drm/i915: Remove request->uniq
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 /**
1185 * __i915_wait_request - wait until execution of request has finished
1186 * @req: duh!
1187 * @reset_counter: reset sequence associated with the given request
1188 * @interruptible: do an interruptible wait (normally yes)
1189 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1190 *
1191 * Note: It is of utmost importance that the passed in seqno and reset_counter
1192 * values have been read by the caller in an smp safe manner. Where read-side
1193 * locks are involved, it is sufficient to read the reset_counter before
1194 * unlocking the lock that protects the seqno. For lockless tricks, the
1195 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1196 * inserted.
1197 *
1198 * Returns 0 if the request was found within the alloted time. Else returns the
1199 * errno with remaining time filled in timeout argument.
1200 */
1201 int __i915_wait_request(struct drm_i915_gem_request *req,
1202 unsigned reset_counter,
1203 bool interruptible,
1204 s64 *timeout,
1205 struct drm_i915_file_private *file_priv)
1206 {
1207 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1208 struct drm_device *dev = ring->dev;
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210 const bool irq_test_in_progress =
1211 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1212 DEFINE_WAIT(wait);
1213 unsigned long timeout_expire;
1214 s64 before, now;
1215 int ret;
1216
1217 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1218
1219 if (i915_gem_request_completed(req, true))
1220 return 0;
1221
1222 timeout_expire = timeout ?
1223 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1224
1225 if (INTEL_INFO(dev)->gen >= 6)
1226 gen6_rps_boost(dev_priv, file_priv);
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1229 return -ENODEV;
1230
1231 /* Record current time in case interrupted by signal, or wedged */
1232 trace_i915_gem_request_wait_begin(req);
1233 before = ktime_get_raw_ns();
1234 for (;;) {
1235 struct timer_list timer;
1236
1237 prepare_to_wait(&ring->irq_queue, &wait,
1238 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1239
1240 /* We need to check whether any gpu reset happened in between
1241 * the caller grabbing the seqno and now ... */
1242 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1243 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1244 * is truely gone. */
1245 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1246 if (ret == 0)
1247 ret = -EAGAIN;
1248 break;
1249 }
1250
1251 if (i915_gem_request_completed(req, false)) {
1252 ret = 0;
1253 break;
1254 }
1255
1256 if (interruptible && signal_pending(current)) {
1257 ret = -ERESTARTSYS;
1258 break;
1259 }
1260
1261 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1262 ret = -ETIME;
1263 break;
1264 }
1265
1266 timer.function = NULL;
1267 if (timeout || missed_irq(dev_priv, ring)) {
1268 unsigned long expire;
1269
1270 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1271 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1272 mod_timer(&timer, expire);
1273 }
1274
1275 io_schedule();
1276
1277 if (timer.function) {
1278 del_singleshot_timer_sync(&timer);
1279 destroy_timer_on_stack(&timer);
1280 }
1281 }
1282 now = ktime_get_raw_ns();
1283 trace_i915_gem_request_wait_end(req);
1284
1285 if (!irq_test_in_progress)
1286 ring->irq_put(ring);
1287
1288 finish_wait(&ring->irq_queue, &wait);
1289
1290 if (timeout) {
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
1304 }
1305
1306 return ret;
1307 }
1308
1309 /**
1310 * Waits for a request to be signaled, and cleans up the
1311 * request and object lists appropriately for that event.
1312 */
1313 int
1314 i915_wait_request(struct drm_i915_gem_request *req)
1315 {
1316 struct drm_device *dev;
1317 struct drm_i915_private *dev_priv;
1318 bool interruptible;
1319 unsigned reset_counter;
1320 int ret;
1321
1322 BUG_ON(req == NULL);
1323
1324 dev = req->ring->dev;
1325 dev_priv = dev->dev_private;
1326 interruptible = dev_priv->mm.interruptible;
1327
1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329
1330 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1331 if (ret)
1332 return ret;
1333
1334 ret = i915_gem_check_olr(req);
1335 if (ret)
1336 return ret;
1337
1338 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1339 i915_gem_request_reference(req);
1340 ret = __i915_wait_request(req, reset_counter,
1341 interruptible, NULL, NULL);
1342 i915_gem_request_unreference(req);
1343 return ret;
1344 }
1345
1346 static int
1347 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1348 {
1349 if (!obj->active)
1350 return 0;
1351
1352 /* Manually manage the write flush as we may have not yet
1353 * retired the buffer.
1354 *
1355 * Note that the last_write_req is always the earlier of
1356 * the two (read/write) requests, so if we haved successfully waited,
1357 * we know we have passed the last write.
1358 */
1359 i915_gem_request_assign(&obj->last_write_req, NULL);
1360
1361 return 0;
1362 }
1363
1364 /**
1365 * Ensures that all rendering to the object has completed and the object is
1366 * safe to unbind from the GTT or access from the CPU.
1367 */
1368 static __must_check int
1369 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1370 bool readonly)
1371 {
1372 struct drm_i915_gem_request *req;
1373 int ret;
1374
1375 req = readonly ? obj->last_write_req : obj->last_read_req;
1376 if (!req)
1377 return 0;
1378
1379 ret = i915_wait_request(req);
1380 if (ret)
1381 return ret;
1382
1383 return i915_gem_object_wait_rendering__tail(obj);
1384 }
1385
1386 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1387 * as the object state may change during this call.
1388 */
1389 static __must_check int
1390 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1391 struct drm_i915_file_private *file_priv,
1392 bool readonly)
1393 {
1394 struct drm_i915_gem_request *req;
1395 struct drm_device *dev = obj->base.dev;
1396 struct drm_i915_private *dev_priv = dev->dev_private;
1397 unsigned reset_counter;
1398 int ret;
1399
1400 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401 BUG_ON(!dev_priv->mm.interruptible);
1402
1403 req = readonly ? obj->last_write_req : obj->last_read_req;
1404 if (!req)
1405 return 0;
1406
1407 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1408 if (ret)
1409 return ret;
1410
1411 ret = i915_gem_check_olr(req);
1412 if (ret)
1413 return ret;
1414
1415 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1416 i915_gem_request_reference(req);
1417 mutex_unlock(&dev->struct_mutex);
1418 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1419 mutex_lock(&dev->struct_mutex);
1420 i915_gem_request_unreference(req);
1421 if (ret)
1422 return ret;
1423
1424 return i915_gem_object_wait_rendering__tail(obj);
1425 }
1426
1427 /**
1428 * Called when user space prepares to use an object with the CPU, either
1429 * through the mmap ioctl's mapping or a GTT mapping.
1430 */
1431 int
1432 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1433 struct drm_file *file)
1434 {
1435 struct drm_i915_gem_set_domain *args = data;
1436 struct drm_i915_gem_object *obj;
1437 uint32_t read_domains = args->read_domains;
1438 uint32_t write_domain = args->write_domain;
1439 int ret;
1440
1441 /* Only handle setting domains to types used by the CPU. */
1442 if (write_domain & I915_GEM_GPU_DOMAINS)
1443 return -EINVAL;
1444
1445 if (read_domains & I915_GEM_GPU_DOMAINS)
1446 return -EINVAL;
1447
1448 /* Having something in the write domain implies it's in the read
1449 * domain, and only that read domain. Enforce that in the request.
1450 */
1451 if (write_domain != 0 && read_domains != write_domain)
1452 return -EINVAL;
1453
1454 ret = i915_mutex_lock_interruptible(dev);
1455 if (ret)
1456 return ret;
1457
1458 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459 if (&obj->base == NULL) {
1460 ret = -ENOENT;
1461 goto unlock;
1462 }
1463
1464 /* Try to flush the object off the GPU without holding the lock.
1465 * We will repeat the flush holding the lock in the normal manner
1466 * to catch cases where we are gazumped.
1467 */
1468 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1469 file->driver_priv,
1470 !write_domain);
1471 if (ret)
1472 goto unref;
1473
1474 if (read_domains & I915_GEM_DOMAIN_GTT)
1475 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1476 else
1477 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478
1479 unref:
1480 drm_gem_object_unreference(&obj->base);
1481 unlock:
1482 mutex_unlock(&dev->struct_mutex);
1483 return ret;
1484 }
1485
1486 /**
1487 * Called when user space has done writes to this buffer
1488 */
1489 int
1490 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1491 struct drm_file *file)
1492 {
1493 struct drm_i915_gem_sw_finish *args = data;
1494 struct drm_i915_gem_object *obj;
1495 int ret = 0;
1496
1497 ret = i915_mutex_lock_interruptible(dev);
1498 if (ret)
1499 return ret;
1500
1501 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1502 if (&obj->base == NULL) {
1503 ret = -ENOENT;
1504 goto unlock;
1505 }
1506
1507 /* Pinned buffers may be scanout, so flush the cache */
1508 if (obj->pin_display)
1509 i915_gem_object_flush_cpu_write_domain(obj);
1510
1511 drm_gem_object_unreference(&obj->base);
1512 unlock:
1513 mutex_unlock(&dev->struct_mutex);
1514 return ret;
1515 }
1516
1517 /**
1518 * Maps the contents of an object, returning the address it is mapped
1519 * into.
1520 *
1521 * While the mapping holds a reference on the contents of the object, it doesn't
1522 * imply a ref on the object itself.
1523 *
1524 * IMPORTANT:
1525 *
1526 * DRM driver writers who look a this function as an example for how to do GEM
1527 * mmap support, please don't implement mmap support like here. The modern way
1528 * to implement DRM mmap support is with an mmap offset ioctl (like
1529 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1530 * That way debug tooling like valgrind will understand what's going on, hiding
1531 * the mmap call in a driver private ioctl will break that. The i915 driver only
1532 * does cpu mmaps this way because we didn't know better.
1533 */
1534 int
1535 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1536 struct drm_file *file)
1537 {
1538 struct drm_i915_gem_mmap *args = data;
1539 struct drm_gem_object *obj;
1540 unsigned long addr;
1541
1542 if (args->flags & ~(I915_MMAP_WC))
1543 return -EINVAL;
1544
1545 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1546 return -ENODEV;
1547
1548 obj = drm_gem_object_lookup(dev, file, args->handle);
1549 if (obj == NULL)
1550 return -ENOENT;
1551
1552 /* prime objects have no backing filp to GEM mmap
1553 * pages from.
1554 */
1555 if (!obj->filp) {
1556 drm_gem_object_unreference_unlocked(obj);
1557 return -EINVAL;
1558 }
1559
1560 addr = vm_mmap(obj->filp, 0, args->size,
1561 PROT_READ | PROT_WRITE, MAP_SHARED,
1562 args->offset);
1563 if (args->flags & I915_MMAP_WC) {
1564 struct mm_struct *mm = current->mm;
1565 struct vm_area_struct *vma;
1566
1567 down_write(&mm->mmap_sem);
1568 vma = find_vma(mm, addr);
1569 if (vma)
1570 vma->vm_page_prot =
1571 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1572 else
1573 addr = -ENOMEM;
1574 up_write(&mm->mmap_sem);
1575 }
1576 drm_gem_object_unreference_unlocked(obj);
1577 if (IS_ERR((void *)addr))
1578 return addr;
1579
1580 args->addr_ptr = (uint64_t) addr;
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * i915_gem_fault - fault a page into the GTT
1587 * vma: VMA in question
1588 * vmf: fault info
1589 *
1590 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1591 * from userspace. The fault handler takes care of binding the object to
1592 * the GTT (if needed), allocating and programming a fence register (again,
1593 * only if needed based on whether the old reg is still valid or the object
1594 * is tiled) and inserting a new PTE into the faulting process.
1595 *
1596 * Note that the faulting process may involve evicting existing objects
1597 * from the GTT and/or fence registers to make room. So performance may
1598 * suffer if the GTT working set is large or there are few fence registers
1599 * left.
1600 */
1601 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1604 struct drm_device *dev = obj->base.dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 pgoff_t page_offset;
1607 unsigned long pfn;
1608 int ret = 0;
1609 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1610
1611 intel_runtime_pm_get(dev_priv);
1612
1613 /* We don't use vmf->pgoff since that has the fake offset */
1614 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1615 PAGE_SHIFT;
1616
1617 ret = i915_mutex_lock_interruptible(dev);
1618 if (ret)
1619 goto out;
1620
1621 trace_i915_gem_object_fault(obj, page_offset, true, write);
1622
1623 /* Try to flush the object off the GPU first without holding the lock.
1624 * Upon reacquiring the lock, we will perform our sanity checks and then
1625 * repeat the flush holding the lock in the normal manner to catch cases
1626 * where we are gazumped.
