GFS2: Check for glock already held in gfs2_getxattr
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
96 if (EXIT_COND)
97 return 0;
98
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
111 return ret;
112 }
113 #undef EXIT_COND
114
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 int ret;
122
123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
131 WARN_ON(i915_verify_lists(dev));
132 return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file)
144 {
145 struct drm_i915_private *dev_priv = dev->dev_private;
146 struct drm_i915_gem_init *args = data;
147
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
154
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
159 mutex_lock(&dev->struct_mutex);
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
162 dev_priv->gtt.mappable_end = args->gtt_end;
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 pinned = 0;
178 mutex_lock(&dev->struct_mutex);
179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
180 if (obj->pin_count)
181 pinned += obj->gtt_space->size;
182 mutex_unlock(&dev->struct_mutex);
183
184 args->aper_size = dev_priv->gtt.total;
185 args->aper_available_size = args->aper_size - pinned;
186
187 return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
207 {
208 struct drm_i915_gem_object *obj;
209 int ret;
210 u32 handle;
211
212 size = roundup(size, PAGE_SIZE);
213 if (size == 0)
214 return -EINVAL;
215
216 /* Allocate the new object */
217 obj = i915_gem_alloc_object(dev, size);
218 if (obj == NULL)
219 return -ENOMEM;
220
221 ret = drm_gem_handle_create(file, &obj->base, &handle);
222 if (ret) {
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 i915_gem_object_free(obj);
226 return ret;
227 }
228
229 /* drop reference from allocate - handle holds it now */
230 drm_gem_object_unreference(&obj->base);
231 trace_i915_gem_object_create(obj);
232
233 *handle_p = handle;
234 return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241 {
242 /* have to work out size/pitch and return them */
243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252 {
253 return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257 * Creates a new mm object and returns a handle to it.
258 */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262 {
263 struct drm_i915_gem_create *args = data;
264
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273 {
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
298 int length)
299 {
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 char *vaddr;
330 int ret;
331
332 if (unlikely(page_do_bit17_swizzling))
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
344 return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350 {
351 if (unlikely(swizzled)) {
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
395 return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
403 {
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int prefaulted = 0;
410 int needs_clflush = 0;
411 struct sg_page_iter sg_iter;
412
413 user_data = to_user_ptr(args->data_ptr);
414 remain = args->size;
415
416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
425 if (obj->gtt_space) {
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430 }
431
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
438 offset = args->offset;
439
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
442 struct page *page = sg_page_iter_page(&sg_iter);
443
444 if (remain <= 0)
445 break;
446
447 /* Operation in this page
448 *
449 * shmem_page_offset = offset within page in shmem file
450 * page_length = bytes to copy for this page
451 */
452 shmem_page_offset = offset_in_page(offset);
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
456
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
465
466 mutex_unlock(&dev->struct_mutex);
467
468 if (!prefaulted) {
469 ret = fault_in_multipages_writeable(user_data, remain);
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
477
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
481
482 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485 mark_page_accessed(page);
486
487 if (ret)
488 goto out;
489
490 remain -= page_length;
491 user_data += page_length;
492 offset += page_length;
493 }
494
495 out:
496 i915_gem_object_unpin_pages(obj);
497
498 return ret;
499 }
500
501 /**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 struct drm_file *file)
509 {
510 struct drm_i915_gem_pread *args = data;
511 struct drm_i915_gem_object *obj;
512 int ret = 0;
513
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
518 to_user_ptr(args->data_ptr),
519 args->size))
520 return -EFAULT;
521
522 ret = i915_mutex_lock_interruptible(dev);
523 if (ret)
524 return ret;
525
526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 if (&obj->base == NULL) {
528 ret = -ENOENT;
529 goto unlock;
530 }
531
532 /* Bounds check source. */
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
535 ret = -EINVAL;
536 goto out;
537 }
538
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549 ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552 drm_gem_object_unreference(&obj->base);
553 unlock:
554 mutex_unlock(&dev->struct_mutex);
555 return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559 * page faults in the source data
560 */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
567 {
568 void __iomem *vaddr_atomic;
569 void *vaddr;
570 unsigned long unwritten;
571
572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 user_data, length);
577 io_mapping_unmap_atomic(vaddr_atomic);
578 return unwritten;
579 }
580
581 /**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
588 struct drm_i915_gem_pwrite *args,
589 struct drm_file *file)
590 {
591 drm_i915_private_t *dev_priv = dev->dev_private;
592 ssize_t remain;
593 loff_t offset, page_base;
594 char __user *user_data;
595 int page_offset, page_length, ret;
596
597 ret = i915_gem_object_pin(obj, 0, true, true);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
608
609 user_data = to_user_ptr(args->data_ptr);
610 remain = args->size;
611
612 offset = obj->gtt_offset + args->offset;
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
620 */
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
627 /* If we get a fault while copying data, then (presumably) our
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
630 */
631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
636
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
640 }
641
642 out_unpin:
643 i915_gem_object_unpin(obj);
644 out:
645 return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
658 {
659 char *vaddr;
660 int ret;
661
662 if (unlikely(page_do_bit17_swizzling))
663 return -EINVAL;
664
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
676
677 return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
688 {
689 char *vaddr;
690 int ret;
691
692 vaddr = kmap(page);
693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 user_data,
700 page_length);
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
709 kunmap(page);
710
711 return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
719 {
720 ssize_t remain;
721 loff_t offset;
722 char __user *user_data;
723 int shmem_page_offset, page_length, ret = 0;
724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 int hit_slowpath = 0;
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
728 struct sg_page_iter sg_iter;
729
730 user_data = to_user_ptr(args->data_ptr);
731 remain = args->size;
732
733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
742 if (obj->gtt_space) {
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
765 struct page *page = sg_page_iter_page(&sg_iter);
766 int partial_cacheline_write;
767
768 if (remain <= 0)
769 break;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
798
799 hit_slowpath = 1;
800 mutex_unlock(&dev->struct_mutex);
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805
806 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809 set_page_dirty(page);
810 mark_page_accessed(page);
811
812 if (ret)
813 goto out;
814
815 remain -= page_length;
816 user_data += page_length;
817 offset += page_length;
818 }
819
820 out:
821 i915_gem_object_unpin_pages(obj);
822
823 if (hit_slowpath) {
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 i915_gem_clflush_object(obj);
832 i915_gem_chipset_flush(dev);
833 }
834 }
835
836 if (needs_clflush_after)
837 i915_gem_chipset_flush(dev);
838
839 return ret;
840 }
841
842 /**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 struct drm_file *file)
850 {
851 struct drm_i915_gem_pwrite *args = data;
852 struct drm_i915_gem_object *obj;
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
859 to_user_ptr(args->data_ptr),
860 args->size))
861 return -EFAULT;
862
863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 args->size);
865 if (ret)
866 return -EFAULT;
867
868 ret = i915_mutex_lock_interruptible(dev);
869 if (ret)
870 return ret;
871
872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 if (&obj->base == NULL) {
874 ret = -ENOENT;
875 goto unlock;
876 }
877
878 /* Bounds check destination. */
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
881 ret = -EINVAL;
882 goto out;
883 }
884
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895 ret = -EFAULT;
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
902 if (obj->phys_obj) {
903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 goto out;
905 }
906
907 if (obj->cache_level == I915_CACHE_NONE &&
908 obj->tiling_mode == I915_TILING_NONE &&
909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
914 }
915
916 if (ret == -EFAULT || ret == -ENOSPC)
917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920 drm_gem_object_unreference(&obj->base);
921 unlock:
922 mutex_unlock(&dev->struct_mutex);
923 return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 bool interruptible)
929 {
930 if (i915_reset_in_progress(error)) {
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944 }
945
946 /*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
959 ret = i915_add_request(ring, NULL);
960
961 return ret;
962 }
963
964 /**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
968 * @reset_counter: reset sequence associated with the given seqno
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 unsigned reset_counter,
984 bool interruptible, struct timespec *timeout)
985 {
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060 }
1061
1062 /**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
1088 }
1089
1090 static int
1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093 {
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113 static __must_check int
1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116 {
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
1129 return i915_gem_object_wait_rendering__tail(obj, ring);
1130 }
1131
1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135 static __must_check int
1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138 {
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
1142 unsigned reset_counter;
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1162 mutex_unlock(&dev->struct_mutex);
1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1164 mutex_lock(&dev->struct_mutex);
1165 if (ret)
1166 return ret;
1167
1168 return i915_gem_object_wait_rendering__tail(obj, ring);
1169 }
1170
1171 /**
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
1174 */
1175 int
1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file)
1178 {
1179 struct drm_i915_gem_set_domain *args = data;
1180 struct drm_i915_gem_object *obj;
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
1183 int ret;
1184
1185 /* Only handle setting domains to types used by the CPU. */
1186 if (write_domain & I915_GEM_GPU_DOMAINS)
1187 return -EINVAL;
1188
1189 if (read_domains & I915_GEM_GPU_DOMAINS)
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
1198 ret = i915_mutex_lock_interruptible(dev);
1199 if (ret)
1200 return ret;
1201
1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1203 if (&obj->base == NULL) {
1204 ret = -ENOENT;
1205 goto unlock;
1206 }
1207
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
1225 } else {
1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1227 }
1228
1229 unref:
1230 drm_gem_object_unreference(&obj->base);
1231 unlock:
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234 }
1235
1236 /**
1237 * Called when user space has done writes to this buffer
1238 */
1239 int
1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_sw_finish *args = data;
1244 struct drm_i915_gem_object *obj;
1245 int ret = 0;
1246
1247 ret = i915_mutex_lock_interruptible(dev);
1248 if (ret)
1249 return ret;
1250
1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1252 if (&obj->base == NULL) {
1253 ret = -ENOENT;
1254 goto unlock;
1255 }
1256
1257 /* Pinned buffers may be scanout, so flush the cache */
1258 if (obj->pin_count)
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
1261 drm_gem_object_unreference(&obj->base);
1262 unlock:
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265 }
1266
1267 /**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274 int
1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
1280 unsigned long addr;
1281
1282 obj = drm_gem_object_lookup(dev, file, args->handle);
1283 if (obj == NULL)
1284 return -ENOENT;
1285
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
1294 addr = vm_mmap(obj->filp, 0, args->size,
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
1297 drm_gem_object_unreference_unlocked(obj);
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304 }
1305
1306 /**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323 {
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
1326 drm_i915_private_t *dev_priv = dev->dev_private;
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
1339
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
1348 /* Now bind it into the GTT if needed */
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
1352
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
1356
1357 ret = i915_gem_object_get_fence(obj);
1358 if (ret)
1359 goto unpin;
1360
1361 obj->fault_mappable = true;
1362
1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1364 page_offset;
1365
1366 /* Finally, remap it using the new GTT offset */
1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1368 unpin:
1369 i915_gem_object_unpin(obj);
1370 unlock:
1371 mutex_unlock(&dev->struct_mutex);
1372 out:
1373 switch (ret) {
1374 case -EIO:
1375 /* If this -EIO is due to a gpu hang, give the reset code a
1376 * chance to clean up the mess. Otherwise return the proper
1377 * SIGBUS. */
1378 if (i915_terminally_wedged(&dev_priv->gpu_error))
1379 return VM_FAULT_SIGBUS;
1380 case -EAGAIN:
1381 /* Give the error handler a chance to run and move the
1382 * objects off the GPU active list. Next time we service the
1383 * fault, we should be able to transition the page into the
1384 * GTT without touching the GPU (and so avoid further
1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1386 * with coherency, just lost writes.
1387 */
1388 set_need_resched();
1389 case 0:
1390 case -ERESTARTSYS:
1391 case -EINTR:
1392 case -EBUSY:
1393 /*
1394 * EBUSY is ok: this just means that another thread
1395 * already did the job.
1396 */
1397 return VM_FAULT_NOPAGE;
1398 case -ENOMEM:
1399 return VM_FAULT_OOM;
1400 case -ENOSPC:
1401 return VM_FAULT_SIGBUS;
1402 default:
1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1404 return VM_FAULT_SIGBUS;
1405 }
1406 }
1407
1408 /**
1409 * i915_gem_release_mmap - remove physical page mappings
1410 * @obj: obj in question
1411 *
1412 * Preserve the reservation of the mmapping with the DRM core code, but
1413 * relinquish ownership of the pages back to the system.
