3debb35b7195d7fd623c370aac67d6a8487078de
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 spin_lock(&dev_priv->mm.object_stat_lock);
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 spin_unlock(&dev_priv->mm.object_stat_lock);
82 }
83
84 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86 {
87 spin_lock(&dev_priv->mm.object_stat_lock);
88 dev_priv->mm.object_count--;
89 dev_priv->mm.object_memory -= size;
90 spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static int
94 i915_gem_wait_for_error(struct i915_gpu_error *error)
95 {
96 int ret;
97
98 #define EXIT_COND (!i915_reset_in_progress(error) || \
99 i915_terminally_wedged(error))
100 if (EXIT_COND)
101 return 0;
102
103 /*
104 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
105 * userspace. If it takes that long something really bad is going on and
106 * we should simply try to bail out and fail as gracefully as possible.
107 */
108 ret = wait_event_interruptible_timeout(error->reset_queue,
109 EXIT_COND,
110 10*HZ);
111 if (ret == 0) {
112 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
113 return -EIO;
114 } else if (ret < 0) {
115 return ret;
116 }
117 #undef EXIT_COND
118
119 return 0;
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = dev->dev_private;
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 WARN_ON(i915_verify_lists(dev));
136 return 0;
137 }
138
139 static inline bool
140 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
141 {
142 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
143 }
144
145 int
146 i915_gem_init_ioctl(struct drm_device *dev, void *data,
147 struct drm_file *file)
148 {
149 struct drm_i915_private *dev_priv = dev->dev_private;
150 struct drm_i915_gem_init *args = data;
151
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
158
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
163 mutex_lock(&dev->struct_mutex);
164 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
165 args->gtt_end);
166 dev_priv->gtt.mappable_end = args->gtt_end;
167 mutex_unlock(&dev->struct_mutex);
168
169 return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174 struct drm_file *file)
175 {
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 struct drm_i915_gem_get_aperture *args = data;
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
180
181 pinned = 0;
182 mutex_lock(&dev->struct_mutex);
183 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
184 if (obj->pin_count)
185 pinned += i915_gem_obj_ggtt_size(obj);
186 mutex_unlock(&dev->struct_mutex);
187
188 args->aper_size = dev_priv->gtt.base.total;
189 args->aper_available_size = args->aper_size - pinned;
190
191 return 0;
192 }
193
194 void *i915_gem_object_alloc(struct drm_device *dev)
195 {
196 struct drm_i915_private *dev_priv = dev->dev_private;
197 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
198 }
199
200 void i915_gem_object_free(struct drm_i915_gem_object *obj)
201 {
202 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
203 kmem_cache_free(dev_priv->slab, obj);
204 }
205
206 static int
207 i915_gem_create(struct drm_file *file,
208 struct drm_device *dev,
209 uint64_t size,
210 uint32_t *handle_p)
211 {
212 struct drm_i915_gem_object *obj;
213 int ret;
214 u32 handle;
215
216 size = roundup(size, PAGE_SIZE);
217 if (size == 0)
218 return -EINVAL;
219
220 /* Allocate the new object */
221 obj = i915_gem_alloc_object(dev, size);
222 if (obj == NULL)
223 return -ENOMEM;
224
225 ret = drm_gem_handle_create(file, &obj->base, &handle);
226 /* drop reference from allocate - handle holds it now */
227 drm_gem_object_unreference_unlocked(&obj->base);
228 if (ret)
229 return ret;
230
231 *handle_p = handle;
232 return 0;
233 }
234
235 int
236 i915_gem_dumb_create(struct drm_file *file,
237 struct drm_device *dev,
238 struct drm_mode_create_dumb *args)
239 {
240 /* have to work out size/pitch and return them */
241 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
242 args->size = args->pitch * args->height;
243 return i915_gem_create(file, dev,
244 args->size, &args->handle);
245 }
246
247 int i915_gem_dumb_destroy(struct drm_file *file,
248 struct drm_device *dev,
249 uint32_t handle)
250 {
251 return drm_gem_handle_delete(file, handle);
252 }
253
254 /**
255 * Creates a new mm object and returns a handle to it.
256 */
257 int
258 i915_gem_create_ioctl(struct drm_device *dev, void *data,
259 struct drm_file *file)
260 {
261 struct drm_i915_gem_create *args = data;
262
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265 }
266
267 static inline int
268 __copy_to_user_swizzled(char __user *cpu_vaddr,
269 const char *gpu_vaddr, int gpu_offset,
270 int length)
271 {
272 int ret, cpu_offset = 0;
273
274 while (length > 0) {
275 int cacheline_end = ALIGN(gpu_offset + 1, 64);
276 int this_length = min(cacheline_end - gpu_offset, length);
277 int swizzled_gpu_offset = gpu_offset ^ 64;
278
279 ret = __copy_to_user(cpu_vaddr + cpu_offset,
280 gpu_vaddr + swizzled_gpu_offset,
281 this_length);
282 if (ret)
283 return ret + length;
284
285 cpu_offset += this_length;
286 gpu_offset += this_length;
287 length -= this_length;
288 }
289
290 return 0;
291 }
292
293 static inline int
294 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
295 const char __user *cpu_vaddr,
296 int length)
297 {
298 int ret, cpu_offset = 0;
299
300 while (length > 0) {
301 int cacheline_end = ALIGN(gpu_offset + 1, 64);
302 int this_length = min(cacheline_end - gpu_offset, length);
303 int swizzled_gpu_offset = gpu_offset ^ 64;
304
305 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
306 cpu_vaddr + cpu_offset,
307 this_length);
308 if (ret)
309 return ret + length;
310
311 cpu_offset += this_length;
312 gpu_offset += this_length;
313 length -= this_length;
314 }
315
316 return 0;
317 }
318
319 /* Per-page copy function for the shmem pread fastpath.
320 * Flushes invalid cachelines before reading the target if
321 * needs_clflush is set. */
322 static int
323 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
324 char __user *user_data,
325 bool page_do_bit17_swizzling, bool needs_clflush)
326 {
327 char *vaddr;
328 int ret;
329
330 if (unlikely(page_do_bit17_swizzling))
331 return -EINVAL;
332
333 vaddr = kmap_atomic(page);
334 if (needs_clflush)
335 drm_clflush_virt_range(vaddr + shmem_page_offset,
336 page_length);
337 ret = __copy_to_user_inatomic(user_data,
338 vaddr + shmem_page_offset,
339 page_length);
340 kunmap_atomic(vaddr);
341
342 return ret ? -EFAULT : 0;
343 }
344
345 static void
346 shmem_clflush_swizzled_range(char *addr, unsigned long length,
347 bool swizzled)
348 {
349 if (unlikely(swizzled)) {
350 unsigned long start = (unsigned long) addr;
351 unsigned long end = (unsigned long) addr + length;
352
353 /* For swizzling simply ensure that we always flush both
354 * channels. Lame, but simple and it works. Swizzled
355 * pwrite/pread is far from a hotpath - current userspace
356 * doesn't use it at all. */
357 start = round_down(start, 128);
358 end = round_up(end, 128);
359
360 drm_clflush_virt_range((void *)start, end - start);
361 } else {
362 drm_clflush_virt_range(addr, length);
363 }
364
365 }
366
367 /* Only difference to the fast-path function is that this can handle bit17
368 * and uses non-atomic copy and kmap functions. */
369 static int
370 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374 char *vaddr;
375 int ret;
376
377 vaddr = kmap(page);
378 if (needs_clflush)
379 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
380 page_length,
381 page_do_bit17_swizzling);
382
383 if (page_do_bit17_swizzling)
384 ret = __copy_to_user_swizzled(user_data,
385 vaddr, shmem_page_offset,
386 page_length);
387 else
388 ret = __copy_to_user(user_data,
389 vaddr + shmem_page_offset,
390 page_length);
391 kunmap(page);
392
393 return ret ? - EFAULT : 0;
394 }
395
396 static int
397 i915_gem_shmem_pread(struct drm_device *dev,
398 struct drm_i915_gem_object *obj,
399 struct drm_i915_gem_pread *args,
400 struct drm_file *file)
401 {
402 char __user *user_data;
403 ssize_t remain;
404 loff_t offset;
405 int shmem_page_offset, page_length, ret = 0;
406 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
407 int prefaulted = 0;
408 int needs_clflush = 0;
409 struct sg_page_iter sg_iter;
410
411 user_data = to_user_ptr(args->data_ptr);
412 remain = args->size;
413
414 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
415
416 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
417 /* If we're not in the cpu read domain, set ourself into the gtt
418 * read domain and manually flush cachelines (if required). This
419 * optimizes for the case when the gpu will dirty the data
420 * anyway again before the next pread happens. */
421 if (obj->cache_level == I915_CACHE_NONE)
422 needs_clflush = 1;
423 if (i915_gem_obj_ggtt_bound(obj)) {
424 ret = i915_gem_object_set_to_gtt_domain(obj, false);
425 if (ret)
426 return ret;
427 }
428 }
429
430 ret = i915_gem_object_get_pages(obj);
431 if (ret)
432 return ret;
433
434 i915_gem_object_pin_pages(obj);
435
436 offset = args->offset;
437
438 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
439 offset >> PAGE_SHIFT) {
440 struct page *page = sg_page_iter_page(&sg_iter);
441
442 if (remain <= 0)
443 break;
444
445 /* Operation in this page
446 *
447 * shmem_page_offset = offset within page in shmem file
448 * page_length = bytes to copy for this page
449 */
450 shmem_page_offset = offset_in_page(offset);
451 page_length = remain;
452 if ((shmem_page_offset + page_length) > PAGE_SIZE)
453 page_length = PAGE_SIZE - shmem_page_offset;
454
455 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
456 (page_to_phys(page) & (1 << 17)) != 0;
457
458 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
459 user_data, page_do_bit17_swizzling,
460 needs_clflush);
461 if (ret == 0)
462 goto next_page;
463
464 mutex_unlock(&dev->struct_mutex);
465
466 if (likely(!i915_prefault_disable) && !prefaulted) {
467 ret = fault_in_multipages_writeable(user_data, remain);
468 /* Userspace is tricking us, but we've already clobbered
469 * its pages with the prefault and promised to write the
470 * data up to the first fault. Hence ignore any errors
471 * and just continue. */
472 (void)ret;
473 prefaulted = 1;
474 }
475
476 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
477 user_data, page_do_bit17_swizzling,
478 needs_clflush);
479
480 mutex_lock(&dev->struct_mutex);
481
482 next_page:
483 mark_page_accessed(page);
484
485 if (ret)
486 goto out;
487
488 remain -= page_length;
489 user_data += page_length;
490 offset += page_length;
491 }
492
493 out:
494 i915_gem_object_unpin_pages(obj);
495
496 return ret;
497 }
498
499 /**
500 * Reads data from the object referenced by handle.
501 *
502 * On error, the contents of *data are undefined.
503 */
504 int
505 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
506 struct drm_file *file)
507 {
508 struct drm_i915_gem_pread *args = data;
509 struct drm_i915_gem_object *obj;
510 int ret = 0;
511
512 if (args->size == 0)
513 return 0;
514
515 if (!access_ok(VERIFY_WRITE,
516 to_user_ptr(args->data_ptr),
517 args->size))
518 return -EFAULT;
519
520 ret = i915_mutex_lock_interruptible(dev);
521 if (ret)
522 return ret;
523
524 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
525 if (&obj->base == NULL) {
526 ret = -ENOENT;
527 goto unlock;
528 }
529
530 /* Bounds check source. */
531 if (args->offset > obj->base.size ||
532 args->size > obj->base.size - args->offset) {
533 ret = -EINVAL;
534 goto out;
535 }
536
537 /* prime objects have no backing filp to GEM pread/pwrite
538 * pages from.
539 */
540 if (!obj->base.filp) {
541 ret = -EINVAL;
542 goto out;
543 }
544
545 trace_i915_gem_object_pread(obj, args->offset, args->size);
546
547 ret = i915_gem_shmem_pread(dev, obj, args, file);
548
549 out:
550 drm_gem_object_unreference(&obj->base);
551 unlock:
552 mutex_unlock(&dev->struct_mutex);
553 return ret;
554 }
555
556 /* This is the fast write path which cannot handle
557 * page faults in the source data
558 */
559
560 static inline int
561 fast_user_write(struct io_mapping *mapping,
562 loff_t page_base, int page_offset,
563 char __user *user_data,
564 int length)
565 {
566 void __iomem *vaddr_atomic;
567 void *vaddr;
568 unsigned long unwritten;
569
570 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
571 /* We can use the cpu mem copy function because this is X86. */
572 vaddr = (void __force*)vaddr_atomic + page_offset;
573 unwritten = __copy_from_user_inatomic_nocache(vaddr,
574 user_data, length);
575 io_mapping_unmap_atomic(vaddr_atomic);
576 return unwritten;
577 }
578
579 /**
580 * This is the fast pwrite path, where we copy the data directly from the
581 * user into the GTT, uncached.