1627 */
1628 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1629 if (ret)
1630 goto unlock;
1631
1632 /* Access to snoopable pages through the GTT is incoherent. */
1633 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1634 ret = -EFAULT;
1635 goto unlock;
1636 }
1637
1638 /* Now bind it into the GTT if needed */
1639 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1640 if (ret)
1641 goto unlock;
1642
1643 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1644 if (ret)
1645 goto unpin;
1646
1647 ret = i915_gem_object_get_fence(obj);
1648 if (ret)
1649 goto unpin;
1650
1651 /* Finally, remap it using the new GTT offset */
1652 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1653 pfn >>= PAGE_SHIFT;
1654
1655 if (!obj->fault_mappable) {
1656 unsigned long size = min_t(unsigned long,
1657 vma->vm_end - vma->vm_start,
1658 obj->base.size);
1659 int i;
1660
1661 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1662 ret = vm_insert_pfn(vma,
1663 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1664 pfn + i);
1665 if (ret)
1666 break;
1667 }
1668
1669 obj->fault_mappable = true;
1670 } else
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vmf->virtual_address,
1673 pfn + page_offset);
1674 unpin:
1675 i915_gem_object_ggtt_unpin(obj);
1676 unlock:
1677 mutex_unlock(&dev->struct_mutex);
1678 out:
1679 switch (ret) {
1680 case -EIO:
1681 /*
1682 * We eat errors when the gpu is terminally wedged to avoid
1683 * userspace unduly crashing (gl has no provisions for mmaps to
1684 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1685 * and so needs to be reported.
1686 */
1687 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1688 ret = VM_FAULT_SIGBUS;
1689 break;
1690 }
1691 case -EAGAIN:
1692 /*
1693 * EAGAIN means the gpu is hung and we'll wait for the error
1694 * handler to reset everything when re-faulting in
1695 * i915_mutex_lock_interruptible.
1696 */
1697 case 0:
1698 case -ERESTARTSYS:
1699 case -EINTR:
1700 case -EBUSY:
1701 /*
1702 * EBUSY is ok: this just means that another thread
1703 * already did the job.
1704 */
1705 ret = VM_FAULT_NOPAGE;
1706 break;
1707 case -ENOMEM:
1708 ret = VM_FAULT_OOM;
1709 break;
1710 case -ENOSPC:
1711 case -EFAULT:
1712 ret = VM_FAULT_SIGBUS;
1713 break;
1714 default:
1715 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1716 ret = VM_FAULT_SIGBUS;
1717 break;
1718 }
1719
1720 intel_runtime_pm_put(dev_priv);
1721 return ret;
1722 }
1723
1724 /**
1725 * i915_gem_release_mmap - remove physical page mappings
1726 * @obj: obj in question
1727 *
1728 * Preserve the reservation of the mmapping with the DRM core code, but
1729 * relinquish ownership of the pages back to the system.
1730 *
1731 * It is vital that we remove the page mapping if we have mapped a tiled
1732 * object through the GTT and then lose the fence register due to
1733 * resource pressure. Similarly if the object has been moved out of the
1734 * aperture, than pages mapped into userspace must be revoked. Removing the
1735 * mapping will then trigger a page fault on the next user access, allowing
1736 * fixup by i915_gem_fault().
1737 */
1738 void
1739 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1740 {
1741 if (!obj->fault_mappable)
1742 return;
1743
1744 drm_vma_node_unmap(&obj->base.vma_node,
1745 obj->base.dev->anon_inode->i_mapping);
1746 obj->fault_mappable = false;
1747 }
1748
1749 void
1750 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1751 {
1752 struct drm_i915_gem_object *obj;
1753
1754 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1755 i915_gem_release_mmap(obj);
1756 }
1757
1758 uint32_t
1759 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1760 {
1761 uint32_t gtt_size;
1762
1763 if (INTEL_INFO(dev)->gen >= 4 ||
1764 tiling_mode == I915_TILING_NONE)
1765 return size;
1766
1767 /* Previous chips need a power-of-two fence region when tiling */
1768 if (INTEL_INFO(dev)->gen == 3)
1769 gtt_size = 1024*1024;
1770 else
1771 gtt_size = 512*1024;
1772
1773 while (gtt_size < size)
1774 gtt_size <<= 1;
1775
1776 return gtt_size;
1777 }
1778
1779 /**
1780 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1781 * @obj: object to check
1782 *
1783 * Return the required GTT alignment for an object, taking into account
1784 * potential fence register mapping.
1785 */
1786 uint32_t
1787 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1788 int tiling_mode, bool fenced)
1789 {
1790 /*
1791 * Minimum alignment is 4k (GTT page size), but might be greater
1792 * if a fence register is needed for the object.
1793 */
1794 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1795 tiling_mode == I915_TILING_NONE)
1796 return 4096;
1797
1798 /*
1799 * Previous chips need to be aligned to the size of the smallest
1800 * fence register that can contain the object.
1801 */
1802 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1803 }
1804
1805 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1806 {
1807 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1808 int ret;
1809
1810 if (drm_vma_node_has_offset(&obj->base.vma_node))
1811 return 0;
1812
1813 dev_priv->mm.shrinker_no_lock_stealing = true;
1814
1815 ret = drm_gem_create_mmap_offset(&obj->base);
1816 if (ret != -ENOSPC)
1817 goto out;
1818
1819 /* Badly fragmented mmap space? The only way we can recover
1820 * space is by destroying unwanted objects. We can't randomly release
1821 * mmap_offsets as userspace expects them to be persistent for the
1822 * lifetime of the objects. The closest we can is to release the
1823 * offsets on purgeable objects by truncating it and marking it purged,
1824 * which prevents userspace from ever using that object again.
1825 */
1826 i915_gem_shrink(dev_priv,
1827 obj->base.size >> PAGE_SHIFT,
1828 I915_SHRINK_BOUND |
1829 I915_SHRINK_UNBOUND |
1830 I915_SHRINK_PURGEABLE);
1831 ret = drm_gem_create_mmap_offset(&obj->base);
1832 if (ret != -ENOSPC)
1833 goto out;
1834
1835 i915_gem_shrink_all(dev_priv);
1836 ret = drm_gem_create_mmap_offset(&obj->base);
1837 out:
1838 dev_priv->mm.shrinker_no_lock_stealing = false;
1839
1840 return ret;
1841 }
1842
1843 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1844 {
1845 drm_gem_free_mmap_offset(&obj->base);
1846 }
1847
1848 int
1849 i915_gem_mmap_gtt(struct drm_file *file,
1850 struct drm_device *dev,
1851 uint32_t handle,
1852 uint64_t *offset)
1853 {
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 struct drm_i915_gem_object *obj;
1856 int ret;
1857
1858 ret = i915_mutex_lock_interruptible(dev);
1859 if (ret)
1860 return ret;
1861
1862 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1863 if (&obj->base == NULL) {
1864 ret = -ENOENT;
1865 goto unlock;
1866 }
1867
1868 if (obj->base.size > dev_priv->gtt.mappable_end) {
1869 ret = -E2BIG;
1870 goto out;
1871 }
1872
1873 if (obj->madv != I915_MADV_WILLNEED) {
1874 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1875 ret = -EFAULT;
1876 goto out;
1877 }
1878
1879 ret = i915_gem_object_create_mmap_offset(obj);
1880 if (ret)
1881 goto out;
1882
1883 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1884
1885 out:
1886 drm_gem_object_unreference(&obj->base);
1887 unlock:
1888 mutex_unlock(&dev->struct_mutex);
1889 return ret;
1890 }
1891
1892 /**
1893 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1894 * @dev: DRM device
1895 * @data: GTT mapping ioctl data
1896 * @file: GEM object info
1897 *
1898 * Simply returns the fake offset to userspace so it can mmap it.
1899 * The mmap call will end up in drm_gem_mmap(), which will set things
1900 * up so we can get faults in the handler above.
1901 *
1902 * The fault handler will take care of binding the object into the GTT
1903 * (since it may have been evicted to make room for something), allocating
1904 * a fence register, and mapping the appropriate aperture address into
1905 * userspace.
1906 */
1907 int
1908 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1909 struct drm_file *file)
1910 {
1911 struct drm_i915_gem_mmap_gtt *args = data;
1912
1913 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1914 }
1915
1916 /* Immediately discard the backing storage */
1917 static void
1918 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1919 {
1920 i915_gem_object_free_mmap_offset(obj);
1921
1922 if (obj->base.filp == NULL)
1923 return;
1924
1925 /* Our goal here is to return as much of the memory as
1926 * is possible back to the system as we are called from OOM.
1927 * To do this we must instruct the shmfs to drop all of its
1928 * backing pages, *now*.
1929 */
1930 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1931 obj->madv = __I915_MADV_PURGED;
1932 }
1933
1934 /* Try to discard unwanted pages */
1935 static void
1936 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1937 {
1938 struct address_space *mapping;
1939
1940 switch (obj->madv) {
1941 case I915_MADV_DONTNEED:
1942 i915_gem_object_truncate(obj);
1943 case __I915_MADV_PURGED:
1944 return;
1945 }
1946
1947 if (obj->base.filp == NULL)
1948 return;
1949
1950 mapping = file_inode(obj->base.filp)->i_mapping,
1951 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1952 }
1953
1954 static void
1955 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1956 {
1957 struct sg_page_iter sg_iter;
1958 int ret;
1959
1960 BUG_ON(obj->madv == __I915_MADV_PURGED);
1961
1962 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1963 if (ret) {
1964 /* In the event of a disaster, abandon all caches and
1965 * hope for the best.
1966 */
1967 WARN_ON(ret != -EIO);
1968 i915_gem_clflush_object(obj, true);
1969 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1970 }
1971
1972 if (i915_gem_object_needs_bit17_swizzle(obj))
1973 i915_gem_object_save_bit_17_swizzle(obj);
1974
1975 if (obj->madv == I915_MADV_DONTNEED)
1976 obj->dirty = 0;
1977
1978 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1979 struct page *page = sg_page_iter_page(&sg_iter);
1980
1981 if (obj->dirty)
1982 set_page_dirty(page);
1983
1984 if (obj->madv == I915_MADV_WILLNEED)
1985 mark_page_accessed(page);
1986
1987 page_cache_release(page);
1988 }
1989 obj->dirty = 0;
1990
1991 sg_free_table(obj->pages);
1992 kfree(obj->pages);
1993 }
1994
1995 int
1996 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1997 {
1998 const struct drm_i915_gem_object_ops *ops = obj->ops;
1999
2000 if (obj->pages == NULL)
2001 return 0;
2002
2003 if (obj->pages_pin_count)
2004 return -EBUSY;
2005
2006 BUG_ON(i915_gem_obj_bound_any(obj));
2007
2008 /* ->put_pages might need to allocate memory for the bit17 swizzle
2009 * array, hence protect them from being reaped by removing them from gtt
2010 * lists early. */
2011 list_del(&obj->global_list);
2012
2013 ops->put_pages(obj);
2014 obj->pages = NULL;
2015
2016 i915_gem_object_invalidate(obj);
2017
2018 return 0;
2019 }
2020
2021 static int
2022 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2023 {
2024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 int page_count, i;
2026 struct address_space *mapping;
2027 struct sg_table *st;
2028 struct scatterlist *sg;
2029 struct sg_page_iter sg_iter;
2030 struct page *page;
2031 unsigned long last_pfn = 0; /* suppress gcc warning */
2032 gfp_t gfp;
2033
2034 /* Assert that the object is not currently in any GPU domain. As it
2035 * wasn't in the GTT, there shouldn't be any way it could have been in
2036 * a GPU cache
2037 */
2038 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2039 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2040
2041 st = kmalloc(sizeof(*st), GFP_KERNEL);
2042 if (st == NULL)
2043 return -ENOMEM;
2044
2045 page_count = obj->base.size / PAGE_SIZE;
2046 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2047 kfree(st);
2048 return -ENOMEM;
2049 }
2050
2051 /* Get the list of pages out of our struct file. They'll be pinned
2052 * at this point until we release them.
2053 *
2054 * Fail silently without starting the shrinker
2055 */
2056 mapping = file_inode(obj->base.filp)->i_mapping;
2057 gfp = mapping_gfp_mask(mapping);
2058 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2059 gfp &= ~(__GFP_IO | __GFP_WAIT);
2060 sg = st->sgl;
2061 st->nents = 0;
2062 for (i = 0; i < page_count; i++) {
2063 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064 if (IS_ERR(page)) {
2065 i915_gem_shrink(dev_priv,
2066 page_count,
2067 I915_SHRINK_BOUND |
2068 I915_SHRINK_UNBOUND |
2069 I915_SHRINK_PURGEABLE);
2070 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2071 }
2072 if (IS_ERR(page)) {
2073 /* We've tried hard to allocate the memory by reaping
2074 * our own buffer, now let the real VM do its job and
2075 * go down in flames if truly OOM.