1414 *
1415 * It is vital that we remove the page mapping if we have mapped a tiled
1416 * object through the GTT and then lose the fence register due to
1417 * resource pressure. Similarly if the object has been moved out of the
1418 * aperture, than pages mapped into userspace must be revoked. Removing the
1419 * mapping will then trigger a page fault on the next user access, allowing
1420 * fixup by i915_gem_fault().
1421 */
1422 void
1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1424 {
1425 if (!obj->fault_mappable)
1426 return;
1427
1428 if (obj->base.dev->dev_mapping)
1429 unmap_mapping_range(obj->base.dev->dev_mapping,
1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1431 obj->base.size, 1);
1432
1433 obj->fault_mappable = false;
1434 }
1435
1436 uint32_t
1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1438 {
1439 uint32_t gtt_size;
1440
1441 if (INTEL_INFO(dev)->gen >= 4 ||
1442 tiling_mode == I915_TILING_NONE)
1443 return size;
1444
1445 /* Previous chips need a power-of-two fence region when tiling */
1446 if (INTEL_INFO(dev)->gen == 3)
1447 gtt_size = 1024*1024;
1448 else
1449 gtt_size = 512*1024;
1450
1451 while (gtt_size < size)
1452 gtt_size <<= 1;
1453
1454 return gtt_size;
1455 }
1456
1457 /**
1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1459 * @obj: object to check
1460 *
1461 * Return the required GTT alignment for an object, taking into account
1462 * potential fence register mapping.
1463 */
1464 uint32_t
1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1466 int tiling_mode, bool fenced)
1467 {
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1473 tiling_mode == I915_TILING_NONE)
1474 return 4096;
1475
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482
1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1484 {
1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1486 int ret;
1487
1488 if (obj->base.map_list.map)
1489 return 0;
1490
1491 dev_priv->mm.shrinker_no_lock_stealing = true;
1492
1493 ret = drm_gem_create_mmap_offset(&obj->base);
1494 if (ret != -ENOSPC)
1495 goto out;
1496
1497 /* Badly fragmented mmap space? The only way we can recover
1498 * space is by destroying unwanted objects. We can't randomly release
1499 * mmap_offsets as userspace expects them to be persistent for the
1500 * lifetime of the objects. The closest we can is to release the
1501 * offsets on purgeable objects by truncating it and marking it purged,
1502 * which prevents userspace from ever using that object again.
1503 */
1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1505 ret = drm_gem_create_mmap_offset(&obj->base);
1506 if (ret != -ENOSPC)
1507 goto out;
1508
1509 i915_gem_shrink_all(dev_priv);
1510 ret = drm_gem_create_mmap_offset(&obj->base);
1511 out:
1512 dev_priv->mm.shrinker_no_lock_stealing = false;
1513
1514 return ret;
1515 }
1516
1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1518 {
1519 if (!obj->base.map_list.map)
1520 return;
1521
1522 drm_gem_free_mmap_offset(&obj->base);
1523 }
1524
1525 int
1526 i915_gem_mmap_gtt(struct drm_file *file,
1527 struct drm_device *dev,
1528 uint32_t handle,
1529 uint64_t *offset)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct drm_i915_gem_object *obj;
1533 int ret;
1534
1535 ret = i915_mutex_lock_interruptible(dev);
1536 if (ret)
1537 return ret;
1538
1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1540 if (&obj->base == NULL) {
1541 ret = -ENOENT;
1542 goto unlock;
1543 }
1544
1545 if (obj->base.size > dev_priv->gtt.mappable_end) {
1546 ret = -E2BIG;
1547 goto out;
1548 }
1549
1550 if (obj->madv != I915_MADV_WILLNEED) {
1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1552 ret = -EINVAL;
1553 goto out;
1554 }
1555
1556 ret = i915_gem_object_create_mmap_offset(obj);
1557 if (ret)
1558 goto out;
1559
1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1561
1562 out:
1563 drm_gem_object_unreference(&obj->base);
1564 unlock:
1565 mutex_unlock(&dev->struct_mutex);
1566 return ret;
1567 }
1568
1569 /**
1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1571 * @dev: DRM device
1572 * @data: GTT mapping ioctl data
1573 * @file: GEM object info
1574 *
1575 * Simply returns the fake offset to userspace so it can mmap it.
1576 * The mmap call will end up in drm_gem_mmap(), which will set things
1577 * up so we can get faults in the handler above.
1578 *
1579 * The fault handler will take care of binding the object into the GTT
1580 * (since it may have been evicted to make room for something), allocating
1581 * a fence register, and mapping the appropriate aperture address into
1582 * userspace.
1583 */
1584 int
1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1586 struct drm_file *file)
1587 {
1588 struct drm_i915_gem_mmap_gtt *args = data;
1589
1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1591 }
1592
1593 /* Immediately discard the backing storage */
1594 static void
1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1596 {
1597 struct inode *inode;
1598
1599 i915_gem_object_free_mmap_offset(obj);
1600
1601 if (obj->base.filp == NULL)
1602 return;
1603
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*.
1608 */
1609 inode = file_inode(obj->base.filp);
1610 shmem_truncate_range(inode, 0, (loff_t)-1);
1611
1612 obj->madv = __I915_MADV_PURGED;
1613 }
1614
1615 static inline int
1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1617 {
1618 return obj->madv == I915_MADV_DONTNEED;
1619 }
1620
1621 static void
1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1623 {
1624 struct sg_page_iter sg_iter;
1625 int ret;
1626
1627 BUG_ON(obj->madv == __I915_MADV_PURGED);
1628
1629 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1630 if (ret) {
1631 /* In the event of a disaster, abandon all caches and
1632 * hope for the best.
1633 */
1634 WARN_ON(ret != -EIO);
1635 i915_gem_clflush_object(obj);
1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1637 }
1638
1639 if (i915_gem_object_needs_bit17_swizzle(obj))
1640 i915_gem_object_save_bit_17_swizzle(obj);
1641
1642 if (obj->madv == I915_MADV_DONTNEED)
1643 obj->dirty = 0;
1644
1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1646 struct page *page = sg_page_iter_page(&sg_iter);
1647
1648 if (obj->dirty)
1649 set_page_dirty(page);
1650
1651 if (obj->madv == I915_MADV_WILLNEED)
1652 mark_page_accessed(page);
1653
1654 page_cache_release(page);
1655 }
1656 obj->dirty = 0;
1657
1658 sg_free_table(obj->pages);
1659 kfree(obj->pages);
1660 }
1661
1662 int
1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1664 {
1665 const struct drm_i915_gem_object_ops *ops = obj->ops;
1666
1667 if (obj->pages == NULL)
1668 return 0;
1669
1670 BUG_ON(obj->gtt_space);
1671
1672 if (obj->pages_pin_count)
1673 return -EBUSY;
1674
1675 /* ->put_pages might need to allocate memory for the bit17 swizzle
1676 * array, hence protect them from being reaped by removing them from gtt
1677 * lists early. */
1678 list_del(&obj->global_list);
1679
1680 ops->put_pages(obj);
1681 obj->pages = NULL;
1682
1683 if (i915_gem_object_is_purgeable(obj))
1684 i915_gem_object_truncate(obj);
1685
1686 return 0;
1687 }
1688
1689 static long
1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1691 bool purgeable_only)
1692 {
1693 struct drm_i915_gem_object *obj, *next;
1694 long count = 0;
1695
1696 list_for_each_entry_safe(obj, next,
1697 &dev_priv->mm.unbound_list,
1698 global_list) {
1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1700 i915_gem_object_put_pages(obj) == 0) {
1701 count += obj->base.size >> PAGE_SHIFT;
1702 if (count >= target)
1703 return count;
1704 }
1705 }
1706
1707 list_for_each_entry_safe(obj, next,
1708 &dev_priv->mm.inactive_list,
1709 mm_list) {
1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1711 i915_gem_object_unbind(obj) == 0 &&
1712 i915_gem_object_put_pages(obj) == 0) {
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720 }
1721
1722 static long
1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724 {
1725 return __i915_gem_shrink(dev_priv, target, true);
1726 }
1727
1728 static void
1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730 {
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
1737 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 int page_count, i;
1745 struct address_space *mapping;
1746 struct sg_table *st;
1747 struct scatterlist *sg;
1748 struct sg_page_iter sg_iter;
1749 struct page *page;
1750 unsigned long last_pfn = 0; /* suppress gcc warning */
1751 gfp_t gfp;
1752
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
1764 page_count = obj->base.size / PAGE_SIZE;
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
1768 return -ENOMEM;
1769 }
1770
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
1776 mapping = file_inode(obj->base.filp)->i_mapping;
1777 gfp = mapping_gfp_mask(mapping);
1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1804 #ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811 #endif
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
1821 }
1822 #ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824 #endif
1825 sg_mark_end(sg);
1826 obj->pages = st;
1827
1828 if (i915_gem_object_needs_bit17_swizzle(obj))
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833 err_pages:
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836 page_cache_release(sg_page_iter_page(&sg_iter));
1837 sg_free_table(st);
1838 kfree(st);
1839 return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
1856 if (obj->pages)
1857 return 0;
1858
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
1864 BUG_ON(obj->pages_pin_count);
1865
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1871 return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876 struct intel_ring_buffer *ring)
1877 {
1878 struct drm_device *dev = obj->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 u32 seqno = intel_ring_get_seqno(ring);
1881
1882 BUG_ON(ring == NULL);
1883 obj->ring = ring;
1884
1885 /* Add a reference if we're newly entering the active list. */
1886 if (!obj->active) {
1887 drm_gem_object_reference(&obj->base);
1888 obj->active = 1;
1889 }
1890
1891 /* Move from whatever list we were on to the tail of execution. */
1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893 list_move_tail(&obj->ring_list, &ring->active_list);
1894
1895 obj->last_read_seqno = seqno;
1896
1897 if (obj->fenced_gpu_access) {
1898 obj->last_fenced_seqno = seqno;
1899
1900 /* Bump MRU to take account of the delayed flush */
1901 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902 struct drm_i915_fence_reg *reg;
1903
1904 reg = &dev_priv->fence_regs[obj->fence_reg];
1905 list_move_tail(&reg->lru_list,
1906 &dev_priv->mm.fence_list);
1907 }
1908 }
1909 }
1910
1911 static void
1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914 struct drm_device *dev = obj->base.dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916
1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918 BUG_ON(!obj->active);
1919
1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921
1922 list_del_init(&obj->ring_list);
1923 obj->ring = NULL;
1924
1925 obj->last_read_seqno = 0;
1926 obj->last_write_seqno = 0;
1927 obj->base.write_domain = 0;
1928
1929 obj->last_fenced_seqno = 0;
1930 obj->fenced_gpu_access = false;
1931
1932 obj->active = 0;
1933 drm_gem_object_unreference(&obj->base);
1934
1935 WARN_ON(i915_verify_lists(dev));
1936 }
1937
1938 static int
1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942 struct intel_ring_buffer *ring;
1943 int ret, i, j;
1944
1945 /* Carefully retire all requests without writing to the rings */
1946 for_each_ring(ring, dev_priv, i) {
1947 ret = intel_ring_idle(ring);
1948 if (ret)
1949 return ret;
1950 }
1951 i915_gem_retire_requests(dev);
1952
1953 /* Finally reset hw state */
1954 for_each_ring(ring, dev_priv, i) {
1955 intel_ring_init_seqno(ring, seqno);
1956
1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 ring->sync_seqno[j] = 0;
1959 }
1960
1961 return 0;
1962 }
1963
1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int ret;
1968
1969 if (seqno == 0)
1970 return -EINVAL;
1971
1972 /* HWS page needs to be set less than what we
1973 * will inject to ring
1974 */
1975 ret = i915_gem_init_seqno(dev, seqno - 1);
1976 if (ret)
1977 return ret;
1978
1979 /* Carefully set the last_seqno value so that wrap
1980 * detection still works
1981 */
1982 dev_priv->next_seqno = seqno;
1983 dev_priv->last_seqno = seqno - 1;
1984 if (dev_priv->last_seqno == 0)
1985 dev_priv->last_seqno--;
1986
1987 return 0;
1988 }
1989
1990 int
1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 /* reserve 0 for non-seqno */
1996 if (dev_priv->next_seqno == 0) {
1997 int ret = i915_gem_init_seqno(dev, 0);
1998 if (ret)
1999 return ret;
2000
2001 dev_priv->next_seqno = 1;
2002 }
2003
2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005 return 0;
2006 }
2007
2008 int __i915_add_request(struct intel_ring_buffer *ring,
2009 struct drm_file *file,
2010 struct drm_i915_gem_object *obj,
2011 u32 *out_seqno)
2012 {
2013 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014 struct drm_i915_gem_request *request;
2015 u32 request_ring_position, request_start;
2016 int was_empty;
2017 int ret;
2018
2019 request_start = intel_ring_get_tail(ring);
2020 /*
2021 * Emit any outstanding flushes - execbuf can fail to emit the flush
2022 * after having emitted the batchbuffer command. Hence we need to fix
2023 * things up similar to emitting the lazy request. The difference here
2024 * is that the flush _must_ happen before the next request, no matter
2025 * what.