582 */
583 static int
584 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
585 struct drm_i915_gem_object *obj,
586 struct drm_i915_gem_pwrite *args,
587 struct drm_file *file)
588 {
589 drm_i915_private_t *dev_priv = dev->dev_private;
590 ssize_t remain;
591 loff_t offset, page_base;
592 char __user *user_data;
593 int page_offset, page_length, ret;
594
595 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
596 if (ret)
597 goto out;
598
599 ret = i915_gem_object_set_to_gtt_domain(obj, true);
600 if (ret)
601 goto out_unpin;
602
603 ret = i915_gem_object_put_fence(obj);
604 if (ret)
605 goto out_unpin;
606
607 user_data = to_user_ptr(args->data_ptr);
608 remain = args->size;
609
610 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
611
612 while (remain > 0) {
613 /* Operation in this page
614 *
615 * page_base = page offset within aperture
616 * page_offset = offset within page
617 * page_length = bytes to copy for this page
618 */
619 page_base = offset & PAGE_MASK;
620 page_offset = offset_in_page(offset);
621 page_length = remain;
622 if ((page_offset + remain) > PAGE_SIZE)
623 page_length = PAGE_SIZE - page_offset;
624
625 /* If we get a fault while copying data, then (presumably) our
626 * source page isn't available. Return the error and we'll
627 * retry in the slow path.
628 */
629 if (fast_user_write(dev_priv->gtt.mappable, page_base,
630 page_offset, user_data, page_length)) {
631 ret = -EFAULT;
632 goto out_unpin;
633 }
634
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
638 }
639
640 out_unpin:
641 i915_gem_object_unpin(obj);
642 out:
643 return ret;
644 }
645
646 /* Per-page copy function for the shmem pwrite fastpath.
647 * Flushes invalid cachelines before writing to the target if
648 * needs_clflush_before is set and flushes out any written cachelines after
649 * writing if needs_clflush is set. */
650 static int
651 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
652 char __user *user_data,
653 bool page_do_bit17_swizzling,
654 bool needs_clflush_before,
655 bool needs_clflush_after)
656 {
657 char *vaddr;
658 int ret;
659
660 if (unlikely(page_do_bit17_swizzling))
661 return -EINVAL;
662
663 vaddr = kmap_atomic(page);
664 if (needs_clflush_before)
665 drm_clflush_virt_range(vaddr + shmem_page_offset,
666 page_length);
667 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
668 user_data,
669 page_length);
670 if (needs_clflush_after)
671 drm_clflush_virt_range(vaddr + shmem_page_offset,
672 page_length);
673 kunmap_atomic(vaddr);
674
675 return ret ? -EFAULT : 0;
676 }
677
678 /* Only difference to the fast-path function is that this can handle bit17
679 * and uses non-atomic copy and kmap functions. */
680 static int
681 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
682 char __user *user_data,
683 bool page_do_bit17_swizzling,
684 bool needs_clflush_before,
685 bool needs_clflush_after)
686 {
687 char *vaddr;
688 int ret;
689
690 vaddr = kmap(page);
691 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
692 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
693 page_length,
694 page_do_bit17_swizzling);
695 if (page_do_bit17_swizzling)
696 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
697 user_data,
698 page_length);
699 else
700 ret = __copy_from_user(vaddr + shmem_page_offset,
701 user_data,
702 page_length);
703 if (needs_clflush_after)
704 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705 page_length,
706 page_do_bit17_swizzling);
707 kunmap(page);
708
709 return ret ? -EFAULT : 0;
710 }
711
712 static int
713 i915_gem_shmem_pwrite(struct drm_device *dev,
714 struct drm_i915_gem_object *obj,
715 struct drm_i915_gem_pwrite *args,
716 struct drm_file *file)
717 {
718 ssize_t remain;
719 loff_t offset;
720 char __user *user_data;
721 int shmem_page_offset, page_length, ret = 0;
722 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
723 int hit_slowpath = 0;
724 int needs_clflush_after = 0;
725 int needs_clflush_before = 0;
726 struct sg_page_iter sg_iter;
727
728 user_data = to_user_ptr(args->data_ptr);
729 remain = args->size;
730
731 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
732
733 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
734 /* If we're not in the cpu write domain, set ourself into the gtt
735 * write domain and manually flush cachelines (if required). This
736 * optimizes for the case when the gpu will use the data
737 * right away and we therefore have to clflush anyway. */
738 if (obj->cache_level == I915_CACHE_NONE)
739 needs_clflush_after = 1;
740 if (i915_gem_obj_ggtt_bound(obj)) {
741 ret = i915_gem_object_set_to_gtt_domain(obj, true);
742 if (ret)
743 return ret;
744 }
745 }
746 /* Same trick applies for invalidate partially written cachelines before
747 * writing. */
748 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
749 && obj->cache_level == I915_CACHE_NONE)
750 needs_clflush_before = 1;
751
752 ret = i915_gem_object_get_pages(obj);
753 if (ret)
754 return ret;
755
756 i915_gem_object_pin_pages(obj);
757
758 offset = args->offset;
759 obj->dirty = 1;
760
761 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
762 offset >> PAGE_SHIFT) {
763 struct page *page = sg_page_iter_page(&sg_iter);
764 int partial_cacheline_write;
765
766 if (remain <= 0)
767 break;
768
769 /* Operation in this page
770 *
771 * shmem_page_offset = offset within page in shmem file
772 * page_length = bytes to copy for this page
773 */
774 shmem_page_offset = offset_in_page(offset);
775
776 page_length = remain;
777 if ((shmem_page_offset + page_length) > PAGE_SIZE)
778 page_length = PAGE_SIZE - shmem_page_offset;
779
780 /* If we don't overwrite a cacheline completely we need to be
781 * careful to have up-to-date data by first clflushing. Don't
782 * overcomplicate things and flush the entire patch. */
783 partial_cacheline_write = needs_clflush_before &&
784 ((shmem_page_offset | page_length)
785 & (boot_cpu_data.x86_clflush_size - 1));
786
787 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
788 (page_to_phys(page) & (1 << 17)) != 0;
789
790 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
791 user_data, page_do_bit17_swizzling,
792 partial_cacheline_write,
793 needs_clflush_after);
794 if (ret == 0)
795 goto next_page;
796
797 hit_slowpath = 1;
798 mutex_unlock(&dev->struct_mutex);
799 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
800 user_data, page_do_bit17_swizzling,
801 partial_cacheline_write,
802 needs_clflush_after);
803
804 mutex_lock(&dev->struct_mutex);
805
806 next_page:
807 set_page_dirty(page);
808 mark_page_accessed(page);
809
810 if (ret)
811 goto out;
812
813 remain -= page_length;
814 user_data += page_length;
815 offset += page_length;
816 }
817
818 out:
819 i915_gem_object_unpin_pages(obj);
820
821 if (hit_slowpath) {
822 /*
823 * Fixup: Flush cpu caches in case we didn't flush the dirty
824 * cachelines in-line while writing and the object moved
825 * out of the cpu write domain while we've dropped the lock.
826 */
827 if (!needs_clflush_after &&
828 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 i915_gem_chipset_flush(dev);
831 }
832 }
833
834 if (needs_clflush_after)
835 i915_gem_chipset_flush(dev);
836
837 return ret;
838 }
839
840 /**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845 int
846 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847 struct drm_file *file)
848 {
849 struct drm_i915_gem_pwrite *args = data;
850 struct drm_i915_gem_object *obj;
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 to_user_ptr(args->data_ptr),
858 args->size))
859 return -EFAULT;
860
861 if (likely(!i915_prefault_disable)) {
862 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
863 args->size);
864 if (ret)
865 return -EFAULT;
866 }
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 i915_gem_object_unpin(obj);
1371 unlock:
1372 mutex_unlock(&dev->struct_mutex);
1373 out:
1374 switch (ret) {
1375 case -EIO:
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 return VM_FAULT_SIGBUS;
1381 case -EAGAIN:
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
1389 set_need_resched();
1390 case 0:
1391 case -ERESTARTSYS:
1392 case -EINTR:
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
1398 return VM_FAULT_NOPAGE;
1399 case -ENOMEM:
1400 return VM_FAULT_OOM;
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
1403 default:
1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 return VM_FAULT_SIGBUS;
1406 }
1407 }
1408
1409 /**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
1413 * Preserve the reservation of the mmapping with the DRM core code, but
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 if (!obj->fault_mappable)
1427 return;
1428
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
1433
1434 obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 uint32_t gtt_size;
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
1448 gtt_size = 1024*1024;
1449 else
1450 gtt_size = 512*1024;
1451
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
1454
1455 return gtt_size;
1456 }
1457
1458 /**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
1463 * potential fence register mapping.
1464 */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
1468 {
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 tiling_mode == I915_TILING_NONE)
1475 return 4096;
1476
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
1496 goto out;
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
1508 goto out;
1509
1510 i915_gem_shrink_all(dev_priv);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
1531 {
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 struct drm_i915_gem_object *obj;
1534 int ret;
1535
1536 ret = i915_mutex_lock_interruptible(dev);
1537 if (ret)
1538 return ret;
1539
1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 if (&obj->base == NULL) {
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
1545
1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 ret = -E2BIG;
1548 goto out;
1549 }
1550
1551 if (obj->madv != I915_MADV_WILLNEED) {
1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 ret = -EINVAL;
1554 goto out;
1555 }
1556
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
1560
1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564 drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 mutex_unlock(&dev->struct_mutex);
1567 return ret;
1568 }
1569
1570 /**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588 {
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 struct inode *inode;
1599
1600 i915_gem_object_free_mmap_offset(obj);
1601
1602 if (obj->base.filp == NULL)
1603 return;
1604
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
1610 inode = file_inode(obj->base.filp);
1611 shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613 obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 struct sg_page_iter sg_iter;
1626 int ret;
1627
1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
1640 if (i915_gem_object_needs_bit17_swizzle(obj))
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
1645
1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649 if (obj->dirty)
1650 set_page_dirty(page);
1651
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(page);
1654
1655 page_cache_release(page);
1656 }
1657 obj->dirty = 0;
1658
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668 if (obj->pages == NULL)
1669 return 0;
1670
1671 if (obj->pages_pin_count)
1672 return -EBUSY;
1673
1674 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1675
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
1679 list_del(&obj->global_list);
1680
1681 ops->put_pages(obj);
1682 obj->pages = NULL;
1683
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
1693 {
1694 struct drm_i915_gem_object *obj, *next;
1695 struct i915_address_space *vm = &dev_priv->gtt.base;
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
1700 global_list) {
1701 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1702 i915_gem_object_put_pages(obj) == 0) {
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
1709 list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 i915_gem_object_unbind(obj) == 0 &&
1712 i915_gem_object_put_pages(obj) == 0) {
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720 }
1721
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804 #ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811 #endif
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
1821 }
1822 #ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824 #endif
1825 sg_mark_end(sg);
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 page_cache_release(sg_page_iter_page(&sg_iter));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
1864 BUG_ON(obj->pages_pin_count);
1865
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 struct intel_ring_buffer *ring)
1877 {
1878 struct drm_device *dev = obj->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct i915_address_space *vm = &dev_priv->gtt.base;
1881 u32 seqno = intel_ring_get_seqno(ring);
1882
1883 BUG_ON(ring == NULL);
1884 if (obj->ring != ring && obj->last_write_seqno) {
1885 /* Keep the seqno relative to the current ring */
1886 obj->last_write_seqno = seqno;
1887 }
1888 obj->ring = ring;
1889
1890 /* Add a reference if we're newly entering the active list. */
1891 if (!obj->active) {
1892 drm_gem_object_reference(&obj->base);
1893 obj->active = 1;
1894 }
1895
1896 /* Move from whatever list we were on to the tail of execution. */
1897 list_move_tail(&obj->mm_list, &vm->active_list);
1898 list_move_tail(&obj->ring_list, &ring->active_list);
1899
1900 obj->last_read_seqno = seqno;
1901
1902 if (obj->fenced_gpu_access) {
1903 obj->last_fenced_seqno = seqno;
1904
1905 /* Bump MRU to take account of the delayed flush */
1906 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1907 struct drm_i915_fence_reg *reg;
1908
1909 reg = &dev_priv->fence_regs[obj->fence_reg];
1910 list_move_tail(&reg->lru_list,
1911 &dev_priv->mm.fence_list);
1912 }
1913 }
1914 }
1915
1916 static void
1917 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1918 {
1919 struct drm_device *dev = obj->base.dev;
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921 struct i915_address_space *vm = &dev_priv->gtt.base;
1922
1923 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1924 BUG_ON(!obj->active);
1925
1926 list_move_tail(&obj->mm_list, &vm->inactive_list);
1927
1928 list_del_init(&obj->ring_list);
1929 obj->ring = NULL;
1930
1931 obj->last_read_seqno = 0;
1932 obj->last_write_seqno = 0;
1933 obj->base.write_domain = 0;
1934
1935 obj->last_fenced_seqno = 0;
1936 obj->fenced_gpu_access = false;
1937
1938 obj->active = 0;
1939 drm_gem_object_unreference(&obj->base);
1940
1941 WARN_ON(i915_verify_lists(dev));
1942 }
1943
1944 static int
1945 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1946 {
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_ring_buffer *ring;
1949 int ret, i, j;
1950
1951 /* Carefully retire all requests without writing to the rings */
1952 for_each_ring(ring, dev_priv, i) {
1953 ret = intel_ring_idle(ring);
1954 if (ret)
1955 return ret;
1956 }
1957 i915_gem_retire_requests(dev);
1958
1959 /* Finally reset hw state */
1960 for_each_ring(ring, dev_priv, i) {
1961 intel_ring_init_seqno(ring, seqno);
1962
1963 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1964 ring->sync_seqno[j] = 0;
1965 }
1966
1967 return 0;
1968 }
1969
1970 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1971 {
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 int ret;
1974
1975 if (seqno == 0)
1976 return -EINVAL;
1977
1978 /* HWS page needs to be set less than what we
1979 * will inject to ring
1980 */
1981 ret = i915_gem_init_seqno(dev, seqno - 1);
1982 if (ret)
1983 return ret;
1984
1985 /* Carefully set the last_seqno value so that wrap
1986 * detection still works
1987 */
1988 dev_priv->next_seqno = seqno;
1989 dev_priv->last_seqno = seqno - 1;
1990 if (dev_priv->last_seqno == 0)
1991 dev_priv->last_seqno--;
1992
1993 return 0;
1994 }
1995
1996 int
1997 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1998 {
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000
2001 /* reserve 0 for non-seqno */
2002 if (dev_priv->next_seqno == 0) {
2003 int ret = i915_gem_init_seqno(dev, 0);
2004 if (ret)
2005 return ret;
2006
2007 dev_priv->next_seqno = 1;
2008 }
2009
2010 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2011 return 0;
2012 }
2013
2014 int __i915_add_request(struct intel_ring_buffer *ring,
2015 struct drm_file *file,
2016 struct drm_i915_gem_object *obj,
2017 u32 *out_seqno)
2018 {
2019 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2020 struct drm_i915_gem_request *request;
2021 u32 request_ring_position, request_start;
2022 int was_empty;
2023 int ret;
2024
2025 request_start = intel_ring_get_tail(ring);
2026 /*
2027 * Emit any outstanding flushes - execbuf can fail to emit the flush
2028 * after having emitted the batchbuffer command. Hence we need to fix
2029 * things up similar to emitting the lazy request. The difference here
2030 * is that the flush _must_ happen before the next request, no matter
2031 * what.
