bytes to copy for this page
927 */
928 shmem_page_index = offset / PAGE_SIZE;
929 shmem_page_offset = offset & ~PAGE_MASK;
930 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
931 data_page_offset = data_ptr & ~PAGE_MASK;
932
933 page_length = remain;
934 if ((shmem_page_offset + page_length) > PAGE_SIZE)
935 page_length = PAGE_SIZE - shmem_page_offset;
936 if ((data_page_offset + page_length) > PAGE_SIZE)
937 page_length = PAGE_SIZE - data_page_offset;
938
939 if (do_bit17_swizzling) {
940 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
941 shmem_page_offset,
942 user_pages[data_page_index],
943 data_page_offset,
944 page_length,
945 0);
946 } else {
947 slow_shmem_copy(obj_priv->pages[shmem_page_index],
948 shmem_page_offset,
949 user_pages[data_page_index],
950 data_page_offset,
951 page_length);
952 }
953
954 remain -= page_length;
955 data_ptr += page_length;
956 offset += page_length;
957 }
958
959 out:
960 for (i = 0; i < pinned_pages; i++)
961 page_cache_release(user_pages[i]);
962 drm_free_large(user_pages);
963
964 return ret;
965 }
966
967 /**
968 * Writes data to the object referenced by handle.
969 *
970 * On error, the contents of the buffer that were to be modified are undefined.
971 */
972 int
973 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
974 struct drm_file *file)
975 {
976 struct drm_i915_gem_pwrite *args = data;
977 struct drm_gem_object *obj;
978 struct drm_i915_gem_object *obj_priv;
979 int ret;
980
981 if (args->size == 0)
982 return 0;
983
984 if (!access_ok(VERIFY_READ,
985 (char __user *)(uintptr_t)args->data_ptr,
986 args->size))
987 return -EFAULT;
988
989 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
990 args->size);
991 if (ret)
992 return -EFAULT;
993
994 ret = i915_mutex_lock_interruptible(dev);
995 if (ret)
996 return ret;
997
998 obj = drm_gem_object_lookup(dev, file, args->handle);
999 if (obj == NULL) {
1000 ret = -ENOENT;
1001 goto unlock;
1002 }
1003 obj_priv = to_intel_bo(obj);
1004
1005 /* Bounds check destination. */
1006 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1007 ret = -EINVAL;
1008 goto out;
1009 }
1010
1011 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1012 * it would end up going through the fenced access, and we'll get
1013 * different detiling behavior between reading and writing.
1014 * pread/pwrite currently are reading and writing from the CPU
1015 * perspective, requiring manual detiling by the client.
1016 */
1017 if (obj_priv->phys_obj)
1018 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1019 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1020 obj_priv->gtt_space &&
1021 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1022 ret = i915_gem_object_pin(obj, 0);
1023 if (ret)
1024 goto out;
1025
1026 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1027 if (ret)
1028 goto out_unpin;
1029
1030 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1033
1034 out_unpin:
1035 i915_gem_object_unpin(obj);
1036 } else {
1037 ret = i915_gem_object_get_pages_or_evict(obj);
1038 if (ret)
1039 goto out;
1040
1041 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1042 if (ret)
1043 goto out_put;
1044
1045 ret = -EFAULT;
1046 if (!i915_gem_object_needs_bit17_swizzle(obj))
1047 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1048 if (ret == -EFAULT)
1049 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1050
1051 out_put:
1052 i915_gem_object_put_pages(obj);
1053 }
1054
1055 out:
1056 drm_gem_object_unreference(obj);
1057 unlock:
1058 mutex_unlock(&dev->struct_mutex);
1059 return ret;
1060 }
1061
1062 /**
1063 * Called when user space prepares to use an object with the CPU, either
1064 * through the mmap ioctl's mapping or a GTT mapping.
1065 */
1066 int
1067 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 struct drm_i915_gem_set_domain *args = data;
1072 struct drm_gem_object *obj;
1073 struct drm_i915_gem_object *obj_priv;
1074 uint32_t read_domains = args->read_domains;
1075 uint32_t write_domain = args->write_domain;
1076 int ret;
1077
1078 if (!(dev->driver->driver_features & DRIVER_GEM))
1079 return -ENODEV;
1080
1081 /* Only handle setting domains to types used by the CPU. */
1082 if (write_domain & I915_GEM_GPU_DOMAINS)
1083 return -EINVAL;
1084
1085 if (read_domains & I915_GEM_GPU_DOMAINS)
1086 return -EINVAL;
1087
1088 /* Having something in the write domain implies it's in the read
1089 * domain, and only that read domain. Enforce that in the request.
1090 */
1091 if (write_domain != 0 && read_domains != write_domain)
1092 return -EINVAL;
1093
1094 ret = i915_mutex_lock_interruptible(dev);
1095 if (ret)
1096 return ret;
1097
1098 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1099 if (obj == NULL) {
1100 ret = -ENOENT;
1101 goto unlock;
1102 }
1103 obj_priv = to_intel_bo(obj);
1104
1105 intel_mark_busy(dev, obj);
1106
1107 if (read_domains & I915_GEM_DOMAIN_GTT) {
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1109
1110 /* Update the LRU on the fence for the CPU access that's
1111 * about to occur.
1112 */
1113 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1114 struct drm_i915_fence_reg *reg =
1115 &dev_priv->fence_regs[obj_priv->fence_reg];
1116 list_move_tail(&reg->lru_list,
1117 &dev_priv->mm.fence_list);
1118 }
1119
1120 /* Silently promote "you're not bound, there was nothing to do"
1121 * to success, since the client was just asking us to
1122 * make sure everything was done.
1123 */
1124 if (ret == -EINVAL)
1125 ret = 0;
1126 } else {
1127 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1128 }
1129
1130 /* Maintain LRU order of "inactive" objects */
1131 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1132 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1133
1134 drm_gem_object_unreference(obj);
1135 unlock:
1136 mutex_unlock(&dev->struct_mutex);
1137 return ret;
1138 }
1139
1140 /**
1141 * Called when user space has done writes to this buffer
1142 */
1143 int
1144 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1145 struct drm_file *file_priv)
1146 {
1147 struct drm_i915_gem_sw_finish *args = data;
1148 struct drm_gem_object *obj;
1149 int ret = 0;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
1154 ret = i915_mutex_lock_interruptible(dev);
1155 if (ret)
1156 return ret;
1157
1158 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1159 if (obj == NULL) {
1160 ret = -ENOENT;
1161 goto unlock;
1162 }
1163
1164 /* Pinned buffers may be scanout, so flush the cache */
1165 if (to_intel_bo(obj)->pin_count)
1166 i915_gem_object_flush_cpu_write_domain(obj);
1167
1168 drm_gem_object_unreference(obj);
1169 unlock:
1170 mutex_unlock(&dev->struct_mutex);
1171 return ret;
1172 }
1173
1174 /**
1175 * Maps the contents of an object, returning the address it is mapped
1176 * into.
1177 *
1178 * While the mapping holds a reference on the contents of the object, it doesn't
1179 * imply a ref on the object itself.
1180 */
1181 int
1182 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1183 struct drm_file *file_priv)
1184 {
1185 struct drm_i915_gem_mmap *args = data;
1186 struct drm_gem_object *obj;
1187 loff_t offset;
1188 unsigned long addr;
1189
1190 if (!(dev->driver->driver_features & DRIVER_GEM))
1191 return -ENODEV;
1192
1193 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1194 if (obj == NULL)
1195 return -ENOENT;
1196
1197 offset = args->offset;
1198
1199 down_write(&current->mm->mmap_sem);
1200 addr = do_mmap(obj->filp, 0, args->size,
1201 PROT_READ | PROT_WRITE, MAP_SHARED,
1202 args->offset);
1203 up_write(&current->mm->mmap_sem);
1204 drm_gem_object_unreference_unlocked(obj);
1205 if (IS_ERR((void *)addr))
1206 return addr;
1207
1208 args->addr_ptr = (uint64_t) addr;
1209
1210 return 0;
1211 }
1212
1213 /**
1214 * i915_gem_fault - fault a page into the GTT
1215 * vma: VMA in question
1216 * vmf: fault info
1217 *
1218 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1219 * from userspace. The fault handler takes care of binding the object to
1220 * the GTT (if needed), allocating and programming a fence register (again,
1221 * only if needed based on whether the old reg is still valid or the object
1222 * is tiled) and inserting a new PTE into the faulting process.
1223 *
1224 * Note that the faulting process may involve evicting existing objects
1225 * from the GTT and/or fence registers to make room. So performance may
1226 * suffer if the GTT working set is large or there are few fence registers
1227 * left.
1228 */
1229 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1230 {
1231 struct drm_gem_object *obj = vma->vm_private_data;
1232 struct drm_device *dev = obj->dev;
1233 drm_i915_private_t *dev_priv = dev->dev_private;
1234 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1235 pgoff_t page_offset;
1236 unsigned long pfn;
1237 int ret = 0;
1238 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1239
1240 /* We don't use vmf->pgoff since that has the fake offset */
1241 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1242 PAGE_SHIFT;
1243
1244 /* Now bind it into the GTT if needed */
1245 mutex_lock(&dev->struct_mutex);
1246 if (!obj_priv->gtt_space) {
1247 ret = i915_gem_object_bind_to_gtt(obj, 0);
1248 if (ret)
1249 goto unlock;
1250
1251 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1252 if (ret)
1253 goto unlock;
1254 }
1255
1256 /* Need a new fence register? */
1257 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1258 ret = i915_gem_object_get_fence_reg(obj, true);
1259 if (ret)
1260 goto unlock;
1261 }
1262
1263 if (i915_gem_object_is_inactive(obj_priv))
1264 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1265
1266 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1267 page_offset;
1268
1269 /* Finally, remap it using the new GTT offset */
1270 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1271 unlock:
1272 mutex_unlock(&dev->struct_mutex);
1273
1274 switch (ret) {
1275 case 0:
1276 case -ERESTARTSYS:
1277 return VM_FAULT_NOPAGE;
1278 case -ENOMEM:
1279 case -EAGAIN:
1280 return VM_FAULT_OOM;
1281 default:
1282 return VM_FAULT_SIGBUS;
1283 }
1284 }
1285
1286 /**
1287 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1288 * @obj: obj in question
1289 *
1290 * GEM memory mapping works by handing back to userspace a fake mmap offset
1291 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1292 * up the object based on the offset and sets up the various memory mapping
1293 * structures.
1294 *
1295 * This routine allocates and attaches a fake offset for @obj.
1296 */
1297 static int
1298 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1299 {
1300 struct drm_device *dev = obj->dev;
1301 struct drm_gem_mm *mm = dev->mm_private;
1302 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1303 struct drm_map_list *list;
1304 struct drm_local_map *map;
1305 int ret = 0;
1306
1307 /* Set the object up for mmap'ing */
1308 list = &obj->map_list;
1309 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1310 if (!list->map)
1311 return -ENOMEM;
1312
1313 map = list->map;
1314 map->type = _DRM_GEM;
1315 map->size = obj->size;
1316 map->handle = obj;
1317
1318 /* Get a DRM GEM mmap offset allocated... */
1319 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1320 obj->size / PAGE_SIZE, 0, 0);
1321 if (!list->file_offset_node) {
1322 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1323 ret = -ENOSPC;
1324 goto out_free_list;
1325 }
1326
1327 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1328 obj->size / PAGE_SIZE, 0);
1329 if (!list->file_offset_node) {
1330 ret = -ENOMEM;
1331 goto out_free_list;
1332 }
1333
1334 list->hash.key = list->file_offset_node->start;
1335 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1336 if (ret) {
1337 DRM_ERROR("failed to add to map hash\n");
1338 goto out_free_mm;
1339 }
1340
1341 /* By now we should be all set, any drm_mmap request on the offset
1342 * below will get to our mmap & fault handler */
1343 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1344
1345 return 0;
1346
1347 out_free_mm:
1348 drm_mm_put_block(list->file_offset_node);
1349 out_free_list:
1350 kfree(list->map);
1351
1352 return ret;
1353 }
1354
1355 /**
1356 * i915_gem_release_mmap - remove physical page mappings
1357 * @obj: obj in question
1358 *
1359 * Preserve the reservation of the mmapping with the DRM core code, but
1360 * relinquish ownership of the pages back to the system.
1361 *
1362 * It is vital that we remove the page mapping if we have mapped a tiled
1363 * object through the GTT and then lose the fence register due to
1364 * resource pressure. Similarly if the object has been moved out of the
1365 * aperture, than pages mapped into userspace must be revoked. Removing the
1366 * mapping will then trigger a page fault on the next user access, allowing
1367 * fixup by i915_gem_fault().
1368 */
1369 void
1370 i915_gem_release_mmap(struct drm_gem_object *obj)
1371 {
1372 struct drm_device *dev = obj->dev;
1373 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1374
1375 if (dev->dev_mapping)
1376 unmap_mapping_range(dev->dev_mapping,
1377 obj_priv->mmap_offset, obj->size, 1);
1378 }
1379
1380 static void
1381 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1382 {
1383 struct drm_device *dev = obj->dev;
1384 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1385 struct drm_gem_mm *mm = dev->mm_private;
1386 struct drm_map_list *list;
1387
1388 list = &obj->map_list;
1389 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1390
1391 if (list->file_offset_node) {
1392 drm_mm_put_block(list->file_offset_node);
1393 list->file_offset_node = NULL;
1394 }
1395
1396 if (list->map) {
1397 kfree(list->map);
1398 list->map = NULL;
1399 }
1400
1401 obj_priv->mmap_offset = 0;
1402 }
1403
1404 /**
1405 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1406 * @obj: object to check
1407 *
1408 * Return the required GTT alignment for an object, taking into account
1409 * potential fence register mapping if needed.
1410 */
1411 static uint32_t
1412 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1413 {
1414 struct drm_device *dev = obj->dev;
1415 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1416 int start, i;
1417
1418 /*
1419 * Minimum alignment is 4k (GTT page size), but might be greater
1420 * if a fence register is needed for the object.
1421 */
1422 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1423 return 4096;
1424
1425 /*
1426 * Previous chips need to be aligned to the size of the smallest
1427 * fence register that can contain the object.
1428 */
1429 if (INTEL_INFO(dev)->gen == 3)
1430 start = 1024*1024;
1431 else
1432 start = 512*1024;
1433
1434 for (i = start; i < obj->size; i <<= 1)
1435 ;
1436
1437 return i;
1438 }
1439
1440 /**
1441 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1442 * @dev: DRM device
1443 * @data: GTT mapping ioctl data
1444 * @file_priv: GEM object info
1445 *
1446 * Simply returns the fake offset to userspace so it can mmap it.
1447 * The mmap call will end up in drm_gem_mmap(), which will set things
1448 * up so we can get faults in the handler above.
1449 *
1450 * The fault handler will take care of binding the object into the GTT
1451 * (since it may have been evicted to make room for something), allocating
1452 * a fence register, and mapping the appropriate aperture address into
1453 * userspace.
1454 */
1455 int
1456 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1457 struct drm_file *file_priv)
1458 {
1459 struct drm_i915_gem_mmap_gtt *args = data;
1460 struct drm_gem_object *obj;
1461 struct drm_i915_gem_object *obj_priv;
1462 int ret;
1463
1464 if (!(dev->driver->driver_features & DRIVER_GEM))
1465 return -ENODEV;
1466
1467 ret = i915_mutex_lock_interruptible(dev);
1468 if (ret)
1469 return ret;
1470
1471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1472 if (obj == NULL) {
1473 ret = -ENOENT;
1474 goto unlock;
1475 }
1476 obj_priv = to_intel_bo(obj);
1477
1478 if (obj_priv->madv != I915_MADV_WILLNEED) {
1479 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1480 ret = -EINVAL;
1481 goto out;
1482 }
1483
1484 if (!obj_priv->mmap_offset) {
1485 ret = i915_gem_create_mmap_offset(obj);
1486 if (ret)
1487 goto out;
1488 }
1489
1490 args->offset = obj_priv->mmap_offset;
1491
1492 /*
1493 * Pull it into the GTT so that we have a page list (makes the
1494 * initial fault faster and any subsequent flushing possible).