2076 */
2077 i915_gem_shrink_all(dev_priv);
2078 page = shmem_read_mapping_page(mapping, i);
2079 if (IS_ERR(page))
2080 goto err_pages;
2081 }
2082 #ifdef CONFIG_SWIOTLB
2083 if (swiotlb_nr_tbl()) {
2084 st->nents++;
2085 sg_set_page(sg, page, PAGE_SIZE, 0);
2086 sg = sg_next(sg);
2087 continue;
2088 }
2089 #endif
2090 if (!i || page_to_pfn(page) != last_pfn + 1) {
2091 if (i)
2092 sg = sg_next(sg);
2093 st->nents++;
2094 sg_set_page(sg, page, PAGE_SIZE, 0);
2095 } else {
2096 sg->length += PAGE_SIZE;
2097 }
2098 last_pfn = page_to_pfn(page);
2099
2100 /* Check that the i965g/gm workaround works. */
2101 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2102 }
2103 #ifdef CONFIG_SWIOTLB
2104 if (!swiotlb_nr_tbl())
2105 #endif
2106 sg_mark_end(sg);
2107 obj->pages = st;
2108
2109 if (i915_gem_object_needs_bit17_swizzle(obj))
2110 i915_gem_object_do_bit_17_swizzle(obj);
2111
2112 if (obj->tiling_mode != I915_TILING_NONE &&
2113 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2114 i915_gem_object_pin_pages(obj);
2115
2116 return 0;
2117
2118 err_pages:
2119 sg_mark_end(sg);
2120 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2121 page_cache_release(sg_page_iter_page(&sg_iter));
2122 sg_free_table(st);
2123 kfree(st);
2124
2125 /* shmemfs first checks if there is enough memory to allocate the page
2126 * and reports ENOSPC should there be insufficient, along with the usual
2127 * ENOMEM for a genuine allocation failure.
2128 *
2129 * We use ENOSPC in our driver to mean that we have run out of aperture
2130 * space and so want to translate the error from shmemfs back to our
2131 * usual understanding of ENOMEM.
2132 */
2133 if (PTR_ERR(page) == -ENOSPC)
2134 return -ENOMEM;
2135 else
2136 return PTR_ERR(page);
2137 }
2138
2139 /* Ensure that the associated pages are gathered from the backing storage
2140 * and pinned into our object. i915_gem_object_get_pages() may be called
2141 * multiple times before they are released by a single call to
2142 * i915_gem_object_put_pages() - once the pages are no longer referenced
2143 * either as a result of memory pressure (reaping pages under the shrinker)
2144 * or as the object is itself released.
2145 */
2146 int
2147 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2148 {
2149 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2150 const struct drm_i915_gem_object_ops *ops = obj->ops;
2151 int ret;
2152
2153 if (obj->pages)
2154 return 0;
2155
2156 if (obj->madv != I915_MADV_WILLNEED) {
2157 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2158 return -EFAULT;
2159 }
2160
2161 BUG_ON(obj->pages_pin_count);
2162
2163 ret = ops->get_pages(obj);
2164 if (ret)
2165 return ret;
2166
2167 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2168
2169 obj->get_page.sg = obj->pages->sgl;
2170 obj->get_page.last = 0;
2171
2172 return 0;
2173 }
2174
2175 static void
2176 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2177 struct intel_engine_cs *ring)
2178 {
2179 struct drm_i915_gem_request *req;
2180 struct intel_engine_cs *old_ring;
2181
2182 BUG_ON(ring == NULL);
2183
2184 req = intel_ring_get_request(ring);
2185 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2186
2187 if (old_ring != ring && obj->last_write_req) {
2188 /* Keep the request relative to the current ring */
2189 i915_gem_request_assign(&obj->last_write_req, req);
2190 }
2191
2192 /* Add a reference if we're newly entering the active list. */
2193 if (!obj->active) {
2194 drm_gem_object_reference(&obj->base);
2195 obj->active = 1;
2196 }
2197
2198 list_move_tail(&obj->ring_list, &ring->active_list);
2199
2200 i915_gem_request_assign(&obj->last_read_req, req);
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204 struct intel_engine_cs *ring)
2205 {
2206 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207 return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213 struct i915_vma *vma;
2214
2215 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2216 BUG_ON(!obj->active);
2217
2218 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2219 if (!list_empty(&vma->mm_list))
2220 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2221 }
2222
2223 intel_fb_obj_flush(obj, true);
2224
2225 list_del_init(&obj->ring_list);
2226
2227 i915_gem_request_assign(&obj->last_read_req, NULL);
2228 i915_gem_request_assign(&obj->last_write_req, NULL);
2229 obj->base.write_domain = 0;
2230
2231 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2232
2233 obj->active = 0;
2234 drm_gem_object_unreference(&obj->base);
2235
2236 WARN_ON(i915_verify_lists(dev));
2237 }
2238
2239 static void
2240 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241 {
2242 if (obj->last_read_req == NULL)
2243 return;
2244
2245 if (i915_gem_request_completed(obj->last_read_req, true))
2246 i915_gem_object_move_to_inactive(obj);
2247 }
2248
2249 static int
2250 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251 {
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 struct intel_engine_cs *ring;
2254 int ret, i, j;
2255
2256 /* Carefully retire all requests without writing to the rings */
2257 for_each_ring(ring, dev_priv, i) {
2258 ret = intel_ring_idle(ring);
2259 if (ret)
2260 return ret;
2261 }
2262 i915_gem_retire_requests(dev);
2263
2264 /* Finally reset hw state */
2265 for_each_ring(ring, dev_priv, i) {
2266 intel_ring_init_seqno(ring, seqno);
2267
2268 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269 ring->semaphore.sync_seqno[j] = 0;
2270 }
2271
2272 return 0;
2273 }
2274
2275 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276 {
2277 struct drm_i915_private *dev_priv = dev->dev_private;
2278 int ret;
2279
2280 if (seqno == 0)
2281 return -EINVAL;
2282
2283 /* HWS page needs to be set less than what we
2284 * will inject to ring
2285 */
2286 ret = i915_gem_init_seqno(dev, seqno - 1);
2287 if (ret)
2288 return ret;
2289
2290 /* Carefully set the last_seqno value so that wrap
2291 * detection still works
2292 */
2293 dev_priv->next_seqno = seqno;
2294 dev_priv->last_seqno = seqno - 1;
2295 if (dev_priv->last_seqno == 0)
2296 dev_priv->last_seqno--;
2297
2298 return 0;
2299 }
2300
2301 int
2302 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303 {
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306 /* reserve 0 for non-seqno */
2307 if (dev_priv->next_seqno == 0) {
2308 int ret = i915_gem_init_seqno(dev, 0);
2309 if (ret)
2310 return ret;
2311
2312 dev_priv->next_seqno = 1;
2313 }
2314
2315 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316 return 0;
2317 }
2318
2319 int __i915_add_request(struct intel_engine_cs *ring,
2320 struct drm_file *file,
2321 struct drm_i915_gem_object *obj)
2322 {
2323 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2324 struct drm_i915_gem_request *request;
2325 struct intel_ringbuffer *ringbuf;
2326 u32 request_start;
2327 int ret;
2328
2329 request = ring->outstanding_lazy_request;
2330 if (WARN_ON(request == NULL))
2331 return -ENOMEM;
2332
2333 if (i915.enable_execlists) {
2334 ringbuf = request->ctx->engine[ring->id].ringbuf;
2335 } else
2336 ringbuf = ring->buffer;
2337
2338 request_start = intel_ring_get_tail(ringbuf);
2339 /*
2340 * Emit any outstanding flushes - execbuf can fail to emit the flush
2341 * after having emitted the batchbuffer command. Hence we need to fix
2342 * things up similar to emitting the lazy request. The difference here
2343 * is that the flush _must_ happen before the next request, no matter
2344 * what.
2345 */
2346 if (i915.enable_execlists) {
2347 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2348 if (ret)
2349 return ret;
2350 } else {
2351 ret = intel_ring_flush_all_caches(ring);
2352 if (ret)
2353 return ret;
2354 }
2355
2356 /* Record the position of the start of the request so that
2357 * should we detect the updated seqno part-way through the
2358 * GPU processing the request, we never over-estimate the
2359 * position of the head.
2360 */
2361 request->postfix = intel_ring_get_tail(ringbuf);
2362
2363 if (i915.enable_execlists) {
2364 ret = ring->emit_request(ringbuf, request);
2365 if (ret)
2366 return ret;
2367 } else {
2368 ret = ring->add_request(ring);
2369 if (ret)
2370 return ret;
2371 }
2372
2373 request->head = request_start;
2374 request->tail = intel_ring_get_tail(ringbuf);
2375
2376 /* Whilst this request exists, batch_obj will be on the
2377 * active_list, and so will hold the active reference. Only when this
2378 * request is retired will the the batch_obj be moved onto the
2379 * inactive_list and lose its active reference. Hence we do not need
2380 * to explicitly hold another reference here.
2381 */
2382 request->batch_obj = obj;
2383
2384 if (!i915.enable_execlists) {
2385 /* Hold a reference to the current context so that we can inspect
2386 * it later in case a hangcheck error event fires.
2387 */
2388 request->ctx = ring->last_context;
2389 if (request->ctx)
2390 i915_gem_context_reference(request->ctx);
2391 }
2392
2393 request->emitted_jiffies = jiffies;
2394 list_add_tail(&request->list, &ring->request_list);
2395 request->file_priv = NULL;
2396
2397 if (file) {
2398 struct drm_i915_file_private *file_priv = file->driver_priv;
2399
2400 spin_lock(&file_priv->mm.lock);
2401 request->file_priv = file_priv;
2402 list_add_tail(&request->client_list,
2403 &file_priv->mm.request_list);
2404 spin_unlock(&file_priv->mm.lock);
2405
2406 request->pid = get_pid(task_pid(current));
2407 }
2408
2409 trace_i915_gem_request_add(request);
2410 ring->outstanding_lazy_request = NULL;
2411
2412 i915_queue_hangcheck(ring->dev);
2413
2414 queue_delayed_work(dev_priv->wq,
2415 &dev_priv->mm.retire_work,
2416 round_jiffies_up_relative(HZ));
2417 intel_mark_busy(dev_priv->dev);
2418
2419 return 0;
2420 }
2421
2422 static inline void
2423 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2424 {
2425 struct drm_i915_file_private *file_priv = request->file_priv;
2426
2427 if (!file_priv)
2428 return;
2429
2430 spin_lock(&file_priv->mm.lock);
2431 list_del(&request->client_list);
2432 request->file_priv = NULL;
2433 spin_unlock(&file_priv->mm.lock);
2434 }
2435
2436 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2437 const struct intel_context *ctx)
2438 {
2439 unsigned long elapsed;
2440
2441 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2442
2443 if (ctx->hang_stats.banned)
2444 return true;
2445
2446 if (ctx->hang_stats.ban_period_seconds &&
2447 elapsed <= ctx->hang_stats.ban_period_seconds) {
2448 if (!i915_gem_context_is_default(ctx)) {
2449 DRM_DEBUG("context hanging too fast, banning!\n");
2450 return true;
2451 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2452 if (i915_stop_ring_allow_warn(dev_priv))
2453 DRM_ERROR("gpu hanging too fast, banning!\n");
2454 return true;
2455 }
2456 }
2457
2458 return false;
2459 }
2460
2461 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2462 struct intel_context *ctx,
2463 const bool guilty)
2464 {
2465 struct i915_ctx_hang_stats *hs;
2466
2467 if (WARN_ON(!ctx))
2468 return;
2469
2470 hs = &ctx->hang_stats;
2471
2472 if (guilty) {
2473 hs->banned = i915_context_is_banned(dev_priv, ctx);
2474 hs->batch_active++;
2475 hs->guilty_ts = get_seconds();
2476 } else {
2477 hs->batch_pending++;
2478 }
2479 }
2480
2481 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2482 {
2483 list_del(&request->list);
2484 i915_gem_request_remove_from_client(request);
2485
2486 put_pid(request->pid);
2487
2488 i915_gem_request_unreference(request);
2489 }
2490
2491 void i915_gem_request_free(struct kref *req_ref)
2492 {
2493 struct drm_i915_gem_request *req = container_of(req_ref,
2494 typeof(*req), ref);
2495 struct intel_context *ctx = req->ctx;
2496
2497 if (ctx) {
2498 if (i915.enable_execlists) {
2499 struct intel_engine_cs *ring = req->ring;
2500
2501 if (ctx != ring->default_context)
2502 intel_lr_context_unpin(ring, ctx);
2503 }
2504
2505 i915_gem_context_unreference(ctx);
2506 }
2507
2508 kmem_cache_free(req->i915->requests, req);
2509 }
2510
2511 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2512 struct intel_context *ctx)
2513 {
2514 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2515 struct drm_i915_gem_request *rq;
2516 int ret;
2517
2518 if (ring->outstanding_lazy_request)
2519 return 0;
2520
2521 rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2522 if (rq == NULL)
2523 return -ENOMEM;
2524
2525 kref_init(&rq->ref);
2526 rq->i915 = dev_priv;
2527
2528 ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2529 if (ret) {
2530 kfree(rq);
2531 return ret;
2532 }
2533
2534 rq->ring = ring;
2535
2536 if (i915.enable_execlists)
2537 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2538 else
2539 ret = intel_ring_alloc_request_extras(rq);
2540 if (ret) {
2541 kfree(rq);
2542 return ret;
2543 }
2544
2545 ring->outstanding_lazy_request = rq;
2546 return 0;
2547 }
2548
2549 struct drm_i915_gem_request *
2550 i915_gem_find_active_request(struct intel_engine_cs *ring)
2551 {
2552 struct drm_i915_gem_request *request;
2553
2554 list_for_each_entry(request, &ring->request_list, list) {
2555 if (i915_gem_request_completed(request, false))
2556 continue;
2557
2558 return request;
2559 }
2560
2561 return NULL;
2562 }
2563
2564 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2565 struct intel_engine_cs *ring)
2566 {
2567 struct drm_i915_gem_request *request;
2568 bool ring_hung;
2569
2570 request = i915_gem_find_active_request(ring);
2571
2572 if (request == NULL)
2573 return;
2574
2575 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2576
2577 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2578
2579 list_for_each_entry_continue(request, &ring->request_list, list)
2580 i915_set_reset_status(dev_priv, request->ctx, false);
2581 }
2582
2583 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2584 struct intel_engine_cs *ring)
2585 {
2586 while (!list_empty(&ring->active_list)) {
2587 struct drm_i915_gem_object *obj;
2588
2589 obj = list_first_entry(&ring->active_list,
2590 struct drm_i915_gem_object,
2591 ring_list);
2592
2593 i915_gem_object_move_to_inactive(obj);
2594 }
2595
2596 /*
2597 * Clear the execlists queue up before freeing the requests, as those
2598 * are the ones that keep the context and ringbuffer backing objects
2599 * pinned in place.