2032 */
2033 ret = intel_ring_flush_all_caches(ring);
2034 if (ret)
2035 return ret;
2036
2037 request = kmalloc(sizeof(*request), GFP_KERNEL);
2038 if (request == NULL)
2039 return -ENOMEM;
2040
2041
2042 /* Record the position of the start of the request so that
2043 * should we detect the updated seqno part-way through the
2044 * GPU processing the request, we never over-estimate the
2045 * position of the head.
2046 */
2047 request_ring_position = intel_ring_get_tail(ring);
2048
2049 ret = ring->add_request(ring);
2050 if (ret) {
2051 kfree(request);
2052 return ret;
2053 }
2054
2055 request->seqno = intel_ring_get_seqno(ring);
2056 request->ring = ring;
2057 request->head = request_start;
2058 request->tail = request_ring_position;
2059 request->ctx = ring->last_context;
2060 request->batch_obj = obj;
2061
2062 /* Whilst this request exists, batch_obj will be on the
2063 * active_list, and so will hold the active reference. Only when this
2064 * request is retired will the the batch_obj be moved onto the
2065 * inactive_list and lose its active reference. Hence we do not need
2066 * to explicitly hold another reference here.
2067 */
2068
2069 if (request->ctx)
2070 i915_gem_context_reference(request->ctx);
2071
2072 request->emitted_jiffies = jiffies;
2073 was_empty = list_empty(&ring->request_list);
2074 list_add_tail(&request->list, &ring->request_list);
2075 request->file_priv = NULL;
2076
2077 if (file) {
2078 struct drm_i915_file_private *file_priv = file->driver_priv;
2079
2080 spin_lock(&file_priv->mm.lock);
2081 request->file_priv = file_priv;
2082 list_add_tail(&request->client_list,
2083 &file_priv->mm.request_list);
2084 spin_unlock(&file_priv->mm.lock);
2085 }
2086
2087 trace_i915_gem_request_add(ring, request->seqno);
2088 ring->outstanding_lazy_request = 0;
2089
2090 if (!dev_priv->ums.mm_suspended) {
2091 i915_queue_hangcheck(ring->dev);
2092
2093 if (was_empty) {
2094 queue_delayed_work(dev_priv->wq,
2095 &dev_priv->mm.retire_work,
2096 round_jiffies_up_relative(HZ));
2097 intel_mark_busy(dev_priv->dev);
2098 }
2099 }
2100
2101 if (out_seqno)
2102 *out_seqno = request->seqno;
2103 return 0;
2104 }
2105
2106 static inline void
2107 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2108 {
2109 struct drm_i915_file_private *file_priv = request->file_priv;
2110
2111 if (!file_priv)
2112 return;
2113
2114 spin_lock(&file_priv->mm.lock);
2115 if (request->file_priv) {
2116 list_del(&request->client_list);
2117 request->file_priv = NULL;
2118 }
2119 spin_unlock(&file_priv->mm.lock);
2120 }
2121
2122 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2123 struct i915_address_space *vm)
2124 {
2125 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2126 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2127 return true;
2128
2129 return false;
2130 }
2131
2132 static bool i915_head_inside_request(const u32 acthd_unmasked,
2133 const u32 request_start,
2134 const u32 request_end)
2135 {
2136 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2137
2138 if (request_start < request_end) {
2139 if (acthd >= request_start && acthd < request_end)
2140 return true;
2141 } else if (request_start > request_end) {
2142 if (acthd >= request_start || acthd < request_end)
2143 return true;
2144 }
2145
2146 return false;
2147 }
2148
2149 static struct i915_address_space *
2150 request_to_vm(struct drm_i915_gem_request *request)
2151 {
2152 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2153 struct i915_address_space *vm;
2154
2155 vm = &dev_priv->gtt.base;
2156
2157 return vm;
2158 }
2159
2160 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2161 const u32 acthd, bool *inside)
2162 {
2163 /* There is a possibility that unmasked head address
2164 * pointing inside the ring, matches the batch_obj address range.
2165 * However this is extremely unlikely.
2166 */
2167 if (request->batch_obj) {
2168 if (i915_head_inside_object(acthd, request->batch_obj,
2169 request_to_vm(request))) {
2170 *inside = true;
2171 return true;
2172 }
2173 }
2174
2175 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2176 *inside = false;
2177 return true;
2178 }
2179
2180 return false;
2181 }
2182
2183 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2184 struct drm_i915_gem_request *request,
2185 u32 acthd)
2186 {
2187 struct i915_ctx_hang_stats *hs = NULL;
2188 bool inside, guilty;
2189 unsigned long offset = 0;
2190
2191 /* Innocent until proven guilty */
2192 guilty = false;
2193
2194 if (request->batch_obj)
2195 offset = i915_gem_obj_offset(request->batch_obj,
2196 request_to_vm(request));
2197
2198 if (ring->hangcheck.action != wait &&
2199 i915_request_guilty(request, acthd, &inside)) {
2200 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2201 ring->name,
2202 inside ? "inside" : "flushing",
2203 offset,
2204 request->ctx ? request->ctx->id : 0,
2205 acthd);
2206
2207 guilty = true;
2208 }
2209
2210 /* If contexts are disabled or this is the default context, use
2211 * file_priv->reset_state
2212 */
2213 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2214 hs = &request->ctx->hang_stats;
2215 else if (request->file_priv)
2216 hs = &request->file_priv->hang_stats;
2217
2218 if (hs) {
2219 if (guilty)
2220 hs->batch_active++;
2221 else
2222 hs->batch_pending++;
2223 }
2224 }
2225
2226 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2227 {
2228 list_del(&request->list);
2229 i915_gem_request_remove_from_client(request);
2230
2231 if (request->ctx)
2232 i915_gem_context_unreference(request->ctx);
2233
2234 kfree(request);
2235 }
2236
2237 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2238 struct intel_ring_buffer *ring)
2239 {
2240 u32 completed_seqno;
2241 u32 acthd;
2242
2243 acthd = intel_ring_get_active_head(ring);
2244 completed_seqno = ring->get_seqno(ring, false);
2245
2246 while (!list_empty(&ring->request_list)) {
2247 struct drm_i915_gem_request *request;
2248
2249 request = list_first_entry(&ring->request_list,
2250 struct drm_i915_gem_request,
2251 list);
2252
2253 if (request->seqno > completed_seqno)
2254 i915_set_reset_status(ring, request, acthd);
2255
2256 i915_gem_free_request(request);
2257 }
2258
2259 while (!list_empty(&ring->active_list)) {
2260 struct drm_i915_gem_object *obj;
2261
2262 obj = list_first_entry(&ring->active_list,
2263 struct drm_i915_gem_object,
2264 ring_list);
2265
2266 i915_gem_object_move_to_inactive(obj);
2267 }
2268 }
2269
2270 void i915_gem_restore_fences(struct drm_device *dev)
2271 {
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 int i;
2274
2275 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2276 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2277
2278 /*
2279 * Commit delayed tiling changes if we have an object still
2280 * attached to the fence, otherwise just clear the fence.
2281 */
2282 if (reg->obj) {
2283 i915_gem_object_update_fence(reg->obj, reg,
2284 reg->obj->tiling_mode);
2285 } else {
2286 i915_gem_write_fence(dev, i, NULL);
2287 }
2288 }
2289 }
2290
2291 void i915_gem_reset(struct drm_device *dev)
2292 {
2293 struct drm_i915_private *dev_priv = dev->dev_private;
2294 struct intel_ring_buffer *ring;
2295 int i;
2296
2297 for_each_ring(ring, dev_priv, i)
2298 i915_gem_reset_ring_lists(dev_priv, ring);
2299
2300 i915_gem_restore_fences(dev);
2301 }
2302
2303 /**
2304 * This function clears the request list as sequence numbers are passed.
2305 */
2306 void
2307 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2308 {
2309 uint32_t seqno;
2310
2311 if (list_empty(&ring->request_list))
2312 return;
2313
2314 WARN_ON(i915_verify_lists(ring->dev));
2315
2316 seqno = ring->get_seqno(ring, true);
2317
2318 while (!list_empty(&ring->request_list)) {
2319 struct drm_i915_gem_request *request;
2320
2321 request = list_first_entry(&ring->request_list,
2322 struct drm_i915_gem_request,
2323 list);
2324
2325 if (!i915_seqno_passed(seqno, request->seqno))
2326 break;
2327
2328 trace_i915_gem_request_retire(ring, request->seqno);
2329 /* We know the GPU must have read the request to have
2330 * sent us the seqno + interrupt, so use the position
2331 * of tail of the request to update the last known position
2332 * of the GPU head.
2333 */
2334 ring->last_retired_head = request->tail;
2335
2336 i915_gem_free_request(request);
2337 }
2338
2339 /* Move any buffers on the active list that are no longer referenced
2340 * by the ringbuffer to the flushing/inactive lists as appropriate.
2341 */
2342 while (!list_empty(&ring->active_list)) {
2343 struct drm_i915_gem_object *obj;
2344
2345 obj = list_first_entry(&ring->active_list,
2346 struct drm_i915_gem_object,
2347 ring_list);
2348
2349 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2350 break;
2351
2352 i915_gem_object_move_to_inactive(obj);
2353 }
2354
2355 if (unlikely(ring->trace_irq_seqno &&
2356 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2357 ring->irq_put(ring);
2358 ring->trace_irq_seqno = 0;
2359 }
2360
2361 WARN_ON(i915_verify_lists(ring->dev));
2362 }
2363
2364 void
2365 i915_gem_retire_requests(struct drm_device *dev)
2366 {
2367 drm_i915_private_t *dev_priv = dev->dev_private;
2368 struct intel_ring_buffer *ring;
2369 int i;
2370
2371 for_each_ring(ring, dev_priv, i)
2372 i915_gem_retire_requests_ring(ring);
2373 }
2374
2375 static void
2376 i915_gem_retire_work_handler(struct work_struct *work)
2377 {
2378 drm_i915_private_t *dev_priv;
2379 struct drm_device *dev;
2380 struct intel_ring_buffer *ring;
2381 bool idle;
2382 int i;
2383
2384 dev_priv = container_of(work, drm_i915_private_t,
2385 mm.retire_work.work);
2386 dev = dev_priv->dev;
2387
2388 /* Come back later if the device is busy... */
2389 if (!mutex_trylock(&dev->struct_mutex)) {
2390 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2391 round_jiffies_up_relative(HZ));
2392 return;
2393 }
2394
2395 i915_gem_retire_requests(dev);
2396
2397 /* Send a periodic flush down the ring so we don't hold onto GEM
2398 * objects indefinitely.
2399 */
2400 idle = true;
2401 for_each_ring(ring, dev_priv, i) {
2402 if (ring->gpu_caches_dirty)
2403 i915_add_request(ring, NULL);
2404
2405 idle &= list_empty(&ring->request_list);
2406 }
2407
2408 if (!dev_priv->ums.mm_suspended && !idle)
2409 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2410 round_jiffies_up_relative(HZ));
2411 if (idle)
2412 intel_mark_idle(dev);
2413
2414 mutex_unlock(&dev->struct_mutex);
2415 }
2416
2417 /**
2418 * Ensures that an object will eventually get non-busy by flushing any required
2419 * write domains, emitting any outstanding lazy request and retiring and
2420 * completed requests.