2026 */
2027 ret = intel_ring_flush_all_caches(ring);
2028 if (ret)
2029 return ret;
2030
2031 request = kmalloc(sizeof(*request), GFP_KERNEL);
2032 if (request == NULL)
2033 return -ENOMEM;
2034
2035
2036 /* Record the position of the start of the request so that
2037 * should we detect the updated seqno part-way through the
2038 * GPU processing the request, we never over-estimate the
2039 * position of the head.
2040 */
2041 request_ring_position = intel_ring_get_tail(ring);
2042
2043 ret = ring->add_request(ring);
2044 if (ret) {
2045 kfree(request);
2046 return ret;
2047 }
2048
2049 request->seqno = intel_ring_get_seqno(ring);
2050 request->ring = ring;
2051 request->head = request_start;
2052 request->tail = request_ring_position;
2053 request->ctx = ring->last_context;
2054 request->batch_obj = obj;
2055
2056 /* Whilst this request exists, batch_obj will be on the
2057 * active_list, and so will hold the active reference. Only when this
2058 * request is retired will the the batch_obj be moved onto the
2059 * inactive_list and lose its active reference. Hence we do not need
2060 * to explicitly hold another reference here.
2061 */
2062
2063 if (request->ctx)
2064 i915_gem_context_reference(request->ctx);
2065
2066 request->emitted_jiffies = jiffies;
2067 was_empty = list_empty(&ring->request_list);
2068 list_add_tail(&request->list, &ring->request_list);
2069 request->file_priv = NULL;
2070
2071 if (file) {
2072 struct drm_i915_file_private *file_priv = file->driver_priv;
2073
2074 spin_lock(&file_priv->mm.lock);
2075 request->file_priv = file_priv;
2076 list_add_tail(&request->client_list,
2077 &file_priv->mm.request_list);
2078 spin_unlock(&file_priv->mm.lock);
2079 }
2080
2081 trace_i915_gem_request_add(ring, request->seqno);
2082 ring->outstanding_lazy_request = 0;
2083
2084 if (!dev_priv->mm.suspended) {
2085 if (i915_enable_hangcheck) {
2086 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2087 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2088 }
2089 if (was_empty) {
2090 queue_delayed_work(dev_priv->wq,
2091 &dev_priv->mm.retire_work,
2092 round_jiffies_up_relative(HZ));
2093 intel_mark_busy(dev_priv->dev);
2094 }
2095 }
2096
2097 if (out_seqno)
2098 *out_seqno = request->seqno;
2099 return 0;
2100 }
2101
2102 static inline void
2103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2104 {
2105 struct drm_i915_file_private *file_priv = request->file_priv;
2106
2107 if (!file_priv)
2108 return;
2109
2110 spin_lock(&file_priv->mm.lock);
2111 if (request->file_priv) {
2112 list_del(&request->client_list);
2113 request->file_priv = NULL;
2114 }
2115 spin_unlock(&file_priv->mm.lock);
2116 }
2117
2118 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2119 {
2120 if (acthd >= obj->gtt_offset &&
2121 acthd < obj->gtt_offset + obj->base.size)
2122 return true;
2123
2124 return false;
2125 }
2126
2127 static bool i915_head_inside_request(const u32 acthd_unmasked,
2128 const u32 request_start,
2129 const u32 request_end)
2130 {
2131 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2132
2133 if (request_start < request_end) {
2134 if (acthd >= request_start && acthd < request_end)
2135 return true;
2136 } else if (request_start > request_end) {
2137 if (acthd >= request_start || acthd < request_end)
2138 return true;
2139 }
2140
2141 return false;
2142 }
2143
2144 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2145 const u32 acthd, bool *inside)
2146 {
2147 /* There is a possibility that unmasked head address
2148 * pointing inside the ring, matches the batch_obj address range.
2149 * However this is extremely unlikely.
2150 */
2151
2152 if (request->batch_obj) {
2153 if (i915_head_inside_object(acthd, request->batch_obj)) {
2154 *inside = true;
2155 return true;
2156 }
2157 }
2158
2159 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2160 *inside = false;
2161 return true;
2162 }
2163
2164 return false;
2165 }
2166
2167 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2168 struct drm_i915_gem_request *request,
2169 u32 acthd)
2170 {
2171 struct i915_ctx_hang_stats *hs = NULL;
2172 bool inside, guilty;
2173
2174 /* Innocent until proven guilty */
2175 guilty = false;
2176
2177 if (ring->hangcheck.action != wait &&
2178 i915_request_guilty(request, acthd, &inside)) {
2179 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
2180 ring->name,
2181 inside ? "inside" : "flushing",
2182 request->batch_obj ?
2183 request->batch_obj->gtt_offset : 0,
2184 request->ctx ? request->ctx->id : 0,
2185 acthd);
2186
2187 guilty = true;
2188 }
2189
2190 /* If contexts are disabled or this is the default context, use
2191 * file_priv->reset_state
2192 */
2193 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2194 hs = &request->ctx->hang_stats;
2195 else if (request->file_priv)
2196 hs = &request->file_priv->hang_stats;
2197
2198 if (hs) {
2199 if (guilty)
2200 hs->batch_active++;
2201 else
2202 hs->batch_pending++;
2203 }
2204 }
2205
2206 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2207 {
2208 list_del(&request->list);
2209 i915_gem_request_remove_from_client(request);
2210
2211 if (request->ctx)
2212 i915_gem_context_unreference(request->ctx);
2213
2214 kfree(request);
2215 }
2216
2217 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2218 struct intel_ring_buffer *ring)
2219 {
2220 u32 completed_seqno;
2221 u32 acthd;
2222
2223 acthd = intel_ring_get_active_head(ring);
2224 completed_seqno = ring->get_seqno(ring, false);
2225
2226 while (!list_empty(&ring->request_list)) {
2227 struct drm_i915_gem_request *request;
2228
2229 request = list_first_entry(&ring->request_list,
2230 struct drm_i915_gem_request,
2231 list);
2232
2233 if (request->seqno > completed_seqno)
2234 i915_set_reset_status(ring, request, acthd);
2235
2236 i915_gem_free_request(request);
2237 }
2238
2239 while (!list_empty(&ring->active_list)) {
2240 struct drm_i915_gem_object *obj;
2241
2242 obj = list_first_entry(&ring->active_list,
2243 struct drm_i915_gem_object,
2244 ring_list);
2245
2246 i915_gem_object_move_to_inactive(obj);
2247 }
2248 }
2249
2250 void i915_gem_restore_fences(struct drm_device *dev)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 int i;
2254
2255 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2256 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2257 i915_gem_write_fence(dev, i, reg->obj);
2258 }
2259 }
2260
2261 void i915_gem_reset(struct drm_device *dev)
2262 {
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264 struct drm_i915_gem_object *obj;
2265 struct intel_ring_buffer *ring;
2266 int i;
2267
2268 for_each_ring(ring, dev_priv, i)
2269 i915_gem_reset_ring_lists(dev_priv, ring);
2270
2271 /* Move everything out of the GPU domains to ensure we do any
2272 * necessary invalidation upon reuse.
2273 */
2274 list_for_each_entry(obj,
2275 &dev_priv->mm.inactive_list,
2276 mm_list)
2277 {
2278 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2279 }
2280
2281 i915_gem_restore_fences(dev);
2282 }
2283
2284 /**
2285 * This function clears the request list as sequence numbers are passed.
2286 */
2287 void
2288 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2289 {
2290 uint32_t seqno;
2291
2292 if (list_empty(&ring->request_list))
2293 return;
2294
2295 WARN_ON(i915_verify_lists(ring->dev));
2296
2297 seqno = ring->get_seqno(ring, true);
2298
2299 while (!list_empty(&ring->request_list)) {
2300 struct drm_i915_gem_request *request;
2301
2302 request = list_first_entry(&ring->request_list,
2303 struct drm_i915_gem_request,
2304 list);
2305
2306 if (!i915_seqno_passed(seqno, request->seqno))
2307 break;
2308
2309 trace_i915_gem_request_retire(ring, request->seqno);
2310 /* We know the GPU must have read the request to have
2311 * sent us the seqno + interrupt, so use the position
2312 * of tail of the request to update the last known position
2313 * of the GPU head.
2314 */
2315 ring->last_retired_head = request->tail;
2316
2317 i915_gem_free_request(request);
2318 }
2319
2320 /* Move any buffers on the active list that are no longer referenced
2321 * by the ringbuffer to the flushing/inactive lists as appropriate.
2322 */
2323 while (!list_empty(&ring->active_list)) {
2324 struct drm_i915_gem_object *obj;
2325
2326 obj = list_first_entry(&ring->active_list,
2327 struct drm_i915_gem_object,
2328 ring_list);
2329
2330 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2331 break;
2332
2333 i915_gem_object_move_to_inactive(obj);
2334 }
2335
2336 if (unlikely(ring->trace_irq_seqno &&
2337 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2338 ring->irq_put(ring);
2339 ring->trace_irq_seqno = 0;
2340 }
2341
2342 WARN_ON(i915_verify_lists(ring->dev));
2343 }
2344
2345 void
2346 i915_gem_retire_requests(struct drm_device *dev)
2347 {
2348 drm_i915_private_t *dev_priv = dev->dev_private;
2349 struct intel_ring_buffer *ring;
2350 int i;
2351
2352 for_each_ring(ring, dev_priv, i)
2353 i915_gem_retire_requests_ring(ring);
2354 }
2355
2356 static void
2357 i915_gem_retire_work_handler(struct work_struct *work)
2358 {
2359 drm_i915_private_t *dev_priv;
2360 struct drm_device *dev;
2361 struct intel_ring_buffer *ring;
2362 bool idle;
2363 int i;
2364
2365 dev_priv = container_of(work, drm_i915_private_t,
2366 mm.retire_work.work);
2367 dev = dev_priv->dev;
2368
2369 /* Come back later if the device is busy... */
2370 if (!mutex_trylock(&dev->struct_mutex)) {
2371 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2372 round_jiffies_up_relative(HZ));
2373 return;
2374 }
2375
2376 i915_gem_retire_requests(dev);
2377
2378 /* Send a periodic flush down the ring so we don't hold onto GEM
2379 * objects indefinitely.
2380 */
2381 idle = true;
2382 for_each_ring(ring, dev_priv, i) {
2383 if (ring->gpu_caches_dirty)
2384 i915_add_request(ring, NULL);
2385
2386 idle &= list_empty(&ring->request_list);
2387 }
2388
2389 if (!dev_priv->mm.suspended && !idle)
2390 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2391 round_jiffies_up_relative(HZ));
2392 if (idle)
2393 intel_mark_idle(dev);
2394
2395 mutex_unlock(&dev->struct_mutex);
2396 }
2397
2398 /**
2399 * Ensures that an object will eventually get non-busy by flushing any required
2400 * write domains, emitting any outstanding lazy request and retiring and
2401 * completed requests.
2402 */
2403 static int
2404 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2405 {
2406 int ret;
2407
2408 if (obj->active) {
2409 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2410 if (ret)
2411 return ret;
2412
2413 i915_gem_retire_requests_ring(obj->ring);
2414 }
2415
2416 return 0;
2417 }
2418
2419 /**
2420 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2421 * @DRM_IOCTL_ARGS: standard ioctl arguments
2422 *
2423 * Returns 0 if successful, else an error is returned with the remaining time in
2424 * the timeout parameter.