1495 */
1496 if (!obj_priv->agp_mem) {
1497 ret = i915_gem_object_bind_to_gtt(obj, 0);
1498 if (ret)
1499 goto out;
1500 }
1501
1502 out:
1503 drm_gem_object_unreference(obj);
1504 unlock:
1505 mutex_unlock(&dev->struct_mutex);
1506 return ret;
1507 }
1508
1509 static void
1510 i915_gem_object_put_pages(struct drm_gem_object *obj)
1511 {
1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513 int page_count = obj->size / PAGE_SIZE;
1514 int i;
1515
1516 BUG_ON(obj_priv->pages_refcount == 0);
1517 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1518
1519 if (--obj_priv->pages_refcount != 0)
1520 return;
1521
1522 if (obj_priv->tiling_mode != I915_TILING_NONE)
1523 i915_gem_object_save_bit_17_swizzle(obj);
1524
1525 if (obj_priv->madv == I915_MADV_DONTNEED)
1526 obj_priv->dirty = 0;
1527
1528 for (i = 0; i < page_count; i++) {
1529 if (obj_priv->dirty)
1530 set_page_dirty(obj_priv->pages[i]);
1531
1532 if (obj_priv->madv == I915_MADV_WILLNEED)
1533 mark_page_accessed(obj_priv->pages[i]);
1534
1535 page_cache_release(obj_priv->pages[i]);
1536 }
1537 obj_priv->dirty = 0;
1538
1539 drm_free_large(obj_priv->pages);
1540 obj_priv->pages = NULL;
1541 }
1542
1543 static uint32_t
1544 i915_gem_next_request_seqno(struct drm_device *dev,
1545 struct intel_ring_buffer *ring)
1546 {
1547 drm_i915_private_t *dev_priv = dev->dev_private;
1548
1549 ring->outstanding_lazy_request = true;
1550 return dev_priv->next_seqno;
1551 }
1552
1553 static void
1554 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1555 struct intel_ring_buffer *ring)
1556 {
1557 struct drm_device *dev = obj->dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1560 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1561
1562 BUG_ON(ring == NULL);
1563 obj_priv->ring = ring;
1564
1565 /* Add a reference if we're newly entering the active list. */
1566 if (!obj_priv->active) {
1567 drm_gem_object_reference(obj);
1568 obj_priv->active = 1;
1569 }
1570
1571 /* Move from whatever list we were on to the tail of execution. */
1572 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1573 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1574 obj_priv->last_rendering_seqno = seqno;
1575 }
1576
1577 static void
1578 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1579 {
1580 struct drm_device *dev = obj->dev;
1581 drm_i915_private_t *dev_priv = dev->dev_private;
1582 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1583
1584 BUG_ON(!obj_priv->active);
1585 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1586 list_del_init(&obj_priv->ring_list);
1587 obj_priv->last_rendering_seqno = 0;
1588 }
1589
1590 /* Immediately discard the backing storage */
1591 static void
1592 i915_gem_object_truncate(struct drm_gem_object *obj)
1593 {
1594 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1595 struct inode *inode;
1596
1597 /* Our goal here is to return as much of the memory as
1598 * is possible back to the system as we are called from OOM.
1599 * To do this we must instruct the shmfs to drop all of its
1600 * backing pages, *now*. Here we mirror the actions taken
1601 * when by shmem_delete_inode() to release the backing store.
1602 */
1603 inode = obj->filp->f_path.dentry->d_inode;
1604 truncate_inode_pages(inode->i_mapping, 0);
1605 if (inode->i_op->truncate_range)
1606 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1607
1608 obj_priv->madv = __I915_MADV_PURGED;
1609 }
1610
1611 static inline int
1612 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1613 {
1614 return obj_priv->madv == I915_MADV_DONTNEED;
1615 }
1616
1617 static void
1618 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1619 {
1620 struct drm_device *dev = obj->dev;
1621 drm_i915_private_t *dev_priv = dev->dev_private;
1622 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1623
1624 if (obj_priv->pin_count != 0)
1625 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1626 else
1627 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1628 list_del_init(&obj_priv->ring_list);
1629
1630 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1631
1632 obj_priv->last_rendering_seqno = 0;
1633 obj_priv->ring = NULL;
1634 if (obj_priv->active) {
1635 obj_priv->active = 0;
1636 drm_gem_object_unreference(obj);
1637 }
1638 WARN_ON(i915_verify_lists(dev));
1639 }
1640
1641 static void
1642 i915_gem_process_flushing_list(struct drm_device *dev,
1643 uint32_t flush_domains,
1644 struct intel_ring_buffer *ring)
1645 {
1646 drm_i915_private_t *dev_priv = dev->dev_private;
1647 struct drm_i915_gem_object *obj_priv, *next;
1648
1649 list_for_each_entry_safe(obj_priv, next,
1650 &ring->gpu_write_list,
1651 gpu_write_list) {
1652 struct drm_gem_object *obj = &obj_priv->base;
1653
1654 if (obj->write_domain & flush_domains) {
1655 uint32_t old_write_domain = obj->write_domain;
1656
1657 obj->write_domain = 0;
1658 list_del_init(&obj_priv->gpu_write_list);
1659 i915_gem_object_move_to_active(obj, ring);
1660
1661 /* update the fence lru list */
1662 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1663 struct drm_i915_fence_reg *reg =
1664 &dev_priv->fence_regs[obj_priv->fence_reg];
1665 list_move_tail(&reg->lru_list,
1666 &dev_priv->mm.fence_list);
1667 }
1668
1669 trace_i915_gem_object_change_domain(obj,
1670 obj->read_domains,
1671 old_write_domain);
1672 }
1673 }
1674 }
1675
1676 uint32_t
1677 i915_add_request(struct drm_device *dev,
1678 struct drm_file *file,
1679 struct drm_i915_gem_request *request,
1680 struct intel_ring_buffer *ring)
1681 {
1682 drm_i915_private_t *dev_priv = dev->dev_private;
1683 struct drm_i915_file_private *file_priv = NULL;
1684 uint32_t seqno;
1685 int was_empty;
1686
1687 if (file != NULL)
1688 file_priv = file->driver_priv;
1689
1690 if (request == NULL) {
1691 request = kzalloc(sizeof(*request), GFP_KERNEL);
1692 if (request == NULL)
1693 return 0;
1694 }
1695
1696 seqno = ring->add_request(dev, ring, 0);
1697 ring->outstanding_lazy_request = false;
1698
1699 request->seqno = seqno;
1700 request->ring = ring;
1701 request->emitted_jiffies = jiffies;
1702 was_empty = list_empty(&ring->request_list);
1703 list_add_tail(&request->list, &ring->request_list);
1704
1705 if (file_priv) {
1706 spin_lock(&file_priv->mm.lock);
1707 request->file_priv = file_priv;
1708 list_add_tail(&request->client_list,
1709 &file_priv->mm.request_list);
1710 spin_unlock(&file_priv->mm.lock);
1711 }
1712
1713 if (!dev_priv->mm.suspended) {
1714 mod_timer(&dev_priv->hangcheck_timer,
1715 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1716 if (was_empty)
1717 queue_delayed_work(dev_priv->wq,
1718 &dev_priv->mm.retire_work, HZ);
1719 }
1720 return seqno;
1721 }
1722
1723 /**
1724 * Command execution barrier
1725 *
1726 * Ensures that all commands in the ring are finished
1727 * before signalling the CPU
1728 */
1729 static void
1730 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1731 {
1732 uint32_t flush_domains = 0;
1733
1734 /* The sampler always gets flushed on i965 (sigh) */
1735 if (INTEL_INFO(dev)->gen >= 4)
1736 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1737
1738 ring->flush(dev, ring,
1739 I915_GEM_DOMAIN_COMMAND, flush_domains);
1740 }
1741
1742 static inline void
1743 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1744 {
1745 struct drm_i915_file_private *file_priv = request->file_priv;
1746
1747 if (!file_priv)
1748 return;
1749
1750 spin_lock(&file_priv->mm.lock);
1751 list_del(&request->client_list);
1752 request->file_priv = NULL;
1753 spin_unlock(&file_priv->mm.lock);
1754 }
1755
1756 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1757 struct intel_ring_buffer *ring)
1758 {
1759 while (!list_empty(&ring->request_list)) {
1760 struct drm_i915_gem_request *request;
1761
1762 request = list_first_entry(&ring->request_list,
1763 struct drm_i915_gem_request,
1764 list);
1765
1766 list_del(&request->list);
1767 i915_gem_request_remove_from_client(request);
1768 kfree(request);
1769 }
1770
1771 while (!list_empty(&ring->active_list)) {
1772 struct drm_i915_gem_object *obj_priv;
1773
1774 obj_priv = list_first_entry(&ring->active_list,
1775 struct drm_i915_gem_object,
1776 ring_list);
1777
1778 obj_priv->base.write_domain = 0;
1779 list_del_init(&obj_priv->gpu_write_list);
1780 i915_gem_object_move_to_inactive(&obj_priv->base);
1781 }
1782 }
1783
1784 void i915_gem_reset(struct drm_device *dev)
1785 {
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 struct drm_i915_gem_object *obj_priv;
1788 int i;
1789
1790 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1791 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1792 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1793
1794 /* Remove anything from the flushing lists. The GPU cache is likely
1795 * to be lost on reset along with the data, so simply move the
1796 * lost bo to the inactive list.
1797 */
1798 while (!list_empty(&dev_priv->mm.flushing_list)) {
1799 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1800 struct drm_i915_gem_object,
1801 mm_list);
1802
1803 obj_priv->base.write_domain = 0;
1804 list_del_init(&obj_priv->gpu_write_list);
1805 i915_gem_object_move_to_inactive(&obj_priv->base);
1806 }
1807
1808 /* Move everything out of the GPU domains to ensure we do any
1809 * necessary invalidation upon reuse.
1810 */
1811 list_for_each_entry(obj_priv,
1812 &dev_priv->mm.inactive_list,
1813 mm_list)
1814 {
1815 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1816 }
1817
1818 /* The fence registers are invalidated so clear them out */
1819 for (i = 0; i < 16; i++) {
1820 struct drm_i915_fence_reg *reg;
1821
1822 reg = &dev_priv->fence_regs[i];
1823 if (!reg->obj)
1824 continue;
1825
1826 i915_gem_clear_fence_reg(reg->obj);
1827 }
1828 }
1829
1830 /**
1831 * This function clears the request list as sequence numbers are passed.
1832 */
1833 static void
1834 i915_gem_retire_requests_ring(struct drm_device *dev,
1835 struct intel_ring_buffer *ring)
1836 {
1837 drm_i915_private_t *dev_priv = dev->dev_private;
1838 uint32_t seqno;
1839
1840 if (!ring->status_page.page_addr ||
1841 list_empty(&ring->request_list))
1842 return;
1843
1844 WARN_ON(i915_verify_lists(dev));
1845
1846 seqno = ring->get_seqno(dev, ring);
1847 while (!list_empty(&ring->request_list)) {
1848 struct drm_i915_gem_request *request;
1849
1850 request = list_first_entry(&ring->request_list,
1851 struct drm_i915_gem_request,
1852 list);
1853
1854 if (!i915_seqno_passed(seqno, request->seqno))
1855 break;
1856
1857 trace_i915_gem_request_retire(dev, request->seqno);
1858
1859 list_del(&request->list);
1860 i915_gem_request_remove_from_client(request);
1861 kfree(request);
1862 }
1863
1864 /* Move any buffers on the active list that are no longer referenced
1865 * by the ringbuffer to the flushing/inactive lists as appropriate.
1866 */
1867 while (!list_empty(&ring->active_list)) {
1868 struct drm_gem_object *obj;
1869 struct drm_i915_gem_object *obj_priv;
1870
1871 obj_priv = list_first_entry(&ring->active_list,
1872 struct drm_i915_gem_object,
1873 ring_list);
1874
1875 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1876 break;
1877
1878 obj = &obj_priv->base;
1879 if (obj->write_domain != 0)
1880 i915_gem_object_move_to_flushing(obj);
1881 else
1882 i915_gem_object_move_to_inactive(obj);
1883 }
1884
1885 if (unlikely (dev_priv->trace_irq_seqno &&
1886 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1887 ring->user_irq_put(dev, ring);
1888 dev_priv->trace_irq_seqno = 0;
1889 }
1890
1891 WARN_ON(i915_verify_lists(dev));
1892 }
1893
1894 void
1895 i915_gem_retire_requests(struct drm_device *dev)
1896 {
1897 drm_i915_private_t *dev_priv = dev->dev_private;
1898
1899 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1900 struct drm_i915_gem_object *obj_priv, *tmp;
1901
1902 /* We must be careful that during unbind() we do not
1903 * accidentally infinitely recurse into retire requests.
1904 * Currently:
1905 * retire -> free -> unbind -> wait -> retire_ring
1906 */
1907 list_for_each_entry_safe(obj_priv, tmp,
1908 &dev_priv->mm.deferred_free_list,
1909 mm_list)
1910 i915_gem_free_object_tail(&obj_priv->base);
1911 }
1912
1913 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1914 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1915 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1916 }
1917
1918 static void
1919 i915_gem_retire_work_handler(struct work_struct *work)
1920 {
1921 drm_i915_private_t *dev_priv;
1922 struct drm_device *dev;
1923
1924 dev_priv = container_of(work, drm_i915_private_t,
1925 mm.retire_work.work);
1926 dev = dev_priv->dev;
1927
1928 /* Come back later if the device is busy... */
1929 if (!mutex_trylock(&dev->struct_mutex)) {
1930 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1931 return;
1932 }
1933
1934 i915_gem_retire_requests(dev);
1935
1936 if (!dev_priv->mm.suspended &&
1937 (!list_empty(&dev_priv->render_ring.request_list) ||
1938 !list_empty(&dev_priv->bsd_ring.request_list) ||
1939 !list_empty(&dev_priv->blt_ring.request_list)))
1940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1941 mutex_unlock(&dev->struct_mutex);
1942 }
1943
1944 int
1945 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1946 bool interruptible, struct intel_ring_buffer *ring)
1947 {
1948 drm_i915_private_t *dev_priv = dev->dev_private;
1949 u32 ier;
1950 int ret = 0;
1951
1952 BUG_ON(seqno == 0);
1953
1954 if (atomic_read(&dev_priv->mm.wedged))
1955 return -EAGAIN;
1956
1957 if (ring->outstanding_lazy_request) {
1958 seqno = i915_add_request(dev, NULL, NULL, ring);
1959 if (seqno == 0)
1960 return -ENOMEM;
1961 }
1962 BUG_ON(seqno == dev_priv->next_seqno);
1963
1964 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1965 if (HAS_PCH_SPLIT(dev))
1966 ier = I915_READ(DEIER) | I915_READ(GTIER);
1967 else
1968 ier = I915_READ(IER);
1969 if (!ier) {
1970 DRM_ERROR("something (likely vbetool) disabled "
1971 "interrupts, re-enabling\n");
1972 i915_driver_irq_preinstall(dev);
1973 i915_driver_irq_postinstall(dev);
1974 }
1975
1976 trace_i915_gem_request_wait_begin(dev, seqno);
1977
1978 ring->waiting_gem_seqno = seqno;
1979 ring->user_irq_get(dev, ring);
1980 if (interruptible)
1981 ret = wait_event_interruptible(ring->irq_queue,
1982 i915_seqno_passed(
1983 ring->get_seqno(dev, ring), seqno)
1984 || atomic_read(&dev_priv->mm.wedged));
1985 else
1986 wait_event(ring->irq_queue,
1987 i915_seqno_passed(
1988 ring->get_seqno(dev, ring), seqno)
1989 || atomic_read(&dev_priv->mm.wedged));
1990
1991 ring->user_irq_put(dev, ring);
1992 ring->waiting_gem_seqno = 0;
1993
1994 trace_i915_gem_request_wait_end(dev, seqno);
1995 }
1996 if (atomic_read(&dev_priv->mm.wedged))
1997 ret = -EAGAIN;
1998
1999 if (ret && ret != -ERESTARTSYS)
2000 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2001 __func__, ret, seqno, ring->get_seqno(dev, ring),
2002 dev_priv->next_seqno);
2003
2004 /* Directly dispatch request retiring. While we have the work queue
2005 * to handle this, the waiter on a request often wants an associated
2006 * buffer to have made it to the inactive list, and we would need
2007 * a separate wait queue to handle that.