2421 */
2422 static int
2423 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2424 {
2425 int ret;
2426
2427 if (obj->active) {
2428 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2429 if (ret)
2430 return ret;
2431
2432 i915_gem_retire_requests_ring(obj->ring);
2433 }
2434
2435 return 0;
2436 }
2437
2438 /**
2439 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2440 * @DRM_IOCTL_ARGS: standard ioctl arguments
2441 *
2442 * Returns 0 if successful, else an error is returned with the remaining time in
2443 * the timeout parameter.
2444 * -ETIME: object is still busy after timeout
2445 * -ERESTARTSYS: signal interrupted the wait
2446 * -ENONENT: object doesn't exist
2447 * Also possible, but rare:
2448 * -EAGAIN: GPU wedged
2449 * -ENOMEM: damn
2450 * -ENODEV: Internal IRQ fail
2451 * -E?: The add request failed
2452 *
2453 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2454 * non-zero timeout parameter the wait ioctl will wait for the given number of
2455 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2456 * without holding struct_mutex the object may become re-busied before this
2457 * function completes. A similar but shorter * race condition exists in the busy
2458 * ioctl
2459 */
2460 int
2461 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2462 {
2463 drm_i915_private_t *dev_priv = dev->dev_private;
2464 struct drm_i915_gem_wait *args = data;
2465 struct drm_i915_gem_object *obj;
2466 struct intel_ring_buffer *ring = NULL;
2467 struct timespec timeout_stack, *timeout = NULL;
2468 unsigned reset_counter;
2469 u32 seqno = 0;
2470 int ret = 0;
2471
2472 if (args->timeout_ns >= 0) {
2473 timeout_stack = ns_to_timespec(args->timeout_ns);
2474 timeout = &timeout_stack;
2475 }
2476
2477 ret = i915_mutex_lock_interruptible(dev);
2478 if (ret)
2479 return ret;
2480
2481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2482 if (&obj->base == NULL) {
2483 mutex_unlock(&dev->struct_mutex);
2484 return -ENOENT;
2485 }
2486
2487 /* Need to make sure the object gets inactive eventually. */
2488 ret = i915_gem_object_flush_active(obj);
2489 if (ret)
2490 goto out;
2491
2492 if (obj->active) {
2493 seqno = obj->last_read_seqno;
2494 ring = obj->ring;
2495 }
2496
2497 if (seqno == 0)
2498 goto out;
2499
2500 /* Do this after OLR check to make sure we make forward progress polling
2501 * on this IOCTL with a 0 timeout (like busy ioctl)
2502 */
2503 if (!args->timeout_ns) {
2504 ret = -ETIME;
2505 goto out;
2506 }
2507
2508 drm_gem_object_unreference(&obj->base);
2509 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2510 mutex_unlock(&dev->struct_mutex);
2511
2512 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2513 if (timeout)
2514 args->timeout_ns = timespec_to_ns(timeout);
2515 return ret;
2516
2517 out:
2518 drm_gem_object_unreference(&obj->base);
2519 mutex_unlock(&dev->struct_mutex);
2520 return ret;
2521 }
2522
2523 /**
2524 * i915_gem_object_sync - sync an object to a ring.
2525 *
2526 * @obj: object which may be in use on another ring.
2527 * @to: ring we wish to use the object on. May be NULL.
2528 *
2529 * This code is meant to abstract object synchronization with the GPU.
2530 * Calling with NULL implies synchronizing the object with the CPU
2531 * rather than a particular GPU ring.
2532 *
2533 * Returns 0 if successful, else propagates up the lower layer error.
2534 */
2535 int
2536 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2537 struct intel_ring_buffer *to)
2538 {
2539 struct intel_ring_buffer *from = obj->ring;
2540 u32 seqno;
2541 int ret, idx;
2542
2543 if (from == NULL || to == from)
2544 return 0;
2545
2546 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2547 return i915_gem_object_wait_rendering(obj, false);
2548
2549 idx = intel_ring_sync_index(from, to);
2550
2551 seqno = obj->last_read_seqno;
2552 if (seqno <= from->sync_seqno[idx])
2553 return 0;
2554
2555 ret = i915_gem_check_olr(obj->ring, seqno);
2556 if (ret)
2557 return ret;
2558
2559 ret = to->sync_to(to, from, seqno);
2560 if (!ret)
2561 /* We use last_read_seqno because sync_to()
2562 * might have just caused seqno wrap under
2563 * the radar.
2564 */
2565 from->sync_seqno[idx] = obj->last_read_seqno;
2566
2567 return ret;
2568 }
2569
2570 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2571 {
2572 u32 old_write_domain, old_read_domains;
2573
2574 /* Force a pagefault for domain tracking on next user access */
2575 i915_gem_release_mmap(obj);
2576
2577 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2578 return;
2579
2580 /* Wait for any direct GTT access to complete */
2581 mb();
2582
2583 old_read_domains = obj->base.read_domains;
2584 old_write_domain = obj->base.write_domain;
2585
2586 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2587 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2588
2589 trace_i915_gem_object_change_domain(obj,
2590 old_read_domains,
2591 old_write_domain);
2592 }
2593
2594 /**
2595 * Unbinds an object from the GTT aperture.
2596 */
2597 int
2598 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2599 {
2600 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2601 struct i915_vma *vma;
2602 int ret;
2603
2604 if (!i915_gem_obj_ggtt_bound(obj))
2605 return 0;
2606
2607 if (obj->pin_count)
2608 return -EBUSY;
2609
2610 BUG_ON(obj->pages == NULL);
2611
2612 ret = i915_gem_object_finish_gpu(obj);
2613 if (ret)
2614 return ret;
2615 /* Continue on if we fail due to EIO, the GPU is hung so we
2616 * should be safe and we need to cleanup or else we might
2617 * cause memory corruption through use-after-free.
2618 */
2619
2620 i915_gem_object_finish_gtt(obj);
2621
2622 /* release the fence reg _after_ flushing */
2623 ret = i915_gem_object_put_fence(obj);
2624 if (ret)
2625 return ret;
2626
2627 trace_i915_gem_object_unbind(obj);
2628
2629 if (obj->has_global_gtt_mapping)
2630 i915_gem_gtt_unbind_object(obj);
2631 if (obj->has_aliasing_ppgtt_mapping) {
2632 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2633 obj->has_aliasing_ppgtt_mapping = 0;
2634 }
2635 i915_gem_gtt_finish_object(obj);
2636 i915_gem_object_unpin_pages(obj);
2637
2638 list_del(&obj->mm_list);
2639 /* Avoid an unnecessary call to unbind on rebind. */
2640 obj->map_and_fenceable = true;
2641
2642 vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base);
2643 list_del(&vma->vma_link);
2644 drm_mm_remove_node(&vma->node);
2645 i915_gem_vma_destroy(vma);
2646
2647 /* Since the unbound list is global, only move to that list if
2648 * no more VMAs exist.
2649 * NB: Until we have real VMAs there will only ever be one */
2650 WARN_ON(!list_empty(&obj->vma_list));
2651 if (list_empty(&obj->vma_list))
2652 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2653
2654 return 0;
2655 }
2656
2657 int i915_gpu_idle(struct drm_device *dev)
2658 {
2659 drm_i915_private_t *dev_priv = dev->dev_private;
2660 struct intel_ring_buffer *ring;
2661 int ret, i;
2662
2663 /* Flush everything onto the inactive list. */
2664 for_each_ring(ring, dev_priv, i) {
2665 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2666 if (ret)
2667 return ret;
2668
2669 ret = intel_ring_idle(ring);
2670 if (ret)
2671 return ret;
2672 }
2673
2674 return 0;
2675 }
2676
2677 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2678 struct drm_i915_gem_object *obj)
2679 {
2680 drm_i915_private_t *dev_priv = dev->dev_private;
2681 int fence_reg;
2682 int fence_pitch_shift;
2683
2684 if (INTEL_INFO(dev)->gen >= 6) {
2685 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2686 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2687 } else {
2688 fence_reg = FENCE_REG_965_0;
2689 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2690 }
2691
2692 fence_reg += reg * 8;
2693
2694 /* To w/a incoherency with non-atomic 64-bit register updates,
2695 * we split the 64-bit update into two 32-bit writes. In order
2696 * for a partial fence not to be evaluated between writes, we
2697 * precede the update with write to turn off the fence register,
2698 * and only enable the fence as the last step.
2699 *
2700 * For extra levels of paranoia, we make sure each step lands
2701 * before applying the next step.
2702 */
2703 I915_WRITE(fence_reg, 0);
2704 POSTING_READ(fence_reg);
2705
2706 if (obj) {
2707 u32 size = i915_gem_obj_ggtt_size(obj);
2708 uint64_t val;
2709
2710 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2711 0xfffff000) << 32;
2712 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2713 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2714 if (obj->tiling_mode == I915_TILING_Y)
2715 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2716 val |= I965_FENCE_REG_VALID;
2717
2718 I915_WRITE(fence_reg + 4, val >> 32);
2719 POSTING_READ(fence_reg + 4);
2720
2721 I915_WRITE(fence_reg + 0, val);
2722 POSTING_READ(fence_reg);
2723 } else {
2724 I915_WRITE(fence_reg + 4, 0);
2725 POSTING_READ(fence_reg + 4);
2726 }
2727 }
2728
2729 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2730 struct drm_i915_gem_object *obj)
2731 {
2732 drm_i915_private_t *dev_priv = dev->dev_private;
2733 u32 val;
2734
2735 if (obj) {
2736 u32 size = i915_gem_obj_ggtt_size(obj);
2737 int pitch_val;
2738 int tile_width;
2739
2740 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2741 (size & -size) != size ||
2742 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2743 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2744 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2745
2746 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2747 tile_width = 128;
2748 else
2749 tile_width = 512;
2750
2751 /* Note: pitch better be a power of two tile widths */
2752 pitch_val = obj->stride / tile_width;
2753 pitch_val = ffs(pitch_val) - 1;
2754
2755 val = i915_gem_obj_ggtt_offset(obj);
2756 if (obj->tiling_mode == I915_TILING_Y)
2757 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2758 val |= I915_FENCE_SIZE_BITS(size);
2759 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2760 val |= I830_FENCE_REG_VALID;
2761 } else
2762 val = 0;
2763
2764 if (reg < 8)
2765 reg = FENCE_REG_830_0 + reg * 4;
2766 else
2767 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2768
2769 I915_WRITE(reg, val);
2770 POSTING_READ(reg);
2771 }
2772
2773 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2774 struct drm_i915_gem_object *obj)
2775 {
2776 drm_i915_private_t *dev_priv = dev->dev_private;
2777 uint32_t val;
2778
2779 if (obj) {
2780 u32 size = i915_gem_obj_ggtt_size(obj);
2781 uint32_t pitch_val;
2782
2783 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2784 (size & -size) != size ||
2785 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2786 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2787 i915_gem_obj_ggtt_offset(obj), size);
2788
2789 pitch_val = obj->stride / 128;
2790 pitch_val = ffs(pitch_val) - 1;
2791
2792 val = i915_gem_obj_ggtt_offset(obj);
2793 if (obj->tiling_mode == I915_TILING_Y)
2794 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2795 val |= I830_FENCE_SIZE_BITS(size);
2796 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2797 val |= I830_FENCE_REG_VALID;
2798 } else
2799 val = 0;
2800
2801 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2802 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2803 }
2804
2805 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2806 {
2807 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2808 }
2809
2810 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2811 struct drm_i915_gem_object *obj)
2812 {
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814
2815 /* Ensure that all CPU reads are completed before installing a fence
2816 * and all writes before removing the fence.
2817 */
2818 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2819 mb();
2820
2821 WARN(obj && (!obj->stride || !obj->tiling_mode),
2822 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2823 obj->stride, obj->tiling_mode);
2824
2825 switch (INTEL_INFO(dev)->gen) {
2826 case 7:
2827 case 6:
2828 case 5:
2829 case 4: i965_write_fence_reg(dev, reg, obj); break;
2830 case 3: i915_write_fence_reg(dev, reg, obj); break;
2831 case 2: i830_write_fence_reg(dev, reg, obj); break;
2832 default: BUG();
2833 }
2834
2835 /* And similarly be paranoid that no direct access to this region
2836 * is reordered to before the fence is installed.