2600 */
2601 while (!list_empty(&ring->execlist_queue)) {
2602 struct drm_i915_gem_request *submit_req;
2603
2604 submit_req = list_first_entry(&ring->execlist_queue,
2605 struct drm_i915_gem_request,
2606 execlist_link);
2607 list_del(&submit_req->execlist_link);
2608
2609 if (submit_req->ctx != ring->default_context)
2610 intel_lr_context_unpin(ring, submit_req->ctx);
2611
2612 i915_gem_request_unreference(submit_req);
2613 }
2614
2615 /*
2616 * We must free the requests after all the corresponding objects have
2617 * been moved off active lists. Which is the same order as the normal
2618 * retire_requests function does. This is important if object hold
2619 * implicit references on things like e.g. ppgtt address spaces through
2620 * the request.
2621 */
2622 while (!list_empty(&ring->request_list)) {
2623 struct drm_i915_gem_request *request;
2624
2625 request = list_first_entry(&ring->request_list,
2626 struct drm_i915_gem_request,
2627 list);
2628
2629 i915_gem_free_request(request);
2630 }
2631
2632 /* This may not have been flushed before the reset, so clean it now */
2633 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2634 }
2635
2636 void i915_gem_restore_fences(struct drm_device *dev)
2637 {
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2639 int i;
2640
2641 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2642 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2643
2644 /*
2645 * Commit delayed tiling changes if we have an object still
2646 * attached to the fence, otherwise just clear the fence.
2647 */
2648 if (reg->obj) {
2649 i915_gem_object_update_fence(reg->obj, reg,
2650 reg->obj->tiling_mode);
2651 } else {
2652 i915_gem_write_fence(dev, i, NULL);
2653 }
2654 }
2655 }
2656
2657 void i915_gem_reset(struct drm_device *dev)
2658 {
2659 struct drm_i915_private *dev_priv = dev->dev_private;
2660 struct intel_engine_cs *ring;
2661 int i;
2662
2663 /*
2664 * Before we free the objects from the requests, we need to inspect
2665 * them for finding the guilty party. As the requests only borrow
2666 * their reference to the objects, the inspection must be done first.
2667 */
2668 for_each_ring(ring, dev_priv, i)
2669 i915_gem_reset_ring_status(dev_priv, ring);
2670
2671 for_each_ring(ring, dev_priv, i)
2672 i915_gem_reset_ring_cleanup(dev_priv, ring);
2673
2674 i915_gem_context_reset(dev);
2675
2676 i915_gem_restore_fences(dev);
2677 }
2678
2679 /**
2680 * This function clears the request list as sequence numbers are passed.
2681 */
2682 void
2683 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2684 {
2685 if (list_empty(&ring->request_list))
2686 return;
2687
2688 WARN_ON(i915_verify_lists(ring->dev));
2689
2690 /* Retire requests first as we use it above for the early return.
2691 * If we retire requests last, we may use a later seqno and so clear
2692 * the requests lists without clearing the active list, leading to
2693 * confusion.
2694 */
2695 while (!list_empty(&ring->request_list)) {
2696 struct drm_i915_gem_request *request;
2697
2698 request = list_first_entry(&ring->request_list,
2699 struct drm_i915_gem_request,
2700 list);
2701
2702 if (!i915_gem_request_completed(request, true))
2703 break;
2704
2705 trace_i915_gem_request_retire(request);
2706
2707 /* We know the GPU must have read the request to have
2708 * sent us the seqno + interrupt, so use the position
2709 * of tail of the request to update the last known position
2710 * of the GPU head.
2711 */
2712 request->ringbuf->last_retired_head = request->postfix;
2713
2714 i915_gem_free_request(request);
2715 }
2716
2717 /* Move any buffers on the active list that are no longer referenced
2718 * by the ringbuffer to the flushing/inactive lists as appropriate,
2719 * before we free the context associated with the requests.
2720 */
2721 while (!list_empty(&ring->active_list)) {
2722 struct drm_i915_gem_object *obj;
2723
2724 obj = list_first_entry(&ring->active_list,
2725 struct drm_i915_gem_object,
2726 ring_list);
2727
2728 if (!i915_gem_request_completed(obj->last_read_req, true))
2729 break;
2730
2731 i915_gem_object_move_to_inactive(obj);
2732 }
2733
2734 if (unlikely(ring->trace_irq_req &&
2735 i915_gem_request_completed(ring->trace_irq_req, true))) {
2736 ring->irq_put(ring);
2737 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2738 }
2739
2740 WARN_ON(i915_verify_lists(ring->dev));
2741 }
2742
2743 bool
2744 i915_gem_retire_requests(struct drm_device *dev)
2745 {
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 struct intel_engine_cs *ring;
2748 bool idle = true;
2749 int i;
2750
2751 for_each_ring(ring, dev_priv, i) {
2752 i915_gem_retire_requests_ring(ring);
2753 idle &= list_empty(&ring->request_list);
2754 if (i915.enable_execlists) {
2755 unsigned long flags;
2756
2757 spin_lock_irqsave(&ring->execlist_lock, flags);
2758 idle &= list_empty(&ring->execlist_queue);
2759 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2760
2761 intel_execlists_retire_requests(ring);
2762 }
2763 }
2764
2765 if (idle)
2766 mod_delayed_work(dev_priv->wq,
2767 &dev_priv->mm.idle_work,
2768 msecs_to_jiffies(100));
2769
2770 return idle;
2771 }
2772
2773 static void
2774 i915_gem_retire_work_handler(struct work_struct *work)
2775 {
2776 struct drm_i915_private *dev_priv =
2777 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2778 struct drm_device *dev = dev_priv->dev;
2779 bool idle;
2780
2781 /* Come back later if the device is busy... */
2782 idle = false;
2783 if (mutex_trylock(&dev->struct_mutex)) {
2784 idle = i915_gem_retire_requests(dev);
2785 mutex_unlock(&dev->struct_mutex);
2786 }
2787 if (!idle)
2788 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2789 round_jiffies_up_relative(HZ));
2790 }
2791
2792 static void
2793 i915_gem_idle_work_handler(struct work_struct *work)
2794 {
2795 struct drm_i915_private *dev_priv =
2796 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2797 struct drm_device *dev = dev_priv->dev;
2798 struct intel_engine_cs *ring;
2799 int i;
2800
2801 for_each_ring(ring, dev_priv, i)
2802 if (!list_empty(&ring->request_list))
2803 return;
2804
2805 intel_mark_idle(dev);
2806
2807 if (mutex_trylock(&dev->struct_mutex)) {
2808 struct intel_engine_cs *ring;
2809 int i;
2810
2811 for_each_ring(ring, dev_priv, i)
2812 i915_gem_batch_pool_fini(&ring->batch_pool);
2813
2814 mutex_unlock(&dev->struct_mutex);
2815 }
2816 }
2817
2818 /**
2819 * Ensures that an object will eventually get non-busy by flushing any required
2820 * write domains, emitting any outstanding lazy request and retiring and
2821 * completed requests.
2822 */
2823 static int
2824 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2825 {
2826 struct intel_engine_cs *ring;
2827 int ret;
2828
2829 if (obj->active) {
2830 ring = i915_gem_request_get_ring(obj->last_read_req);
2831
2832 ret = i915_gem_check_olr(obj->last_read_req);
2833 if (ret)
2834 return ret;
2835
2836 i915_gem_retire_requests_ring(ring);
2837 }
2838
2839 return 0;
2840 }
2841
2842 /**
2843 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2844 * @DRM_IOCTL_ARGS: standard ioctl arguments
2845 *
2846 * Returns 0 if successful, else an error is returned with the remaining time in
2847 * the timeout parameter.
2848 * -ETIME: object is still busy after timeout
2849 * -ERESTARTSYS: signal interrupted the wait
2850 * -ENONENT: object doesn't exist
2851 * Also possible, but rare:
2852 * -EAGAIN: GPU wedged
2853 * -ENOMEM: damn
2854 * -ENODEV: Internal IRQ fail
2855 * -E?: The add request failed
2856 *
2857 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2858 * non-zero timeout parameter the wait ioctl will wait for the given number of
2859 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2860 * without holding struct_mutex the object may become re-busied before this
2861 * function completes. A similar but shorter * race condition exists in the busy
2862 * ioctl
2863 */
2864 int
2865 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2866 {
2867 struct drm_i915_private *dev_priv = dev->dev_private;
2868 struct drm_i915_gem_wait *args = data;
2869 struct drm_i915_gem_object *obj;
2870 struct drm_i915_gem_request *req;
2871 unsigned reset_counter;
2872 int ret = 0;
2873
2874 if (args->flags != 0)
2875 return -EINVAL;
2876
2877 ret = i915_mutex_lock_interruptible(dev);
2878 if (ret)
2879 return ret;
2880
2881 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2882 if (&obj->base == NULL) {
2883 mutex_unlock(&dev->struct_mutex);
2884 return -ENOENT;
2885 }
2886
2887 /* Need to make sure the object gets inactive eventually. */
2888 ret = i915_gem_object_flush_active(obj);
2889 if (ret)
2890 goto out;
2891
2892 if (!obj->active || !obj->last_read_req)
2893 goto out;
2894
2895 req = obj->last_read_req;
2896
2897 /* Do this after OLR check to make sure we make forward progress polling
2898 * on this IOCTL with a timeout == 0 (like busy ioctl)
2899 */
2900 if (args->timeout_ns == 0) {
2901 ret = -ETIME;
2902 goto out;
2903 }
2904
2905 drm_gem_object_unreference(&obj->base);
2906 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2907 i915_gem_request_reference(req);
2908 mutex_unlock(&dev->struct_mutex);
2909
2910 ret = __i915_wait_request(req, reset_counter, true,
2911 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2912 file->driver_priv);
2913 i915_gem_request_unreference__unlocked(req);
2914 return ret;
2915
2916 out:
2917 drm_gem_object_unreference(&obj->base);
2918 mutex_unlock(&dev->struct_mutex);
2919 return ret;
2920 }
2921
2922 /**
2923 * i915_gem_object_sync - sync an object to a ring.
2924 *
2925 * @obj: object which may be in use on another ring.
2926 * @to: ring we wish to use the object on. May be NULL.
2927 *
2928 * This code is meant to abstract object synchronization with the GPU.