2425 * -ETIME: object is still busy after timeout
2426 * -ERESTARTSYS: signal interrupted the wait
2427 * -ENONENT: object doesn't exist
2428 * Also possible, but rare:
2429 * -EAGAIN: GPU wedged
2430 * -ENOMEM: damn
2431 * -ENODEV: Internal IRQ fail
2432 * -E?: The add request failed
2433 *
2434 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2435 * non-zero timeout parameter the wait ioctl will wait for the given number of
2436 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2437 * without holding struct_mutex the object may become re-busied before this
2438 * function completes. A similar but shorter * race condition exists in the busy
2439 * ioctl
2440 */
2441 int
2442 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2443 {
2444 drm_i915_private_t *dev_priv = dev->dev_private;
2445 struct drm_i915_gem_wait *args = data;
2446 struct drm_i915_gem_object *obj;
2447 struct intel_ring_buffer *ring = NULL;
2448 struct timespec timeout_stack, *timeout = NULL;
2449 unsigned reset_counter;
2450 u32 seqno = 0;
2451 int ret = 0;
2452
2453 if (args->timeout_ns >= 0) {
2454 timeout_stack = ns_to_timespec(args->timeout_ns);
2455 timeout = &timeout_stack;
2456 }
2457
2458 ret = i915_mutex_lock_interruptible(dev);
2459 if (ret)
2460 return ret;
2461
2462 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2463 if (&obj->base == NULL) {
2464 mutex_unlock(&dev->struct_mutex);
2465 return -ENOENT;
2466 }
2467
2468 /* Need to make sure the object gets inactive eventually. */
2469 ret = i915_gem_object_flush_active(obj);
2470 if (ret)
2471 goto out;
2472
2473 if (obj->active) {
2474 seqno = obj->last_read_seqno;
2475 ring = obj->ring;
2476 }
2477
2478 if (seqno == 0)
2479 goto out;
2480
2481 /* Do this after OLR check to make sure we make forward progress polling
2482 * on this IOCTL with a 0 timeout (like busy ioctl)
2483 */
2484 if (!args->timeout_ns) {
2485 ret = -ETIME;
2486 goto out;
2487 }
2488
2489 drm_gem_object_unreference(&obj->base);
2490 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2491 mutex_unlock(&dev->struct_mutex);
2492
2493 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2494 if (timeout)
2495 args->timeout_ns = timespec_to_ns(timeout);
2496 return ret;
2497
2498 out:
2499 drm_gem_object_unreference(&obj->base);
2500 mutex_unlock(&dev->struct_mutex);
2501 return ret;
2502 }
2503
2504 /**
2505 * i915_gem_object_sync - sync an object to a ring.
2506 *
2507 * @obj: object which may be in use on another ring.
2508 * @to: ring we wish to use the object on. May be NULL.
2509 *
2510 * This code is meant to abstract object synchronization with the GPU.
2511 * Calling with NULL implies synchronizing the object with the CPU
2512 * rather than a particular GPU ring.
2513 *
2514 * Returns 0 if successful, else propagates up the lower layer error.
2515 */
2516 int
2517 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2518 struct intel_ring_buffer *to)
2519 {
2520 struct intel_ring_buffer *from = obj->ring;
2521 u32 seqno;
2522 int ret, idx;
2523
2524 if (from == NULL || to == from)
2525 return 0;
2526
2527 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2528 return i915_gem_object_wait_rendering(obj, false);
2529
2530 idx = intel_ring_sync_index(from, to);
2531
2532 seqno = obj->last_read_seqno;
2533 if (seqno <= from->sync_seqno[idx])
2534 return 0;
2535
2536 ret = i915_gem_check_olr(obj->ring, seqno);
2537 if (ret)
2538 return ret;
2539
2540 ret = to->sync_to(to, from, seqno);
2541 if (!ret)
2542 /* We use last_read_seqno because sync_to()
2543 * might have just caused seqno wrap under
2544 * the radar.
2545 */
2546 from->sync_seqno[idx] = obj->last_read_seqno;
2547
2548 return ret;
2549 }
2550
2551 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2552 {
2553 u32 old_write_domain, old_read_domains;
2554
2555 /* Force a pagefault for domain tracking on next user access */
2556 i915_gem_release_mmap(obj);
2557
2558 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2559 return;
2560
2561 /* Wait for any direct GTT access to complete */
2562 mb();
2563
2564 old_read_domains = obj->base.read_domains;
2565 old_write_domain = obj->base.write_domain;
2566
2567 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2568 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2569
2570 trace_i915_gem_object_change_domain(obj,
2571 old_read_domains,
2572 old_write_domain);
2573 }
2574
2575 /**
2576 * Unbinds an object from the GTT aperture.
2577 */
2578 int
2579 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2580 {
2581 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2582 int ret;
2583
2584 if (obj->gtt_space == NULL)
2585 return 0;
2586
2587 if (obj->pin_count)
2588 return -EBUSY;
2589
2590 BUG_ON(obj->pages == NULL);
2591
2592 ret = i915_gem_object_finish_gpu(obj);
2593 if (ret)
2594 return ret;
2595 /* Continue on if we fail due to EIO, the GPU is hung so we
2596 * should be safe and we need to cleanup or else we might
2597 * cause memory corruption through use-after-free.
2598 */
2599
2600 i915_gem_object_finish_gtt(obj);
2601
2602 /* release the fence reg _after_ flushing */
2603 ret = i915_gem_object_put_fence(obj);
2604 if (ret)
2605 return ret;
2606
2607 trace_i915_gem_object_unbind(obj);
2608
2609 if (obj->has_global_gtt_mapping)
2610 i915_gem_gtt_unbind_object(obj);
2611 if (obj->has_aliasing_ppgtt_mapping) {
2612 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2613 obj->has_aliasing_ppgtt_mapping = 0;
2614 }
2615 i915_gem_gtt_finish_object(obj);
2616 i915_gem_object_unpin_pages(obj);
2617
2618 list_del(&obj->mm_list);
2619 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2620 /* Avoid an unnecessary call to unbind on rebind. */
2621 obj->map_and_fenceable = true;
2622
2623 drm_mm_put_block(obj->gtt_space);
2624 obj->gtt_space = NULL;
2625 obj->gtt_offset = 0;
2626
2627 return 0;
2628 }
2629
2630 int i915_gpu_idle(struct drm_device *dev)
2631 {
2632 drm_i915_private_t *dev_priv = dev->dev_private;
2633 struct intel_ring_buffer *ring;
2634 int ret, i;
2635
2636 /* Flush everything onto the inactive list. */
2637 for_each_ring(ring, dev_priv, i) {
2638 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2639 if (ret)
2640 return ret;
2641
2642 ret = intel_ring_idle(ring);
2643 if (ret)
2644 return ret;
2645 }
2646
2647 return 0;
2648 }
2649
2650 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2651 struct drm_i915_gem_object *obj)
2652 {
2653 drm_i915_private_t *dev_priv = dev->dev_private;
2654 int fence_reg;
2655 int fence_pitch_shift;
2656 uint64_t val;
2657
2658 if (INTEL_INFO(dev)->gen >= 6) {
2659 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2660 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2661 } else {
2662 fence_reg = FENCE_REG_965_0;
2663 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2664 }
2665
2666 if (obj) {
2667 u32 size = obj->gtt_space->size;
2668
2669 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2670 0xfffff000) << 32;
2671 val |= obj->gtt_offset & 0xfffff000;
2672 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2673 if (obj->tiling_mode == I915_TILING_Y)
2674 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2675 val |= I965_FENCE_REG_VALID;
2676 } else
2677 val = 0;
2678
2679 fence_reg += reg * 8;
2680 I915_WRITE64(fence_reg, val);
2681 POSTING_READ(fence_reg);
2682 }
2683
2684 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2685 struct drm_i915_gem_object *obj)
2686 {
2687 drm_i915_private_t *dev_priv = dev->dev_private;
2688 u32 val;
2689
2690 if (obj) {
2691 u32 size = obj->gtt_space->size;
2692 int pitch_val;
2693 int tile_width;
2694
2695 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2696 (size & -size) != size ||
2697 (obj->gtt_offset & (size - 1)),
2698 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2699 obj->gtt_offset, obj->map_and_fenceable, size);
2700
2701 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2702 tile_width = 128;
2703 else
2704 tile_width = 512;
2705
2706 /* Note: pitch better be a power of two tile widths */
2707 pitch_val = obj->stride / tile_width;
2708 pitch_val = ffs(pitch_val) - 1;
2709
2710 val = obj->gtt_offset;
2711 if (obj->tiling_mode == I915_TILING_Y)
2712 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2713 val |= I915_FENCE_SIZE_BITS(size);
2714 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2715 val |= I830_FENCE_REG_VALID;
2716 } else
2717 val = 0;
2718
2719 if (reg < 8)
2720 reg = FENCE_REG_830_0 + reg * 4;
2721 else
2722 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2723
2724 I915_WRITE(reg, val);
2725 POSTING_READ(reg);
2726 }
2727
2728 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2729 struct drm_i915_gem_object *obj)
2730 {
2731 drm_i915_private_t *dev_priv = dev->dev_private;
2732 uint32_t val;
2733
2734 if (obj) {
2735 u32 size = obj->gtt_space->size;
2736 uint32_t pitch_val;
2737
2738 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2739 (size & -size) != size ||
2740 (obj->gtt_offset & (size - 1)),
2741 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2742 obj->gtt_offset, size);
2743
2744 pitch_val = obj->stride / 128;
2745 pitch_val = ffs(pitch_val) - 1;
2746
2747 val = obj->gtt_offset;
2748 if (obj->tiling_mode == I915_TILING_Y)
2749 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2750 val |= I830_FENCE_SIZE_BITS(size);
2751 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2752 val |= I830_FENCE_REG_VALID;
2753 } else
2754 val = 0;
2755
2756 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2757 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2758 }
2759
2760 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2761 {
2762 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2763 }
2764
2765 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2766 struct drm_i915_gem_object *obj)
2767 {
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769
2770 /* Ensure that all CPU reads are completed before installing a fence
2771 * and all writes before removing the fence.
2772 */
2773 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2774 mb();
2775
2776 switch (INTEL_INFO(dev)->gen) {
2777 case 7:
2778 case 6:
2779 case 5:
2780 case 4: i965_write_fence_reg(dev, reg, obj); break;
2781 case 3: i915_write_fence_reg(dev, reg, obj); break;
2782 case 2: i830_write_fence_reg(dev, reg, obj); break;
2783 default: BUG();
2784 }
2785
2786 /* And similarly be paranoid that no direct access to this region
2787 * is reordered to before the fence is installed.
2788 */
2789 if (i915_gem_object_needs_mb(obj))
2790 mb();
2791 }
2792
2793 static inline int fence_number(struct drm_i915_private *dev_priv,
2794 struct drm_i915_fence_reg *fence)
2795 {
2796 return fence - dev_priv->fence_regs;
2797 }
2798
2799 struct write_fence {
2800 struct drm_device *dev;
2801 struct drm_i915_gem_object *obj;
2802 int fence;
2803 };
2804
2805 static void i915_gem_write_fence__ipi(void *data)
2806 {
2807 struct write_fence *args = data;
2808
2809 /* Required for SNB+ with LLC */
2810 wbinvd();
2811
2812 /* Required for VLV */
2813 i915_gem_write_fence(args->dev, args->fence, args->obj);
2814 }
2815
2816 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2817 struct drm_i915_fence_reg *fence,
2818 bool enable)
2819 {
2820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2821 struct write_fence args = {
2822 .dev = obj->base.dev,
2823 .fence = fence_number(dev_priv, fence),
2824 .obj = enable ? obj : NULL,
2825 };
2826
2827 /* In order to fully serialize access to the fenced region and
2828 * the update to the fence register we need to take extreme
2829 * measures on SNB+. In theory, the write to the fence register
2830 * flushes all memory transactions before, and coupled with the
2831 * mb() placed around the register write we serialise all memory
2832 * operations with respect to the changes in the tiler. Yet, on
2833 * SNB+ we need to take a step further and emit an explicit wbinvd()
2834 * on each processor in order to manually flush all memory
2835 * transactions before updating the fence register.
2836 *
2837 * However, Valleyview complicates matter. There the wbinvd is
2838 * insufficient and unlike SNB/IVB requires the serialising
2839 * register write. (Note that that register write by itself is
2840 * conversely not sufficient for SNB+.) To compromise, we do both.