2837 */
2838 if (i915_gem_object_needs_mb(obj))
2839 mb();
2840 }
2841
2842 static inline int fence_number(struct drm_i915_private *dev_priv,
2843 struct drm_i915_fence_reg *fence)
2844 {
2845 return fence - dev_priv->fence_regs;
2846 }
2847
2848 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2849 struct drm_i915_fence_reg *fence,
2850 bool enable)
2851 {
2852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2853 int reg = fence_number(dev_priv, fence);
2854
2855 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2856
2857 if (enable) {
2858 obj->fence_reg = reg;
2859 fence->obj = obj;
2860 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2861 } else {
2862 obj->fence_reg = I915_FENCE_REG_NONE;
2863 fence->obj = NULL;
2864 list_del_init(&fence->lru_list);
2865 }
2866 obj->fence_dirty = false;
2867 }
2868
2869 static int
2870 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2871 {
2872 if (obj->last_fenced_seqno) {
2873 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2874 if (ret)
2875 return ret;
2876
2877 obj->last_fenced_seqno = 0;
2878 }
2879
2880 obj->fenced_gpu_access = false;
2881 return 0;
2882 }
2883
2884 int
2885 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2886 {
2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2888 struct drm_i915_fence_reg *fence;
2889 int ret;
2890
2891 ret = i915_gem_object_wait_fence(obj);
2892 if (ret)
2893 return ret;
2894
2895 if (obj->fence_reg == I915_FENCE_REG_NONE)
2896 return 0;
2897
2898 fence = &dev_priv->fence_regs[obj->fence_reg];
2899
2900 i915_gem_object_fence_lost(obj);
2901 i915_gem_object_update_fence(obj, fence, false);
2902
2903 return 0;
2904 }
2905
2906 static struct drm_i915_fence_reg *
2907 i915_find_fence_reg(struct drm_device *dev)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 struct drm_i915_fence_reg *reg, *avail;
2911 int i;
2912
2913 /* First try to find a free reg */
2914 avail = NULL;
2915 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2916 reg = &dev_priv->fence_regs[i];
2917 if (!reg->obj)
2918 return reg;
2919
2920 if (!reg->pin_count)
2921 avail = reg;
2922 }
2923
2924 if (avail == NULL)
2925 return NULL;
2926
2927 /* None available, try to steal one or wait for a user to finish */
2928 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2929 if (reg->pin_count)
2930 continue;
2931
2932 return reg;
2933 }
2934
2935 return NULL;
2936 }
2937
2938 /**
2939 * i915_gem_object_get_fence - set up fencing for an object
2940 * @obj: object to map through a fence reg
2941 *
2942 * When mapping objects through the GTT, userspace wants to be able to write
2943 * to them without having to worry about swizzling if the object is tiled.
2944 * This function walks the fence regs looking for a free one for @obj,
2945 * stealing one if it can't find any.
2946 *
2947 * It then sets up the reg based on the object's properties: address, pitch
2948 * and tiling format.
2949 *
2950 * For an untiled surface, this removes any existing fence.
2951 */
2952 int
2953 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2954 {
2955 struct drm_device *dev = obj->base.dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 bool enable = obj->tiling_mode != I915_TILING_NONE;
2958 struct drm_i915_fence_reg *reg;
2959 int ret;
2960
2961 /* Have we updated the tiling parameters upon the object and so
2962 * will need to serialise the write to the associated fence register?
2963 */
2964 if (obj->fence_dirty) {
2965 ret = i915_gem_object_wait_fence(obj);
2966 if (ret)
2967 return ret;
2968 }
2969
2970 /* Just update our place in the LRU if our fence is getting reused. */
2971 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2972 reg = &dev_priv->fence_regs[obj->fence_reg];
2973 if (!obj->fence_dirty) {
2974 list_move_tail(&reg->lru_list,
2975 &dev_priv->mm.fence_list);
2976 return 0;
2977 }
2978 } else if (enable) {
2979 reg = i915_find_fence_reg(dev);
2980 if (reg == NULL)
2981 return -EDEADLK;
2982
2983 if (reg->obj) {
2984 struct drm_i915_gem_object *old = reg->obj;
2985
2986 ret = i915_gem_object_wait_fence(old);
2987 if (ret)
2988 return ret;
2989
2990 i915_gem_object_fence_lost(old);
2991 }
2992 } else
2993 return 0;
2994
2995 i915_gem_object_update_fence(obj, reg, enable);
2996
2997 return 0;
2998 }
2999
3000 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3001 struct drm_mm_node *gtt_space,
3002 unsigned long cache_level)
3003 {
3004 struct drm_mm_node *other;
3005
3006 /* On non-LLC machines we have to be careful when putting differing
3007 * types of snoopable memory together to avoid the prefetcher
3008 * crossing memory domains and dying.
3009 */
3010 if (HAS_LLC(dev))
3011 return true;
3012
3013 if (!drm_mm_node_allocated(gtt_space))
3014 return true;
3015
3016 if (list_empty(&gtt_space->node_list))
3017 return true;
3018
3019 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3020 if (other->allocated && !other->hole_follows && other->color != cache_level)
3021 return false;
3022
3023 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3024 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3025 return false;
3026
3027 return true;
3028 }
3029
3030 static void i915_gem_verify_gtt(struct drm_device *dev)
3031 {
3032 #if WATCH_GTT
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct drm_i915_gem_object *obj;
3035 int err = 0;
3036
3037 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3038 if (obj->gtt_space == NULL) {
3039 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3040 err++;
3041 continue;
3042 }
3043
3044 if (obj->cache_level != obj->gtt_space->color) {
3045 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3046 i915_gem_obj_ggtt_offset(obj),
3047 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3048 obj->cache_level,
3049 obj->gtt_space->color);
3050 err++;
3051 continue;
3052 }
3053
3054 if (!i915_gem_valid_gtt_space(dev,
3055 obj->gtt_space,
3056 obj->cache_level)) {
3057 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3058 i915_gem_obj_ggtt_offset(obj),
3059 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3060 obj->cache_level);
3061 err++;
3062 continue;
3063 }
3064 }
3065
3066 WARN_ON(err);
3067 #endif
3068 }
3069
3070 /**
3071 * Finds free space in the GTT aperture and binds the object there.
3072 */
3073 static int
3074 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3075 unsigned alignment,
3076 bool map_and_fenceable,
3077 bool nonblocking)
3078 {
3079 struct drm_device *dev = obj->base.dev;
3080 drm_i915_private_t *dev_priv = dev->dev_private;
3081 struct i915_address_space *vm = &dev_priv->gtt.base;
3082 u32 size, fence_size, fence_alignment, unfenced_alignment;
3083 bool mappable, fenceable;
3084 size_t gtt_max = map_and_fenceable ?
3085 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
3086 struct i915_vma *vma;
3087 int ret;
3088
3089 if (WARN_ON(!list_empty(&obj->vma_list)))
3090 return -EBUSY;
3091
3092 fence_size = i915_gem_get_gtt_size(dev,
3093 obj->base.size,
3094 obj->tiling_mode);
3095 fence_alignment = i915_gem_get_gtt_alignment(dev,
3096 obj->base.size,
3097 obj->tiling_mode, true);
3098 unfenced_alignment =
3099 i915_gem_get_gtt_alignment(dev,
3100 obj->base.size,
3101 obj->tiling_mode, false);
3102
3103 if (alignment == 0)
3104 alignment = map_and_fenceable ? fence_alignment :
3105 unfenced_alignment;
3106 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3107 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3108 return -EINVAL;
3109 }
3110
3111 size = map_and_fenceable ? fence_size : obj->base.size;
3112
3113 /* If the object is bigger than the entire aperture, reject it early
3114 * before evicting everything in a vain attempt to find space.
3115 */
3116 if (obj->base.size > gtt_max) {
3117 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3118 obj->base.size,
3119 map_and_fenceable ? "mappable" : "total",
3120 gtt_max);
3121 return -E2BIG;
3122 }
3123
3124 ret = i915_gem_object_get_pages(obj);
3125 if (ret)
3126 return ret;
3127
3128 i915_gem_object_pin_pages(obj);
3129
3130 vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
3131 if (IS_ERR(vma)) {
3132 ret = PTR_ERR(vma);
3133 goto err_unpin;
3134 }
3135
3136 search_free:
3137 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
3138 &vma->node,
3139 size, alignment,
3140 obj->cache_level, 0, gtt_max);
3141 if (ret) {
3142 ret = i915_gem_evict_something(dev, size, alignment,
3143 obj->cache_level,
3144 map_and_fenceable,
3145 nonblocking);
3146 if (ret == 0)
3147 goto search_free;
3148
3149 goto err_free_vma;
3150 }
3151 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3152 obj->cache_level))) {
3153 ret = -EINVAL;
3154 goto err_remove_node;
3155 }
3156
3157 ret = i915_gem_gtt_prepare_object(obj);
3158 if (ret)
3159 goto err_remove_node;
3160
3161 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3162 list_add_tail(&obj->mm_list, &vm->inactive_list);
3163 list_add(&vma->vma_link, &obj->vma_list);
3164
3165 fenceable =
3166 i915_gem_obj_ggtt_size(obj) == fence_size &&
3167 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3168
3169 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3170 dev_priv->gtt.mappable_end;
3171
3172 obj->map_and_fenceable = mappable && fenceable;
3173
3174 trace_i915_gem_object_bind(obj, map_and_fenceable);
3175 i915_gem_verify_gtt(dev);
3176 return 0;
3177
3178 err_remove_node:
3179 drm_mm_remove_node(&vma->node);
3180 err_free_vma:
3181 i915_gem_vma_destroy(vma);
3182 err_unpin:
3183 i915_gem_object_unpin_pages(obj);
3184 return ret;
3185 }
3186
3187 void
3188 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3189 {
3190 /* If we don't have a page list set up, then we're not pinned
3191 * to GPU, and we can ignore the cache flush because it'll happen
3192 * again at bind time.
3193 */
3194 if (obj->pages == NULL)
3195 return;
3196
3197 /*
3198 * Stolen memory is always coherent with the GPU as it is explicitly
3199 * marked as wc by the system, or the system is cache-coherent.
3200 */
3201 if (obj->stolen)
3202 return;
3203
3204 /* If the GPU is snooping the contents of the CPU cache,
3205 * we do not need to manually clear the CPU cache lines. However,
3206 * the caches are only snooped when the render cache is
3207 * flushed/invalidated. As we always have to emit invalidations
3208 * and flushes when moving into and out of the RENDER domain, correct
3209 * snooping behaviour occurs naturally as the result of our domain
3210 * tracking.
3211 */
3212 if (obj->cache_level != I915_CACHE_NONE)
3213 return;
3214
3215 trace_i915_gem_object_clflush(obj);
3216
3217 drm_clflush_sg(obj->pages);
3218 }
3219
3220 /** Flushes the GTT write domain for the object if it's dirty. */
3221 static void
3222 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3223 {
3224 uint32_t old_write_domain;
3225
3226 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3227 return;
3228
3229 /* No actual flushing is required for the GTT write domain. Writes
3230 * to it immediately go to main memory as far as we know, so there's
3231 * no chipset flush. It also doesn't land in render cache.
3232 *
3233 * However, we do have to enforce the order so that all writes through
3234 * the GTT land before any writes to the device, such as updates to
3235 * the GATT itself.
3236 */
3237 wmb();
3238
3239 old_write_domain = obj->base.write_domain;
3240 obj->base.write_domain = 0;
3241
3242 trace_i915_gem_object_change_domain(obj,
3243 obj->base.read_domains,
3244 old_write_domain);
3245 }
3246
3247 /** Flushes the CPU write domain for the object if it's dirty. */
3248 static void
3249 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3250 {
3251 uint32_t old_write_domain;
3252
3253 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3254 return;
3255
3256 i915_gem_clflush_object(obj);
3257 i915_gem_chipset_flush(obj->base.dev);
3258 old_write_domain = obj->base.write_domain;
3259 obj->base.write_domain = 0;
3260
3261 trace_i915_gem_object_change_domain(obj,
3262 obj->base.read_domains,
3263 old_write_domain);
3264 }
3265
3266 /**
3267 * Moves a single object to the GTT read, and possibly write domain.
3268 *
3269 * This function returns when the move is complete, including waiting on
3270 * flushes to occur.
3271 */
3272 int
3273 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3274 {
3275 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3276 uint32_t old_write_domain, old_read_domains;
3277 int ret;
3278
3279 /* Not valid to be called on unbound objects. */
3280 if (!i915_gem_obj_ggtt_bound(obj))
3281 return -EINVAL;
3282
3283 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3284 return 0;
3285
3286 ret = i915_gem_object_wait_rendering(obj, !write);
3287 if (ret)
3288 return ret;
3289
3290 i915_gem_object_flush_cpu_write_domain(obj);
3291
3292 /* Serialise direct access to this object with the barriers for
3293 * coherent writes from the GPU, by effectively invalidating the
3294 * GTT domain upon first access.
3295 */
3296 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3297 mb();
3298
3299 old_write_domain = obj->base.write_domain;
3300 old_read_domains = obj->base.read_domains;
3301
3302 /* It should now be out of any other write domains, and we can update
3303 * the domain values for our changes.
3304 */
3305 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3306 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3307 if (write) {
3308 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3309 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3310 obj->dirty = 1;
3311 }
3312
3313 trace_i915_gem_object_change_domain(obj,
3314 old_read_domains,
3315 old_write_domain);
3316
3317 /* And bump the LRU for this access */
3318 if (i915_gem_object_is_inactive(obj))
3319 list_move_tail(&obj->mm_list,
3320 &dev_priv->gtt.base.inactive_list);
3321
3322 return 0;
3323 }
3324
3325 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3326 enum i915_cache_level cache_level)
3327 {
3328 struct drm_device *dev = obj->base.dev;
3329 drm_i915_private_t *dev_priv = dev->dev_private;
3330 struct i915_vma *vma;
3331 int ret;
3332
3333 if (obj->cache_level == cache_level)
3334 return 0;
3335
3336 if (obj->pin_count) {
3337 DRM_DEBUG("can not change the cache level of pinned objects\n");
3338 return -EBUSY;
3339 }
3340
3341 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3342 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3343 ret = i915_gem_object_unbind(obj);
3344 if (ret)
3345 return ret;
3346
3347 break;
3348 }
3349 }
3350
3351 if (i915_gem_obj_bound_any(obj)) {
3352 ret = i915_gem_object_finish_gpu(obj);
3353 if (ret)
3354 return ret;
3355
3356 i915_gem_object_finish_gtt(obj);
3357
3358 /* Before SandyBridge, you could not use tiling or fence
3359 * registers with snooped memory, so relinquish any fences
3360 * currently pointing to our region in the aperture.