2008 */
2009 if (ret == 0)
2010 i915_gem_retire_requests_ring(dev, ring);
2011
2012 return ret;
2013 }
2014
2015 /**
2016 * Waits for a sequence number to be signaled, and cleans up the
2017 * request and object lists appropriately for that event.
2018 */
2019 static int
2020 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2021 struct intel_ring_buffer *ring)
2022 {
2023 return i915_do_wait_request(dev, seqno, 1, ring);
2024 }
2025
2026 static void
2027 i915_gem_flush_ring(struct drm_device *dev,
2028 struct drm_file *file_priv,
2029 struct intel_ring_buffer *ring,
2030 uint32_t invalidate_domains,
2031 uint32_t flush_domains)
2032 {
2033 ring->flush(dev, ring, invalidate_domains, flush_domains);
2034 i915_gem_process_flushing_list(dev, flush_domains, ring);
2035 }
2036
2037 static void
2038 i915_gem_flush(struct drm_device *dev,
2039 struct drm_file *file_priv,
2040 uint32_t invalidate_domains,
2041 uint32_t flush_domains,
2042 uint32_t flush_rings)
2043 {
2044 drm_i915_private_t *dev_priv = dev->dev_private;
2045
2046 if (flush_domains & I915_GEM_DOMAIN_CPU)
2047 drm_agp_chipset_flush(dev);
2048
2049 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2050 if (flush_rings & RING_RENDER)
2051 i915_gem_flush_ring(dev, file_priv,
2052 &dev_priv->render_ring,
2053 invalidate_domains, flush_domains);
2054 if (flush_rings & RING_BSD)
2055 i915_gem_flush_ring(dev, file_priv,
2056 &dev_priv->bsd_ring,
2057 invalidate_domains, flush_domains);
2058 if (flush_rings & RING_BLT)
2059 i915_gem_flush_ring(dev, file_priv,
2060 &dev_priv->blt_ring,
2061 invalidate_domains, flush_domains);
2062 }
2063 }
2064
2065 /**
2066 * Ensures that all rendering to the object has completed and the object is
2067 * safe to unbind from the GTT or access from the CPU.
2068 */
2069 static int
2070 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2071 bool interruptible)
2072 {
2073 struct drm_device *dev = obj->dev;
2074 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2075 int ret;
2076
2077 /* This function only exists to support waiting for existing rendering,
2078 * not for emitting required flushes.
2079 */
2080 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2081
2082 /* If there is rendering queued on the buffer being evicted, wait for
2083 * it.
2084 */
2085 if (obj_priv->active) {
2086 ret = i915_do_wait_request(dev,
2087 obj_priv->last_rendering_seqno,
2088 interruptible,
2089 obj_priv->ring);
2090 if (ret)
2091 return ret;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /**
2098 * Unbinds an object from the GTT aperture.
2099 */
2100 int
2101 i915_gem_object_unbind(struct drm_gem_object *obj)
2102 {
2103 struct drm_device *dev = obj->dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2106 int ret = 0;
2107
2108 if (obj_priv->gtt_space == NULL)
2109 return 0;
2110
2111 if (obj_priv->pin_count != 0) {
2112 DRM_ERROR("Attempting to unbind pinned buffer\n");
2113 return -EINVAL;
2114 }
2115
2116 /* blow away mappings if mapped through GTT */
2117 i915_gem_release_mmap(obj);
2118
2119 /* Move the object to the CPU domain to ensure that
2120 * any possible CPU writes while it's not in the GTT
2121 * are flushed when we go to remap it. This will
2122 * also ensure that all pending GPU writes are finished
2123 * before we unbind.
2124 */
2125 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2126 if (ret == -ERESTARTSYS)
2127 return ret;
2128 /* Continue on if we fail due to EIO, the GPU is hung so we
2129 * should be safe and we need to cleanup or else we might
2130 * cause memory corruption through use-after-free.
2131 */
2132 if (ret) {
2133 i915_gem_clflush_object(obj);
2134 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2135 }
2136
2137 /* release the fence reg _after_ flushing */
2138 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2139 i915_gem_clear_fence_reg(obj);
2140
2141 drm_unbind_agp(obj_priv->agp_mem);
2142 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2143
2144 i915_gem_object_put_pages(obj);
2145 BUG_ON(obj_priv->pages_refcount);
2146
2147 i915_gem_info_remove_gtt(dev_priv, obj->size);
2148 list_del_init(&obj_priv->mm_list);
2149
2150 drm_mm_put_block(obj_priv->gtt_space);
2151 obj_priv->gtt_space = NULL;
2152 obj_priv->gtt_offset = 0;
2153
2154 if (i915_gem_object_is_purgeable(obj_priv))
2155 i915_gem_object_truncate(obj);
2156
2157 trace_i915_gem_object_unbind(obj);
2158
2159 return ret;
2160 }
2161
2162 static int i915_ring_idle(struct drm_device *dev,
2163 struct intel_ring_buffer *ring)
2164 {
2165 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2166 return 0;
2167
2168 i915_gem_flush_ring(dev, NULL, ring,
2169 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2170 return i915_wait_request(dev,
2171 i915_gem_next_request_seqno(dev, ring),
2172 ring);
2173 }
2174
2175 int
2176 i915_gpu_idle(struct drm_device *dev)
2177 {
2178 drm_i915_private_t *dev_priv = dev->dev_private;
2179 bool lists_empty;
2180 int ret;
2181
2182 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2183 list_empty(&dev_priv->mm.active_list));
2184 if (lists_empty)
2185 return 0;
2186
2187 /* Flush everything onto the inactive list. */
2188 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2189 if (ret)
2190 return ret;
2191
2192 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2193 if (ret)
2194 return ret;
2195
2196 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2197 if (ret)
2198 return ret;
2199
2200 return 0;
2201 }
2202
2203 static int
2204 i915_gem_object_get_pages(struct drm_gem_object *obj,
2205 gfp_t gfpmask)
2206 {
2207 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2208 int page_count, i;
2209 struct address_space *mapping;
2210 struct inode *inode;
2211 struct page *page;
2212
2213 BUG_ON(obj_priv->pages_refcount
2214 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2215
2216 if (obj_priv->pages_refcount++ != 0)
2217 return 0;
2218
2219 /* Get the list of pages out of our struct file. They'll be pinned
2220 * at this point until we release them.
2221 */
2222 page_count = obj->size / PAGE_SIZE;
2223 BUG_ON(obj_priv->pages != NULL);
2224 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2225 if (obj_priv->pages == NULL) {
2226 obj_priv->pages_refcount--;
2227 return -ENOMEM;
2228 }
2229
2230 inode = obj->filp->f_path.dentry->d_inode;
2231 mapping = inode->i_mapping;
2232 for (i = 0; i < page_count; i++) {
2233 page = read_cache_page_gfp(mapping, i,
2234 GFP_HIGHUSER |
2235 __GFP_COLD |
2236 __GFP_RECLAIMABLE |
2237 gfpmask);
2238 if (IS_ERR(page))
2239 goto err_pages;
2240
2241 obj_priv->pages[i] = page;
2242 }
2243
2244 if (obj_priv->tiling_mode != I915_TILING_NONE)
2245 i915_gem_object_do_bit_17_swizzle(obj);
2246
2247 return 0;
2248
2249 err_pages:
2250 while (i--)
2251 page_cache_release(obj_priv->pages[i]);
2252
2253 drm_free_large(obj_priv->pages);
2254 obj_priv->pages = NULL;
2255 obj_priv->pages_refcount--;
2256 return PTR_ERR(page);
2257 }
2258
2259 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2260 {
2261 struct drm_gem_object *obj = reg->obj;
2262 struct drm_device *dev = obj->dev;
2263 drm_i915_private_t *dev_priv = dev->dev_private;
2264 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2265 int regnum = obj_priv->fence_reg;
2266 uint64_t val;
2267
2268 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2269 0xfffff000) << 32;
2270 val |= obj_priv->gtt_offset & 0xfffff000;
2271 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2272 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2273
2274 if (obj_priv->tiling_mode == I915_TILING_Y)
2275 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2276 val |= I965_FENCE_REG_VALID;
2277
2278 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2279 }
2280
2281 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2282 {
2283 struct drm_gem_object *obj = reg->obj;
2284 struct drm_device *dev = obj->dev;
2285 drm_i915_private_t *dev_priv = dev->dev_private;
2286 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2287 int regnum = obj_priv->fence_reg;
2288 uint64_t val;
2289
2290 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2291 0xfffff000) << 32;
2292 val |= obj_priv->gtt_offset & 0xfffff000;
2293 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2294 if (obj_priv->tiling_mode == I915_TILING_Y)
2295 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2296 val |= I965_FENCE_REG_VALID;
2297
2298 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2299 }
2300
2301 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2302 {
2303 struct drm_gem_object *obj = reg->obj;
2304 struct drm_device *dev = obj->dev;
2305 drm_i915_private_t *dev_priv = dev->dev_private;
2306 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2307 int regnum = obj_priv->fence_reg;
2308 int tile_width;
2309 uint32_t fence_reg, val;
2310 uint32_t pitch_val;
2311
2312 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2313 (obj_priv->gtt_offset & (obj->size - 1))) {
2314 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2315 __func__, obj_priv->gtt_offset, obj->size);
2316 return;
2317 }
2318
2319 if (obj_priv->tiling_mode == I915_TILING_Y &&
2320 HAS_128_BYTE_Y_TILING(dev))
2321 tile_width = 128;
2322 else
2323 tile_width = 512;
2324
2325 /* Note: pitch better be a power of two tile widths */
2326 pitch_val = obj_priv->stride / tile_width;
2327 pitch_val = ffs(pitch_val) - 1;
2328
2329 if (obj_priv->tiling_mode == I915_TILING_Y &&
2330 HAS_128_BYTE_Y_TILING(dev))
2331 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2332 else
2333 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2334
2335 val = obj_priv->gtt_offset;
2336 if (obj_priv->tiling_mode == I915_TILING_Y)
2337 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2338 val |= I915_FENCE_SIZE_BITS(obj->size);
2339 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2340 val |= I830_FENCE_REG_VALID;
2341
2342 if (regnum < 8)
2343 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2344 else
2345 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2346 I915_WRITE(fence_reg, val);
2347 }
2348
2349 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2350 {
2351 struct drm_gem_object *obj = reg->obj;
2352 struct drm_device *dev = obj->dev;
2353 drm_i915_private_t *dev_priv = dev->dev_private;
2354 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2355 int regnum = obj_priv->fence_reg;
2356 uint32_t val;
2357 uint32_t pitch_val;
2358 uint32_t fence_size_bits;
2359
2360 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2361 (obj_priv->gtt_offset & (obj->size - 1))) {
2362 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2363 __func__, obj_priv->gtt_offset);
2364 return;
2365 }
2366
2367 pitch_val = obj_priv->stride / 128;
2368 pitch_val = ffs(pitch_val) - 1;
2369 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2370
2371 val = obj_priv->gtt_offset;
2372 if (obj_priv->tiling_mode == I915_TILING_Y)
2373 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2374 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2375 WARN_ON(fence_size_bits & ~0x00000f00);
2376 val |= fence_size_bits;
2377 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2378 val |= I830_FENCE_REG_VALID;
2379
2380 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2381 }
2382
2383 static int i915_find_fence_reg(struct drm_device *dev,
2384 bool interruptible)
2385 {
2386 struct drm_i915_fence_reg *reg = NULL;
2387 struct drm_i915_gem_object *obj_priv = NULL;
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct drm_gem_object *obj = NULL;
2390 int i, avail, ret;
2391
2392 /* First try to find a free reg */
2393 avail = 0;
2394 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2395 reg = &dev_priv->fence_regs[i];
2396 if (!reg->obj)
2397 return i;
2398
2399 obj_priv = to_intel_bo(reg->obj);
2400 if (!obj_priv->pin_count)
2401 avail++;
2402 }
2403
2404 if (avail == 0)
2405 return -ENOSPC;
2406
2407 /* None available, try to steal one or wait for a user to finish */
2408 i = I915_FENCE_REG_NONE;
2409 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2410 lru_list) {
2411 obj = reg->obj;
2412 obj_priv = to_intel_bo(obj);
2413
2414 if (obj_priv->pin_count)
2415 continue;
2416
2417 /* found one! */
2418 i = obj_priv->fence_reg;
2419 break;
2420 }
2421
2422 BUG_ON(i == I915_FENCE_REG_NONE);
2423
2424 /* We only have a reference on obj from the active list. put_fence_reg
2425 * might drop that one, causing a use-after-free in it. So hold a
2426 * private reference to obj like the other callers of put_fence_reg
2427 * (set_tiling ioctl) do. */
2428 drm_gem_object_reference(obj);
2429 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2430 drm_gem_object_unreference(obj);
2431 if (ret != 0)
2432 return ret;
2433
2434 return i;
2435 }
2436
2437 /**
2438 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2439 * @obj: object to map through a fence reg
2440 *
2441 * When mapping objects through the GTT, userspace wants to be able to write
2442 * to them without having to worry about swizzling if the object is tiled.
2443 *
2444 * This function walks the fence regs looking for a free one for @obj,
2445 * stealing one if it can't find any.
2446 *
2447 * It then sets up the reg based on the object's properties: address, pitch
2448 * and tiling format.
2449 */
2450 int
2451 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2452 bool interruptible)
2453 {
2454 struct drm_device *dev = obj->dev;
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2457 struct drm_i915_fence_reg *reg = NULL;
2458 int ret;
2459
2460 /* Just update our place in the LRU if our fence is getting used. */
2461 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2462 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2463 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2464 return 0;
2465 }
2466
2467 switch (obj_priv->tiling_mode) {
2468 case I915_TILING_NONE:
2469 WARN(1, "allocating a fence for non-tiled object?\n");
2470 break;
2471 case I915_TILING_X:
2472 if (!obj_priv->stride)
2473 return -EINVAL;
2474 WARN((obj_priv->stride & (512 - 1)),
2475 "object 0x%08x is X tiled but has non-512B pitch\n",
2476 obj_priv->gtt_offset);
2477 break;
2478 case I915_TILING_Y:
2479 if (!obj_priv->stride)
2480 return -EINVAL;
2481 WARN((obj_priv->stride & (128 - 1)),
2482 "object 0x%08x is Y tiled but has non-128B pitch\n",
2483 obj_priv->gtt_offset);
2484 break;
2485 }
2486
2487 ret = i915_find_fence_reg(dev, interruptible);
2488 if (ret < 0)
2489 return ret;
2490
2491 obj_priv->fence_reg = ret;
2492 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2493 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2494
2495 reg->obj = obj;
2496
2497 switch (INTEL_INFO(dev)->gen) {
2498 case 6:
2499 sandybridge_write_fence_reg(reg);
2500 break;
2501 case 5:
2502 case 4:
2503 i965_write_fence_reg(reg);
2504 break;
2505 case 3:
2506 i915_write_fence_reg(reg);
2507 break;
2508 case 2:
2509 i830_write_fence_reg(reg);
2510 break;
2511 }
2512
2513 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2514 obj_priv->tiling_mode);
2515
2516 return 0;
2517 }
2518
2519 /**
2520 * i915_gem_clear_fence_reg - clear out fence register info
2521 * @obj: object to clear
2522 *
2523 * Zeroes out the fence register itself and clears out the associated
2524 * data structures in dev_priv and obj_priv.