2841 */
2842 if (INTEL_INFO(args.dev)->gen >= 6)
2843 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2844 else
2845 i915_gem_write_fence(args.dev, args.fence, args.obj);
2846
2847 if (enable) {
2848 obj->fence_reg = args.fence;
2849 fence->obj = obj;
2850 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2851 } else {
2852 obj->fence_reg = I915_FENCE_REG_NONE;
2853 fence->obj = NULL;
2854 list_del_init(&fence->lru_list);
2855 }
2856 }
2857
2858 static int
2859 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2860 {
2861 if (obj->last_fenced_seqno) {
2862 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2863 if (ret)
2864 return ret;
2865
2866 obj->last_fenced_seqno = 0;
2867 }
2868
2869 obj->fenced_gpu_access = false;
2870 return 0;
2871 }
2872
2873 int
2874 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2875 {
2876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2877 struct drm_i915_fence_reg *fence;
2878 int ret;
2879
2880 ret = i915_gem_object_wait_fence(obj);
2881 if (ret)
2882 return ret;
2883
2884 if (obj->fence_reg == I915_FENCE_REG_NONE)
2885 return 0;
2886
2887 fence = &dev_priv->fence_regs[obj->fence_reg];
2888
2889 i915_gem_object_fence_lost(obj);
2890 i915_gem_object_update_fence(obj, fence, false);
2891
2892 return 0;
2893 }
2894
2895 static struct drm_i915_fence_reg *
2896 i915_find_fence_reg(struct drm_device *dev)
2897 {
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 struct drm_i915_fence_reg *reg, *avail;
2900 int i;
2901
2902 /* First try to find a free reg */
2903 avail = NULL;
2904 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2905 reg = &dev_priv->fence_regs[i];
2906 if (!reg->obj)
2907 return reg;
2908
2909 if (!reg->pin_count)
2910 avail = reg;
2911 }
2912
2913 if (avail == NULL)
2914 return NULL;
2915
2916 /* None available, try to steal one or wait for a user to finish */
2917 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2918 if (reg->pin_count)
2919 continue;
2920
2921 return reg;
2922 }
2923
2924 return NULL;
2925 }
2926
2927 /**
2928 * i915_gem_object_get_fence - set up fencing for an object
2929 * @obj: object to map through a fence reg
2930 *
2931 * When mapping objects through the GTT, userspace wants to be able to write
2932 * to them without having to worry about swizzling if the object is tiled.
2933 * This function walks the fence regs looking for a free one for @obj,
2934 * stealing one if it can't find any.
2935 *
2936 * It then sets up the reg based on the object's properties: address, pitch
2937 * and tiling format.
2938 *
2939 * For an untiled surface, this removes any existing fence.
2940 */
2941 int
2942 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2943 {
2944 struct drm_device *dev = obj->base.dev;
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946 bool enable = obj->tiling_mode != I915_TILING_NONE;
2947 struct drm_i915_fence_reg *reg;
2948 int ret;
2949
2950 /* Have we updated the tiling parameters upon the object and so
2951 * will need to serialise the write to the associated fence register?
2952 */
2953 if (obj->fence_dirty) {
2954 ret = i915_gem_object_wait_fence(obj);
2955 if (ret)
2956 return ret;
2957 }
2958
2959 /* Just update our place in the LRU if our fence is getting reused. */
2960 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2961 reg = &dev_priv->fence_regs[obj->fence_reg];
2962 if (!obj->fence_dirty) {
2963 list_move_tail(&reg->lru_list,
2964 &dev_priv->mm.fence_list);
2965 return 0;
2966 }
2967 } else if (enable) {
2968 reg = i915_find_fence_reg(dev);
2969 if (reg == NULL)
2970 return -EDEADLK;
2971
2972 if (reg->obj) {
2973 struct drm_i915_gem_object *old = reg->obj;
2974
2975 ret = i915_gem_object_wait_fence(old);
2976 if (ret)
2977 return ret;
2978
2979 i915_gem_object_fence_lost(old);
2980 }
2981 } else
2982 return 0;
2983
2984 i915_gem_object_update_fence(obj, reg, enable);
2985 obj->fence_dirty = false;
2986
2987 return 0;
2988 }
2989
2990 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2991 struct drm_mm_node *gtt_space,
2992 unsigned long cache_level)
2993 {
2994 struct drm_mm_node *other;
2995
2996 /* On non-LLC machines we have to be careful when putting differing
2997 * types of snoopable memory together to avoid the prefetcher
2998 * crossing memory domains and dying.
2999 */
3000 if (HAS_LLC(dev))
3001 return true;
3002
3003 if (gtt_space == NULL)
3004 return true;
3005
3006 if (list_empty(&gtt_space->node_list))
3007 return true;
3008
3009 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3010 if (other->allocated && !other->hole_follows && other->color != cache_level)
3011 return false;
3012
3013 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3014 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3015 return false;
3016
3017 return true;
3018 }
3019
3020 static void i915_gem_verify_gtt(struct drm_device *dev)
3021 {
3022 #if WATCH_GTT
3023 struct drm_i915_private *dev_priv = dev->dev_private;
3024 struct drm_i915_gem_object *obj;
3025 int err = 0;
3026
3027 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3028 if (obj->gtt_space == NULL) {
3029 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3030 err++;
3031 continue;
3032 }
3033
3034 if (obj->cache_level != obj->gtt_space->color) {
3035 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3036 obj->gtt_space->start,
3037 obj->gtt_space->start + obj->gtt_space->size,
3038 obj->cache_level,
3039 obj->gtt_space->color);
3040 err++;
3041 continue;
3042 }
3043
3044 if (!i915_gem_valid_gtt_space(dev,
3045 obj->gtt_space,
3046 obj->cache_level)) {
3047 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3048 obj->gtt_space->start,
3049 obj->gtt_space->start + obj->gtt_space->size,
3050 obj->cache_level);
3051 err++;
3052 continue;
3053 }
3054 }
3055
3056 WARN_ON(err);
3057 #endif
3058 }
3059
3060 /**
3061 * Finds free space in the GTT aperture and binds the object there.
3062 */
3063 static int
3064 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3065 unsigned alignment,
3066 bool map_and_fenceable,
3067 bool nonblocking)
3068 {
3069 struct drm_device *dev = obj->base.dev;
3070 drm_i915_private_t *dev_priv = dev->dev_private;
3071 struct drm_mm_node *node;
3072 u32 size, fence_size, fence_alignment, unfenced_alignment;
3073 bool mappable, fenceable;
3074 size_t gtt_max = map_and_fenceable ?
3075 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
3076 int ret;
3077
3078 fence_size = i915_gem_get_gtt_size(dev,
3079 obj->base.size,
3080 obj->tiling_mode);
3081 fence_alignment = i915_gem_get_gtt_alignment(dev,
3082 obj->base.size,
3083 obj->tiling_mode, true);
3084 unfenced_alignment =
3085 i915_gem_get_gtt_alignment(dev,
3086 obj->base.size,
3087 obj->tiling_mode, false);
3088
3089 if (alignment == 0)
3090 alignment = map_and_fenceable ? fence_alignment :
3091 unfenced_alignment;
3092 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3093 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3094 return -EINVAL;
3095 }
3096
3097 size = map_and_fenceable ? fence_size : obj->base.size;
3098
3099 /* If the object is bigger than the entire aperture, reject it early
3100 * before evicting everything in a vain attempt to find space.
3101 */
3102 if (obj->base.size > gtt_max) {
3103 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3104 obj->base.size,
3105 map_and_fenceable ? "mappable" : "total",
3106 gtt_max);
3107 return -E2BIG;
3108 }
3109
3110 ret = i915_gem_object_get_pages(obj);
3111 if (ret)
3112 return ret;
3113
3114 i915_gem_object_pin_pages(obj);
3115
3116 node = kzalloc(sizeof(*node), GFP_KERNEL);
3117 if (node == NULL) {
3118 i915_gem_object_unpin_pages(obj);
3119 return -ENOMEM;
3120 }
3121
3122 search_free:
3123 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3124 size, alignment,
3125 obj->cache_level, 0, gtt_max);
3126 if (ret) {
3127 ret = i915_gem_evict_something(dev, size, alignment,
3128 obj->cache_level,
3129 map_and_fenceable,
3130 nonblocking);
3131 if (ret == 0)
3132 goto search_free;
3133
3134 i915_gem_object_unpin_pages(obj);
3135 kfree(node);
3136 return ret;
3137 }
3138 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3139 i915_gem_object_unpin_pages(obj);
3140 drm_mm_put_block(node);
3141 return -EINVAL;
3142 }
3143
3144 ret = i915_gem_gtt_prepare_object(obj);
3145 if (ret) {
3146 i915_gem_object_unpin_pages(obj);
3147 drm_mm_put_block(node);
3148 return ret;
3149 }
3150
3151 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3152 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3153
3154 obj->gtt_space = node;
3155 obj->gtt_offset = node->start;
3156
3157 fenceable =
3158 node->size == fence_size &&
3159 (node->start & (fence_alignment - 1)) == 0;
3160
3161 mappable =
3162 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3163
3164 obj->map_and_fenceable = mappable && fenceable;
3165
3166 trace_i915_gem_object_bind(obj, map_and_fenceable);
3167 i915_gem_verify_gtt(dev);
3168 return 0;
3169 }
3170
3171 void
3172 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3173 {
3174 /* If we don't have a page list set up, then we're not pinned
3175 * to GPU, and we can ignore the cache flush because it'll happen
3176 * again at bind time.
3177 */
3178 if (obj->pages == NULL)
3179 return;
3180
3181 /*
3182 * Stolen memory is always coherent with the GPU as it is explicitly
3183 * marked as wc by the system, or the system is cache-coherent.
3184 */
3185 if (obj->stolen)
3186 return;
3187
3188 /* If the GPU is snooping the contents of the CPU cache,
3189 * we do not need to manually clear the CPU cache lines. However,
3190 * the caches are only snooped when the render cache is
3191 * flushed/invalidated. As we always have to emit invalidations
3192 * and flushes when moving into and out of the RENDER domain, correct
3193 * snooping behaviour occurs naturally as the result of our domain
3194 * tracking.
3195 */
3196 if (obj->cache_level != I915_CACHE_NONE)
3197 return;
3198
3199 trace_i915_gem_object_clflush(obj);
3200
3201 drm_clflush_sg(obj->pages);
3202 }
3203
3204 /** Flushes the GTT write domain for the object if it's dirty. */
3205 static void
3206 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3207 {
3208 uint32_t old_write_domain;
3209
3210 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3211 return;
3212
3213 /* No actual flushing is required for the GTT write domain. Writes
3214 * to it immediately go to main memory as far as we know, so there's
3215 * no chipset flush. It also doesn't land in render cache.
3216 *
3217 * However, we do have to enforce the order so that all writes through
3218 * the GTT land before any writes to the device, such as updates to
3219 * the GATT itself.
3220 */
3221 wmb();
3222
3223 old_write_domain = obj->base.write_domain;
3224 obj->base.write_domain = 0;
3225
3226 trace_i915_gem_object_change_domain(obj,
3227 obj->base.read_domains,
3228 old_write_domain);
3229 }
3230
3231 /** Flushes the CPU write domain for the object if it's dirty. */
3232 static void
3233 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3234 {
3235 uint32_t old_write_domain;
3236
3237 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3238 return;
3239
3240 i915_gem_clflush_object(obj);
3241 i915_gem_chipset_flush(obj->base.dev);
3242 old_write_domain = obj->base.write_domain;
3243 obj->base.write_domain = 0;
3244
3245 trace_i915_gem_object_change_domain(obj,
3246 obj->base.read_domains,
3247 old_write_domain);
3248 }
3249
3250 /**
3251 * Moves a single object to the GTT read, and possibly write domain.
3252 *
3253 * This function returns when the move is complete, including waiting on
3254 * flushes to occur.
3255 */
3256 int
3257 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3258 {
3259 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3260 uint32_t old_write_domain, old_read_domains;
3261 int ret;
3262
3263 /* Not valid to be called on unbound objects. */
3264 if (obj->gtt_space == NULL)
3265 return -EINVAL;
3266
3267 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3268 return 0;
3269
3270 ret = i915_gem_object_wait_rendering(obj, !write);
3271 if (ret)
3272 return ret;
3273
3274 i915_gem_object_flush_cpu_write_domain(obj);
3275
3276 /* Serialise direct access to this object with the barriers for
3277 * coherent writes from the GPU, by effectively invalidating the
3278 * GTT domain upon first access.
3279 */
3280 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3281 mb();
3282
3283 old_write_domain = obj->base.write_domain;
3284 old_read_domains = obj->base.read_domains;
3285
3286 /* It should now be out of any other write domains, and we can update
3287 * the domain values for our changes.