3361 */
3362 if (INTEL_INFO(dev)->gen < 6) {
3363 ret = i915_gem_object_put_fence(obj);
3364 if (ret)
3365 return ret;
3366 }
3367
3368 if (obj->has_global_gtt_mapping)
3369 i915_gem_gtt_bind_object(obj, cache_level);
3370 if (obj->has_aliasing_ppgtt_mapping)
3371 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3372 obj, cache_level);
3373 }
3374
3375 if (cache_level == I915_CACHE_NONE) {
3376 u32 old_read_domains, old_write_domain;
3377
3378 /* If we're coming from LLC cached, then we haven't
3379 * actually been tracking whether the data is in the
3380 * CPU cache or not, since we only allow one bit set
3381 * in obj->write_domain and have been skipping the clflushes.
3382 * Just set it to the CPU cache for now.
3383 */
3384 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3385 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3386
3387 old_read_domains = obj->base.read_domains;
3388 old_write_domain = obj->base.write_domain;
3389
3390 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3391 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3392
3393 trace_i915_gem_object_change_domain(obj,
3394 old_read_domains,
3395 old_write_domain);
3396 }
3397
3398 list_for_each_entry(vma, &obj->vma_list, vma_link)
3399 vma->node.color = cache_level;
3400 obj->cache_level = cache_level;
3401 i915_gem_verify_gtt(dev);
3402 return 0;
3403 }
3404
3405 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file)
3407 {
3408 struct drm_i915_gem_caching *args = data;
3409 struct drm_i915_gem_object *obj;
3410 int ret;
3411
3412 ret = i915_mutex_lock_interruptible(dev);
3413 if (ret)
3414 return ret;
3415
3416 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3417 if (&obj->base == NULL) {
3418 ret = -ENOENT;
3419 goto unlock;
3420 }
3421
3422 args->caching = obj->cache_level != I915_CACHE_NONE;
3423
3424 drm_gem_object_unreference(&obj->base);
3425 unlock:
3426 mutex_unlock(&dev->struct_mutex);
3427 return ret;
3428 }
3429
3430 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3431 struct drm_file *file)
3432 {
3433 struct drm_i915_gem_caching *args = data;
3434 struct drm_i915_gem_object *obj;
3435 enum i915_cache_level level;
3436 int ret;
3437
3438 switch (args->caching) {
3439 case I915_CACHING_NONE:
3440 level = I915_CACHE_NONE;
3441 break;
3442 case I915_CACHING_CACHED:
3443 level = I915_CACHE_LLC;
3444 break;
3445 default:
3446 return -EINVAL;
3447 }
3448
3449 ret = i915_mutex_lock_interruptible(dev);
3450 if (ret)
3451 return ret;
3452
3453 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3454 if (&obj->base == NULL) {
3455 ret = -ENOENT;
3456 goto unlock;
3457 }
3458
3459 ret = i915_gem_object_set_cache_level(obj, level);
3460
3461 drm_gem_object_unreference(&obj->base);
3462 unlock:
3463 mutex_unlock(&dev->struct_mutex);
3464 return ret;
3465 }
3466
3467 /*
3468 * Prepare buffer for display plane (scanout, cursors, etc).
3469 * Can be called from an uninterruptible phase (modesetting) and allows
3470 * any flushes to be pipelined (for pageflips).
3471 */
3472 int
3473 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3474 u32 alignment,
3475 struct intel_ring_buffer *pipelined)
3476 {
3477 u32 old_read_domains, old_write_domain;
3478 int ret;
3479
3480 if (pipelined != obj->ring) {
3481 ret = i915_gem_object_sync(obj, pipelined);
3482 if (ret)
3483 return ret;
3484 }
3485
3486 /* The display engine is not coherent with the LLC cache on gen6. As
3487 * a result, we make sure that the pinning that is about to occur is
3488 * done with uncached PTEs. This is lowest common denominator for all
3489 * chipsets.
3490 *
3491 * However for gen6+, we could do better by using the GFDT bit instead
3492 * of uncaching, which would allow us to flush all the LLC-cached data
3493 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3494 */
3495 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3496 if (ret)
3497 return ret;
3498
3499 /* As the user may map the buffer once pinned in the display plane
3500 * (e.g. libkms for the bootup splash), we have to ensure that we
3501 * always use map_and_fenceable for all scanout buffers.
3502 */
3503 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3504 if (ret)
3505 return ret;
3506
3507 i915_gem_object_flush_cpu_write_domain(obj);
3508
3509 old_write_domain = obj->base.write_domain;
3510 old_read_domains = obj->base.read_domains;
3511
3512 /* It should now be out of any other write domains, and we can update
3513 * the domain values for our changes.
3514 */
3515 obj->base.write_domain = 0;
3516 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3517
3518 trace_i915_gem_object_change_domain(obj,
3519 old_read_domains,
3520 old_write_domain);
3521
3522 return 0;
3523 }
3524
3525 int
3526 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3527 {
3528 int ret;
3529
3530 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3531 return 0;
3532
3533 ret = i915_gem_object_wait_rendering(obj, false);
3534 if (ret)
3535 return ret;
3536
3537 /* Ensure that we invalidate the GPU's caches and TLBs. */
3538 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3539 return 0;
3540 }
3541
3542 /**
3543 * Moves a single object to the CPU read, and possibly write domain.
3544 *
3545 * This function returns when the move is complete, including waiting on
3546 * flushes to occur.
3547 */
3548 int
3549 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3550 {
3551 uint32_t old_write_domain, old_read_domains;
3552 int ret;
3553
3554 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3555 return 0;
3556
3557 ret = i915_gem_object_wait_rendering(obj, !write);
3558 if (ret)
3559 return ret;
3560
3561 i915_gem_object_flush_gtt_write_domain(obj);
3562
3563 old_write_domain = obj->base.write_domain;
3564 old_read_domains = obj->base.read_domains;
3565
3566 /* Flush the CPU cache if it's still invalid. */
3567 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3568 i915_gem_clflush_object(obj);
3569
3570 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3571 }
3572
3573 /* It should now be out of any other write domains, and we can update
3574 * the domain values for our changes.
3575 */
3576 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3577
3578 /* If we're writing through the CPU, then the GPU read domains will
3579 * need to be invalidated at next use.
3580 */
3581 if (write) {
3582 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3583 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3584 }
3585
3586 trace_i915_gem_object_change_domain(obj,
3587 old_read_domains,
3588 old_write_domain);
3589
3590 return 0;
3591 }
3592
3593 /* Throttle our rendering by waiting until the ring has completed our requests
3594 * emitted over 20 msec ago.
3595 *
3596 * Note that if we were to use the current jiffies each time around the loop,
3597 * we wouldn't escape the function with any frames outstanding if the time to
3598 * render a frame was over 20ms.
3599 *
3600 * This should get us reasonable parallelism between CPU and GPU but also
3601 * relatively low latency when blocking on a particular request to finish.
3602 */
3603 static int
3604 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3605 {
3606 struct drm_i915_private *dev_priv = dev->dev_private;
3607 struct drm_i915_file_private *file_priv = file->driver_priv;
3608 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3609 struct drm_i915_gem_request *request;
3610 struct intel_ring_buffer *ring = NULL;
3611 unsigned reset_counter;
3612 u32 seqno = 0;
3613 int ret;
3614
3615 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3616 if (ret)
3617 return ret;
3618
3619 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3620 if (ret)
3621 return ret;
3622
3623 spin_lock(&file_priv->mm.lock);
3624 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3625 if (time_after_eq(request->emitted_jiffies, recent_enough))
3626 break;
3627
3628 ring = request->ring;
3629 seqno = request->seqno;
3630 }
3631 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3632 spin_unlock(&file_priv->mm.lock);
3633
3634 if (seqno == 0)
3635 return 0;
3636
3637 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3638 if (ret == 0)
3639 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3640
3641 return ret;
3642 }
3643
3644 int
3645 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3646 struct i915_address_space *vm,
3647 uint32_t alignment,
3648 bool map_and_fenceable,
3649 bool nonblocking)
3650 {
3651 int ret;
3652
3653 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3654 return -EBUSY;
3655
3656 if (i915_gem_obj_ggtt_bound(obj)) {
3657 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
3658 (map_and_fenceable && !obj->map_and_fenceable)) {
3659 WARN(obj->pin_count,
3660 "bo is already pinned with incorrect alignment:"
3661 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3662 " obj->map_and_fenceable=%d\n",
3663 i915_gem_obj_ggtt_offset(obj), alignment,
3664 map_and_fenceable,
3665 obj->map_and_fenceable);
3666 ret = i915_gem_object_unbind(obj);
3667 if (ret)
3668 return ret;
3669 }
3670 }
3671
3672 if (!i915_gem_obj_ggtt_bound(obj)) {
3673 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3674
3675 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3676 map_and_fenceable,
3677 nonblocking);
3678 if (ret)
3679 return ret;
3680
3681 if (!dev_priv->mm.aliasing_ppgtt)
3682 i915_gem_gtt_bind_object(obj, obj->cache_level);
3683 }
3684
3685 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3686 i915_gem_gtt_bind_object(obj, obj->cache_level);
3687
3688 obj->pin_count++;
3689 obj->pin_mappable |= map_and_fenceable;
3690
3691 return 0;
3692 }
3693
3694 void
3695 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3696 {
3697 BUG_ON(obj->pin_count == 0);
3698 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3699
3700 if (--obj->pin_count == 0)
3701 obj->pin_mappable = false;
3702 }
3703
3704 int
3705 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3706 struct drm_file *file)
3707 {
3708 struct drm_i915_gem_pin *args = data;
3709 struct drm_i915_gem_object *obj;
3710 int ret;
3711
3712 ret = i915_mutex_lock_interruptible(dev);
3713 if (ret)
3714 return ret;
3715
3716 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3717 if (&obj->base == NULL) {
3718 ret = -ENOENT;
3719 goto unlock;
3720 }
3721
3722 if (obj->madv != I915_MADV_WILLNEED) {
3723 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3729 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3730 args->handle);
3731 ret = -EINVAL;
3732 goto out;
3733 }
3734
3735 if (obj->user_pin_count == 0) {
3736 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3737 if (ret)
3738 goto out;
3739 }
3740
3741 obj->user_pin_count++;
3742 obj->pin_filp = file;
3743
3744 /* XXX - flush the CPU caches for pinned objects
3745 * as the X server doesn't manage domains yet
3746 */
3747 i915_gem_object_flush_cpu_write_domain(obj);
3748 args->offset = i915_gem_obj_ggtt_offset(obj);
3749 out:
3750 drm_gem_object_unreference(&obj->base);
3751 unlock:
3752 mutex_unlock(&dev->struct_mutex);
3753 return ret;
3754 }
3755
3756 int
3757 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3758 struct drm_file *file)
3759 {
3760 struct drm_i915_gem_pin *args = data;
3761 struct drm_i915_gem_object *obj;
3762 int ret;
3763
3764 ret = i915_mutex_lock_interruptible(dev);
3765 if (ret)
3766 return ret;
3767
3768 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3769 if (&obj->base == NULL) {
3770 ret = -ENOENT;
3771 goto unlock;
3772 }
3773
3774 if (obj->pin_filp != file) {
3775 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3776 args->handle);
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780 obj->user_pin_count--;
3781 if (obj->user_pin_count == 0) {
3782 obj->pin_filp = NULL;
3783 i915_gem_object_unpin(obj);
3784 }
3785
3786 out:
3787 drm_gem_object_unreference(&obj->base);
3788 unlock:
3789 mutex_unlock(&dev->struct_mutex);
3790 return ret;
3791 }
3792
3793 int
3794 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3795 struct drm_file *file)
3796 {
3797 struct drm_i915_gem_busy *args = data;
3798 struct drm_i915_gem_object *obj;
3799 int ret;
3800
3801 ret = i915_mutex_lock_interruptible(dev);
3802 if (ret)
3803 return ret;
3804
3805 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3806 if (&obj->base == NULL) {
3807 ret = -ENOENT;
3808 goto unlock;
3809 }
3810
3811 /* Count all active objects as busy, even if they are currently not used
3812 * by the gpu. Users of this interface expect objects to eventually
3813 * become non-busy without any further actions, therefore emit any
3814 * necessary flushes here.