2525 */
2526 static void
2527 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2528 {
2529 struct drm_device *dev = obj->dev;
2530 drm_i915_private_t *dev_priv = dev->dev_private;
2531 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2532 struct drm_i915_fence_reg *reg =
2533 &dev_priv->fence_regs[obj_priv->fence_reg];
2534 uint32_t fence_reg;
2535
2536 switch (INTEL_INFO(dev)->gen) {
2537 case 6:
2538 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2539 (obj_priv->fence_reg * 8), 0);
2540 break;
2541 case 5:
2542 case 4:
2543 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2544 break;
2545 case 3:
2546 if (obj_priv->fence_reg >= 8)
2547 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2548 else
2549 case 2:
2550 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2551
2552 I915_WRITE(fence_reg, 0);
2553 break;
2554 }
2555
2556 reg->obj = NULL;
2557 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2558 list_del_init(&reg->lru_list);
2559 }
2560
2561 /**
2562 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2563 * to the buffer to finish, and then resets the fence register.
2564 * @obj: tiled object holding a fence register.
2565 * @bool: whether the wait upon the fence is interruptible
2566 *
2567 * Zeroes out the fence register itself and clears out the associated
2568 * data structures in dev_priv and obj_priv.
2569 */
2570 int
2571 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2572 bool interruptible)
2573 {
2574 struct drm_device *dev = obj->dev;
2575 struct drm_i915_private *dev_priv = dev->dev_private;
2576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2577 struct drm_i915_fence_reg *reg;
2578
2579 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2580 return 0;
2581
2582 /* If we've changed tiling, GTT-mappings of the object
2583 * need to re-fault to ensure that the correct fence register
2584 * setup is in place.
2585 */
2586 i915_gem_release_mmap(obj);
2587
2588 /* On the i915, GPU access to tiled buffers is via a fence,
2589 * therefore we must wait for any outstanding access to complete
2590 * before clearing the fence.
2591 */
2592 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2593 if (reg->gpu) {
2594 int ret;
2595
2596 ret = i915_gem_object_flush_gpu_write_domain(obj);
2597 if (ret)
2598 return ret;
2599
2600 ret = i915_gem_object_wait_rendering(obj, interruptible);
2601 if (ret)
2602 return ret;
2603
2604 reg->gpu = false;
2605 }
2606
2607 i915_gem_object_flush_gtt_write_domain(obj);
2608 i915_gem_clear_fence_reg(obj);
2609
2610 return 0;
2611 }
2612
2613 /**
2614 * Finds free space in the GTT aperture and binds the object there.
2615 */
2616 static int
2617 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2618 {
2619 struct drm_device *dev = obj->dev;
2620 drm_i915_private_t *dev_priv = dev->dev_private;
2621 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2622 struct drm_mm_node *free_space;
2623 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2624 int ret;
2625
2626 if (obj_priv->madv != I915_MADV_WILLNEED) {
2627 DRM_ERROR("Attempting to bind a purgeable object\n");
2628 return -EINVAL;
2629 }
2630
2631 if (alignment == 0)
2632 alignment = i915_gem_get_gtt_alignment(obj);
2633 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2634 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2635 return -EINVAL;
2636 }
2637
2638 /* If the object is bigger than the entire aperture, reject it early
2639 * before evicting everything in a vain attempt to find space.
2640 */
2641 if (obj->size > dev_priv->mm.gtt_total) {
2642 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2643 return -E2BIG;
2644 }
2645
2646 search_free:
2647 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2648 obj->size, alignment, 0);
2649 if (free_space != NULL)
2650 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2651 alignment);
2652 if (obj_priv->gtt_space == NULL) {
2653 /* If the gtt is empty and we're still having trouble
2654 * fitting our object in, we're out of memory.
2655 */
2656 ret = i915_gem_evict_something(dev, obj->size, alignment);
2657 if (ret)
2658 return ret;
2659
2660 goto search_free;
2661 }
2662
2663 ret = i915_gem_object_get_pages(obj, gfpmask);
2664 if (ret) {
2665 drm_mm_put_block(obj_priv->gtt_space);
2666 obj_priv->gtt_space = NULL;
2667
2668 if (ret == -ENOMEM) {
2669 /* first try to clear up some space from the GTT */
2670 ret = i915_gem_evict_something(dev, obj->size,
2671 alignment);
2672 if (ret) {
2673 /* now try to shrink everyone else */
2674 if (gfpmask) {
2675 gfpmask = 0;
2676 goto search_free;
2677 }
2678
2679 return ret;
2680 }
2681
2682 goto search_free;
2683 }
2684
2685 return ret;
2686 }
2687
2688 /* Create an AGP memory structure pointing at our pages, and bind it
2689 * into the GTT.
2690 */
2691 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2692 obj_priv->pages,
2693 obj->size >> PAGE_SHIFT,
2694 obj_priv->gtt_space->start,
2695 obj_priv->agp_type);
2696 if (obj_priv->agp_mem == NULL) {
2697 i915_gem_object_put_pages(obj);
2698 drm_mm_put_block(obj_priv->gtt_space);
2699 obj_priv->gtt_space = NULL;
2700
2701 ret = i915_gem_evict_something(dev, obj->size, alignment);
2702 if (ret)
2703 return ret;
2704
2705 goto search_free;
2706 }
2707
2708 /* keep track of bounds object by adding it to the inactive list */
2709 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2710 i915_gem_info_add_gtt(dev_priv, obj->size);
2711
2712 /* Assert that the object is not currently in any GPU domain. As it
2713 * wasn't in the GTT, there shouldn't be any way it could have been in
2714 * a GPU cache
2715 */
2716 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2717 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2718
2719 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2720 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2721
2722 return 0;
2723 }
2724
2725 void
2726 i915_gem_clflush_object(struct drm_gem_object *obj)
2727 {
2728 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2729
2730 /* If we don't have a page list set up, then we're not pinned
2731 * to GPU, and we can ignore the cache flush because it'll happen
2732 * again at bind time.
2733 */
2734 if (obj_priv->pages == NULL)
2735 return;
2736
2737 trace_i915_gem_object_clflush(obj);
2738
2739 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2740 }
2741
2742 /** Flushes any GPU write domain for the object if it's dirty. */
2743 static int
2744 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2745 {
2746 struct drm_device *dev = obj->dev;
2747 uint32_t old_write_domain;
2748
2749 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2750 return 0;
2751
2752 /* Queue the GPU write cache flushing we need. */
2753 old_write_domain = obj->write_domain;
2754 i915_gem_flush_ring(dev, NULL,
2755 to_intel_bo(obj)->ring,
2756 0, obj->write_domain);
2757 BUG_ON(obj->write_domain);
2758
2759 trace_i915_gem_object_change_domain(obj,
2760 obj->read_domains,
2761 old_write_domain);
2762
2763 return 0;
2764 }
2765
2766 /** Flushes the GTT write domain for the object if it's dirty. */
2767 static void
2768 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2769 {
2770 uint32_t old_write_domain;
2771
2772 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2773 return;
2774
2775 /* No actual flushing is required for the GTT write domain. Writes
2776 * to it immediately go to main memory as far as we know, so there's
2777 * no chipset flush. It also doesn't land in render cache.
2778 */
2779 old_write_domain = obj->write_domain;
2780 obj->write_domain = 0;
2781
2782 trace_i915_gem_object_change_domain(obj,
2783 obj->read_domains,
2784 old_write_domain);
2785 }
2786
2787 /** Flushes the CPU write domain for the object if it's dirty. */
2788 static void
2789 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2790 {
2791 struct drm_device *dev = obj->dev;
2792 uint32_t old_write_domain;
2793
2794 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2795 return;
2796
2797 i915_gem_clflush_object(obj);
2798 drm_agp_chipset_flush(dev);
2799 old_write_domain = obj->write_domain;
2800 obj->write_domain = 0;
2801
2802 trace_i915_gem_object_change_domain(obj,
2803 obj->read_domains,
2804 old_write_domain);
2805 }
2806
2807 /**
2808 * Moves a single object to the GTT read, and possibly write domain.
2809 *
2810 * This function returns when the move is complete, including waiting on
2811 * flushes to occur.
2812 */
2813 int
2814 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2815 {
2816 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2817 uint32_t old_write_domain, old_read_domains;
2818 int ret;
2819
2820 /* Not valid to be called on unbound objects. */
2821 if (obj_priv->gtt_space == NULL)
2822 return -EINVAL;
2823
2824 ret = i915_gem_object_flush_gpu_write_domain(obj);
2825 if (ret != 0)
2826 return ret;
2827 ret = i915_gem_object_wait_rendering(obj, true);
2828 if (ret)
2829 return ret;
2830
2831 i915_gem_object_flush_cpu_write_domain(obj);
2832
2833 old_write_domain = obj->write_domain;
2834 old_read_domains = obj->read_domains;
2835
2836 /* It should now be out of any other write domains, and we can update
2837 * the domain values for our changes.
2838 */
2839 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2840 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2841 if (write) {
2842 obj->read_domains = I915_GEM_DOMAIN_GTT;
2843 obj->write_domain = I915_GEM_DOMAIN_GTT;
2844 obj_priv->dirty = 1;
2845 }
2846
2847 trace_i915_gem_object_change_domain(obj,
2848 old_read_domains,
2849 old_write_domain);
2850
2851 return 0;
2852 }
2853
2854 /*
2855 * Prepare buffer for display plane. Use uninterruptible for possible flush
2856 * wait, as in modesetting process we're not supposed to be interrupted.
2857 */
2858 int
2859 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2860 bool pipelined)
2861 {
2862 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2863 uint32_t old_read_domains;
2864 int ret;
2865
2866 /* Not valid to be called on unbound objects. */
2867 if (obj_priv->gtt_space == NULL)
2868 return -EINVAL;
2869
2870 ret = i915_gem_object_flush_gpu_write_domain(obj);
2871 if (ret)
2872 return ret;
2873
2874 /* Currently, we are always called from an non-interruptible context. */
2875 if (!pipelined) {
2876 ret = i915_gem_object_wait_rendering(obj, false);
2877 if (ret)
2878 return ret;
2879 }
2880
2881 i915_gem_object_flush_cpu_write_domain(obj);
2882
2883 old_read_domains = obj->read_domains;
2884 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2885
2886 trace_i915_gem_object_change_domain(obj,
2887 old_read_domains,
2888 obj->write_domain);
2889
2890 return 0;
2891 }
2892
2893 int
2894 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2895 bool interruptible)
2896 {
2897 if (!obj->active)
2898 return 0;
2899
2900 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2901 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
2902 0, obj->base.write_domain);
2903
2904 return i915_gem_object_wait_rendering(&obj->base, interruptible);
2905 }
2906
2907 /**
2908 * Moves a single object to the CPU read, and possibly write domain.
2909 *
2910 * This function returns when the move is complete, including waiting on
2911 * flushes to occur.
2912 */
2913 static int
2914 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2915 {
2916 uint32_t old_write_domain, old_read_domains;
2917 int ret;
2918
2919 ret = i915_gem_object_flush_gpu_write_domain(obj);
2920 if (ret != 0)
2921 return ret;
2922 ret = i915_gem_object_wait_rendering(obj, true);
2923 if (ret)
2924 return ret;
2925
2926 i915_gem_object_flush_gtt_write_domain(obj);
2927
2928 /* If we have a partially-valid cache of the object in the CPU,
2929 * finish invalidating it and free the per-page flags.
2930 */
2931 i915_gem_object_set_to_full_cpu_read_domain(obj);
2932
2933 old_write_domain = obj->write_domain;
2934 old_read_domains = obj->read_domains;
2935
2936 /* Flush the CPU cache if it's still invalid. */
2937 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2938 i915_gem_clflush_object(obj);
2939
2940 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2941 }
2942
2943 /* It should now be out of any other write domains, and we can update
2944 * the domain values for our changes.
2945 */
2946 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2947
2948 /* If we're writing through the CPU, then the GPU read domains will
2949 * need to be invalidated at next use.
2950 */
2951 if (write) {
2952 obj->read_domains = I915_GEM_DOMAIN_CPU;
2953 obj->write_domain = I915_GEM_DOMAIN_CPU;
2954 }
2955
2956 trace_i915_gem_object_change_domain(obj,
2957 old_read_domains,
2958 old_write_domain);
2959
2960 return 0;
2961 }
2962
2963 /*
2964 * Set the next domain for the specified object. This
2965 * may not actually perform the necessary flushing/invaliding though,
2966 * as that may want to be batched with other set_domain operations
2967 *
2968 * This is (we hope) the only really tricky part of gem. The goal
2969 * is fairly simple -- track which caches hold bits of the object
2970 * and make sure they remain coherent. A few concrete examples may
2971 * help to explain how it works. For shorthand, we use the notation
2972 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2973 * a pair of read and write domain masks.
2974 *
2975 * Case 1: the batch buffer
2976 *
2977 * 1. Allocated
2978 * 2. Written by CPU
2979 * 3. Mapped to GTT
2980 * 4. Read by GPU
2981 * 5. Unmapped from GTT
2982 * 6. Freed
2983 *
2984 * Let's take these a step at a time
2985 *
2986 * 1. Allocated
2987 * Pages allocated from the kernel may still have
2988 * cache contents, so we set them to (CPU, CPU) always.
2989 * 2. Written by CPU (using pwrite)
2990 * The pwrite function calls set_domain (CPU, CPU) and
2991 * this function does nothing (as nothing changes)
2992 * 3. Mapped by GTT
2993 * This function asserts that the object is not
2994 * currently in any GPU-based read or write domains
2995 * 4. Read by GPU
2996 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2997 * As write_domain is zero, this function adds in the
2998 * current read domains (CPU+COMMAND, 0).
2999 * flush_domains is set to CPU.
3000 * invalidate_domains is set to COMMAND
3001 * clflush is run to get data out of the CPU caches
3002 * then i915_dev_set_domain calls i915_gem_flush to
3003 * emit an MI_FLUSH and drm_agp_chipset_flush
3004 * 5. Unmapped from GTT
3005 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3006 * flush_domains and invalidate_domains end up both zero
3007 * so no flushing/invalidating happens
3008 * 6. Freed
3009 * yay, done
3010 *
3011 * Case 2: The shared render buffer
3012 *
3013 * 1. Allocated
3014 * 2. Mapped to GTT
3015 * 3. Read/written by GPU
3016 * 4. set_domain to (CPU,CPU)
3017 * 5. Read/written by CPU
3018 * 6. Read/written by GPU
3019 *
3020 * 1. Allocated
3021 * Same as last example, (CPU, CPU)
3022 * 2. Mapped to GTT
3023 * Nothing changes (assertions find that it is not in the GPU)
3024 * 3. Read/written by GPU
3025 * execbuffer calls set_domain (RENDER, RENDER)
3026 * flush_domains gets CPU
3027 * invalidate_domains gets GPU
3028 * clflush (obj)
3029 * MI_FLUSH and drm_agp_chipset_flush
3030 * 4. set_domain (CPU, CPU)
3031 * flush_domains gets GPU
3032 * invalidate_domains gets CPU
3033 * wait_rendering (obj) to make sure all drawing is complete.
3034 * This will include an MI_FLUSH to get the data from GPU
3035 * to memory
3036 * clflush (obj) to invalidate the CPU cache
3037 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3038 * 5. Read/written by CPU
3039 * cache lines are loaded and dirtied
3040 * 6. Read written by GPU
3041 * Same as last GPU access
3042 *
3043 * Case 3: The constant buffer
3044 *
3045 * 1. Allocated
3046 * 2. Written by CPU
3047 * 3. Read by GPU
3048 * 4. Updated (written) by CPU again
3049 * 5. Read by GPU
3050 *
3051 * 1. Allocated
3052 * (CPU, CPU)
3053 * 2. Written by CPU
3054 * (CPU, CPU)
3055 * 3. Read by GPU
3056 * (CPU+RENDER, 0)
3057 * flush_domains = CPU
3058 * invalidate_domains = RENDER
3059 * clflush (obj)
3060 * MI_FLUSH
3061 * drm_agp_chipset_flush
3062 * 4. Updated (written) by CPU again
3063 * (CPU, CPU)
3064 * flush_domains = 0 (no previous write domain)
3065 * invalidate_domains = 0 (no new read domains)
3066 * 5. Read by GPU
3067 * (CPU+RENDER, 0)
3068 * flush_domains = CPU
3069 * invalidate_domains = RENDER
3070 * clflush (obj)
3071 * MI_FLUSH
3072 * drm_agp_chipset_flush
3073 */
3074 static void
3075 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3076 struct intel_ring_buffer *ring)
3077 {
3078 struct drm_device *dev = obj->dev;
3079 struct drm_i915_private *dev_priv = dev->dev_private;
3080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3081 uint32_t invalidate_domains = 0;
3082 uint32_t flush_domains = 0;
3083 uint32_t old_read_domains;
3084
3085 intel_mark_busy(dev, obj);
3086
3087 /*
3088 * If the object isn't moving to a new write domain,
3089 * let the object stay in multiple read domains
3090 */
3091 if (obj->pending_write_domain == 0)
3092 obj->pending_read_domains |= obj->read_domains;
3093 else
3094 obj_priv->dirty = 1;
3095
3096 /*
3097 * Flush the current write domain if
3098 * the new read domains don't match. Invalidate
3099 * any read domains which differ from the old
3100 * write domain
3101 */
3102 if (obj->write_domain &&
3103 (obj->write_domain != obj->pending_read_domains ||
3104 obj_priv->ring != ring)) {
3105 flush_domains |= obj->write_domain;
3106 invalidate_domains |=
3107 obj->pending_read_domains & ~obj->write_domain;
3108 }
3109 /*
3110 * Invalidate any read caches which may have
3111 * stale data. That is, any new read domains.