3288 */
3289 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3290 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3291 if (write) {
3292 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3293 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3294 obj->dirty = 1;
3295 }
3296
3297 trace_i915_gem_object_change_domain(obj,
3298 old_read_domains,
3299 old_write_domain);
3300
3301 /* And bump the LRU for this access */
3302 if (i915_gem_object_is_inactive(obj))
3303 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3304
3305 return 0;
3306 }
3307
3308 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3309 enum i915_cache_level cache_level)
3310 {
3311 struct drm_device *dev = obj->base.dev;
3312 drm_i915_private_t *dev_priv = dev->dev_private;
3313 int ret;
3314
3315 if (obj->cache_level == cache_level)
3316 return 0;
3317
3318 if (obj->pin_count) {
3319 DRM_DEBUG("can not change the cache level of pinned objects\n");
3320 return -EBUSY;
3321 }
3322
3323 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3324 ret = i915_gem_object_unbind(obj);
3325 if (ret)
3326 return ret;
3327 }
3328
3329 if (obj->gtt_space) {
3330 ret = i915_gem_object_finish_gpu(obj);
3331 if (ret)
3332 return ret;
3333
3334 i915_gem_object_finish_gtt(obj);
3335
3336 /* Before SandyBridge, you could not use tiling or fence
3337 * registers with snooped memory, so relinquish any fences
3338 * currently pointing to our region in the aperture.
3339 */
3340 if (INTEL_INFO(dev)->gen < 6) {
3341 ret = i915_gem_object_put_fence(obj);
3342 if (ret)
3343 return ret;
3344 }
3345
3346 if (obj->has_global_gtt_mapping)
3347 i915_gem_gtt_bind_object(obj, cache_level);
3348 if (obj->has_aliasing_ppgtt_mapping)
3349 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3350 obj, cache_level);
3351
3352 obj->gtt_space->color = cache_level;
3353 }
3354
3355 if (cache_level == I915_CACHE_NONE) {
3356 u32 old_read_domains, old_write_domain;
3357
3358 /* If we're coming from LLC cached, then we haven't
3359 * actually been tracking whether the data is in the
3360 * CPU cache or not, since we only allow one bit set
3361 * in obj->write_domain and have been skipping the clflushes.
3362 * Just set it to the CPU cache for now.
3363 */
3364 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3365 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3366
3367 old_read_domains = obj->base.read_domains;
3368 old_write_domain = obj->base.write_domain;
3369
3370 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3371 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3372
3373 trace_i915_gem_object_change_domain(obj,
3374 old_read_domains,
3375 old_write_domain);
3376 }
3377
3378 obj->cache_level = cache_level;
3379 i915_gem_verify_gtt(dev);
3380 return 0;
3381 }
3382
3383 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3384 struct drm_file *file)
3385 {
3386 struct drm_i915_gem_caching *args = data;
3387 struct drm_i915_gem_object *obj;
3388 int ret;
3389
3390 ret = i915_mutex_lock_interruptible(dev);
3391 if (ret)
3392 return ret;
3393
3394 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3395 if (&obj->base == NULL) {
3396 ret = -ENOENT;
3397 goto unlock;
3398 }
3399
3400 args->caching = obj->cache_level != I915_CACHE_NONE;
3401
3402 drm_gem_object_unreference(&obj->base);
3403 unlock:
3404 mutex_unlock(&dev->struct_mutex);
3405 return ret;
3406 }
3407
3408 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3409 struct drm_file *file)
3410 {
3411 struct drm_i915_gem_caching *args = data;
3412 struct drm_i915_gem_object *obj;
3413 enum i915_cache_level level;
3414 int ret;
3415
3416 switch (args->caching) {
3417 case I915_CACHING_NONE:
3418 level = I915_CACHE_NONE;
3419 break;
3420 case I915_CACHING_CACHED:
3421 level = I915_CACHE_LLC;
3422 break;
3423 default:
3424 return -EINVAL;
3425 }
3426
3427 ret = i915_mutex_lock_interruptible(dev);
3428 if (ret)
3429 return ret;
3430
3431 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3432 if (&obj->base == NULL) {
3433 ret = -ENOENT;
3434 goto unlock;
3435 }
3436
3437 ret = i915_gem_object_set_cache_level(obj, level);
3438
3439 drm_gem_object_unreference(&obj->base);
3440 unlock:
3441 mutex_unlock(&dev->struct_mutex);
3442 return ret;
3443 }
3444
3445 /*
3446 * Prepare buffer for display plane (scanout, cursors, etc).
3447 * Can be called from an uninterruptible phase (modesetting) and allows
3448 * any flushes to be pipelined (for pageflips).
3449 */
3450 int
3451 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3452 u32 alignment,
3453 struct intel_ring_buffer *pipelined)
3454 {
3455 u32 old_read_domains, old_write_domain;
3456 int ret;
3457
3458 if (pipelined != obj->ring) {
3459 ret = i915_gem_object_sync(obj, pipelined);
3460 if (ret)
3461 return ret;
3462 }
3463
3464 /* The display engine is not coherent with the LLC cache on gen6. As
3465 * a result, we make sure that the pinning that is about to occur is
3466 * done with uncached PTEs. This is lowest common denominator for all
3467 * chipsets.
3468 *
3469 * However for gen6+, we could do better by using the GFDT bit instead
3470 * of uncaching, which would allow us to flush all the LLC-cached data
3471 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3472 */
3473 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3474 if (ret)
3475 return ret;
3476
3477 /* As the user may map the buffer once pinned in the display plane
3478 * (e.g. libkms for the bootup splash), we have to ensure that we
3479 * always use map_and_fenceable for all scanout buffers.
3480 */
3481 ret = i915_gem_object_pin(obj, alignment, true, false);
3482 if (ret)
3483 return ret;
3484
3485 i915_gem_object_flush_cpu_write_domain(obj);
3486
3487 old_write_domain = obj->base.write_domain;
3488 old_read_domains = obj->base.read_domains;
3489
3490 /* It should now be out of any other write domains, and we can update
3491 * the domain values for our changes.
3492 */
3493 obj->base.write_domain = 0;
3494 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3495
3496 trace_i915_gem_object_change_domain(obj,
3497 old_read_domains,
3498 old_write_domain);
3499
3500 return 0;
3501 }
3502
3503 int
3504 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3505 {
3506 int ret;
3507
3508 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3509 return 0;
3510
3511 ret = i915_gem_object_wait_rendering(obj, false);
3512 if (ret)
3513 return ret;
3514
3515 /* Ensure that we invalidate the GPU's caches and TLBs. */
3516 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3517 return 0;
3518 }
3519
3520 /**
3521 * Moves a single object to the CPU read, and possibly write domain.
3522 *
3523 * This function returns when the move is complete, including waiting on
3524 * flushes to occur.
3525 */
3526 int
3527 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3528 {
3529 uint32_t old_write_domain, old_read_domains;
3530 int ret;
3531
3532 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3533 return 0;
3534
3535 ret = i915_gem_object_wait_rendering(obj, !write);
3536 if (ret)
3537 return ret;
3538
3539 i915_gem_object_flush_gtt_write_domain(obj);
3540
3541 old_write_domain = obj->base.write_domain;
3542 old_read_domains = obj->base.read_domains;
3543
3544 /* Flush the CPU cache if it's still invalid. */
3545 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3546 i915_gem_clflush_object(obj);
3547
3548 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3549 }
3550
3551 /* It should now be out of any other write domains, and we can update
3552 * the domain values for our changes.
3553 */
3554 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3555
3556 /* If we're writing through the CPU, then the GPU read domains will
3557 * need to be invalidated at next use.
3558 */
3559 if (write) {
3560 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3561 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3562 }
3563
3564 trace_i915_gem_object_change_domain(obj,
3565 old_read_domains,
3566 old_write_domain);
3567
3568 return 0;
3569 }
3570
3571 /* Throttle our rendering by waiting until the ring has completed our requests
3572 * emitted over 20 msec ago.
3573 *
3574 * Note that if we were to use the current jiffies each time around the loop,
3575 * we wouldn't escape the function with any frames outstanding if the time to
3576 * render a frame was over 20ms.
3577 *
3578 * This should get us reasonable parallelism between CPU and GPU but also
3579 * relatively low latency when blocking on a particular request to finish.
3580 */
3581 static int
3582 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3583 {
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585 struct drm_i915_file_private *file_priv = file->driver_priv;
3586 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3587 struct drm_i915_gem_request *request;
3588 struct intel_ring_buffer *ring = NULL;
3589 unsigned reset_counter;
3590 u32 seqno = 0;
3591 int ret;
3592
3593 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3594 if (ret)
3595 return ret;
3596
3597 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3598 if (ret)
3599 return ret;
3600
3601 spin_lock(&file_priv->mm.lock);
3602 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3603 if (time_after_eq(request->emitted_jiffies, recent_enough))
3604 break;
3605
3606 ring = request->ring;
3607 seqno = request->seqno;
3608 }
3609 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3610 spin_unlock(&file_priv->mm.lock);
3611
3612 if (seqno == 0)
3613 return 0;
3614
3615 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3616 if (ret == 0)
3617 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3618
3619 return ret;
3620 }
3621
3622 int
3623 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3624 uint32_t alignment,
3625 bool map_and_fenceable,
3626 bool nonblocking)
3627 {
3628 int ret;
3629
3630 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3631 return -EBUSY;
3632
3633 if (obj->gtt_space != NULL) {
3634 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3635 (map_and_fenceable && !obj->map_and_fenceable)) {
3636 WARN(obj->pin_count,
3637 "bo is already pinned with incorrect alignment:"
3638 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3639 " obj->map_and_fenceable=%d\n",
3640 obj->gtt_offset, alignment,
3641 map_and_fenceable,
3642 obj->map_and_fenceable);
3643 ret = i915_gem_object_unbind(obj);
3644 if (ret)
3645 return ret;
3646 }
3647 }
3648
3649 if (obj->gtt_space == NULL) {
3650 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3651
3652 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3653 map_and_fenceable,
3654 nonblocking);
3655 if (ret)
3656 return ret;
3657
3658 if (!dev_priv->mm.aliasing_ppgtt)
3659 i915_gem_gtt_bind_object(obj, obj->cache_level);
3660 }
3661
3662 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3663 i915_gem_gtt_bind_object(obj, obj->cache_level);
3664
3665 obj->pin_count++;
3666 obj->pin_mappable |= map_and_fenceable;
3667
3668 return 0;
3669 }
3670
3671 void
3672 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3673 {
3674 BUG_ON(obj->pin_count == 0);
3675 BUG_ON(obj->gtt_space == NULL);
3676
3677 if (--obj->pin_count == 0)
3678 obj->pin_mappable = false;
3679 }
3680
3681 int
3682 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3683 struct drm_file *file)
3684 {
3685 struct drm_i915_gem_pin *args = data;
3686 struct drm_i915_gem_object *obj;
3687 int ret;
3688
3689 ret = i915_mutex_lock_interruptible(dev);
3690 if (ret)
3691 return ret;
3692
3693 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3694 if (&obj->base == NULL) {
3695 ret = -ENOENT;
3696 goto unlock;
3697 }
3698
3699 if (obj->madv != I915_MADV_WILLNEED) {
3700 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3701 ret = -EINVAL;
3702 goto out;
3703 }
3704
3705 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3706 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3707 args->handle);
3708 ret = -EINVAL;
3709 goto out;
3710 }
3711
3712 if (obj->user_pin_count == 0) {
3713 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3714 if (ret)
3715 goto out;
3716 }
3717
3718 obj->user_pin_count++;
3719 obj->pin_filp = file;
3720
3721 /* XXX - flush the CPU caches for pinned objects
3722 * as the X server doesn't manage domains yet
3723 */
3724 i915_gem_object_flush_cpu_write_domain(obj);
3725 args->offset = obj->gtt_offset;
3726 out:
3727 drm_gem_object_unreference(&obj->base);
3728 unlock:
3729 mutex_unlock(&dev->struct_mutex);
3730 return ret;
3731 }
3732
3733 int
3734 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3735 struct drm_file *file)
3736 {
3737 struct drm_i915_gem_pin *args = data;
3738 struct drm_i915_gem_object *obj;
3739 int ret;
3740
3741 ret = i915_mutex_lock_interruptible(dev);
3742 if (ret)
3743 return ret;
3744
3745 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3746 if (&obj->base == NULL) {
3747 ret = -ENOENT;
3748 goto unlock;
3749 }
3750
3751 if (obj->pin_filp != file) {
3752 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3753 args->handle);
3754 ret = -EINVAL;
3755 goto out;
3756 }
3757 obj->user_pin_count--;
3758 if (obj->user_pin_count == 0) {
3759 obj->pin_filp = NULL;
3760 i915_gem_object_unpin(obj);
3761 }
3762
3763 out:
3764 drm_gem_object_unreference(&obj->base);
3765 unlock:
3766 mutex_unlock(&dev->struct_mutex);
3767 return ret;
3768 }
3769
3770 int
3771 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3772 struct drm_file *file)
3773 {
3774 struct drm_i915_gem_busy *args = data;
3775 struct drm_i915_gem_object *obj;
3776 int ret;
3777
3778 ret = i915_mutex_lock_interruptible(dev);
3779 if (ret)
3780 return ret;
3781
3782 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3783 if (&obj->base == NULL) {
3784 ret = -ENOENT;
3785 goto unlock;
3786 }
3787
3788 /* Count all active objects as busy, even if they are currently not used
3789 * by the gpu. Users of this interface expect objects to eventually
3790 * become non-busy without any further actions, therefore emit any
3791 * necessary flushes here.