3815 */
3816 ret = i915_gem_object_flush_active(obj);
3817
3818 args->busy = obj->active;
3819 if (obj->ring) {
3820 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3821 args->busy |= intel_ring_flag(obj->ring) << 16;
3822 }
3823
3824 drm_gem_object_unreference(&obj->base);
3825 unlock:
3826 mutex_unlock(&dev->struct_mutex);
3827 return ret;
3828 }
3829
3830 int
3831 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3832 struct drm_file *file_priv)
3833 {
3834 return i915_gem_ring_throttle(dev, file_priv);
3835 }
3836
3837 int
3838 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3839 struct drm_file *file_priv)
3840 {
3841 struct drm_i915_gem_madvise *args = data;
3842 struct drm_i915_gem_object *obj;
3843 int ret;
3844
3845 switch (args->madv) {
3846 case I915_MADV_DONTNEED:
3847 case I915_MADV_WILLNEED:
3848 break;
3849 default:
3850 return -EINVAL;
3851 }
3852
3853 ret = i915_mutex_lock_interruptible(dev);
3854 if (ret)
3855 return ret;
3856
3857 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3858 if (&obj->base == NULL) {
3859 ret = -ENOENT;
3860 goto unlock;
3861 }
3862
3863 if (obj->pin_count) {
3864 ret = -EINVAL;
3865 goto out;
3866 }
3867
3868 if (obj->madv != __I915_MADV_PURGED)
3869 obj->madv = args->madv;
3870
3871 /* if the object is no longer attached, discard its backing storage */
3872 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3873 i915_gem_object_truncate(obj);
3874
3875 args->retained = obj->madv != __I915_MADV_PURGED;
3876
3877 out:
3878 drm_gem_object_unreference(&obj->base);
3879 unlock:
3880 mutex_unlock(&dev->struct_mutex);
3881 return ret;
3882 }
3883
3884 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3885 const struct drm_i915_gem_object_ops *ops)
3886 {
3887 INIT_LIST_HEAD(&obj->mm_list);
3888 INIT_LIST_HEAD(&obj->global_list);
3889 INIT_LIST_HEAD(&obj->ring_list);
3890 INIT_LIST_HEAD(&obj->exec_list);
3891 INIT_LIST_HEAD(&obj->vma_list);
3892
3893 obj->ops = ops;
3894
3895 obj->fence_reg = I915_FENCE_REG_NONE;
3896 obj->madv = I915_MADV_WILLNEED;
3897 /* Avoid an unnecessary call to unbind on the first bind. */
3898 obj->map_and_fenceable = true;
3899
3900 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3901 }
3902
3903 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3904 .get_pages = i915_gem_object_get_pages_gtt,
3905 .put_pages = i915_gem_object_put_pages_gtt,
3906 };
3907
3908 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3909 size_t size)
3910 {
3911 struct drm_i915_gem_object *obj;
3912 struct address_space *mapping;
3913 gfp_t mask;
3914
3915 obj = i915_gem_object_alloc(dev);
3916 if (obj == NULL)
3917 return NULL;
3918
3919 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3920 i915_gem_object_free(obj);
3921 return NULL;
3922 }
3923
3924 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3925 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3926 /* 965gm cannot relocate objects above 4GiB. */
3927 mask &= ~__GFP_HIGHMEM;
3928 mask |= __GFP_DMA32;
3929 }
3930
3931 mapping = file_inode(obj->base.filp)->i_mapping;
3932 mapping_set_gfp_mask(mapping, mask);
3933
3934 i915_gem_object_init(obj, &i915_gem_object_ops);
3935
3936 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3937 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3938
3939 if (HAS_LLC(dev)) {
3940 /* On some devices, we can have the GPU use the LLC (the CPU
3941 * cache) for about a 10% performance improvement
3942 * compared to uncached. Graphics requests other than
3943 * display scanout are coherent with the CPU in
3944 * accessing this cache. This means in this mode we
3945 * don't need to clflush on the CPU side, and on the
3946 * GPU side we only need to flush internal caches to
3947 * get data visible to the CPU.
3948 *
3949 * However, we maintain the display planes as UC, and so
3950 * need to rebind when first used as such.
3951 */
3952 obj->cache_level = I915_CACHE_LLC;
3953 } else
3954 obj->cache_level = I915_CACHE_NONE;
3955
3956 trace_i915_gem_object_create(obj);
3957
3958 return obj;
3959 }
3960
3961 int i915_gem_init_object(struct drm_gem_object *obj)
3962 {
3963 BUG();
3964
3965 return 0;
3966 }
3967
3968 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3969 {
3970 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3971 struct drm_device *dev = obj->base.dev;
3972 drm_i915_private_t *dev_priv = dev->dev_private;
3973
3974 trace_i915_gem_object_destroy(obj);
3975
3976 if (obj->phys_obj)
3977 i915_gem_detach_phys_object(dev, obj);
3978
3979 obj->pin_count = 0;
3980 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3981 bool was_interruptible;
3982
3983 was_interruptible = dev_priv->mm.interruptible;
3984 dev_priv->mm.interruptible = false;
3985
3986 WARN_ON(i915_gem_object_unbind(obj));
3987
3988 dev_priv->mm.interruptible = was_interruptible;
3989 }
3990
3991 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3992 * before progressing. */
3993 if (obj->stolen)
3994 i915_gem_object_unpin_pages(obj);
3995
3996 if (WARN_ON(obj->pages_pin_count))
3997 obj->pages_pin_count = 0;
3998 i915_gem_object_put_pages(obj);
3999 i915_gem_object_free_mmap_offset(obj);
4000 i915_gem_object_release_stolen(obj);
4001
4002 BUG_ON(obj->pages);
4003
4004 if (obj->base.import_attach)
4005 drm_prime_gem_destroy(&obj->base, NULL);
4006
4007 drm_gem_object_release(&obj->base);
4008 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4009
4010 kfree(obj->bit_17);
4011 i915_gem_object_free(obj);
4012 }
4013
4014 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4015 struct i915_address_space *vm)
4016 {
4017 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4018 if (vma == NULL)
4019 return ERR_PTR(-ENOMEM);
4020
4021 INIT_LIST_HEAD(&vma->vma_link);
4022 vma->vm = vm;
4023 vma->obj = obj;
4024
4025 return vma;
4026 }
4027
4028 void i915_gem_vma_destroy(struct i915_vma *vma)
4029 {
4030 WARN_ON(vma->node.allocated);
4031 kfree(vma);
4032 }
4033
4034 int
4035 i915_gem_idle(struct drm_device *dev)
4036 {
4037 drm_i915_private_t *dev_priv = dev->dev_private;
4038 int ret;
4039
4040 if (dev_priv->ums.mm_suspended) {
4041 mutex_unlock(&dev->struct_mutex);
4042 return 0;
4043 }
4044
4045 ret = i915_gpu_idle(dev);
4046 if (ret) {
4047 mutex_unlock(&dev->struct_mutex);
4048 return ret;
4049 }
4050 i915_gem_retire_requests(dev);
4051
4052 /* Under UMS, be paranoid and evict. */
4053 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4054 i915_gem_evict_everything(dev);
4055
4056 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4057
4058 i915_kernel_lost_context(dev);
4059 i915_gem_cleanup_ringbuffer(dev);
4060
4061 /* Cancel the retire work handler, which should be idle now. */
4062 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4063
4064 return 0;
4065 }
4066
4067 void i915_gem_l3_remap(struct drm_device *dev)
4068 {
4069 drm_i915_private_t *dev_priv = dev->dev_private;
4070 u32 misccpctl;
4071 int i;
4072
4073 if (!HAS_L3_GPU_CACHE(dev))
4074 return;
4075
4076 if (!dev_priv->l3_parity.remap_info)
4077 return;
4078
4079 misccpctl = I915_READ(GEN7_MISCCPCTL);
4080 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4081 POSTING_READ(GEN7_MISCCPCTL);
4082
4083 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4084 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4085 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4086 DRM_DEBUG("0x%x was already programmed to %x\n",
4087 GEN7_L3LOG_BASE + i, remap);
4088 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4089 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4090 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4091 }
4092
4093 /* Make sure all the writes land before disabling dop clock gating */
4094 POSTING_READ(GEN7_L3LOG_BASE);
4095
4096 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4097 }
4098
4099 void i915_gem_init_swizzling(struct drm_device *dev)
4100 {
4101 drm_i915_private_t *dev_priv = dev->dev_private;
4102
4103 if (INTEL_INFO(dev)->gen < 5 ||
4104 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4105 return;
4106
4107 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4108 DISP_TILE_SURFACE_SWIZZLING);
4109
4110 if (IS_GEN5(dev))
4111 return;
4112
4113 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4114 if (IS_GEN6(dev))
4115 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4116 else if (IS_GEN7(dev))
4117 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4118 else
4119 BUG();
4120 }
4121
4122 static bool
4123 intel_enable_blt(struct drm_device *dev)
4124 {
4125 if (!HAS_BLT(dev))
4126 return false;
4127
4128 /* The blitter was dysfunctional on early prototypes */
4129 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4130 DRM_INFO("BLT not supported on this pre-production hardware;"
4131 " graphics performance will be degraded.\n");
4132 return false;
4133 }
4134
4135 return true;
4136 }
4137
4138 static int i915_gem_init_rings(struct drm_device *dev)
4139 {
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 int ret;
4142
4143 ret = intel_init_render_ring_buffer(dev);
4144 if (ret)
4145 return ret;
4146
4147 if (HAS_BSD(dev)) {
4148 ret = intel_init_bsd_ring_buffer(dev);
4149 if (ret)
4150 goto cleanup_render_ring;
4151 }
4152
4153 if (intel_enable_blt(dev)) {
4154 ret = intel_init_blt_ring_buffer(dev);
4155 if (ret)
4156 goto cleanup_bsd_ring;
4157 }
4158
4159 if (HAS_VEBOX(dev)) {
4160 ret = intel_init_vebox_ring_buffer(dev);
4161 if (ret)
4162 goto cleanup_blt_ring;
4163 }
4164
4165
4166 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4167 if (ret)
4168 goto cleanup_vebox_ring;
4169
4170 return 0;
4171
4172 cleanup_vebox_ring:
4173 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4174 cleanup_blt_ring:
4175 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4176 cleanup_bsd_ring:
4177 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4178 cleanup_render_ring:
4179 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4180
4181 return ret;
4182 }
4183
4184 int
4185 i915_gem_init_hw(struct drm_device *dev)
4186 {
4187 drm_i915_private_t *dev_priv = dev->dev_private;
4188 int ret;
4189
4190 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4191 return -EIO;
4192
4193 if (dev_priv->ellc_size)
4194 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4195
4196 if (HAS_PCH_NOP(dev)) {
4197 u32 temp = I915_READ(GEN7_MSG_CTL);
4198 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4199 I915_WRITE(GEN7_MSG_CTL, temp);
4200 }
4201
4202 i915_gem_l3_remap(dev);
4203
4204 i915_gem_init_swizzling(dev);
4205
4206 ret = i915_gem_init_rings(dev);
4207 if (ret)
4208 return ret;
4209
4210 /*
4211 * XXX: There was some w/a described somewhere suggesting loading
4212 * contexts before PPGTT.
4213 */
4214 i915_gem_context_init(dev);
4215 if (dev_priv->mm.aliasing_ppgtt) {
4216 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4217 if (ret) {
4218 i915_gem_cleanup_aliasing_ppgtt(dev);
4219 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4220 }
4221 }
4222
4223 return 0;
4224 }
4225
4226 int i915_gem_init(struct drm_device *dev)
4227 {
4228 struct drm_i915_private *dev_priv = dev->dev_private;
4229 int ret;
4230
4231 mutex_lock(&dev->struct_mutex);
4232
4233 if (IS_VALLEYVIEW(dev)) {
4234 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4235 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4236 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4237 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4238 }
4239
4240 i915_gem_init_global_gtt(dev);
4241
4242 ret = i915_gem_init_hw(dev);
4243 mutex_unlock(&dev->struct_mutex);
4244 if (ret) {
4245 i915_gem_cleanup_aliasing_ppgtt(dev);
4246 return ret;
4247 }
4248
4249 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4250 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4251 dev_priv->dri1.allow_batchbuffer = 1;
4252 return 0;
4253 }
4254
4255 void
4256 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4257 {
4258 drm_i915_private_t *dev_priv = dev->dev_private;
4259 struct intel_ring_buffer *ring;
4260 int i;
4261
4262 for_each_ring(ring, dev_priv, i)
4263 intel_cleanup_ring_buffer(ring);
4264 }
4265
4266 int
4267 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269 {
4270 struct drm_i915_private *dev_priv = dev->dev_private;
4271 int ret;
4272
4273 if (drm_core_check_feature(dev, DRIVER_MODESET))
4274 return 0;
4275
4276 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4277 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4278 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4279 }
4280
4281 mutex_lock(&dev->struct_mutex);
4282 dev_priv->ums.mm_suspended = 0;
4283
4284 ret = i915_gem_init_hw(dev);
4285 if (ret != 0) {
4286 mutex_unlock(&dev->struct_mutex);
4287 return ret;
4288 }
4289
4290 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4291 mutex_unlock(&dev->struct_mutex);
4292
4293 ret = drm_irq_install(dev);
4294 if (ret)
4295 goto cleanup_ringbuffer;
4296
4297 return 0;
4298
4299 cleanup_ringbuffer:
4300 mutex_lock(&dev->struct_mutex);
4301 i915_gem_cleanup_ringbuffer(dev);
4302 dev_priv->ums.mm_suspended = 1;
4303 mutex_unlock(&dev->struct_mutex);
4304
4305 return ret;
4306 }
4307
4308 int
4309 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4311 {
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 int ret;
4314
4315 if (drm_core_check_feature(dev, DRIVER_MODESET))
4316 return 0;
4317
4318 drm_irq_uninstall(dev);
4319
4320 mutex_lock(&dev->struct_mutex);
4321 ret = i915_gem_idle(dev);
4322
4323 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4324 * We need to replace this with a semaphore, or something.