3112 */
3113 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3114 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3115 i915_gem_clflush_object(obj);
3116
3117 old_read_domains = obj->read_domains;
3118
3119 /* The actual obj->write_domain will be updated with
3120 * pending_write_domain after we emit the accumulated flush for all
3121 * of our domain changes in execbuffers (which clears objects'
3122 * write_domains). So if we have a current write domain that we
3123 * aren't changing, set pending_write_domain to that.
3124 */
3125 if (flush_domains == 0 && obj->pending_write_domain == 0)
3126 obj->pending_write_domain = obj->write_domain;
3127 obj->read_domains = obj->pending_read_domains;
3128
3129 dev->invalidate_domains |= invalidate_domains;
3130 dev->flush_domains |= flush_domains;
3131 if (flush_domains & I915_GEM_GPU_DOMAINS)
3132 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3133 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3134 dev_priv->mm.flush_rings |= ring->id;
3135
3136 trace_i915_gem_object_change_domain(obj,
3137 old_read_domains,
3138 obj->write_domain);
3139 }
3140
3141 /**
3142 * Moves the object from a partially CPU read to a full one.
3143 *
3144 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3145 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3146 */
3147 static void
3148 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3149 {
3150 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3151
3152 if (!obj_priv->page_cpu_valid)
3153 return;
3154
3155 /* If we're partially in the CPU read domain, finish moving it in.
3156 */
3157 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3158 int i;
3159
3160 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3161 if (obj_priv->page_cpu_valid[i])
3162 continue;
3163 drm_clflush_pages(obj_priv->pages + i, 1);
3164 }
3165 }
3166
3167 /* Free the page_cpu_valid mappings which are now stale, whether
3168 * or not we've got I915_GEM_DOMAIN_CPU.
3169 */
3170 kfree(obj_priv->page_cpu_valid);
3171 obj_priv->page_cpu_valid = NULL;
3172 }
3173
3174 /**
3175 * Set the CPU read domain on a range of the object.
3176 *
3177 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3178 * not entirely valid. The page_cpu_valid member of the object flags which
3179 * pages have been flushed, and will be respected by
3180 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3181 * of the whole object.
3182 *
3183 * This function returns when the move is complete, including waiting on
3184 * flushes to occur.
3185 */
3186 static int
3187 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3188 uint64_t offset, uint64_t size)
3189 {
3190 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3191 uint32_t old_read_domains;
3192 int i, ret;
3193
3194 if (offset == 0 && size == obj->size)
3195 return i915_gem_object_set_to_cpu_domain(obj, 0);
3196
3197 ret = i915_gem_object_flush_gpu_write_domain(obj);
3198 if (ret != 0)
3199 return ret;
3200 ret = i915_gem_object_wait_rendering(obj, true);
3201 if (ret)
3202 return ret;
3203
3204 i915_gem_object_flush_gtt_write_domain(obj);
3205
3206 /* If we're already fully in the CPU read domain, we're done. */
3207 if (obj_priv->page_cpu_valid == NULL &&
3208 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3209 return 0;
3210
3211 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3212 * newly adding I915_GEM_DOMAIN_CPU
3213 */
3214 if (obj_priv->page_cpu_valid == NULL) {
3215 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3216 GFP_KERNEL);
3217 if (obj_priv->page_cpu_valid == NULL)
3218 return -ENOMEM;
3219 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3220 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3221
3222 /* Flush the cache on any pages that are still invalid from the CPU's
3223 * perspective.
3224 */
3225 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3226 i++) {
3227 if (obj_priv->page_cpu_valid[i])
3228 continue;
3229
3230 drm_clflush_pages(obj_priv->pages + i, 1);
3231
3232 obj_priv->page_cpu_valid[i] = 1;
3233 }
3234
3235 /* It should now be out of any other write domains, and we can update
3236 * the domain values for our changes.
3237 */
3238 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3239
3240 old_read_domains = obj->read_domains;
3241 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3242
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
3245 obj->write_domain);
3246
3247 return 0;
3248 }
3249
3250 static int
3251 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3252 struct drm_file *file_priv,
3253 struct drm_i915_gem_exec_object2 *entry,
3254 struct drm_i915_gem_relocation_entry *reloc)
3255 {
3256 struct drm_device *dev = obj->base.dev;
3257 struct drm_gem_object *target_obj;
3258 uint32_t target_offset;
3259 int ret = -EINVAL;
3260
3261 target_obj = drm_gem_object_lookup(dev, file_priv,
3262 reloc->target_handle);
3263 if (target_obj == NULL)
3264 return -ENOENT;
3265
3266 target_offset = to_intel_bo(target_obj)->gtt_offset;
3267
3268 #if WATCH_RELOC
3269 DRM_INFO("%s: obj %p offset %08x target %d "
3270 "read %08x write %08x gtt %08x "
3271 "presumed %08x delta %08x\n",
3272 __func__,
3273 obj,
3274 (int) reloc->offset,
3275 (int) reloc->target_handle,
3276 (int) reloc->read_domains,
3277 (int) reloc->write_domain,
3278 (int) target_offset,
3279 (int) reloc->presumed_offset,
3280 reloc->delta);
3281 #endif
3282
3283 /* The target buffer should have appeared before us in the
3284 * exec_object list, so it should have a GTT space bound by now.
3285 */
3286 if (target_offset == 0) {
3287 DRM_ERROR("No GTT space found for object %d\n",
3288 reloc->target_handle);
3289 goto err;
3290 }
3291
3292 /* Validate that the target is in a valid r/w GPU domain */
3293 if (reloc->write_domain & (reloc->write_domain - 1)) {
3294 DRM_ERROR("reloc with multiple write domains: "
3295 "obj %p target %d offset %d "
3296 "read %08x write %08x",
3297 obj, reloc->target_handle,
3298 (int) reloc->offset,
3299 reloc->read_domains,
3300 reloc->write_domain);
3301 goto err;
3302 }
3303 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3304 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3305 DRM_ERROR("reloc with read/write CPU domains: "
3306 "obj %p target %d offset %d "
3307 "read %08x write %08x",
3308 obj, reloc->target_handle,
3309 (int) reloc->offset,
3310 reloc->read_domains,
3311 reloc->write_domain);
3312 goto err;
3313 }
3314 if (reloc->write_domain && target_obj->pending_write_domain &&
3315 reloc->write_domain != target_obj->pending_write_domain) {
3316 DRM_ERROR("Write domain conflict: "
3317 "obj %p target %d offset %d "
3318 "new %08x old %08x\n",
3319 obj, reloc->target_handle,
3320 (int) reloc->offset,
3321 reloc->write_domain,
3322 target_obj->pending_write_domain);
3323 goto err;
3324 }
3325
3326 target_obj->pending_read_domains |= reloc->read_domains;
3327 target_obj->pending_write_domain |= reloc->write_domain;
3328
3329 /* If the relocation already has the right value in it, no
3330 * more work needs to be done.
3331 */
3332 if (target_offset == reloc->presumed_offset)
3333 goto out;
3334
3335 /* Check that the relocation address is valid... */
3336 if (reloc->offset > obj->base.size - 4) {
3337 DRM_ERROR("Relocation beyond object bounds: "
3338 "obj %p target %d offset %d size %d.\n",
3339 obj, reloc->target_handle,
3340 (int) reloc->offset,
3341 (int) obj->base.size);
3342 goto err;
3343 }
3344 if (reloc->offset & 3) {
3345 DRM_ERROR("Relocation not 4-byte aligned: "
3346 "obj %p target %d offset %d.\n",
3347 obj, reloc->target_handle,
3348 (int) reloc->offset);
3349 goto err;
3350 }
3351
3352 /* and points to somewhere within the target object. */
3353 if (reloc->delta >= target_obj->size) {
3354 DRM_ERROR("Relocation beyond target object bounds: "
3355 "obj %p target %d delta %d size %d.\n",
3356 obj, reloc->target_handle,
3357 (int) reloc->delta,
3358 (int) target_obj->size);
3359 goto err;
3360 }
3361
3362 reloc->delta += target_offset;
3363 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3364 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3365 char *vaddr;
3366
3367 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3368 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3369 kunmap_atomic(vaddr);
3370 } else {
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372 uint32_t __iomem *reloc_entry;
3373 void __iomem *reloc_page;
3374
3375 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3376 if (ret)
3377 goto err;
3378
3379 /* Map the page containing the relocation we're going to perform. */
3380 reloc->offset += obj->gtt_offset;
3381 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3382 reloc->offset & PAGE_MASK);
3383 reloc_entry = (uint32_t __iomem *)
3384 (reloc_page + (reloc->offset & ~PAGE_MASK));
3385 iowrite32(reloc->delta, reloc_entry);
3386 io_mapping_unmap_atomic(reloc_page);
3387 }
3388
3389 /* and update the user's relocation entry */
3390 reloc->presumed_offset = target_offset;
3391
3392 out:
3393 ret = 0;
3394 err:
3395 drm_gem_object_unreference(target_obj);
3396 return ret;
3397 }
3398
3399 static int
3400 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3401 struct drm_file *file_priv,
3402 struct drm_i915_gem_exec_object2 *entry)
3403 {
3404 struct drm_i915_gem_relocation_entry __user *user_relocs;
3405 int i, ret;
3406
3407 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3408 for (i = 0; i < entry->relocation_count; i++) {
3409 struct drm_i915_gem_relocation_entry reloc;
3410
3411 if (__copy_from_user_inatomic(&reloc,
3412 user_relocs+i,
3413 sizeof(reloc)))
3414 return -EFAULT;
3415
3416 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3417 if (ret)
3418 return ret;
3419
3420 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3421 &reloc.presumed_offset,
3422 sizeof(reloc.presumed_offset)))
3423 return -EFAULT;
3424 }
3425
3426 return 0;
3427 }
3428
3429 static int
3430 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3431 struct drm_file *file_priv,
3432 struct drm_i915_gem_exec_object2 *entry,
3433 struct drm_i915_gem_relocation_entry *relocs)
3434 {
3435 int i, ret;
3436
3437 for (i = 0; i < entry->relocation_count; i++) {
3438 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3439 if (ret)
3440 return ret;
3441 }
3442
3443 return 0;
3444 }
3445
3446 static int
3447 i915_gem_execbuffer_relocate(struct drm_device *dev,
3448 struct drm_file *file,
3449 struct drm_gem_object **object_list,
3450 struct drm_i915_gem_exec_object2 *exec_list,
3451 int count)
3452 {
3453 int i, ret;
3454
3455 for (i = 0; i < count; i++) {
3456 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3457 obj->base.pending_read_domains = 0;
3458 obj->base.pending_write_domain = 0;
3459 ret = i915_gem_execbuffer_relocate_object(obj, file,
3460 &exec_list[i]);
3461 if (ret)
3462 return ret;
3463 }
3464
3465 return 0;
3466 }
3467
3468 static int
3469 i915_gem_execbuffer_reserve(struct drm_device *dev,
3470 struct drm_file *file,
3471 struct drm_gem_object **object_list,
3472 struct drm_i915_gem_exec_object2 *exec_list,
3473 int count)
3474 {
3475 struct drm_i915_private *dev_priv = dev->dev_private;
3476 int ret, i, retry;
3477
3478 /* attempt to pin all of the buffers into the GTT */
3479 for (retry = 0; retry < 2; retry++) {
3480 ret = 0;
3481 for (i = 0; i < count; i++) {
3482 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3483 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3484 bool need_fence =
3485 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3486 obj->tiling_mode != I915_TILING_NONE;
3487
3488 /* Check fence reg constraints and rebind if necessary */
3489 if (need_fence &&
3490 !i915_gem_object_fence_offset_ok(&obj->base,
3491 obj->tiling_mode)) {
3492 ret = i915_gem_object_unbind(&obj->base);
3493 if (ret)
3494 break;
3495 }
3496
3497 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3498 if (ret)
3499 break;
3500
3501 /*
3502 * Pre-965 chips need a fence register set up in order
3503 * to properly handle blits to/from tiled surfaces.
3504 */
3505 if (need_fence) {
3506 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3507 if (ret) {
3508 i915_gem_object_unpin(&obj->base);
3509 break;
3510 }
3511
3512 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3513 }
3514
3515 entry->offset = obj->gtt_offset;
3516 }
3517
3518 while (i--)
3519 i915_gem_object_unpin(object_list[i]);
3520
3521 if (ret == 0)
3522 break;
3523
3524 if (ret != -ENOSPC || retry)
3525 return ret;
3526
3527 ret = i915_gem_evict_everything(dev);
3528 if (ret)
3529 return ret;
3530 }
3531
3532 return 0;
3533 }
3534
3535 static int
3536 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3537 struct drm_file *file,
3538 struct drm_gem_object **object_list,
3539 struct drm_i915_gem_exec_object2 *exec_list,
3540 int count)
3541 {
3542 struct drm_i915_gem_relocation_entry *reloc;
3543 int i, total, ret;
3544
3545 for (i = 0; i < count; i++) {
3546 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3547 obj->in_execbuffer = false;
3548 }
3549
3550 mutex_unlock(&dev->struct_mutex);
3551
3552 total = 0;
3553 for (i = 0; i < count; i++)
3554 total += exec_list[i].relocation_count;
3555
3556 reloc = drm_malloc_ab(total, sizeof(*reloc));
3557 if (reloc == NULL) {
3558 mutex_lock(&dev->struct_mutex);
3559 return -ENOMEM;
3560 }
3561
3562 total = 0;
3563 for (i = 0; i < count; i++) {
3564 struct drm_i915_gem_relocation_entry __user *user_relocs;
3565
3566 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3567
3568 if (copy_from_user(reloc+total, user_relocs,
3569 exec_list[i].relocation_count *
3570 sizeof(*reloc))) {
3571 ret = -EFAULT;
3572 mutex_lock(&dev->struct_mutex);
3573 goto err;
3574 }
3575
3576 total += exec_list[i].relocation_count;
3577 }
3578
3579 ret = i915_mutex_lock_interruptible(dev);
3580 if (ret) {
3581 mutex_lock(&dev->struct_mutex);
3582 goto err;
3583 }
3584
3585 ret = i915_gem_execbuffer_reserve(dev, file,
3586 object_list, exec_list,
3587 count);
3588 if (ret)
3589 goto err;
3590
3591 total = 0;
3592 for (i = 0; i < count; i++) {
3593 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3594 obj->base.pending_read_domains = 0;
3595 obj->base.pending_write_domain = 0;
3596 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3597 &exec_list[i],
3598 reloc + total);
3599 if (ret)
3600 goto err;
3601
3602 total += exec_list[i].relocation_count;
3603 }
3604
3605 /* Leave the user relocations as are, this is the painfully slow path,
3606 * and we want to avoid the complication of dropping the lock whilst
3607 * having buffers reserved in the aperture and so causing spurious
3608 * ENOSPC for random operations.