3792 */
3793 ret = i915_gem_object_flush_active(obj);
3794
3795 args->busy = obj->active;
3796 if (obj->ring) {
3797 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3798 args->busy |= intel_ring_flag(obj->ring) << 16;
3799 }
3800
3801 drm_gem_object_unreference(&obj->base);
3802 unlock:
3803 mutex_unlock(&dev->struct_mutex);
3804 return ret;
3805 }
3806
3807 int
3808 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3809 struct drm_file *file_priv)
3810 {
3811 return i915_gem_ring_throttle(dev, file_priv);
3812 }
3813
3814 int
3815 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3816 struct drm_file *file_priv)
3817 {
3818 struct drm_i915_gem_madvise *args = data;
3819 struct drm_i915_gem_object *obj;
3820 int ret;
3821
3822 switch (args->madv) {
3823 case I915_MADV_DONTNEED:
3824 case I915_MADV_WILLNEED:
3825 break;
3826 default:
3827 return -EINVAL;
3828 }
3829
3830 ret = i915_mutex_lock_interruptible(dev);
3831 if (ret)
3832 return ret;
3833
3834 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3835 if (&obj->base == NULL) {
3836 ret = -ENOENT;
3837 goto unlock;
3838 }
3839
3840 if (obj->pin_count) {
3841 ret = -EINVAL;
3842 goto out;
3843 }
3844
3845 if (obj->madv != __I915_MADV_PURGED)
3846 obj->madv = args->madv;
3847
3848 /* if the object is no longer attached, discard its backing storage */
3849 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3850 i915_gem_object_truncate(obj);
3851
3852 args->retained = obj->madv != __I915_MADV_PURGED;
3853
3854 out:
3855 drm_gem_object_unreference(&obj->base);
3856 unlock:
3857 mutex_unlock(&dev->struct_mutex);
3858 return ret;
3859 }
3860
3861 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3862 const struct drm_i915_gem_object_ops *ops)
3863 {
3864 INIT_LIST_HEAD(&obj->mm_list);
3865 INIT_LIST_HEAD(&obj->global_list);
3866 INIT_LIST_HEAD(&obj->ring_list);
3867 INIT_LIST_HEAD(&obj->exec_list);
3868
3869 obj->ops = ops;
3870
3871 obj->fence_reg = I915_FENCE_REG_NONE;
3872 obj->madv = I915_MADV_WILLNEED;
3873 /* Avoid an unnecessary call to unbind on the first bind. */
3874 obj->map_and_fenceable = true;
3875
3876 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3877 }
3878
3879 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3880 .get_pages = i915_gem_object_get_pages_gtt,
3881 .put_pages = i915_gem_object_put_pages_gtt,
3882 };
3883
3884 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3885 size_t size)
3886 {
3887 struct drm_i915_gem_object *obj;
3888 struct address_space *mapping;
3889 gfp_t mask;
3890
3891 obj = i915_gem_object_alloc(dev);
3892 if (obj == NULL)
3893 return NULL;
3894
3895 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3896 i915_gem_object_free(obj);
3897 return NULL;
3898 }
3899
3900 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3901 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3902 /* 965gm cannot relocate objects above 4GiB. */
3903 mask &= ~__GFP_HIGHMEM;
3904 mask |= __GFP_DMA32;
3905 }
3906
3907 mapping = file_inode(obj->base.filp)->i_mapping;
3908 mapping_set_gfp_mask(mapping, mask);
3909
3910 i915_gem_object_init(obj, &i915_gem_object_ops);
3911
3912 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3913 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3914
3915 if (HAS_LLC(dev)) {
3916 /* On some devices, we can have the GPU use the LLC (the CPU
3917 * cache) for about a 10% performance improvement
3918 * compared to uncached. Graphics requests other than
3919 * display scanout are coherent with the CPU in
3920 * accessing this cache. This means in this mode we
3921 * don't need to clflush on the CPU side, and on the
3922 * GPU side we only need to flush internal caches to
3923 * get data visible to the CPU.
3924 *
3925 * However, we maintain the display planes as UC, and so
3926 * need to rebind when first used as such.
3927 */
3928 obj->cache_level = I915_CACHE_LLC;
3929 } else
3930 obj->cache_level = I915_CACHE_NONE;
3931
3932 return obj;
3933 }
3934
3935 int i915_gem_init_object(struct drm_gem_object *obj)
3936 {
3937 BUG();
3938
3939 return 0;
3940 }
3941
3942 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3943 {
3944 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3945 struct drm_device *dev = obj->base.dev;
3946 drm_i915_private_t *dev_priv = dev->dev_private;
3947
3948 trace_i915_gem_object_destroy(obj);
3949
3950 if (obj->phys_obj)
3951 i915_gem_detach_phys_object(dev, obj);
3952
3953 obj->pin_count = 0;
3954 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3955 bool was_interruptible;
3956
3957 was_interruptible = dev_priv->mm.interruptible;
3958 dev_priv->mm.interruptible = false;
3959
3960 WARN_ON(i915_gem_object_unbind(obj));
3961
3962 dev_priv->mm.interruptible = was_interruptible;
3963 }
3964
3965 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3966 * before progressing. */
3967 if (obj->stolen)
3968 i915_gem_object_unpin_pages(obj);
3969
3970 if (WARN_ON(obj->pages_pin_count))
3971 obj->pages_pin_count = 0;
3972 i915_gem_object_put_pages(obj);
3973 i915_gem_object_free_mmap_offset(obj);
3974 i915_gem_object_release_stolen(obj);
3975
3976 BUG_ON(obj->pages);
3977
3978 if (obj->base.import_attach)
3979 drm_prime_gem_destroy(&obj->base, NULL);
3980
3981 drm_gem_object_release(&obj->base);
3982 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3983
3984 kfree(obj->bit_17);
3985 i915_gem_object_free(obj);
3986 }
3987
3988 int
3989 i915_gem_idle(struct drm_device *dev)
3990 {
3991 drm_i915_private_t *dev_priv = dev->dev_private;
3992 int ret;
3993
3994 mutex_lock(&dev->struct_mutex);
3995
3996 if (dev_priv->mm.suspended) {
3997 mutex_unlock(&dev->struct_mutex);
3998 return 0;
3999 }
4000
4001 ret = i915_gpu_idle(dev);
4002 if (ret) {
4003 mutex_unlock(&dev->struct_mutex);
4004 return ret;
4005 }
4006 i915_gem_retire_requests(dev);
4007
4008 /* Under UMS, be paranoid and evict. */
4009 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4010 i915_gem_evict_everything(dev);
4011
4012 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4013 * We need to replace this with a semaphore, or something.
4014 * And not confound mm.suspended!
4015 */
4016 dev_priv->mm.suspended = 1;
4017 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4018
4019 i915_kernel_lost_context(dev);
4020 i915_gem_cleanup_ringbuffer(dev);
4021
4022 mutex_unlock(&dev->struct_mutex);
4023
4024 /* Cancel the retire work handler, which should be idle now. */
4025 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4026
4027 return 0;
4028 }
4029
4030 void i915_gem_l3_remap(struct drm_device *dev)
4031 {
4032 drm_i915_private_t *dev_priv = dev->dev_private;
4033 u32 misccpctl;
4034 int i;
4035
4036 if (!HAS_L3_GPU_CACHE(dev))
4037 return;
4038
4039 if (!dev_priv->l3_parity.remap_info)
4040 return;
4041
4042 misccpctl = I915_READ(GEN7_MISCCPCTL);
4043 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4044 POSTING_READ(GEN7_MISCCPCTL);
4045
4046 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4047 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4048 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4049 DRM_DEBUG("0x%x was already programmed to %x\n",
4050 GEN7_L3LOG_BASE + i, remap);
4051 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4052 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4053 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4054 }
4055
4056 /* Make sure all the writes land before disabling dop clock gating */
4057 POSTING_READ(GEN7_L3LOG_BASE);
4058
4059 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4060 }
4061
4062 void i915_gem_init_swizzling(struct drm_device *dev)
4063 {
4064 drm_i915_private_t *dev_priv = dev->dev_private;
4065
4066 if (INTEL_INFO(dev)->gen < 5 ||
4067 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4068 return;
4069
4070 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4071 DISP_TILE_SURFACE_SWIZZLING);
4072
4073 if (IS_GEN5(dev))
4074 return;
4075
4076 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4077 if (IS_GEN6(dev))
4078 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4079 else if (IS_GEN7(dev))
4080 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4081 else
4082 BUG();
4083 }
4084
4085 static bool
4086 intel_enable_blt(struct drm_device *dev)
4087 {
4088 if (!HAS_BLT(dev))
4089 return false;
4090
4091 /* The blitter was dysfunctional on early prototypes */
4092 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4093 DRM_INFO("BLT not supported on this pre-production hardware;"
4094 " graphics performance will be degraded.\n");
4095 return false;
4096 }
4097
4098 return true;
4099 }
4100
4101 static int i915_gem_init_rings(struct drm_device *dev)
4102 {
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 int ret;
4105
4106 ret = intel_init_render_ring_buffer(dev);
4107 if (ret)
4108 return ret;
4109
4110 if (HAS_BSD(dev)) {
4111 ret = intel_init_bsd_ring_buffer(dev);
4112 if (ret)
4113 goto cleanup_render_ring;
4114 }
4115
4116 if (intel_enable_blt(dev)) {
4117 ret = intel_init_blt_ring_buffer(dev);
4118 if (ret)
4119 goto cleanup_bsd_ring;
4120 }
4121
4122 if (HAS_VEBOX(dev)) {
4123 ret = intel_init_vebox_ring_buffer(dev);
4124 if (ret)
4125 goto cleanup_blt_ring;
4126 }
4127
4128
4129 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4130 if (ret)
4131 goto cleanup_vebox_ring;
4132
4133 return 0;
4134
4135 cleanup_vebox_ring:
4136 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4137 cleanup_blt_ring:
4138 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4139 cleanup_bsd_ring:
4140 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4141 cleanup_render_ring:
4142 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4143
4144 return ret;
4145 }
4146
4147 int
4148 i915_gem_init_hw(struct drm_device *dev)
4149 {
4150 drm_i915_private_t *dev_priv = dev->dev_private;
4151 int ret;
4152
4153 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4154 return -EIO;
4155
4156 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4157 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4158
4159 if (HAS_PCH_NOP(dev)) {
4160 u32 temp = I915_READ(GEN7_MSG_CTL);
4161 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4162 I915_WRITE(GEN7_MSG_CTL, temp);
4163 }
4164
4165 i915_gem_l3_remap(dev);
4166
4167 i915_gem_init_swizzling(dev);
4168
4169 ret = i915_gem_init_rings(dev);
4170 if (ret)
4171 return ret;
4172
4173 /*
4174 * XXX: There was some w/a described somewhere suggesting loading
4175 * contexts before PPGTT.