2929 * Calling with NULL implies synchronizing the object with the CPU
2930 * rather than a particular GPU ring.
2931 *
2932 * Returns 0 if successful, else propagates up the lower layer error.
2933 */
2934 int
2935 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2936 struct intel_engine_cs *to)
2937 {
2938 struct intel_engine_cs *from;
2939 u32 seqno;
2940 int ret, idx;
2941
2942 from = i915_gem_request_get_ring(obj->last_read_req);
2943
2944 if (from == NULL || to == from)
2945 return 0;
2946
2947 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2948 return i915_gem_object_wait_rendering(obj, false);
2949
2950 idx = intel_ring_sync_index(from, to);
2951
2952 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2953 /* Optimization: Avoid semaphore sync when we are sure we already
2954 * waited for an object with higher seqno */
2955 if (seqno <= from->semaphore.sync_seqno[idx])
2956 return 0;
2957
2958 ret = i915_gem_check_olr(obj->last_read_req);
2959 if (ret)
2960 return ret;
2961
2962 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2963 ret = to->semaphore.sync_to(to, from, seqno);
2964 if (!ret)
2965 /* We use last_read_req because sync_to()
2966 * might have just caused seqno wrap under
2967 * the radar.
2968 */
2969 from->semaphore.sync_seqno[idx] =
2970 i915_gem_request_get_seqno(obj->last_read_req);
2971
2972 return ret;
2973 }
2974
2975 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2976 {
2977 u32 old_write_domain, old_read_domains;
2978
2979 /* Force a pagefault for domain tracking on next user access */
2980 i915_gem_release_mmap(obj);
2981
2982 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2983 return;
2984
2985 /* Wait for any direct GTT access to complete */
2986 mb();
2987
2988 old_read_domains = obj->base.read_domains;
2989 old_write_domain = obj->base.write_domain;
2990
2991 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2992 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2993
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
2996 old_write_domain);
2997 }
2998
2999 int i915_vma_unbind(struct i915_vma *vma)
3000 {
3001 struct drm_i915_gem_object *obj = vma->obj;
3002 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3003 int ret;
3004
3005 if (list_empty(&vma->vma_link))
3006 return 0;
3007
3008 if (!drm_mm_node_allocated(&vma->node)) {
3009 i915_gem_vma_destroy(vma);
3010 return 0;
3011 }
3012
3013 if (vma->pin_count)
3014 return -EBUSY;
3015
3016 BUG_ON(obj->pages == NULL);
3017
3018 ret = i915_gem_object_finish_gpu(obj);
3019 if (ret)
3020 return ret;
3021 /* Continue on if we fail due to EIO, the GPU is hung so we
3022 * should be safe and we need to cleanup or else we might
3023 * cause memory corruption through use-after-free.
3024 */
3025
3026 if (i915_is_ggtt(vma->vm) &&
3027 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3028 i915_gem_object_finish_gtt(obj);
3029
3030 /* release the fence reg _after_ flushing */
3031 ret = i915_gem_object_put_fence(obj);
3032 if (ret)
3033 return ret;
3034 }
3035
3036 trace_i915_vma_unbind(vma);
3037
3038 vma->unbind_vma(vma);
3039
3040 list_del_init(&vma->mm_list);
3041 if (i915_is_ggtt(vma->vm)) {
3042 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3043 obj->map_and_fenceable = false;
3044 } else if (vma->ggtt_view.pages) {
3045 sg_free_table(vma->ggtt_view.pages);
3046 kfree(vma->ggtt_view.pages);
3047 vma->ggtt_view.pages = NULL;
3048 }
3049 }
3050
3051 drm_mm_remove_node(&vma->node);
3052 i915_gem_vma_destroy(vma);
3053
3054 /* Since the unbound list is global, only move to that list if
3055 * no more VMAs exist. */
3056 if (list_empty(&obj->vma_list)) {
3057 /* Throw away the active reference before
3058 * moving to the unbound list. */
3059 i915_gem_object_retire(obj);
3060
3061 i915_gem_gtt_finish_object(obj);
3062 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3063 }
3064
3065 /* And finally now the object is completely decoupled from this vma,
3066 * we can drop its hold on the backing storage and allow it to be
3067 * reaped by the shrinker.
3068 */
3069 i915_gem_object_unpin_pages(obj);
3070
3071 return 0;
3072 }
3073
3074 int i915_gpu_idle(struct drm_device *dev)
3075 {
3076 struct drm_i915_private *dev_priv = dev->dev_private;
3077 struct intel_engine_cs *ring;
3078 int ret, i;
3079
3080 /* Flush everything onto the inactive list. */
3081 for_each_ring(ring, dev_priv, i) {
3082 if (!i915.enable_execlists) {
3083 ret = i915_switch_context(ring, ring->default_context);
3084 if (ret)
3085 return ret;
3086 }
3087
3088 ret = intel_ring_idle(ring);
3089 if (ret)
3090 return ret;
3091 }
3092
3093 return 0;
3094 }
3095
3096 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3097 struct drm_i915_gem_object *obj)
3098 {
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 int fence_reg;
3101 int fence_pitch_shift;
3102
3103 if (INTEL_INFO(dev)->gen >= 6) {
3104 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3105 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3106 } else {
3107 fence_reg = FENCE_REG_965_0;
3108 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3109 }
3110
3111 fence_reg += reg * 8;
3112
3113 /* To w/a incoherency with non-atomic 64-bit register updates,
3114 * we split the 64-bit update into two 32-bit writes. In order
3115 * for a partial fence not to be evaluated between writes, we
3116 * precede the update with write to turn off the fence register,
3117 * and only enable the fence as the last step.
3118 *
3119 * For extra levels of paranoia, we make sure each step lands
3120 * before applying the next step.
3121 */
3122 I915_WRITE(fence_reg, 0);
3123 POSTING_READ(fence_reg);
3124
3125 if (obj) {
3126 u32 size = i915_gem_obj_ggtt_size(obj);
3127 uint64_t val;
3128
3129 /* Adjust fence size to match tiled area */
3130 if (obj->tiling_mode != I915_TILING_NONE) {
3131 uint32_t row_size = obj->stride *
3132 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3133 size = (size / row_size) * row_size;
3134 }
3135
3136 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3137 0xfffff000) << 32;
3138 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3139 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3140 if (obj->tiling_mode == I915_TILING_Y)
3141 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3142 val |= I965_FENCE_REG_VALID;
3143
3144 I915_WRITE(fence_reg + 4, val >> 32);
3145 POSTING_READ(fence_reg + 4);
3146
3147 I915_WRITE(fence_reg + 0, val);
3148 POSTING_READ(fence_reg);
3149 } else {
3150 I915_WRITE(fence_reg + 4, 0);
3151 POSTING_READ(fence_reg + 4);
3152 }
3153 }
3154
3155 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3156 struct drm_i915_gem_object *obj)
3157 {
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 u32 val;
3160
3161 if (obj) {
3162 u32 size = i915_gem_obj_ggtt_size(obj);
3163 int pitch_val;
3164 int tile_width;
3165
3166 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3167 (size & -size) != size ||
3168 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3169 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3170 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3171
3172 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3173 tile_width = 128;
3174 else
3175 tile_width = 512;
3176
3177 /* Note: pitch better be a power of two tile widths */
3178 pitch_val = obj->stride / tile_width;
3179 pitch_val = ffs(pitch_val) - 1;
3180
3181 val = i915_gem_obj_ggtt_offset(obj);
3182 if (obj->tiling_mode == I915_TILING_Y)
3183 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3184 val |= I915_FENCE_SIZE_BITS(size);
3185 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3186 val |= I830_FENCE_REG_VALID;
3187 } else
3188 val = 0;
3189
3190 if (reg < 8)
3191 reg = FENCE_REG_830_0 + reg * 4;
3192 else
3193 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3194
3195 I915_WRITE(reg, val);
3196 POSTING_READ(reg);
3197 }
3198
3199 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3200 struct drm_i915_gem_object *obj)
3201 {
3202 struct drm_i915_private *dev_priv = dev->dev_private;
3203 uint32_t val;
3204
3205 if (obj) {
3206 u32 size = i915_gem_obj_ggtt_size(obj);
3207 uint32_t pitch_val;
3208
3209 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3210 (size & -size) != size ||
3211 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3212 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3213 i915_gem_obj_ggtt_offset(obj), size);
3214
3215 pitch_val = obj->stride / 128;
3216 pitch_val = ffs(pitch_val) - 1;
3217
3218 val = i915_gem_obj_ggtt_offset(obj);
3219 if (obj->tiling_mode == I915_TILING_Y)
3220 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3221 val |= I830_FENCE_SIZE_BITS(size);
3222 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3223 val |= I830_FENCE_REG_VALID;
3224 } else
3225 val = 0;
3226
3227 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3228 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3229 }
3230
3231 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3232 {
3233 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3234 }
3235
3236 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3237 struct drm_i915_gem_object *obj)
3238 {
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240
3241 /* Ensure that all CPU reads are completed before installing a fence
3242 * and all writes before removing the fence.
3243 */
3244 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3245 mb();
3246
3247 WARN(obj && (!obj->stride || !obj->tiling_mode),
3248 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3249 obj->stride, obj->tiling_mode);
3250
3251 if (IS_GEN2(dev))
3252 i830_write_fence_reg(dev, reg, obj);
3253 else if (IS_GEN3(dev))
3254 i915_write_fence_reg(dev, reg, obj);
3255 else if (INTEL_INFO(dev)->gen >= 4)
3256 i965_write_fence_reg(dev, reg, obj);
3257
3258 /* And similarly be paranoid that no direct access to this region
3259 * is reordered to before the fence is installed.
3260 */
3261 if (i915_gem_object_needs_mb(obj))
3262 mb();
3263 }
3264
3265 static inline int fence_number(struct drm_i915_private *dev_priv,
3266 struct drm_i915_fence_reg *fence)
3267 {
3268 return fence - dev_priv->fence_regs;
3269 }
3270
3271 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3272 struct drm_i915_fence_reg *fence,
3273 bool enable)
3274 {
3275 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3276 int reg = fence_number(dev_priv, fence);
3277
3278 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3279
3280 if (enable) {
3281 obj->fence_reg = reg;
3282 fence->obj = obj;
3283 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3284 } else {
3285 obj->fence_reg = I915_FENCE_REG_NONE;
3286 fence->obj = NULL;
3287 list_del_init(&fence->lru_list);
3288 }
3289 obj->fence_dirty = false;
3290 }
3291
3292 static int
3293 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3294 {
3295 if (obj->last_fenced_req) {
3296 int ret = i915_wait_request(obj->last_fenced_req);
3297 if (ret)
3298 return ret;
3299
3300 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3301 }
3302
3303 return 0;
3304 }
3305
3306 int
3307 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3308 {
3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 struct drm_i915_fence_reg *fence;
3311 int ret;
3312
3313 ret = i915_gem_object_wait_fence(obj);
3314 if (ret)
3315 return ret;
3316
3317 if (obj->fence_reg == I915_FENCE_REG_NONE)
3318 return 0;
3319
3320 fence = &dev_priv->fence_regs[obj->fence_reg];
3321
3322 if (WARN_ON(fence->pin_count))
3323 return -EBUSY;
3324
3325 i915_gem_object_fence_lost(obj);
3326 i915_gem_object_update_fence(obj, fence, false);
3327
3328 return 0;
3329 }
3330
3331 static struct drm_i915_fence_reg *
3332 i915_find_fence_reg(struct drm_device *dev)
3333 {
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335 struct drm_i915_fence_reg *reg, *avail;
3336 int i;
3337
3338 /* First try to find a free reg */
3339 avail = NULL;
3340 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3341 reg = &dev_priv->fence_regs[i];
3342 if (!reg->obj)
3343 return reg;
3344
3345 if (!reg->pin_count)
3346 avail = reg;
3347 }
3348
3349 if (avail == NULL)
3350 goto deadlock;
3351
3352 /* None available, try to steal one or wait for a user to finish */
3353 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3354 if (reg->pin_count)
3355 continue;
3356
3357 return reg;
3358 }
3359
3360 deadlock:
3361 /* Wait for completion of pending flips which consume fences */
3362 if (intel_has_pending_fb_unpin(dev))
3363 return ERR_PTR(-EAGAIN);
3364
3365 return ERR_PTR(-EDEADLK);
3366 }
3367
3368 /**
3369 * i915_gem_object_get_fence - set up fencing for an object
3370 * @obj: object to map through a fence reg
3371 *
3372 * When mapping objects through the GTT, userspace wants to be able to write
3373 * to them without having to worry about swizzling if the object is tiled.