3609 */
3610
3611 err:
3612 drm_free_large(reloc);
3613 return ret;
3614 }
3615
3616 static int
3617 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3618 struct drm_file *file,
3619 struct intel_ring_buffer *ring,
3620 struct drm_gem_object **objects,
3621 int count)
3622 {
3623 struct drm_i915_private *dev_priv = dev->dev_private;
3624 int ret, i;
3625
3626 /* Zero the global flush/invalidate flags. These
3627 * will be modified as new domains are computed
3628 * for each object
3629 */
3630 dev->invalidate_domains = 0;
3631 dev->flush_domains = 0;
3632 dev_priv->mm.flush_rings = 0;
3633 for (i = 0; i < count; i++)
3634 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3635
3636 if (dev->invalidate_domains | dev->flush_domains) {
3637 #if WATCH_EXEC
3638 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3639 __func__,
3640 dev->invalidate_domains,
3641 dev->flush_domains);
3642 #endif
3643 i915_gem_flush(dev, file,
3644 dev->invalidate_domains,
3645 dev->flush_domains,
3646 dev_priv->mm.flush_rings);
3647 }
3648
3649 for (i = 0; i < count; i++) {
3650 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3651 /* XXX replace with semaphores */
3652 if (obj->ring && ring != obj->ring) {
3653 ret = i915_gem_object_wait_rendering(&obj->base, true);
3654 if (ret)
3655 return ret;
3656 }
3657 }
3658
3659 return 0;
3660 }
3661
3662 /* Throttle our rendering by waiting until the ring has completed our requests
3663 * emitted over 20 msec ago.
3664 *
3665 * Note that if we were to use the current jiffies each time around the loop,
3666 * we wouldn't escape the function with any frames outstanding if the time to
3667 * render a frame was over 20ms.
3668 *
3669 * This should get us reasonable parallelism between CPU and GPU but also
3670 * relatively low latency when blocking on a particular request to finish.
3671 */
3672 static int
3673 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3674 {
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676 struct drm_i915_file_private *file_priv = file->driver_priv;
3677 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3678 struct drm_i915_gem_request *request;
3679 struct intel_ring_buffer *ring = NULL;
3680 u32 seqno = 0;
3681 int ret;
3682
3683 spin_lock(&file_priv->mm.lock);
3684 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3685 if (time_after_eq(request->emitted_jiffies, recent_enough))
3686 break;
3687
3688 ring = request->ring;
3689 seqno = request->seqno;
3690 }
3691 spin_unlock(&file_priv->mm.lock);
3692
3693 if (seqno == 0)
3694 return 0;
3695
3696 ret = 0;
3697 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3698 /* And wait for the seqno passing without holding any locks and
3699 * causing extra latency for others. This is safe as the irq
3700 * generation is designed to be run atomically and so is
3701 * lockless.
3702 */
3703 ring->user_irq_get(dev, ring);
3704 ret = wait_event_interruptible(ring->irq_queue,
3705 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3706 || atomic_read(&dev_priv->mm.wedged));
3707 ring->user_irq_put(dev, ring);
3708
3709 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3710 ret = -EIO;
3711 }
3712
3713 if (ret == 0)
3714 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3715
3716 return ret;
3717 }
3718
3719 static int
3720 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3721 uint64_t exec_offset)
3722 {
3723 uint32_t exec_start, exec_len;
3724
3725 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3726 exec_len = (uint32_t) exec->batch_len;
3727
3728 if ((exec_start | exec_len) & 0x7)
3729 return -EINVAL;
3730
3731 if (!exec_start)
3732 return -EINVAL;
3733
3734 return 0;
3735 }
3736
3737 static int
3738 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3739 int count)
3740 {
3741 int i;
3742
3743 for (i = 0; i < count; i++) {
3744 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3745 int length; /* limited by fault_in_pages_readable() */
3746
3747 /* First check for malicious input causing overflow */
3748 if (exec[i].relocation_count >
3749 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3750 return -EINVAL;
3751
3752 length = exec[i].relocation_count *
3753 sizeof(struct drm_i915_gem_relocation_entry);
3754 if (!access_ok(VERIFY_READ, ptr, length))
3755 return -EFAULT;
3756
3757 /* we may also need to update the presumed offsets */
3758 if (!access_ok(VERIFY_WRITE, ptr, length))
3759 return -EFAULT;
3760
3761 if (fault_in_pages_readable(ptr, length))
3762 return -EFAULT;
3763 }
3764
3765 return 0;
3766 }
3767
3768 static int
3769 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3770 struct drm_file *file,
3771 struct drm_i915_gem_execbuffer2 *args,
3772 struct drm_i915_gem_exec_object2 *exec_list)
3773 {
3774 drm_i915_private_t *dev_priv = dev->dev_private;
3775 struct drm_gem_object **object_list = NULL;
3776 struct drm_gem_object *batch_obj;
3777 struct drm_i915_gem_object *obj_priv;
3778 struct drm_clip_rect *cliprects = NULL;
3779 struct drm_i915_gem_request *request = NULL;
3780 int ret, i, flips;
3781 uint64_t exec_offset;
3782
3783 struct intel_ring_buffer *ring = NULL;
3784
3785 ret = i915_gem_check_is_wedged(dev);
3786 if (ret)
3787 return ret;
3788
3789 ret = validate_exec_list(exec_list, args->buffer_count);
3790 if (ret)
3791 return ret;
3792
3793 #if WATCH_EXEC
3794 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3795 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3796 #endif
3797 switch (args->flags & I915_EXEC_RING_MASK) {
3798 case I915_EXEC_DEFAULT:
3799 case I915_EXEC_RENDER:
3800 ring = &dev_priv->render_ring;
3801 break;
3802 case I915_EXEC_BSD:
3803 if (!HAS_BSD(dev)) {
3804 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3805 return -EINVAL;
3806 }
3807 ring = &dev_priv->bsd_ring;
3808 break;
3809 case I915_EXEC_BLT:
3810 if (!HAS_BLT(dev)) {
3811 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3812 return -EINVAL;
3813 }
3814 ring = &dev_priv->blt_ring;
3815 break;
3816 default:
3817 DRM_ERROR("execbuf with unknown ring: %d\n",
3818 (int)(args->flags & I915_EXEC_RING_MASK));
3819 return -EINVAL;
3820 }
3821
3822 if (args->buffer_count < 1) {
3823 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3824 return -EINVAL;
3825 }
3826 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3827 if (object_list == NULL) {
3828 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3829 args->buffer_count);
3830 ret = -ENOMEM;
3831 goto pre_mutex_err;
3832 }
3833
3834 if (args->num_cliprects != 0) {
3835 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3836 GFP_KERNEL);
3837 if (cliprects == NULL) {
3838 ret = -ENOMEM;
3839 goto pre_mutex_err;
3840 }
3841
3842 ret = copy_from_user(cliprects,
3843 (struct drm_clip_rect __user *)
3844 (uintptr_t) args->cliprects_ptr,
3845 sizeof(*cliprects) * args->num_cliprects);
3846 if (ret != 0) {
3847 DRM_ERROR("copy %d cliprects failed: %d\n",
3848 args->num_cliprects, ret);
3849 ret = -EFAULT;
3850 goto pre_mutex_err;
3851 }
3852 }
3853
3854 request = kzalloc(sizeof(*request), GFP_KERNEL);
3855 if (request == NULL) {
3856 ret = -ENOMEM;
3857 goto pre_mutex_err;
3858 }
3859
3860 ret = i915_mutex_lock_interruptible(dev);
3861 if (ret)
3862 goto pre_mutex_err;
3863
3864 if (dev_priv->mm.suspended) {
3865 mutex_unlock(&dev->struct_mutex);
3866 ret = -EBUSY;
3867 goto pre_mutex_err;
3868 }
3869
3870 /* Look up object handles */
3871 for (i = 0; i < args->buffer_count; i++) {
3872 object_list[i] = drm_gem_object_lookup(dev, file,
3873 exec_list[i].handle);
3874 if (object_list[i] == NULL) {
3875 DRM_ERROR("Invalid object handle %d at index %d\n",
3876 exec_list[i].handle, i);
3877 /* prevent error path from reading uninitialized data */
3878 args->buffer_count = i + 1;
3879 ret = -ENOENT;
3880 goto err;
3881 }
3882
3883 obj_priv = to_intel_bo(object_list[i]);
3884 if (obj_priv->in_execbuffer) {
3885 DRM_ERROR("Object %p appears more than once in object list\n",
3886 object_list[i]);
3887 /* prevent error path from reading uninitialized data */
3888 args->buffer_count = i + 1;
3889 ret = -EINVAL;
3890 goto err;
3891 }
3892 obj_priv->in_execbuffer = true;
3893 }
3894
3895 /* Move the objects en-masse into the GTT, evicting if necessary. */
3896 ret = i915_gem_execbuffer_reserve(dev, file,
3897 object_list, exec_list,
3898 args->buffer_count);
3899 if (ret)
3900 goto err;
3901
3902 /* The objects are in their final locations, apply the relocations. */
3903 ret = i915_gem_execbuffer_relocate(dev, file,
3904 object_list, exec_list,
3905 args->buffer_count);
3906 if (ret) {
3907 if (ret == -EFAULT) {
3908 ret = i915_gem_execbuffer_relocate_slow(dev, file,
3909 object_list,
3910 exec_list,
3911 args->buffer_count);
3912 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
3913 }
3914 if (ret)
3915 goto err;
3916 }
3917
3918 /* Set the pending read domains for the batch buffer to COMMAND */
3919 batch_obj = object_list[args->buffer_count-1];
3920 if (batch_obj->pending_write_domain) {
3921 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3922 ret = -EINVAL;
3923 goto err;
3924 }
3925 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3926
3927 /* Sanity check the batch buffer */
3928 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3929 ret = i915_gem_check_execbuffer(args, exec_offset);
3930 if (ret != 0) {
3931 DRM_ERROR("execbuf with invalid offset/length\n");
3932 goto err;
3933 }
3934
3935 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3936 object_list, args->buffer_count);
3937 if (ret)
3938 goto err;
3939
3940 for (i = 0; i < args->buffer_count; i++) {
3941 struct drm_gem_object *obj = object_list[i];
3942 uint32_t old_write_domain = obj->write_domain;
3943 obj->write_domain = obj->pending_write_domain;
3944 trace_i915_gem_object_change_domain(obj,
3945 obj->read_domains,
3946 old_write_domain);
3947 }
3948
3949 #if WATCH_COHERENCY
3950 for (i = 0; i < args->buffer_count; i++) {
3951 i915_gem_object_check_coherency(object_list[i],
3952 exec_list[i].handle);
3953 }
3954 #endif
3955
3956 #if WATCH_EXEC
3957 i915_gem_dump_object(batch_obj,
3958 args->batch_len,
3959 __func__,
3960 ~0);
3961 #endif
3962
3963 /* Check for any pending flips. As we only maintain a flip queue depth
3964 * of 1, we can simply insert a WAIT for the next display flip prior
3965 * to executing the batch and avoid stalling the CPU.
3966 */
3967 flips = 0;
3968 for (i = 0; i < args->buffer_count; i++) {
3969 if (object_list[i]->write_domain)
3970 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3971 }
3972 if (flips) {
3973 int plane, flip_mask;
3974
3975 for (plane = 0; flips >> plane; plane++) {
3976 if (((flips >> plane) & 1) == 0)
3977 continue;
3978
3979 if (plane)
3980 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3981 else
3982 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3983
3984 intel_ring_begin(dev, ring, 2);
3985 intel_ring_emit(dev, ring,
3986 MI_WAIT_FOR_EVENT | flip_mask);
3987 intel_ring_emit(dev, ring, MI_NOOP);
3988 intel_ring_advance(dev, ring);
3989 }
3990 }
3991
3992 /* Exec the batchbuffer */
3993 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3994 cliprects, exec_offset);
3995 if (ret) {
3996 DRM_ERROR("dispatch failed %d\n", ret);
3997 goto err;
3998 }
3999
4000 /*
4001 * Ensure that the commands in the batch buffer are
4002 * finished before the interrupt fires
4003 */
4004 i915_retire_commands(dev, ring);
4005
4006 for (i = 0; i < args->buffer_count; i++) {
4007 struct drm_gem_object *obj = object_list[i];
4008
4009 i915_gem_object_move_to_active(obj, ring);
4010 if (obj->write_domain)
4011 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
4012 &ring->gpu_write_list);
4013 }
4014
4015 i915_add_request(dev, file, request, ring);
4016 request = NULL;
4017
4018 err:
4019 for (i = 0; i < args->buffer_count; i++) {
4020 if (object_list[i]) {
4021 obj_priv = to_intel_bo(object_list[i]);
4022 obj_priv->in_execbuffer = false;
4023 }
4024 drm_gem_object_unreference(object_list[i]);
4025 }
4026
4027 mutex_unlock(&dev->struct_mutex);
4028
4029 pre_mutex_err:
4030 drm_free_large(object_list);
4031 kfree(cliprects);
4032 kfree(request);
4033
4034 return ret;
4035 }
4036
4037 /*
4038 * Legacy execbuffer just creates an exec2 list from the original exec object
4039 * list array and passes it to the real function.