4176 */
4177 i915_gem_context_init(dev);
4178 if (dev_priv->mm.aliasing_ppgtt) {
4179 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4180 if (ret) {
4181 i915_gem_cleanup_aliasing_ppgtt(dev);
4182 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4183 }
4184 }
4185
4186 return 0;
4187 }
4188
4189 int i915_gem_init(struct drm_device *dev)
4190 {
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 int ret;
4193
4194 mutex_lock(&dev->struct_mutex);
4195
4196 if (IS_VALLEYVIEW(dev)) {
4197 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4198 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4199 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4200 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4201 }
4202
4203 i915_gem_init_global_gtt(dev);
4204
4205 ret = i915_gem_init_hw(dev);
4206 mutex_unlock(&dev->struct_mutex);
4207 if (ret) {
4208 i915_gem_cleanup_aliasing_ppgtt(dev);
4209 return ret;
4210 }
4211
4212 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4213 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4214 dev_priv->dri1.allow_batchbuffer = 1;
4215 return 0;
4216 }
4217
4218 void
4219 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4220 {
4221 drm_i915_private_t *dev_priv = dev->dev_private;
4222 struct intel_ring_buffer *ring;
4223 int i;
4224
4225 for_each_ring(ring, dev_priv, i)
4226 intel_cleanup_ring_buffer(ring);
4227 }
4228
4229 int
4230 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4231 struct drm_file *file_priv)
4232 {
4233 drm_i915_private_t *dev_priv = dev->dev_private;
4234 int ret;
4235
4236 if (drm_core_check_feature(dev, DRIVER_MODESET))
4237 return 0;
4238
4239 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4240 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4241 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4242 }
4243
4244 mutex_lock(&dev->struct_mutex);
4245 dev_priv->mm.suspended = 0;
4246
4247 ret = i915_gem_init_hw(dev);
4248 if (ret != 0) {
4249 mutex_unlock(&dev->struct_mutex);
4250 return ret;
4251 }
4252
4253 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4254 mutex_unlock(&dev->struct_mutex);
4255
4256 ret = drm_irq_install(dev);
4257 if (ret)
4258 goto cleanup_ringbuffer;
4259
4260 return 0;
4261
4262 cleanup_ringbuffer:
4263 mutex_lock(&dev->struct_mutex);
4264 i915_gem_cleanup_ringbuffer(dev);
4265 dev_priv->mm.suspended = 1;
4266 mutex_unlock(&dev->struct_mutex);
4267
4268 return ret;
4269 }
4270
4271 int
4272 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4273 struct drm_file *file_priv)
4274 {
4275 if (drm_core_check_feature(dev, DRIVER_MODESET))
4276 return 0;
4277
4278 drm_irq_uninstall(dev);
4279 return i915_gem_idle(dev);
4280 }
4281
4282 void
4283 i915_gem_lastclose(struct drm_device *dev)
4284 {
4285 int ret;
4286
4287 if (drm_core_check_feature(dev, DRIVER_MODESET))
4288 return;
4289
4290 ret = i915_gem_idle(dev);
4291 if (ret)
4292 DRM_ERROR("failed to idle hardware: %d\n", ret);
4293 }
4294
4295 static void
4296 init_ring_lists(struct intel_ring_buffer *ring)
4297 {
4298 INIT_LIST_HEAD(&ring->active_list);
4299 INIT_LIST_HEAD(&ring->request_list);
4300 }
4301
4302 void
4303 i915_gem_load(struct drm_device *dev)
4304 {
4305 drm_i915_private_t *dev_priv = dev->dev_private;
4306 int i;
4307
4308 dev_priv->slab =
4309 kmem_cache_create("i915_gem_object",
4310 sizeof(struct drm_i915_gem_object), 0,
4311 SLAB_HWCACHE_ALIGN,
4312 NULL);
4313
4314 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4315 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4316 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4317 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4318 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4319 for (i = 0; i < I915_NUM_RINGS; i++)
4320 init_ring_lists(&dev_priv->ring[i]);
4321 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4322 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4323 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4324 i915_gem_retire_work_handler);
4325 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4326
4327 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4328 if (IS_GEN3(dev)) {
4329 I915_WRITE(MI_ARB_STATE,
4330 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4331 }
4332
4333 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4334
4335 /* Old X drivers will take 0-2 for front, back, depth buffers */
4336 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4337 dev_priv->fence_reg_start = 3;
4338
4339 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4340 dev_priv->num_fence_regs = 32;
4341 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4342 dev_priv->num_fence_regs = 16;
4343 else
4344 dev_priv->num_fence_regs = 8;
4345
4346 /* Initialize fence registers to zero */
4347 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4348 i915_gem_restore_fences(dev);
4349
4350 i915_gem_detect_bit_6_swizzle(dev);
4351 init_waitqueue_head(&dev_priv->pending_flip_queue);
4352
4353 dev_priv->mm.interruptible = true;
4354
4355 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4356 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4357 register_shrinker(&dev_priv->mm.inactive_shrinker);
4358 }
4359
4360 /*
4361 * Create a physically contiguous memory object for this object
4362 * e.g. for cursor + overlay regs
4363 */
4364 static int i915_gem_init_phys_object(struct drm_device *dev,
4365 int id, int size, int align)
4366 {
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368 struct drm_i915_gem_phys_object *phys_obj;
4369 int ret;
4370
4371 if (dev_priv->mm.phys_objs[id - 1] || !size)
4372 return 0;
4373
4374 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4375 if (!phys_obj)
4376 return -ENOMEM;
4377
4378 phys_obj->id = id;
4379
4380 phys_obj->handle = drm_pci_alloc(dev, size, align);
4381 if (!phys_obj->handle) {
4382 ret = -ENOMEM;
4383 goto kfree_obj;
4384 }
4385 #ifdef CONFIG_X86
4386 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4387 #endif
4388
4389 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4390
4391 return 0;
4392 kfree_obj:
4393 kfree(phys_obj);
4394 return ret;
4395 }
4396
4397 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4398 {
4399 drm_i915_private_t *dev_priv = dev->dev_private;
4400 struct drm_i915_gem_phys_object *phys_obj;
4401
4402 if (!dev_priv->mm.phys_objs[id - 1])
4403 return;
4404
4405 phys_obj = dev_priv->mm.phys_objs[id - 1];
4406 if (phys_obj->cur_obj) {
4407 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4408 }
4409
4410 #ifdef CONFIG_X86
4411 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4412 #endif
4413 drm_pci_free(dev, phys_obj->handle);
4414 kfree(phys_obj);
4415 dev_priv->mm.phys_objs[id - 1] = NULL;
4416 }
4417
4418 void i915_gem_free_all_phys_object(struct drm_device *dev)
4419 {
4420 int i;
4421
4422 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4423 i915_gem_free_phys_object(dev, i);
4424 }
4425
4426 void i915_gem_detach_phys_object(struct drm_device *dev,
4427 struct drm_i915_gem_object *obj)
4428 {
4429 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4430 char *vaddr;
4431 int i;
4432 int page_count;
4433
4434 if (!obj->phys_obj)
4435 return;
4436 vaddr = obj->phys_obj->handle->vaddr;
4437
4438 page_count = obj->base.size / PAGE_SIZE;
4439 for (i = 0; i < page_count; i++) {
4440 struct page *page = shmem_read_mapping_page(mapping, i);
4441 if (!IS_ERR(page)) {
4442 char *dst = kmap_atomic(page);
4443 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4444 kunmap_atomic(dst);
4445
4446 drm_clflush_pages(&page, 1);
4447
4448 set_page_dirty(page);
4449 mark_page_accessed(page);
4450 page_cache_release(page);
4451 }
4452 }
4453 i915_gem_chipset_flush(dev);
4454
4455 obj->phys_obj->cur_obj = NULL;
4456 obj->phys_obj = NULL;
4457 }
4458
4459 int
4460 i915_gem_attach_phys_object(struct drm_device *dev,
4461 struct drm_i915_gem_object *obj,
4462 int id,
4463 int align)
4464 {
4465 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4466 drm_i915_private_t *dev_priv = dev->dev_private;
4467 int ret = 0;
4468 int page_count;
4469 int i;
4470
4471 if (id > I915_MAX_PHYS_OBJECT)
4472 return -EINVAL;
4473
4474 if (obj->phys_obj) {
4475 if (obj->phys_obj->id == id)
4476 return 0;
4477 i915_gem_detach_phys_object(dev, obj);
4478 }
4479
4480 /* create a new object */
4481 if (!dev_priv->mm.phys_objs[id - 1]) {
4482 ret = i915_gem_init_phys_object(dev, id,
4483 obj->base.size, align);
4484 if (ret) {
4485 DRM_ERROR("failed to init phys object %d size: %zu\n",
4486 id, obj->base.size);
4487 return ret;
4488 }
4489 }
4490
4491 /* bind to the object */
4492 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4493 obj->phys_obj->cur_obj = obj;
4494
4495 page_count = obj->base.size / PAGE_SIZE;
4496
4497 for (i = 0; i < page_count; i++) {
4498 struct page *page;
4499 char *dst, *src;
4500
4501 page = shmem_read_mapping_page(mapping, i);
4502 if (IS_ERR(page))
4503 return PTR_ERR(page);
4504
4505 src = kmap_atomic(page);
4506 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4507 memcpy(dst, src, PAGE_SIZE);
4508 kunmap_atomic(src);
4509
4510 mark_page_accessed(page);
4511 page_cache_release(page);
4512 }
4513
4514 return 0;
4515 }
4516
4517 static int
4518 i915_gem_phys_pwrite(struct drm_device *dev,
4519 struct drm_i915_gem_object *obj,
4520 struct drm_i915_gem_pwrite *args,
4521 struct drm_file *file_priv)
4522 {
4523 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4524 char __user *user_data = to_user_ptr(args->data_ptr);
4525
4526 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4527 unsigned long unwritten;
4528
4529 /* The physical object once assigned is fixed for the lifetime
4530 * of the obj, so we can safely drop the lock and continue
4531 * to access vaddr.
4532 */
4533 mutex_unlock(&dev->struct_mutex);
4534 unwritten = copy_from_user(vaddr, user_data, args->size);
4535 mutex_lock(&dev->struct_mutex);
4536 if (unwritten)
4537 return -EFAULT;
4538 }
4539
4540 i915_gem_chipset_flush(dev);
4541 return 0;
4542 }
4543
4544 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4545 {
4546 struct drm_i915_file_private *file_priv = file->driver_priv;
4547
4548 /* Clean up our request list when the client is going away, so that
4549 * later retire_requests won't dereference our soon-to-be-gone
4550 * file_priv.
4551 */
4552 spin_lock(&file_priv->mm.lock);
4553 while (!list_empty(&file_priv->mm.request_list)) {
4554 struct drm_i915_gem_request *request;
4555
4556 request = list_first_entry(&file_priv->mm.request_list,
4557 struct drm_i915_gem_request,
4558 client_list);
4559 list_del(&request->client_list);
4560 request->file_priv = NULL;
4561 }
4562 spin_unlock(&file_priv->mm.lock);
4563 }
4564
4565 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4566 {
4567 if (!mutex_is_locked(mutex))
4568 return false;
4569
4570 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4571 return mutex->owner == task;
4572 #else
4573 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4574 return false;
4575 #endif
4576 }
4577
4578 static int
4579 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4580 {
4581 struct drm_i915_private *dev_priv =
4582 container_of(shrinker,
4583 struct drm_i915_private,
4584 mm.inactive_shrinker);
4585 struct drm_device *dev = dev_priv->dev;
4586 struct drm_i915_gem_object *obj;
4587 int nr_to_scan = sc->nr_to_scan;
4588 bool unlock = true;
4589 int cnt;
4590
4591 if (!mutex_trylock(&dev->struct_mutex)) {
4592 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4593 return 0;
4594
4595 if (dev_priv->mm.shrinker_no_lock_stealing)
4596 return 0;
4597
4598 unlock = false;
4599 }
4600
4601 if (nr_to_scan) {
4602 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4603 if (nr_to_scan > 0)
4604 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4605 false);
4606 if (nr_to_scan > 0)
4607 i915_gem_shrink_all(dev_priv);
4608 }
4609
4610 cnt = 0;
4611 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4612 if (obj->pages_pin_count == 0)
4613 cnt += obj->base.size >> PAGE_SHIFT;
4614 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
4615 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4616 cnt += obj->base.size >> PAGE_SHIFT;
4617
4618 if (unlock)
4619 mutex_unlock(&dev->struct_mutex);
4620 return cnt;
4621 }
This page took 0.144046 seconds and 5 git commands to generate.