4325 * And not confound ums.mm_suspended!
4326 */
4327 if (ret != 0)
4328 dev_priv->ums.mm_suspended = 1;
4329 mutex_unlock(&dev->struct_mutex);
4330
4331 return ret;
4332 }
4333
4334 void
4335 i915_gem_lastclose(struct drm_device *dev)
4336 {
4337 int ret;
4338
4339 if (drm_core_check_feature(dev, DRIVER_MODESET))
4340 return;
4341
4342 mutex_lock(&dev->struct_mutex);
4343 ret = i915_gem_idle(dev);
4344 if (ret)
4345 DRM_ERROR("failed to idle hardware: %d\n", ret);
4346 mutex_unlock(&dev->struct_mutex);
4347 }
4348
4349 static void
4350 init_ring_lists(struct intel_ring_buffer *ring)
4351 {
4352 INIT_LIST_HEAD(&ring->active_list);
4353 INIT_LIST_HEAD(&ring->request_list);
4354 }
4355
4356 static void i915_init_vm(struct drm_i915_private *dev_priv,
4357 struct i915_address_space *vm)
4358 {
4359 vm->dev = dev_priv->dev;
4360 INIT_LIST_HEAD(&vm->active_list);
4361 INIT_LIST_HEAD(&vm->inactive_list);
4362 INIT_LIST_HEAD(&vm->global_link);
4363 list_add(&vm->global_link, &dev_priv->vm_list);
4364 }
4365
4366 void
4367 i915_gem_load(struct drm_device *dev)
4368 {
4369 drm_i915_private_t *dev_priv = dev->dev_private;
4370 int i;
4371
4372 dev_priv->slab =
4373 kmem_cache_create("i915_gem_object",
4374 sizeof(struct drm_i915_gem_object), 0,
4375 SLAB_HWCACHE_ALIGN,
4376 NULL);
4377
4378 INIT_LIST_HEAD(&dev_priv->vm_list);
4379 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4380
4381 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4382 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4383 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4384 for (i = 0; i < I915_NUM_RINGS; i++)
4385 init_ring_lists(&dev_priv->ring[i]);
4386 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4387 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4388 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4389 i915_gem_retire_work_handler);
4390 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4391
4392 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4393 if (IS_GEN3(dev)) {
4394 I915_WRITE(MI_ARB_STATE,
4395 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4396 }
4397
4398 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4399
4400 /* Old X drivers will take 0-2 for front, back, depth buffers */
4401 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4402 dev_priv->fence_reg_start = 3;
4403
4404 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4405 dev_priv->num_fence_regs = 32;
4406 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4407 dev_priv->num_fence_regs = 16;
4408 else
4409 dev_priv->num_fence_regs = 8;
4410
4411 /* Initialize fence registers to zero */
4412 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4413 i915_gem_restore_fences(dev);
4414
4415 i915_gem_detect_bit_6_swizzle(dev);
4416 init_waitqueue_head(&dev_priv->pending_flip_queue);
4417
4418 dev_priv->mm.interruptible = true;
4419
4420 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4421 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4422 register_shrinker(&dev_priv->mm.inactive_shrinker);
4423 }
4424
4425 /*
4426 * Create a physically contiguous memory object for this object
4427 * e.g. for cursor + overlay regs
4428 */
4429 static int i915_gem_init_phys_object(struct drm_device *dev,
4430 int id, int size, int align)
4431 {
4432 drm_i915_private_t *dev_priv = dev->dev_private;
4433 struct drm_i915_gem_phys_object *phys_obj;
4434 int ret;
4435
4436 if (dev_priv->mm.phys_objs[id - 1] || !size)
4437 return 0;
4438
4439 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4440 if (!phys_obj)
4441 return -ENOMEM;
4442
4443 phys_obj->id = id;
4444
4445 phys_obj->handle = drm_pci_alloc(dev, size, align);
4446 if (!phys_obj->handle) {
4447 ret = -ENOMEM;
4448 goto kfree_obj;
4449 }
4450 #ifdef CONFIG_X86
4451 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4452 #endif
4453
4454 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4455
4456 return 0;
4457 kfree_obj:
4458 kfree(phys_obj);
4459 return ret;
4460 }
4461
4462 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4463 {
4464 drm_i915_private_t *dev_priv = dev->dev_private;
4465 struct drm_i915_gem_phys_object *phys_obj;
4466
4467 if (!dev_priv->mm.phys_objs[id - 1])
4468 return;
4469
4470 phys_obj = dev_priv->mm.phys_objs[id - 1];
4471 if (phys_obj->cur_obj) {
4472 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4473 }
4474
4475 #ifdef CONFIG_X86
4476 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4477 #endif
4478 drm_pci_free(dev, phys_obj->handle);
4479 kfree(phys_obj);
4480 dev_priv->mm.phys_objs[id - 1] = NULL;
4481 }
4482
4483 void i915_gem_free_all_phys_object(struct drm_device *dev)
4484 {
4485 int i;
4486
4487 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4488 i915_gem_free_phys_object(dev, i);
4489 }
4490
4491 void i915_gem_detach_phys_object(struct drm_device *dev,
4492 struct drm_i915_gem_object *obj)
4493 {
4494 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4495 char *vaddr;
4496 int i;
4497 int page_count;
4498
4499 if (!obj->phys_obj)
4500 return;
4501 vaddr = obj->phys_obj->handle->vaddr;
4502
4503 page_count = obj->base.size / PAGE_SIZE;
4504 for (i = 0; i < page_count; i++) {
4505 struct page *page = shmem_read_mapping_page(mapping, i);
4506 if (!IS_ERR(page)) {
4507 char *dst = kmap_atomic(page);
4508 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4509 kunmap_atomic(dst);
4510
4511 drm_clflush_pages(&page, 1);
4512
4513 set_page_dirty(page);
4514 mark_page_accessed(page);
4515 page_cache_release(page);
4516 }
4517 }
4518 i915_gem_chipset_flush(dev);
4519
4520 obj->phys_obj->cur_obj = NULL;
4521 obj->phys_obj = NULL;
4522 }
4523
4524 int
4525 i915_gem_attach_phys_object(struct drm_device *dev,
4526 struct drm_i915_gem_object *obj,
4527 int id,
4528 int align)
4529 {
4530 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4531 drm_i915_private_t *dev_priv = dev->dev_private;
4532 int ret = 0;
4533 int page_count;
4534 int i;
4535
4536 if (id > I915_MAX_PHYS_OBJECT)
4537 return -EINVAL;
4538
4539 if (obj->phys_obj) {
4540 if (obj->phys_obj->id == id)
4541 return 0;
4542 i915_gem_detach_phys_object(dev, obj);
4543 }
4544
4545 /* create a new object */
4546 if (!dev_priv->mm.phys_objs[id - 1]) {
4547 ret = i915_gem_init_phys_object(dev, id,
4548 obj->base.size, align);
4549 if (ret) {
4550 DRM_ERROR("failed to init phys object %d size: %zu\n",
4551 id, obj->base.size);
4552 return ret;
4553 }
4554 }
4555
4556 /* bind to the object */
4557 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4558 obj->phys_obj->cur_obj = obj;
4559
4560 page_count = obj->base.size / PAGE_SIZE;
4561
4562 for (i = 0; i < page_count; i++) {
4563 struct page *page;
4564 char *dst, *src;
4565
4566 page = shmem_read_mapping_page(mapping, i);
4567 if (IS_ERR(page))
4568 return PTR_ERR(page);
4569
4570 src = kmap_atomic(page);
4571 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4572 memcpy(dst, src, PAGE_SIZE);
4573 kunmap_atomic(src);
4574
4575 mark_page_accessed(page);
4576 page_cache_release(page);
4577 }
4578
4579 return 0;
4580 }
4581
4582 static int
4583 i915_gem_phys_pwrite(struct drm_device *dev,
4584 struct drm_i915_gem_object *obj,
4585 struct drm_i915_gem_pwrite *args,
4586 struct drm_file *file_priv)
4587 {
4588 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4589 char __user *user_data = to_user_ptr(args->data_ptr);
4590
4591 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4592 unsigned long unwritten;
4593
4594 /* The physical object once assigned is fixed for the lifetime
4595 * of the obj, so we can safely drop the lock and continue
4596 * to access vaddr.
4597 */
4598 mutex_unlock(&dev->struct_mutex);
4599 unwritten = copy_from_user(vaddr, user_data, args->size);
4600 mutex_lock(&dev->struct_mutex);
4601 if (unwritten)
4602 return -EFAULT;
4603 }
4604
4605 i915_gem_chipset_flush(dev);
4606 return 0;
4607 }
4608
4609 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4610 {
4611 struct drm_i915_file_private *file_priv = file->driver_priv;
4612
4613 /* Clean up our request list when the client is going away, so that
4614 * later retire_requests won't dereference our soon-to-be-gone
4615 * file_priv.
4616 */
4617 spin_lock(&file_priv->mm.lock);
4618 while (!list_empty(&file_priv->mm.request_list)) {
4619 struct drm_i915_gem_request *request;
4620
4621 request = list_first_entry(&file_priv->mm.request_list,
4622 struct drm_i915_gem_request,
4623 client_list);
4624 list_del(&request->client_list);
4625 request->file_priv = NULL;
4626 }
4627 spin_unlock(&file_priv->mm.lock);
4628 }
4629
4630 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4631 {
4632 if (!mutex_is_locked(mutex))
4633 return false;
4634
4635 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4636 return mutex->owner == task;
4637 #else
4638 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4639 return false;
4640 #endif
4641 }
4642
4643 static int
4644 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4645 {
4646 struct drm_i915_private *dev_priv =
4647 container_of(shrinker,
4648 struct drm_i915_private,
4649 mm.inactive_shrinker);
4650 struct drm_device *dev = dev_priv->dev;
4651 struct drm_i915_gem_object *obj;
4652 int nr_to_scan = sc->nr_to_scan;
4653 bool unlock = true;
4654 int cnt;
4655
4656 if (!mutex_trylock(&dev->struct_mutex)) {
4657 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4658 return 0;
4659
4660 if (dev_priv->mm.shrinker_no_lock_stealing)
4661 return 0;
4662
4663 unlock = false;
4664 }
4665
4666 if (nr_to_scan) {
4667 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4668 if (nr_to_scan > 0)
4669 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4670 false);
4671 if (nr_to_scan > 0)
4672 i915_gem_shrink_all(dev_priv);
4673 }
4674
4675 cnt = 0;
4676 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4677 if (obj->pages_pin_count == 0)
4678 cnt += obj->base.size >> PAGE_SHIFT;
4679
4680 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4681 if (obj->active)
4682 continue;
4683
4684 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4685 cnt += obj->base.size >> PAGE_SHIFT;
4686 }
4687
4688 if (unlock)
4689 mutex_unlock(&dev->struct_mutex);
4690 return cnt;
4691 }
4692
4693 /* All the new VM stuff */
4694 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4695 struct i915_address_space *vm)
4696 {
4697 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4698 struct i915_vma *vma;
4699
4700 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4701 vm = &dev_priv->gtt.base;
4702
4703 BUG_ON(list_empty(&o->vma_list));
4704 list_for_each_entry(vma, &o->vma_list, vma_link) {
4705 if (vma->vm == vm)
4706 return vma->node.start;
4707
4708 }
4709 return -1;
4710 }
4711
4712 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4713 struct i915_address_space *vm)
4714 {
4715 struct i915_vma *vma;
4716
4717 list_for_each_entry(vma, &o->vma_list, vma_link)
4718 if (vma->vm == vm)
4719 return true;
4720
4721 return false;
4722 }
4723
4724 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4725 {
4726 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4727 struct i915_address_space *vm;
4728
4729 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4730 if (i915_gem_obj_bound(o, vm))
4731 return true;
4732
4733 return false;
4734 }
4735
4736 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4737 struct i915_address_space *vm)
4738 {
4739 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4740 struct i915_vma *vma;
4741
4742 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4743 vm = &dev_priv->gtt.base;
4744
4745 BUG_ON(list_empty(&o->vma_list));
4746
4747 list_for_each_entry(vma, &o->vma_list, vma_link)
4748 if (vma->vm == vm)
4749 return vma->node.size;
4750
4751 return 0;
4752 }
4753
4754 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4755 struct i915_address_space *vm)
4756 {
4757 struct i915_vma *vma;
4758 list_for_each_entry(vma, &obj->vma_list, vma_link)
4759 if (vma->vm == vm)
4760 return vma;
4761
4762 return NULL;
4763 }
This page took 0.134159 seconds and 4 git commands to generate.