4040 */
4041 int
4042 i915_gem_execbuffer(struct drm_device *dev, void *data,
4043 struct drm_file *file_priv)
4044 {
4045 struct drm_i915_gem_execbuffer *args = data;
4046 struct drm_i915_gem_execbuffer2 exec2;
4047 struct drm_i915_gem_exec_object *exec_list = NULL;
4048 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4049 int ret, i;
4050
4051 #if WATCH_EXEC
4052 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4053 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4054 #endif
4055
4056 if (args->buffer_count < 1) {
4057 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4058 return -EINVAL;
4059 }
4060
4061 /* Copy in the exec list from userland */
4062 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4063 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4064 if (exec_list == NULL || exec2_list == NULL) {
4065 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4066 args->buffer_count);
4067 drm_free_large(exec_list);
4068 drm_free_large(exec2_list);
4069 return -ENOMEM;
4070 }
4071 ret = copy_from_user(exec_list,
4072 (struct drm_i915_relocation_entry __user *)
4073 (uintptr_t) args->buffers_ptr,
4074 sizeof(*exec_list) * args->buffer_count);
4075 if (ret != 0) {
4076 DRM_ERROR("copy %d exec entries failed %d\n",
4077 args->buffer_count, ret);
4078 drm_free_large(exec_list);
4079 drm_free_large(exec2_list);
4080 return -EFAULT;
4081 }
4082
4083 for (i = 0; i < args->buffer_count; i++) {
4084 exec2_list[i].handle = exec_list[i].handle;
4085 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4086 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4087 exec2_list[i].alignment = exec_list[i].alignment;
4088 exec2_list[i].offset = exec_list[i].offset;
4089 if (INTEL_INFO(dev)->gen < 4)
4090 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4091 else
4092 exec2_list[i].flags = 0;
4093 }
4094
4095 exec2.buffers_ptr = args->buffers_ptr;
4096 exec2.buffer_count = args->buffer_count;
4097 exec2.batch_start_offset = args->batch_start_offset;
4098 exec2.batch_len = args->batch_len;
4099 exec2.DR1 = args->DR1;
4100 exec2.DR4 = args->DR4;
4101 exec2.num_cliprects = args->num_cliprects;
4102 exec2.cliprects_ptr = args->cliprects_ptr;
4103 exec2.flags = I915_EXEC_RENDER;
4104
4105 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4106 if (!ret) {
4107 /* Copy the new buffer offsets back to the user's exec list. */
4108 for (i = 0; i < args->buffer_count; i++)
4109 exec_list[i].offset = exec2_list[i].offset;
4110 /* ... and back out to userspace */
4111 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4112 (uintptr_t) args->buffers_ptr,
4113 exec_list,
4114 sizeof(*exec_list) * args->buffer_count);
4115 if (ret) {
4116 ret = -EFAULT;
4117 DRM_ERROR("failed to copy %d exec entries "
4118 "back to user (%d)\n",
4119 args->buffer_count, ret);
4120 }
4121 }
4122
4123 drm_free_large(exec_list);
4124 drm_free_large(exec2_list);
4125 return ret;
4126 }
4127
4128 int
4129 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4130 struct drm_file *file_priv)
4131 {
4132 struct drm_i915_gem_execbuffer2 *args = data;
4133 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4134 int ret;
4135
4136 #if WATCH_EXEC
4137 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4138 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4139 #endif
4140
4141 if (args->buffer_count < 1) {
4142 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4143 return -EINVAL;
4144 }
4145
4146 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4147 if (exec2_list == NULL) {
4148 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4149 args->buffer_count);
4150 return -ENOMEM;
4151 }
4152 ret = copy_from_user(exec2_list,
4153 (struct drm_i915_relocation_entry __user *)
4154 (uintptr_t) args->buffers_ptr,
4155 sizeof(*exec2_list) * args->buffer_count);
4156 if (ret != 0) {
4157 DRM_ERROR("copy %d exec entries failed %d\n",
4158 args->buffer_count, ret);
4159 drm_free_large(exec2_list);
4160 return -EFAULT;
4161 }
4162
4163 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4164 if (!ret) {
4165 /* Copy the new buffer offsets back to the user's exec list. */
4166 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4167 (uintptr_t) args->buffers_ptr,
4168 exec2_list,
4169 sizeof(*exec2_list) * args->buffer_count);
4170 if (ret) {
4171 ret = -EFAULT;
4172 DRM_ERROR("failed to copy %d exec entries "
4173 "back to user (%d)\n",
4174 args->buffer_count, ret);
4175 }
4176 }
4177
4178 drm_free_large(exec2_list);
4179 return ret;
4180 }
4181
4182 int
4183 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4184 {
4185 struct drm_device *dev = obj->dev;
4186 struct drm_i915_private *dev_priv = dev->dev_private;
4187 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4188 int ret;
4189
4190 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4191 WARN_ON(i915_verify_lists(dev));
4192
4193 if (obj_priv->gtt_space != NULL) {
4194 if (alignment == 0)
4195 alignment = i915_gem_get_gtt_alignment(obj);
4196 if (obj_priv->gtt_offset & (alignment - 1)) {
4197 WARN(obj_priv->pin_count,
4198 "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
4199 obj_priv->gtt_offset, alignment);
4200 ret = i915_gem_object_unbind(obj);
4201 if (ret)
4202 return ret;
4203 }
4204 }
4205
4206 if (obj_priv->gtt_space == NULL) {
4207 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4208 if (ret)
4209 return ret;
4210 }
4211
4212 obj_priv->pin_count++;
4213
4214 /* If the object is not active and not pending a flush,
4215 * remove it from the inactive list
4216 */
4217 if (obj_priv->pin_count == 1) {
4218 i915_gem_info_add_pin(dev_priv, obj->size);
4219 if (!obj_priv->active)
4220 list_move_tail(&obj_priv->mm_list,
4221 &dev_priv->mm.pinned_list);
4222 }
4223
4224 WARN_ON(i915_verify_lists(dev));
4225 return 0;
4226 }
4227
4228 void
4229 i915_gem_object_unpin(struct drm_gem_object *obj)
4230 {
4231 struct drm_device *dev = obj->dev;
4232 drm_i915_private_t *dev_priv = dev->dev_private;
4233 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4234
4235 WARN_ON(i915_verify_lists(dev));
4236 obj_priv->pin_count--;
4237 BUG_ON(obj_priv->pin_count < 0);
4238 BUG_ON(obj_priv->gtt_space == NULL);
4239
4240 /* If the object is no longer pinned, and is
4241 * neither active nor being flushed, then stick it on
4242 * the inactive list
4243 */
4244 if (obj_priv->pin_count == 0) {
4245 if (!obj_priv->active)
4246 list_move_tail(&obj_priv->mm_list,
4247 &dev_priv->mm.inactive_list);
4248 i915_gem_info_remove_pin(dev_priv, obj->size);
4249 }
4250 WARN_ON(i915_verify_lists(dev));
4251 }
4252
4253 int
4254 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4255 struct drm_file *file_priv)
4256 {
4257 struct drm_i915_gem_pin *args = data;
4258 struct drm_gem_object *obj;
4259 struct drm_i915_gem_object *obj_priv;
4260 int ret;
4261
4262 ret = i915_mutex_lock_interruptible(dev);
4263 if (ret)
4264 return ret;
4265
4266 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4267 if (obj == NULL) {
4268 ret = -ENOENT;
4269 goto unlock;
4270 }
4271 obj_priv = to_intel_bo(obj);
4272
4273 if (obj_priv->madv != I915_MADV_WILLNEED) {
4274 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278
4279 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4280 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4281 args->handle);
4282 ret = -EINVAL;
4283 goto out;
4284 }
4285
4286 obj_priv->user_pin_count++;
4287 obj_priv->pin_filp = file_priv;
4288 if (obj_priv->user_pin_count == 1) {
4289 ret = i915_gem_object_pin(obj, args->alignment);
4290 if (ret)
4291 goto out;
4292 }
4293
4294 /* XXX - flush the CPU caches for pinned objects
4295 * as the X server doesn't manage domains yet
4296 */
4297 i915_gem_object_flush_cpu_write_domain(obj);
4298 args->offset = obj_priv->gtt_offset;
4299 out:
4300 drm_gem_object_unreference(obj);
4301 unlock:
4302 mutex_unlock(&dev->struct_mutex);
4303 return ret;
4304 }
4305
4306 int
4307 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4308 struct drm_file *file_priv)
4309 {
4310 struct drm_i915_gem_pin *args = data;
4311 struct drm_gem_object *obj;
4312 struct drm_i915_gem_object *obj_priv;
4313 int ret;
4314
4315 ret = i915_mutex_lock_interruptible(dev);
4316 if (ret)
4317 return ret;
4318
4319 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4320 if (obj == NULL) {
4321 ret = -ENOENT;
4322 goto unlock;
4323 }
4324 obj_priv = to_intel_bo(obj);
4325
4326 if (obj_priv->pin_filp != file_priv) {
4327 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4328 args->handle);
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 obj_priv->user_pin_count--;
4333 if (obj_priv->user_pin_count == 0) {
4334 obj_priv->pin_filp = NULL;
4335 i915_gem_object_unpin(obj);
4336 }
4337
4338 out:
4339 drm_gem_object_unreference(obj);
4340 unlock:
4341 mutex_unlock(&dev->struct_mutex);
4342 return ret;
4343 }
4344
4345 int
4346 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4347 struct drm_file *file_priv)
4348 {
4349 struct drm_i915_gem_busy *args = data;
4350 struct drm_gem_object *obj;
4351 struct drm_i915_gem_object *obj_priv;
4352 int ret;
4353
4354 ret = i915_mutex_lock_interruptible(dev);
4355 if (ret)
4356 return ret;
4357
4358 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4359 if (obj == NULL) {
4360 ret = -ENOENT;
4361 goto unlock;
4362 }
4363 obj_priv = to_intel_bo(obj);
4364
4365 /* Count all active objects as busy, even if they are currently not used
4366 * by the gpu. Users of this interface expect objects to eventually
4367 * become non-busy without any further actions, therefore emit any
4368 * necessary flushes here.
4369 */
4370 args->busy = obj_priv->active;
4371 if (args->busy) {
4372 /* Unconditionally flush objects, even when the gpu still uses this
4373 * object. Userspace calling this function indicates that it wants to
4374 * use this buffer rather sooner than later, so issuing the required
4375 * flush earlier is beneficial.
4376 */
4377 if (obj->write_domain & I915_GEM_GPU_DOMAINS) {
4378 i915_gem_flush_ring(dev, file_priv,
4379 obj_priv->ring,
4380 0, obj->write_domain);
4381 } else if (obj_priv->ring->outstanding_lazy_request) {
4382 /* This ring is not being cleared by active usage,
4383 * so emit a request to do so.
4384 */
4385 u32 seqno = i915_add_request(dev,
4386 NULL, NULL,
4387 obj_priv->ring);
4388 if (seqno == 0)
4389 ret = -ENOMEM;
4390 }
4391
4392 /* Update the active list for the hardware's current position.
4393 * Otherwise this only updates on a delayed timer or when irqs
4394 * are actually unmasked, and our working set ends up being
4395 * larger than required.
4396 */
4397 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4398
4399 args->busy = obj_priv->active;
4400 }
4401
4402 drm_gem_object_unreference(obj);
4403 unlock:
4404 mutex_unlock(&dev->struct_mutex);
4405 return ret;
4406 }
4407
4408 int
4409 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4410 struct drm_file *file_priv)
4411 {
4412 return i915_gem_ring_throttle(dev, file_priv);
4413 }
4414
4415 int
4416 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4417 struct drm_file *file_priv)
4418 {
4419 struct drm_i915_gem_madvise *args = data;
4420 struct drm_gem_object *obj;
4421 struct drm_i915_gem_object *obj_priv;
4422 int ret;
4423
4424 switch (args->madv) {
4425 case I915_MADV_DONTNEED:
4426 case I915_MADV_WILLNEED:
4427 break;
4428 default:
4429 return -EINVAL;
4430 }
4431
4432 ret = i915_mutex_lock_interruptible(dev);
4433 if (ret)
4434 return ret;
4435
4436 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4437 if (obj == NULL) {
4438 ret = -ENOENT;
4439 goto unlock;
4440 }
4441 obj_priv = to_intel_bo(obj);
4442
4443 if (obj_priv->pin_count) {
4444 ret = -EINVAL;
4445 goto out;
4446 }
4447
4448 if (obj_priv->madv != __I915_MADV_PURGED)
4449 obj_priv->madv = args->madv;
4450
4451 /* if the object is no longer bound, discard its backing storage */
4452 if (i915_gem_object_is_purgeable(obj_priv) &&
4453 obj_priv->gtt_space == NULL)
4454 i915_gem_object_truncate(obj);
4455
4456 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4457
4458 out:
4459 drm_gem_object_unreference(obj);
4460 unlock:
4461 mutex_unlock(&dev->struct_mutex);
4462 return ret;
4463 }
4464
4465 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4466 size_t size)
4467 {
4468 struct drm_i915_private *dev_priv = dev->dev_private;
4469 struct drm_i915_gem_object *obj;
4470
4471 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4472 if (obj == NULL)
4473 return NULL;
4474
4475 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4476 kfree(obj);
4477 return NULL;
4478 }
4479
4480 i915_gem_info_add_obj(dev_priv, size);
4481
4482 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4483 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4484
4485 obj->agp_type = AGP_USER_MEMORY;
4486 obj->base.driver_private = NULL;
4487 obj->fence_reg = I915_FENCE_REG_NONE;
4488 INIT_LIST_HEAD(&obj->mm_list);
4489 INIT_LIST_HEAD(&obj->ring_list);
4490 INIT_LIST_HEAD(&obj->gpu_write_list);
4491 obj->madv = I915_MADV_WILLNEED;
4492
4493 return &obj->base;
4494 }
4495
4496 int i915_gem_init_object(struct drm_gem_object *obj)
4497 {
4498 BUG();
4499
4500 return 0;
4501 }
4502
4503 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4504 {
4505 struct drm_device *dev = obj->dev;
4506 drm_i915_private_t *dev_priv = dev->dev_private;
4507 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4508 int ret;
4509
4510 ret = i915_gem_object_unbind(obj);
4511 if (ret == -ERESTARTSYS) {
4512 list_move(&obj_priv->mm_list,
4513 &dev_priv->mm.deferred_free_list);
4514 return;
4515 }
4516
4517 if (obj_priv->mmap_offset)
4518 i915_gem_free_mmap_offset(obj);
4519
4520 drm_gem_object_release(obj);
4521 i915_gem_info_remove_obj(dev_priv, obj->size);
4522
4523 kfree(obj_priv->page_cpu_valid);
4524 kfree(obj_priv->bit_17);
4525 kfree(obj_priv);
4526 }
4527
4528 void i915_gem_free_object(struct drm_gem_object *obj)
4529 {
4530 struct drm_device *dev = obj->dev;
4531 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4532
4533 trace_i915_gem_object_destroy(obj);
4534
4535 while (obj_priv->pin_count > 0)
4536 i915_gem_object_unpin(obj);
4537
4538 if (obj_priv->phys_obj)
4539 i915_gem_detach_phys_object(dev, obj);
4540
4541 i915_gem_free_object_tail(obj);
4542 }
4543
4544 int
4545 i915_gem_idle(struct drm_device *dev)
4546 {
4547 drm_i915_private_t *dev_priv = dev->dev_private;
4548 int ret;
4549
4550 mutex_lock(&dev->struct_mutex);
4551
4552 if (dev_priv->mm.suspended) {
4553 mutex_unlock(&dev->struct_mutex);
4554 return 0;
4555 }
4556
4557 ret = i915_gpu_idle(dev);
4558 if (ret) {
4559 mutex_unlock(&dev->struct_mutex);
4560 return ret;
4561 }
4562
4563 /* Under UMS, be paranoid and evict. */
4564 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4565 ret = i915_gem_evict_inactive(dev);
4566 if (ret) {
4567 mutex_unlock(&dev->struct_mutex);
4568 return ret;
4569 }
4570 }
4571
4572 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4573 * We need to replace this with a semaphore, or something.
4574 * And not confound mm.suspended!
4575 */
4576 dev_priv->mm.suspended = 1;
4577 del_timer_sync(&dev_priv->hangcheck_timer);
4578
4579 i915_kernel_lost_context(dev);
4580 i915_gem_cleanup_ringbuffer(dev);
4581
4582 mutex_unlock(&dev->struct_mutex);
4583
4584 /* Cancel the retire work handler, which should be idle now. */
4585 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4586
4587 return 0;
4588 }
4589
4590 /*
4591 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4592 * over cache flushing.