3374 * This function walks the fence regs looking for a free one for @obj,
3375 * stealing one if it can't find any.
3376 *
3377 * It then sets up the reg based on the object's properties: address, pitch
3378 * and tiling format.
3379 *
3380 * For an untiled surface, this removes any existing fence.
3381 */
3382 int
3383 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3384 {
3385 struct drm_device *dev = obj->base.dev;
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 bool enable = obj->tiling_mode != I915_TILING_NONE;
3388 struct drm_i915_fence_reg *reg;
3389 int ret;
3390
3391 /* Have we updated the tiling parameters upon the object and so
3392 * will need to serialise the write to the associated fence register?
3393 */
3394 if (obj->fence_dirty) {
3395 ret = i915_gem_object_wait_fence(obj);
3396 if (ret)
3397 return ret;
3398 }
3399
3400 /* Just update our place in the LRU if our fence is getting reused. */
3401 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3402 reg = &dev_priv->fence_regs[obj->fence_reg];
3403 if (!obj->fence_dirty) {
3404 list_move_tail(&reg->lru_list,
3405 &dev_priv->mm.fence_list);
3406 return 0;
3407 }
3408 } else if (enable) {
3409 if (WARN_ON(!obj->map_and_fenceable))
3410 return -EINVAL;
3411
3412 reg = i915_find_fence_reg(dev);
3413 if (IS_ERR(reg))
3414 return PTR_ERR(reg);
3415
3416 if (reg->obj) {
3417 struct drm_i915_gem_object *old = reg->obj;
3418
3419 ret = i915_gem_object_wait_fence(old);
3420 if (ret)
3421 return ret;
3422
3423 i915_gem_object_fence_lost(old);
3424 }
3425 } else
3426 return 0;
3427
3428 i915_gem_object_update_fence(obj, reg, enable);
3429
3430 return 0;
3431 }
3432
3433 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3434 unsigned long cache_level)
3435 {
3436 struct drm_mm_node *gtt_space = &vma->node;
3437 struct drm_mm_node *other;
3438
3439 /*
3440 * On some machines we have to be careful when putting differing types
3441 * of snoopable memory together to avoid the prefetcher crossing memory
3442 * domains and dying. During vm initialisation, we decide whether or not
3443 * these constraints apply and set the drm_mm.color_adjust
3444 * appropriately.
3445 */
3446 if (vma->vm->mm.color_adjust == NULL)
3447 return true;
3448
3449 if (!drm_mm_node_allocated(gtt_space))
3450 return true;
3451
3452 if (list_empty(&gtt_space->node_list))
3453 return true;
3454
3455 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3456 if (other->allocated && !other->hole_follows && other->color != cache_level)
3457 return false;
3458
3459 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3460 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3461 return false;
3462
3463 return true;
3464 }
3465
3466 /**
3467 * Finds free space in the GTT aperture and binds the object there.
3468 */
3469 static struct i915_vma *
3470 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3471 struct i915_address_space *vm,
3472 const struct i915_ggtt_view *ggtt_view,
3473 unsigned alignment,
3474 uint64_t flags)
3475 {
3476 struct drm_device *dev = obj->base.dev;
3477 struct drm_i915_private *dev_priv = dev->dev_private;
3478 u32 size, fence_size, fence_alignment, unfenced_alignment;
3479 unsigned long start =
3480 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3481 unsigned long end =
3482 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3483 struct i915_vma *vma;
3484 int ret;
3485
3486 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3487 return ERR_PTR(-EINVAL);
3488
3489 fence_size = i915_gem_get_gtt_size(dev,
3490 obj->base.size,
3491 obj->tiling_mode);
3492 fence_alignment = i915_gem_get_gtt_alignment(dev,
3493 obj->base.size,
3494 obj->tiling_mode, true);
3495 unfenced_alignment =
3496 i915_gem_get_gtt_alignment(dev,
3497 obj->base.size,
3498 obj->tiling_mode, false);
3499
3500 if (alignment == 0)
3501 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3502 unfenced_alignment;
3503 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3504 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3505 return ERR_PTR(-EINVAL);
3506 }
3507
3508 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3509
3510 /* If the object is bigger than the entire aperture, reject it early
3511 * before evicting everything in a vain attempt to find space.
3512 */
3513 if (obj->base.size > end) {
3514 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3515 obj->base.size,
3516 flags & PIN_MAPPABLE ? "mappable" : "total",
3517 end);
3518 return ERR_PTR(-E2BIG);
3519 }
3520
3521 ret = i915_gem_object_get_pages(obj);
3522 if (ret)
3523 return ERR_PTR(ret);
3524
3525 i915_gem_object_pin_pages(obj);
3526
3527 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3528 i915_gem_obj_lookup_or_create_vma(obj, vm);
3529
3530 if (IS_ERR(vma))
3531 goto err_unpin;
3532
3533 search_free:
3534 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3535 size, alignment,
3536 obj->cache_level,
3537 start, end,
3538 DRM_MM_SEARCH_DEFAULT,
3539 DRM_MM_CREATE_DEFAULT);
3540 if (ret) {
3541 ret = i915_gem_evict_something(dev, vm, size, alignment,
3542 obj->cache_level,
3543 start, end,
3544 flags);
3545 if (ret == 0)
3546 goto search_free;
3547
3548 goto err_free_vma;
3549 }
3550 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3551 ret = -EINVAL;
3552 goto err_remove_node;
3553 }
3554
3555 ret = i915_gem_gtt_prepare_object(obj);
3556 if (ret)
3557 goto err_remove_node;
3558
3559 /* allocate before insert / bind */
3560 if (vma->vm->allocate_va_range) {
3561 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3562 VM_TO_TRACE_NAME(vma->vm));
3563 ret = vma->vm->allocate_va_range(vma->vm,
3564 vma->node.start,
3565 vma->node.size);
3566 if (ret)
3567 goto err_remove_node;
3568 }
3569
3570 trace_i915_vma_bind(vma, flags);
3571 ret = i915_vma_bind(vma, obj->cache_level,
3572 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3573 if (ret)
3574 goto err_finish_gtt;
3575
3576 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3577 list_add_tail(&vma->mm_list, &vm->inactive_list);
3578
3579 return vma;
3580
3581 err_finish_gtt:
3582 i915_gem_gtt_finish_object(obj);
3583 err_remove_node:
3584 drm_mm_remove_node(&vma->node);
3585 err_free_vma:
3586 i915_gem_vma_destroy(vma);
3587 vma = ERR_PTR(ret);
3588 err_unpin:
3589 i915_gem_object_unpin_pages(obj);
3590 return vma;
3591 }
3592
3593 bool
3594 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3595 bool force)
3596 {
3597 /* If we don't have a page list set up, then we're not pinned
3598 * to GPU, and we can ignore the cache flush because it'll happen
3599 * again at bind time.
3600 */
3601 if (obj->pages == NULL)
3602 return false;
3603
3604 /*
3605 * Stolen memory is always coherent with the GPU as it is explicitly
3606 * marked as wc by the system, or the system is cache-coherent.
3607 */
3608 if (obj->stolen || obj->phys_handle)
3609 return false;
3610
3611 /* If the GPU is snooping the contents of the CPU cache,
3612 * we do not need to manually clear the CPU cache lines. However,
3613 * the caches are only snooped when the render cache is
3614 * flushed/invalidated. As we always have to emit invalidations
3615 * and flushes when moving into and out of the RENDER domain, correct
3616 * snooping behaviour occurs naturally as the result of our domain
3617 * tracking.
3618 */
3619 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3620 obj->cache_dirty = true;
3621 return false;
3622 }
3623
3624 trace_i915_gem_object_clflush(obj);
3625 drm_clflush_sg(obj->pages);
3626 obj->cache_dirty = false;
3627
3628 return true;
3629 }
3630
3631 /** Flushes the GTT write domain for the object if it's dirty. */
3632 static void
3633 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3634 {
3635 uint32_t old_write_domain;
3636
3637 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3638 return;
3639
3640 /* No actual flushing is required for the GTT write domain. Writes
3641 * to it immediately go to main memory as far as we know, so there's
3642 * no chipset flush. It also doesn't land in render cache.
3643 *
3644 * However, we do have to enforce the order so that all writes through
3645 * the GTT land before any writes to the device, such as updates to
3646 * the GATT itself.
3647 */
3648 wmb();
3649
3650 old_write_domain = obj->base.write_domain;
3651 obj->base.write_domain = 0;
3652
3653 intel_fb_obj_flush(obj, false);
3654
3655 trace_i915_gem_object_change_domain(obj,
3656 obj->base.read_domains,
3657 old_write_domain);
3658 }
3659
3660 /** Flushes the CPU write domain for the object if it's dirty. */
3661 static void
3662 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3663 {
3664 uint32_t old_write_domain;
3665
3666 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3667 return;
3668
3669 if (i915_gem_clflush_object(obj, obj->pin_display))
3670 i915_gem_chipset_flush(obj->base.dev);
3671
3672 old_write_domain = obj->base.write_domain;
3673 obj->base.write_domain = 0;
3674
3675 intel_fb_obj_flush(obj, false);
3676
3677 trace_i915_gem_object_change_domain(obj,
3678 obj->base.read_domains,
3679 old_write_domain);
3680 }
3681
3682 /**
3683 * Moves a single object to the GTT read, and possibly write domain.
3684 *
3685 * This function returns when the move is complete, including waiting on
3686 * flushes to occur.
3687 */
3688 int
3689 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3690 {
3691 uint32_t old_write_domain, old_read_domains;
3692 struct i915_vma *vma;
3693 int ret;
3694
3695 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3696 return 0;
3697
3698 ret = i915_gem_object_wait_rendering(obj, !write);
3699 if (ret)
3700 return ret;
3701
3702 i915_gem_object_retire(obj);
3703
3704 /* Flush and acquire obj->pages so that we are coherent through
3705 * direct access in memory with previous cached writes through
3706 * shmemfs and that our cache domain tracking remains valid.
3707 * For example, if the obj->filp was moved to swap without us
3708 * being notified and releasing the pages, we would mistakenly
3709 * continue to assume that the obj remained out of the CPU cached
3710 * domain.
3711 */
3712 ret = i915_gem_object_get_pages(obj);
3713 if (ret)
3714 return ret;
3715
3716 i915_gem_object_flush_cpu_write_domain(obj);
3717
3718 /* Serialise direct access to this object with the barriers for
3719 * coherent writes from the GPU, by effectively invalidating the
3720 * GTT domain upon first access.
3721 */
3722 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3723 mb();
3724
3725 old_write_domain = obj->base.write_domain;
3726 old_read_domains = obj->base.read_domains;
3727
3728 /* It should now be out of any other write domains, and we can update
3729 * the domain values for our changes.
3730 */
3731 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3732 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3733 if (write) {
3734 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3735 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3736 obj->dirty = 1;
3737 }
3738
3739 if (write)
3740 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3741
3742 trace_i915_gem_object_change_domain(obj,
3743 old_read_domains,
3744 old_write_domain);
3745
3746 /* And bump the LRU for this access */
3747 vma = i915_gem_obj_to_ggtt(obj);
3748 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3749 list_move_tail(&vma->mm_list,
3750 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3751
3752 return 0;
3753 }
3754
3755 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3756 enum i915_cache_level cache_level)
3757 {
3758 struct drm_device *dev = obj->base.dev;
3759 struct i915_vma *vma, *next;
3760 int ret;
3761
3762 if (obj->cache_level == cache_level)
3763 return 0;
3764
3765 if (i915_gem_obj_is_pinned(obj)) {
3766 DRM_DEBUG("can not change the cache level of pinned objects\n");
3767 return -EBUSY;
3768 }
3769
3770 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3771 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3772 ret = i915_vma_unbind(vma);
3773 if (ret)
3774 return ret;
3775 }
3776 }
3777
3778 if (i915_gem_obj_bound_any(obj)) {
3779 ret = i915_gem_object_finish_gpu(obj);
3780 if (ret)
3781 return ret;
3782
3783 i915_gem_object_finish_gtt(obj);
3784
3785 /* Before SandyBridge, you could not use tiling or fence
3786 * registers with snooped memory, so relinquish any fences
3787 * currently pointing to our region in the aperture.
3788 */
3789 if (INTEL_INFO(dev)->gen < 6) {
3790 ret = i915_gem_object_put_fence(obj);
3791 if (ret)
3792 return ret;
3793 }
3794
3795 list_for_each_entry(vma, &obj->vma_list, vma_link)
3796 if (drm_mm_node_allocated(&vma->node)) {
3797 ret = i915_vma_bind(vma, cache_level,
3798 vma->bound & GLOBAL_BIND);
3799 if (ret)
3800 return ret;
3801 }
3802 }
3803
3804 list_for_each_entry(vma, &obj->vma_list, vma_link)
3805 vma->node.color = cache_level;
3806 obj->cache_level = cache_level;
3807
3808 if (obj->cache_dirty &&
3809 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3810 cpu_write_needs_clflush(obj)) {
3811 if (i915_gem_clflush_object(obj, true))
3812 i915_gem_chipset_flush(obj->base.dev);
3813 }
3814
3815 return 0;
3816 }
3817
3818 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3819 struct drm_file *file)
3820 {
3821 struct drm_i915_gem_caching *args = data;
3822 struct drm_i915_gem_object *obj;
3823 int ret;
3824
3825 ret = i915_mutex_lock_interruptible(dev);
3826 if (ret)
3827 return ret;
3828
3829 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3830 if (&obj->base == NULL) {
3831 ret = -ENOENT;
3832 goto unlock;
3833 }
3834
3835 switch (obj->cache_level) {
3836 case I915_CACHE_LLC:
3837 case I915_CACHE_L3_LLC:
3838 args->caching = I915_CACHING_CACHED;
3839 break;
3840
3841 case I915_CACHE_WT:
3842 args->caching = I915_CACHING_DISPLAY;
3843 break;
3844
3845 default:
3846 args->caching = I915_CACHING_NONE;
3847 break;
3848 }
3849
3850 drm_gem_object_unreference(&obj->base);
3851 unlock:
3852 mutex_unlock(&dev->struct_mutex);
3853 return ret;
3854 }
3855
3856 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3857 struct drm_file *file)
3858 {
3859 struct drm_i915_gem_caching *args = data;
3860 struct drm_i915_gem_object *obj;
3861 enum i915_cache_level level;
3862 int ret;
3863
3864 switch (args->caching) {
3865 case I915_CACHING_NONE:
3866 level = I915_CACHE_NONE;
3867 break;
3868 case I915_CACHING_CACHED:
3869 level = I915_CACHE_LLC;
3870 break;
3871 case I915_CACHING_DISPLAY:
3872 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3873 break;
3874 default:
3875 return -EINVAL;
3876 }
3877
3878 ret = i915_mutex_lock_interruptible(dev);
3879 if (ret)
3880 return ret;
3881
3882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3883 if (&obj->base == NULL) {
3884 ret = -ENOENT;
3885 goto unlock;
3886 }
3887
3888 ret = i915_gem_object_set_cache_level(obj, level);
3889
3890 drm_gem_object_unreference(&obj->base);
3891 unlock:
3892 mutex_unlock(&dev->struct_mutex);
3893 return ret;
3894 }
3895
3896 static bool is_pin_display(struct drm_i915_gem_object *obj)
3897 {
3898 struct i915_vma *vma;
3899
3900 vma = i915_gem_obj_to_ggtt(obj);
3901 if (!vma)
3902 return false;
3903
3904 /* There are 2 sources that pin objects:
3905 * 1. The display engine (scanouts, sprites, cursors);
3906 * 2. Reservations for execbuffer;
3907 *
3908 * We can ignore reservations as we hold the struct_mutex and
3909 * are only called outside of the reservation path.
3910 */
3911 return vma->pin_count;
3912 }
3913
3914 /*
3915 * Prepare buffer for display plane (scanout, cursors, etc).
3916 * Can be called from an uninterruptible phase (modesetting) and allows
3917 * any flushes to be pipelined (for pageflips).
3918 */
3919 int
3920 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3921 u32 alignment,
3922 struct intel_engine_cs *pipelined,
3923 const struct i915_ggtt_view *view)
3924 {
3925 u32 old_read_domains, old_write_domain;
3926 bool was_pin_display;
3927 int ret;
3928
3929 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3930 ret = i915_gem_object_sync(obj, pipelined);
3931 if (ret)
3932 return ret;
3933 }
3934
3935 /* Mark the pin_display early so that we account for the
3936 * display coherency whilst setting up the cache domains.
3937 */
3938 was_pin_display = obj->pin_display;
3939 obj->pin_display = true;
3940
3941 /* The display engine is not coherent with the LLC cache on gen6. As
3942 * a result, we make sure that the pinning that is about to occur is
3943 * done with uncached PTEs. This is lowest common denominator for all
3944 * chipsets.
3945 *
3946 * However for gen6+, we could do better by using the GFDT bit instead
3947 * of uncaching, which would allow us to flush all the LLC-cached data
3948 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3949 */
3950 ret = i915_gem_object_set_cache_level(obj,
3951 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3952 if (ret)
3953 goto err_unpin_display;
3954
3955 /* As the user may map the buffer once pinned in the display plane
3956 * (e.g. libkms for the bootup splash), we have to ensure that we
3957 * always use map_and_fenceable for all scanout buffers.
3958 */
3959 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3960 view->type == I915_GGTT_VIEW_NORMAL ?
3961 PIN_MAPPABLE : 0);
3962 if (ret)
3963 goto err_unpin_display;
3964
3965 i915_gem_object_flush_cpu_write_domain(obj);
3966
3967 old_write_domain = obj->base.write_domain;
3968 old_read_domains = obj->base.read_domains;
3969
3970 /* It should now be out of any other write domains, and we can update
3971 * the domain values for our changes.
3972 */
3973 obj->base.write_domain = 0;
3974 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3975
3976 trace_i915_gem_object_change_domain(obj,
3977 old_read_domains,
3978 old_write_domain);
3979
3980 return 0;
3981
3982 err_unpin_display:
3983 WARN_ON(was_pin_display != is_pin_display(obj));
3984 obj->pin_display = was_pin_display;
3985 return ret;
3986 }
3987
3988 void
3989 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3990 const struct i915_ggtt_view *view)
3991 {
3992 i915_gem_object_ggtt_unpin_view(obj, view);
3993
3994 obj->pin_display = is_pin_display(obj);
3995 }
3996
3997 int
3998 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3999 {
4000 int ret;
4001
4002 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4003 return 0;
4004
4005 ret = i915_gem_object_wait_rendering(obj, false);
4006 if (ret)
4007 return ret;
4008
4009 /* Ensure that we invalidate the GPU's caches and TLBs. */
4010 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4011 return 0;
4012 }
4013
4014 /**
4015 * Moves a single object to the CPU read, and possibly write domain.
4016 *
4017 * This function returns when the move is complete, including waiting on
4018 * flushes to occur.
4019 */
4020 int
4021 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4022 {
4023 uint32_t old_write_domain, old_read_domains;
4024 int ret;
4025
4026 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4027 return 0;
4028
4029 ret = i915_gem_object_wait_rendering(obj, !write);
4030 if (ret)
4031 return ret;
4032
4033 i915_gem_object_retire(obj);
4034 i915_gem_object_flush_gtt_write_domain(obj);
4035
4036 old_write_domain = obj->base.write_domain;
4037 old_read_domains = obj->base.read_domains;
4038
4039 /* Flush the CPU cache if it's still invalid. */
4040 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4041 i915_gem_clflush_object(obj, false);
4042
4043 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4044 }
4045
4046 /* It should now be out of any other write domains, and we can update
4047 * the domain values for our changes.
4048 */
4049 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4050
4051 /* If we're writing through the CPU, then the GPU read domains will
4052 * need to be invalidated at next use.
4053 */
4054 if (write) {
4055 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4056 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4057 }
4058
4059 if (write)
4060 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4061
4062 trace_i915_gem_object_change_domain(obj,
4063 old_read_domains,
4064 old_write_domain);
4065
4066 return 0;
4067 }
4068
4069 /* Throttle our rendering by waiting until the ring has completed our requests
4070 * emitted over 20 msec ago.
4071 *
4072 * Note that if we were to use the current jiffies each time around the loop,
4073 * we wouldn't escape the function with any frames outstanding if the time to
4074 * render a frame was over 20ms.
4075 *
4076 * This should get us reasonable parallelism between CPU and GPU but also
4077 * relatively low latency when blocking on a particular request to finish.
4078 */
4079 static int
4080 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4081 {
4082 struct drm_i915_private *dev_priv = dev->dev_private;
4083 struct drm_i915_file_private *file_priv = file->driver_priv;
4084 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4085 struct drm_i915_gem_request *request, *target = NULL;
4086 unsigned reset_counter;
4087 int ret;
4088
4089 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4090 if (ret)
4091 return ret;
4092
4093 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4094 if (ret)
4095 return ret;
4096
4097 spin_lock(&file_priv->mm.lock);
4098 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4099 if (time_after_eq(request->emitted_jiffies, recent_enough))
4100 break;
4101
4102 target = request;
4103 }
4104 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4105 if (target)
4106 i915_gem_request_reference(target);
4107 spin_unlock(&file_priv->mm.lock);
4108
4109 if (target == NULL)
4110 return 0;
4111
4112 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4113 if (ret == 0)
4114 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4115
4116 i915_gem_request_unreference__unlocked(target);
4117
4118 return ret;
4119 }
4120
4121 static bool
4122 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4123 {
4124 struct drm_i915_gem_object *obj = vma->obj;
4125
4126 if (alignment &&
4127 vma->node.start & (alignment - 1))
4128 return true;
4129
4130 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4131 return true;
4132
4133 if (flags & PIN_OFFSET_BIAS &&
4134 vma->node.start < (flags & PIN_OFFSET_MASK))
4135 return true;
4136
4137 return false;
4138 }
4139
4140 static int
4141 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4142 struct i915_address_space *vm,
4143 const struct i915_ggtt_view *ggtt_view,
4144 uint32_t alignment,
4145 uint64_t flags)
4146 {
4147 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4148 struct i915_vma *vma;
4149 unsigned bound;
4150 int ret;
4151
4152 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4153 return -ENODEV;
4154
4155 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4156 return -EINVAL;
4157
4158 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4159 return -EINVAL;
4160
4161 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4162 return -EINVAL;
4163
4164 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4165 i915_gem_obj_to_vma(obj, vm);
4166
4167 if (IS_ERR(vma))
4168 return PTR_ERR(vma);
4169
4170 if (vma) {
4171 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4172 return -EBUSY;
4173
4174 if (i915_vma_misplaced(vma, alignment, flags)) {
4175 unsigned long offset;
4176 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4177 i915_gem_obj_offset(obj, vm);
4178 WARN(vma->pin_count,
4179 "bo is already pinned in %s with incorrect alignment:"
4180 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4181 " obj->map_and_fenceable=%d\n",
4182 ggtt_view ? "ggtt" : "ppgtt",
4183 offset,
4184 alignment,
4185 !!(flags & PIN_MAPPABLE),
4186 obj->map_and_fenceable);
4187 ret = i915_vma_unbind(vma);
4188 if (ret)
4189 return ret;
4190
4191 vma = NULL;
4192 }
4193 }
4194
4195 bound = vma ? vma->bound : 0;
4196 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4197 /* In true PPGTT, bind has possibly changed PDEs, which
4198 * means we must do a context switch before the GPU can
4199 * accurately read some of the VMAs.
4200 */
4201 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4202 flags);
4203 if (IS_ERR(vma))
4204 return PTR_ERR(vma);
4205 }
4206
4207 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4208 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4209 if (ret)
4210 return ret;
4211 }
4212
4213 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4214 bool mappable, fenceable;
4215 u32 fence_size, fence_alignment;
4216
4217 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4218 obj->base.size,
4219 obj->tiling_mode);
4220 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4221 obj->base.size,
4222 obj->tiling_mode,
4223 true);
4224
4225 fenceable = (vma->node.size == fence_size &&
4226 (vma->node.start & (fence_alignment - 1)) == 0);
4227
4228 mappable = (vma->node.start + fence_size <=
4229 dev_priv->gtt.mappable_end);
4230
4231 obj->map_and_fenceable = mappable && fenceable;
4232 }
4233
4234 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4235
4236 vma->pin_count++;
4237 if (flags & PIN_MAPPABLE)
4238 obj->pin_mappable |= true;
4239
4240 return 0;
4241 }
4242
4243 int
4244 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4245 struct i915_address_space *vm,
4246 uint32_t alignment,
4247 uint64_t flags)
4248 {
4249 return i915_gem_object_do_pin(obj, vm,
4250 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4251 alignment, flags);
4252 }
4253
4254 int
4255 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4256 const struct i915_ggtt_view *view,
4257 uint32_t alignment,
4258 uint64_t flags)
4259 {
4260 if (WARN_ONCE(!view, "no view specified"))
4261 return -EINVAL;
4262
4263 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4264 alignment, flags | PIN_GLOBAL);
4265 }
4266
4267 void
4268 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4269 const struct i915_ggtt_view *view)
4270 {
4271 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4272
4273 BUG_ON(!vma);
4274 WARN_ON(vma->pin_count == 0);
4275 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4276
4277 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4278 obj->pin_mappable = false;
4279 }
4280
4281 bool
4282 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4283 {
4284 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4285 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4286 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4287
4288 WARN_ON(!ggtt_vma ||
4289 dev_priv->fence_regs[obj->fence_reg].pin_count >
4290 ggtt_vma->pin_count);
4291 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4292 return true;
4293 } else
4294 return false;
4295 }
4296
4297 void
4298 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4299 {
4300 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4301 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4302 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4303 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4304 }
4305 }
4306
4307 int
4308 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4309 struct drm_file *file)
4310 {
4311 struct drm_i915_gem_busy *args = data;
4312 struct drm_i915_gem_object *obj;
4313 int ret;
4314
4315 ret = i915_mutex_lock_interruptible(dev);
4316 if (ret)
4317 return ret;
4318
4319 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4320 if (&obj->base == NULL) {
4321 ret = -ENOENT;
4322 goto unlock;
4323 }
4324
4325 /* Count all active objects as busy, even if they are currently not used
4326 * by the gpu. Users of this interface expect objects to eventually
4327 * become non-busy without any further actions, therefore emit any
4328 * necessary flushes here.