4593 */
4594 static int
4595 i915_gem_init_pipe_control(struct drm_device *dev)
4596 {
4597 drm_i915_private_t *dev_priv = dev->dev_private;
4598 struct drm_gem_object *obj;
4599 struct drm_i915_gem_object *obj_priv;
4600 int ret;
4601
4602 obj = i915_gem_alloc_object(dev, 4096);
4603 if (obj == NULL) {
4604 DRM_ERROR("Failed to allocate seqno page\n");
4605 ret = -ENOMEM;
4606 goto err;
4607 }
4608 obj_priv = to_intel_bo(obj);
4609 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4610
4611 ret = i915_gem_object_pin(obj, 4096);
4612 if (ret)
4613 goto err_unref;
4614
4615 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4616 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4617 if (dev_priv->seqno_page == NULL)
4618 goto err_unpin;
4619
4620 dev_priv->seqno_obj = obj;
4621 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4622
4623 return 0;
4624
4625 err_unpin:
4626 i915_gem_object_unpin(obj);
4627 err_unref:
4628 drm_gem_object_unreference(obj);
4629 err:
4630 return ret;
4631 }
4632
4633
4634 static void
4635 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4636 {
4637 drm_i915_private_t *dev_priv = dev->dev_private;
4638 struct drm_gem_object *obj;
4639 struct drm_i915_gem_object *obj_priv;
4640
4641 obj = dev_priv->seqno_obj;
4642 obj_priv = to_intel_bo(obj);
4643 kunmap(obj_priv->pages[0]);
4644 i915_gem_object_unpin(obj);
4645 drm_gem_object_unreference(obj);
4646 dev_priv->seqno_obj = NULL;
4647
4648 dev_priv->seqno_page = NULL;
4649 }
4650
4651 int
4652 i915_gem_init_ringbuffer(struct drm_device *dev)
4653 {
4654 drm_i915_private_t *dev_priv = dev->dev_private;
4655 int ret;
4656
4657 if (HAS_PIPE_CONTROL(dev)) {
4658 ret = i915_gem_init_pipe_control(dev);
4659 if (ret)
4660 return ret;
4661 }
4662
4663 ret = intel_init_render_ring_buffer(dev);
4664 if (ret)
4665 goto cleanup_pipe_control;
4666
4667 if (HAS_BSD(dev)) {
4668 ret = intel_init_bsd_ring_buffer(dev);
4669 if (ret)
4670 goto cleanup_render_ring;
4671 }
4672
4673 if (HAS_BLT(dev)) {
4674 ret = intel_init_blt_ring_buffer(dev);
4675 if (ret)
4676 goto cleanup_bsd_ring;
4677 }
4678
4679 dev_priv->next_seqno = 1;
4680
4681 return 0;
4682
4683 cleanup_bsd_ring:
4684 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4685 cleanup_render_ring:
4686 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4687 cleanup_pipe_control:
4688 if (HAS_PIPE_CONTROL(dev))
4689 i915_gem_cleanup_pipe_control(dev);
4690 return ret;
4691 }
4692
4693 void
4694 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4695 {
4696 drm_i915_private_t *dev_priv = dev->dev_private;
4697
4698 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4699 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4700 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4701 if (HAS_PIPE_CONTROL(dev))
4702 i915_gem_cleanup_pipe_control(dev);
4703 }
4704
4705 int
4706 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4707 struct drm_file *file_priv)
4708 {
4709 drm_i915_private_t *dev_priv = dev->dev_private;
4710 int ret;
4711
4712 if (drm_core_check_feature(dev, DRIVER_MODESET))
4713 return 0;
4714
4715 if (atomic_read(&dev_priv->mm.wedged)) {
4716 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4717 atomic_set(&dev_priv->mm.wedged, 0);
4718 }
4719
4720 mutex_lock(&dev->struct_mutex);
4721 dev_priv->mm.suspended = 0;
4722
4723 ret = i915_gem_init_ringbuffer(dev);
4724 if (ret != 0) {
4725 mutex_unlock(&dev->struct_mutex);
4726 return ret;
4727 }
4728
4729 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4730 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4731 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4732 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4733 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4734 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4735 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4736 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4737 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4738 mutex_unlock(&dev->struct_mutex);
4739
4740 ret = drm_irq_install(dev);
4741 if (ret)
4742 goto cleanup_ringbuffer;
4743
4744 return 0;
4745
4746 cleanup_ringbuffer:
4747 mutex_lock(&dev->struct_mutex);
4748 i915_gem_cleanup_ringbuffer(dev);
4749 dev_priv->mm.suspended = 1;
4750 mutex_unlock(&dev->struct_mutex);
4751
4752 return ret;
4753 }
4754
4755 int
4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4757 struct drm_file *file_priv)
4758 {
4759 if (drm_core_check_feature(dev, DRIVER_MODESET))
4760 return 0;
4761
4762 drm_irq_uninstall(dev);
4763 return i915_gem_idle(dev);
4764 }
4765
4766 void
4767 i915_gem_lastclose(struct drm_device *dev)
4768 {
4769 int ret;
4770
4771 if (drm_core_check_feature(dev, DRIVER_MODESET))
4772 return;
4773
4774 ret = i915_gem_idle(dev);
4775 if (ret)
4776 DRM_ERROR("failed to idle hardware: %d\n", ret);
4777 }
4778
4779 static void
4780 init_ring_lists(struct intel_ring_buffer *ring)
4781 {
4782 INIT_LIST_HEAD(&ring->active_list);
4783 INIT_LIST_HEAD(&ring->request_list);
4784 INIT_LIST_HEAD(&ring->gpu_write_list);
4785 }
4786
4787 void
4788 i915_gem_load(struct drm_device *dev)
4789 {
4790 int i;
4791 drm_i915_private_t *dev_priv = dev->dev_private;
4792
4793 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4794 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4795 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4796 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4797 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4798 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4799 init_ring_lists(&dev_priv->render_ring);
4800 init_ring_lists(&dev_priv->bsd_ring);
4801 init_ring_lists(&dev_priv->blt_ring);
4802 for (i = 0; i < 16; i++)
4803 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4804 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4805 i915_gem_retire_work_handler);
4806 init_completion(&dev_priv->error_completion);
4807 spin_lock(&shrink_list_lock);
4808 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4809 spin_unlock(&shrink_list_lock);
4810
4811 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4812 if (IS_GEN3(dev)) {
4813 u32 tmp = I915_READ(MI_ARB_STATE);
4814 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4815 /* arb state is a masked write, so set bit + bit in mask */
4816 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4817 I915_WRITE(MI_ARB_STATE, tmp);
4818 }
4819 }
4820
4821 /* Old X drivers will take 0-2 for front, back, depth buffers */
4822 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4823 dev_priv->fence_reg_start = 3;
4824
4825 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4826 dev_priv->num_fence_regs = 16;
4827 else
4828 dev_priv->num_fence_regs = 8;
4829
4830 /* Initialize fence registers to zero */
4831 switch (INTEL_INFO(dev)->gen) {
4832 case 6:
4833 for (i = 0; i < 16; i++)
4834 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4835 break;
4836 case 5:
4837 case 4:
4838 for (i = 0; i < 16; i++)
4839 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4840 break;
4841 case 3:
4842 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4843 for (i = 0; i < 8; i++)
4844 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4845 case 2:
4846 for (i = 0; i < 8; i++)
4847 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4848 break;
4849 }
4850 i915_gem_detect_bit_6_swizzle(dev);
4851 init_waitqueue_head(&dev_priv->pending_flip_queue);
4852 }
4853
4854 /*
4855 * Create a physically contiguous memory object for this object
4856 * e.g. for cursor + overlay regs
4857 */
4858 static int i915_gem_init_phys_object(struct drm_device *dev,
4859 int id, int size, int align)
4860 {
4861 drm_i915_private_t *dev_priv = dev->dev_private;
4862 struct drm_i915_gem_phys_object *phys_obj;
4863 int ret;
4864
4865 if (dev_priv->mm.phys_objs[id - 1] || !size)
4866 return 0;
4867
4868 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4869 if (!phys_obj)
4870 return -ENOMEM;
4871
4872 phys_obj->id = id;
4873
4874 phys_obj->handle = drm_pci_alloc(dev, size, align);
4875 if (!phys_obj->handle) {
4876 ret = -ENOMEM;
4877 goto kfree_obj;
4878 }
4879 #ifdef CONFIG_X86
4880 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4881 #endif
4882
4883 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4884
4885 return 0;
4886 kfree_obj:
4887 kfree(phys_obj);
4888 return ret;
4889 }
4890
4891 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4892 {
4893 drm_i915_private_t *dev_priv = dev->dev_private;
4894 struct drm_i915_gem_phys_object *phys_obj;
4895
4896 if (!dev_priv->mm.phys_objs[id - 1])
4897 return;
4898
4899 phys_obj = dev_priv->mm.phys_objs[id - 1];
4900 if (phys_obj->cur_obj) {
4901 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4902 }
4903
4904 #ifdef CONFIG_X86
4905 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4906 #endif
4907 drm_pci_free(dev, phys_obj->handle);
4908 kfree(phys_obj);
4909 dev_priv->mm.phys_objs[id - 1] = NULL;
4910 }
4911
4912 void i915_gem_free_all_phys_object(struct drm_device *dev)
4913 {
4914 int i;
4915
4916 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4917 i915_gem_free_phys_object(dev, i);
4918 }
4919
4920 void i915_gem_detach_phys_object(struct drm_device *dev,
4921 struct drm_gem_object *obj)
4922 {
4923 struct drm_i915_gem_object *obj_priv;
4924 int i;
4925 int ret;
4926 int page_count;
4927
4928 obj_priv = to_intel_bo(obj);
4929 if (!obj_priv->phys_obj)
4930 return;
4931
4932 ret = i915_gem_object_get_pages(obj, 0);
4933 if (ret)
4934 goto out;
4935
4936 page_count = obj->size / PAGE_SIZE;
4937
4938 for (i = 0; i < page_count; i++) {
4939 char *dst = kmap_atomic(obj_priv->pages[i]);
4940 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4941
4942 memcpy(dst, src, PAGE_SIZE);
4943 kunmap_atomic(dst);
4944 }
4945 drm_clflush_pages(obj_priv->pages, page_count);
4946 drm_agp_chipset_flush(dev);
4947
4948 i915_gem_object_put_pages(obj);
4949 out:
4950 obj_priv->phys_obj->cur_obj = NULL;
4951 obj_priv->phys_obj = NULL;
4952 }
4953
4954 int
4955 i915_gem_attach_phys_object(struct drm_device *dev,
4956 struct drm_gem_object *obj,
4957 int id,
4958 int align)
4959 {
4960 drm_i915_private_t *dev_priv = dev->dev_private;
4961 struct drm_i915_gem_object *obj_priv;
4962 int ret = 0;
4963 int page_count;
4964 int i;
4965
4966 if (id > I915_MAX_PHYS_OBJECT)
4967 return -EINVAL;
4968
4969 obj_priv = to_intel_bo(obj);
4970
4971 if (obj_priv->phys_obj) {
4972 if (obj_priv->phys_obj->id == id)
4973 return 0;
4974 i915_gem_detach_phys_object(dev, obj);
4975 }
4976
4977 /* create a new object */
4978 if (!dev_priv->mm.phys_objs[id - 1]) {
4979 ret = i915_gem_init_phys_object(dev, id,
4980 obj->size, align);
4981 if (ret) {
4982 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4983 goto out;
4984 }
4985 }
4986
4987 /* bind to the object */
4988 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4989 obj_priv->phys_obj->cur_obj = obj;
4990
4991 ret = i915_gem_object_get_pages(obj, 0);
4992 if (ret) {
4993 DRM_ERROR("failed to get page list\n");
4994 goto out;
4995 }
4996
4997 page_count = obj->size / PAGE_SIZE;
4998
4999 for (i = 0; i < page_count; i++) {
5000 char *src = kmap_atomic(obj_priv->pages[i]);
5001 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5002
5003 memcpy(dst, src, PAGE_SIZE);
5004 kunmap_atomic(src);
5005 }
5006
5007 i915_gem_object_put_pages(obj);
5008
5009 return 0;
5010 out:
5011 return ret;
5012 }
5013
5014 static int
5015 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5016 struct drm_i915_gem_pwrite *args,
5017 struct drm_file *file_priv)
5018 {
5019 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5020 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
5021 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5022
5023 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5024
5025 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5026 unsigned long unwritten;
5027
5028 /* The physical object once assigned is fixed for the lifetime
5029 * of the obj, so we can safely drop the lock and continue
5030 * to access vaddr.
5031 */
5032 mutex_unlock(&dev->struct_mutex);
5033 unwritten = copy_from_user(vaddr, user_data, args->size);
5034 mutex_lock(&dev->struct_mutex);
5035 if (unwritten)
5036 return -EFAULT;
5037 }
5038
5039 drm_agp_chipset_flush(dev);
5040 return 0;
5041 }
5042
5043 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5044 {
5045 struct drm_i915_file_private *file_priv = file->driver_priv;
5046
5047 /* Clean up our request list when the client is going away, so that
5048 * later retire_requests won't dereference our soon-to-be-gone
5049 * file_priv.
5050 */
5051 spin_lock(&file_priv->mm.lock);
5052 while (!list_empty(&file_priv->mm.request_list)) {
5053 struct drm_i915_gem_request *request;
5054
5055 request = list_first_entry(&file_priv->mm.request_list,
5056 struct drm_i915_gem_request,
5057 client_list);
5058 list_del(&request->client_list);
5059 request->file_priv = NULL;
5060 }
5061 spin_unlock(&file_priv->mm.lock);
5062 }
5063
5064 static int
5065 i915_gpu_is_active(struct drm_device *dev)
5066 {
5067 drm_i915_private_t *dev_priv = dev->dev_private;
5068 int lists_empty;
5069
5070 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5071 list_empty(&dev_priv->mm.active_list);
5072
5073 return !lists_empty;
5074 }
5075
5076 static int
5077 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5078 {
5079 drm_i915_private_t *dev_priv, *next_dev;
5080 struct drm_i915_gem_object *obj_priv, *next_obj;
5081 int cnt = 0;
5082 int would_deadlock = 1;
5083
5084 /* "fast-path" to count number of available objects */
5085 if (nr_to_scan == 0) {
5086 spin_lock(&shrink_list_lock);
5087 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5088 struct drm_device *dev = dev_priv->dev;
5089
5090 if (mutex_trylock(&dev->struct_mutex)) {
5091 list_for_each_entry(obj_priv,
5092 &dev_priv->mm.inactive_list,
5093 mm_list)
5094 cnt++;
5095 mutex_unlock(&dev->struct_mutex);
5096 }
5097 }
5098 spin_unlock(&shrink_list_lock);
5099
5100 return (cnt / 100) * sysctl_vfs_cache_pressure;
5101 }
5102
5103 spin_lock(&shrink_list_lock);
5104
5105 rescan:
5106 /* first scan for clean buffers */
5107 list_for_each_entry_safe(dev_priv, next_dev,
5108 &shrink_list, mm.shrink_list) {
5109 struct drm_device *dev = dev_priv->dev;
5110
5111 if (! mutex_trylock(&dev->struct_mutex))
5112 continue;
5113
5114 spin_unlock(&shrink_list_lock);
5115 i915_gem_retire_requests(dev);
5116
5117 list_for_each_entry_safe(obj_priv, next_obj,
5118 &dev_priv->mm.inactive_list,
5119 mm_list) {
5120 if (i915_gem_object_is_purgeable(obj_priv)) {
5121 i915_gem_object_unbind(&obj_priv->base);
5122 if (--nr_to_scan <= 0)
5123 break;
5124 }
5125 }
5126
5127 spin_lock(&shrink_list_lock);
5128 mutex_unlock(&dev->struct_mutex);
5129
5130 would_deadlock = 0;
5131
5132 if (nr_to_scan <= 0)
5133 break;
5134 }
5135
5136 /* second pass, evict/count anything still on the inactive list */
5137 list_for_each_entry_safe(dev_priv, next_dev,
5138 &shrink_list, mm.shrink_list) {
5139 struct drm_device *dev = dev_priv->dev;
5140
5141 if (! mutex_trylock(&dev->struct_mutex))
5142 continue;
5143
5144 spin_unlock(&shrink_list_lock);
5145
5146 list_for_each_entry_safe(obj_priv, next_obj,
5147 &dev_priv->mm.inactive_list,
5148 mm_list) {
5149 if (nr_to_scan > 0) {
5150 i915_gem_object_unbind(&obj_priv->base);
5151 nr_to_scan--;
5152 } else
5153 cnt++;
5154 }
5155
5156 spin_lock(&shrink_list_lock);
5157 mutex_unlock(&dev->struct_mutex);
5158
5159 would_deadlock = 0;
5160 }
5161
5162 if (nr_to_scan) {
5163 int active = 0;
5164
5165 /*
5166 * We are desperate for pages, so as a last resort, wait
5167 * for the GPU to finish and discard whatever we can.
5168 * This has a dramatic impact to reduce the number of
5169 * OOM-killer events whilst running the GPU aggressively.
5170 */
5171 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5172 struct drm_device *dev = dev_priv->dev;
5173
5174 if (!mutex_trylock(&dev->struct_mutex))
5175 continue;
5176
5177 spin_unlock(&shrink_list_lock);
5178
5179 if (i915_gpu_is_active(dev)) {
5180 i915_gpu_idle(dev);
5181 active++;
5182 }
5183
5184 spin_lock(&shrink_list_lock);
5185 mutex_unlock(&dev->struct_mutex);
5186 }
5187
5188 if (active)
5189 goto rescan;
5190 }
5191
5192 spin_unlock(&shrink_list_lock);
5193
5194 if (would_deadlock)
5195 return -1;
5196 else if (cnt > 0)
5197 return (cnt / 100) * sysctl_vfs_cache_pressure;
5198 else
5199 return 0;
5200 }
5201
5202 static struct shrinker shrinker = {
5203 .shrink = i915_gem_shrink,
5204 .seeks = DEFAULT_SEEKS,
5205 };
5206
5207 __init void
5208 i915_gem_shrinker_init(void)
5209 {
5210 register_shrinker(&shrinker);
5211 }
5212
5213 __exit void
5214 i915_gem_shrinker_exit(void)
5215 {
5216 unregister_shrinker(&shrinker);
5217 }
This page took 0.138442 seconds and 5 git commands to generate.