4329 */
4330 ret = i915_gem_object_flush_active(obj);
4331
4332 args->busy = obj->active;
4333 if (obj->last_read_req) {
4334 struct intel_engine_cs *ring;
4335 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4336 ring = i915_gem_request_get_ring(obj->last_read_req);
4337 args->busy |= intel_ring_flag(ring) << 16;
4338 }
4339
4340 drm_gem_object_unreference(&obj->base);
4341 unlock:
4342 mutex_unlock(&dev->struct_mutex);
4343 return ret;
4344 }
4345
4346 int
4347 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4348 struct drm_file *file_priv)
4349 {
4350 return i915_gem_ring_throttle(dev, file_priv);
4351 }
4352
4353 int
4354 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4355 struct drm_file *file_priv)
4356 {
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358 struct drm_i915_gem_madvise *args = data;
4359 struct drm_i915_gem_object *obj;
4360 int ret;
4361
4362 switch (args->madv) {
4363 case I915_MADV_DONTNEED:
4364 case I915_MADV_WILLNEED:
4365 break;
4366 default:
4367 return -EINVAL;
4368 }
4369
4370 ret = i915_mutex_lock_interruptible(dev);
4371 if (ret)
4372 return ret;
4373
4374 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4375 if (&obj->base == NULL) {
4376 ret = -ENOENT;
4377 goto unlock;
4378 }
4379
4380 if (i915_gem_obj_is_pinned(obj)) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 if (obj->pages &&
4386 obj->tiling_mode != I915_TILING_NONE &&
4387 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4388 if (obj->madv == I915_MADV_WILLNEED)
4389 i915_gem_object_unpin_pages(obj);
4390 if (args->madv == I915_MADV_WILLNEED)
4391 i915_gem_object_pin_pages(obj);
4392 }
4393
4394 if (obj->madv != __I915_MADV_PURGED)
4395 obj->madv = args->madv;
4396
4397 /* if the object is no longer attached, discard its backing storage */
4398 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4399 i915_gem_object_truncate(obj);
4400
4401 args->retained = obj->madv != __I915_MADV_PURGED;
4402
4403 out:
4404 drm_gem_object_unreference(&obj->base);
4405 unlock:
4406 mutex_unlock(&dev->struct_mutex);
4407 return ret;
4408 }
4409
4410 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4411 const struct drm_i915_gem_object_ops *ops)
4412 {
4413 INIT_LIST_HEAD(&obj->global_list);
4414 INIT_LIST_HEAD(&obj->ring_list);
4415 INIT_LIST_HEAD(&obj->obj_exec_link);
4416 INIT_LIST_HEAD(&obj->vma_list);
4417 INIT_LIST_HEAD(&obj->batch_pool_link);
4418
4419 obj->ops = ops;
4420
4421 obj->fence_reg = I915_FENCE_REG_NONE;
4422 obj->madv = I915_MADV_WILLNEED;
4423
4424 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4425 }
4426
4427 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4428 .get_pages = i915_gem_object_get_pages_gtt,
4429 .put_pages = i915_gem_object_put_pages_gtt,
4430 };
4431
4432 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4433 size_t size)
4434 {
4435 struct drm_i915_gem_object *obj;
4436 struct address_space *mapping;
4437 gfp_t mask;
4438
4439 obj = i915_gem_object_alloc(dev);
4440 if (obj == NULL)
4441 return NULL;
4442
4443 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4444 i915_gem_object_free(obj);
4445 return NULL;
4446 }
4447
4448 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4449 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4450 /* 965gm cannot relocate objects above 4GiB. */
4451 mask &= ~__GFP_HIGHMEM;
4452 mask |= __GFP_DMA32;
4453 }
4454
4455 mapping = file_inode(obj->base.filp)->i_mapping;
4456 mapping_set_gfp_mask(mapping, mask);
4457
4458 i915_gem_object_init(obj, &i915_gem_object_ops);
4459
4460 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4461 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4462
4463 if (HAS_LLC(dev)) {
4464 /* On some devices, we can have the GPU use the LLC (the CPU
4465 * cache) for about a 10% performance improvement
4466 * compared to uncached. Graphics requests other than
4467 * display scanout are coherent with the CPU in
4468 * accessing this cache. This means in this mode we
4469 * don't need to clflush on the CPU side, and on the
4470 * GPU side we only need to flush internal caches to
4471 * get data visible to the CPU.
4472 *
4473 * However, we maintain the display planes as UC, and so
4474 * need to rebind when first used as such.
4475 */
4476 obj->cache_level = I915_CACHE_LLC;
4477 } else
4478 obj->cache_level = I915_CACHE_NONE;
4479
4480 trace_i915_gem_object_create(obj);
4481
4482 return obj;
4483 }
4484
4485 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4486 {
4487 /* If we are the last user of the backing storage (be it shmemfs
4488 * pages or stolen etc), we know that the pages are going to be
4489 * immediately released. In this case, we can then skip copying
4490 * back the contents from the GPU.
4491 */
4492
4493 if (obj->madv != I915_MADV_WILLNEED)
4494 return false;
4495
4496 if (obj->base.filp == NULL)
4497 return true;
4498
4499 /* At first glance, this looks racy, but then again so would be
4500 * userspace racing mmap against close. However, the first external
4501 * reference to the filp can only be obtained through the
4502 * i915_gem_mmap_ioctl() which safeguards us against the user
4503 * acquiring such a reference whilst we are in the middle of
4504 * freeing the object.
4505 */
4506 return atomic_long_read(&obj->base.filp->f_count) == 1;
4507 }
4508
4509 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4510 {
4511 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4512 struct drm_device *dev = obj->base.dev;
4513 struct drm_i915_private *dev_priv = dev->dev_private;
4514 struct i915_vma *vma, *next;
4515
4516 intel_runtime_pm_get(dev_priv);
4517
4518 trace_i915_gem_object_destroy(obj);
4519
4520 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4521 int ret;
4522
4523 vma->pin_count = 0;
4524 ret = i915_vma_unbind(vma);
4525 if (WARN_ON(ret == -ERESTARTSYS)) {
4526 bool was_interruptible;
4527
4528 was_interruptible = dev_priv->mm.interruptible;
4529 dev_priv->mm.interruptible = false;
4530
4531 WARN_ON(i915_vma_unbind(vma));
4532
4533 dev_priv->mm.interruptible = was_interruptible;
4534 }
4535 }
4536
4537 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4538 * before progressing. */
4539 if (obj->stolen)
4540 i915_gem_object_unpin_pages(obj);
4541
4542 WARN_ON(obj->frontbuffer_bits);
4543
4544 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4545 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4546 obj->tiling_mode != I915_TILING_NONE)
4547 i915_gem_object_unpin_pages(obj);
4548
4549 if (WARN_ON(obj->pages_pin_count))
4550 obj->pages_pin_count = 0;
4551 if (discard_backing_storage(obj))
4552 obj->madv = I915_MADV_DONTNEED;
4553 i915_gem_object_put_pages(obj);
4554 i915_gem_object_free_mmap_offset(obj);
4555
4556 BUG_ON(obj->pages);
4557
4558 if (obj->base.import_attach)
4559 drm_prime_gem_destroy(&obj->base, NULL);
4560
4561 if (obj->ops->release)
4562 obj->ops->release(obj);
4563
4564 drm_gem_object_release(&obj->base);
4565 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4566
4567 kfree(obj->bit_17);
4568 i915_gem_object_free(obj);
4569
4570 intel_runtime_pm_put(dev_priv);
4571 }
4572
4573 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4574 struct i915_address_space *vm)
4575 {
4576 struct i915_vma *vma;
4577 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4578 if (i915_is_ggtt(vma->vm) &&
4579 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4580 continue;
4581 if (vma->vm == vm)
4582 return vma;
4583 }
4584 return NULL;
4585 }
4586
4587 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4588 const struct i915_ggtt_view *view)
4589 {
4590 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4591 struct i915_vma *vma;
4592
4593 if (WARN_ONCE(!view, "no view specified"))
4594 return ERR_PTR(-EINVAL);
4595
4596 list_for_each_entry(vma, &obj->vma_list, vma_link)
4597 if (vma->vm == ggtt &&
4598 i915_ggtt_view_equal(&vma->ggtt_view, view))
4599 return vma;
4600 return NULL;
4601 }
4602
4603 void i915_gem_vma_destroy(struct i915_vma *vma)
4604 {
4605 struct i915_address_space *vm = NULL;
4606 WARN_ON(vma->node.allocated);
4607
4608 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4609 if (!list_empty(&vma->exec_list))
4610 return;
4611
4612 vm = vma->vm;
4613
4614 if (!i915_is_ggtt(vm))
4615 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4616
4617 list_del(&vma->vma_link);
4618
4619 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4620 }
4621
4622 static void
4623 i915_gem_stop_ringbuffers(struct drm_device *dev)
4624 {
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626 struct intel_engine_cs *ring;
4627 int i;
4628
4629 for_each_ring(ring, dev_priv, i)
4630 dev_priv->gt.stop_ring(ring);
4631 }
4632
4633 int
4634 i915_gem_suspend(struct drm_device *dev)
4635 {
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637 int ret = 0;
4638
4639 mutex_lock(&dev->struct_mutex);
4640 ret = i915_gpu_idle(dev);
4641 if (ret)
4642 goto err;
4643
4644 i915_gem_retire_requests(dev);
4645
4646 i915_gem_stop_ringbuffers(dev);
4647 mutex_unlock(&dev->struct_mutex);
4648
4649 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4650 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4651 flush_delayed_work(&dev_priv->mm.idle_work);
4652
4653 /* Assert that we sucessfully flushed all the work and
4654 * reset the GPU back to its idle, low power state.
4655 */
4656 WARN_ON(dev_priv->mm.busy);
4657
4658 return 0;
4659
4660 err:
4661 mutex_unlock(&dev->struct_mutex);
4662 return ret;
4663 }
4664
4665 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4666 {
4667 struct drm_device *dev = ring->dev;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4670 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4671 int i, ret;
4672
4673 if (!HAS_L3_DPF(dev) || !remap_info)
4674 return 0;
4675
4676 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4677 if (ret)
4678 return ret;
4679
4680 /*
4681 * Note: We do not worry about the concurrent register cacheline hang
4682 * here because no other code should access these registers other than
4683 * at initialization time.
4684 */
4685 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4686 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4687 intel_ring_emit(ring, reg_base + i);
4688 intel_ring_emit(ring, remap_info[i/4]);
4689 }
4690
4691 intel_ring_advance(ring);
4692
4693 return ret;
4694 }
4695
4696 void i915_gem_init_swizzling(struct drm_device *dev)
4697 {
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700 if (INTEL_INFO(dev)->gen < 5 ||
4701 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4702 return;
4703
4704 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4705 DISP_TILE_SURFACE_SWIZZLING);
4706
4707 if (IS_GEN5(dev))
4708 return;
4709
4710 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4711 if (IS_GEN6(dev))
4712 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4713 else if (IS_GEN7(dev))
4714 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4715 else if (IS_GEN8(dev))
4716 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4717 else
4718 BUG();
4719 }
4720
4721 static bool
4722 intel_enable_blt(struct drm_device *dev)
4723 {
4724 if (!HAS_BLT(dev))
4725 return false;
4726
4727 /* The blitter was dysfunctional on early prototypes */
4728 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4729 DRM_INFO("BLT not supported on this pre-production hardware;"
4730 " graphics performance will be degraded.\n");
4731 return false;
4732 }
4733
4734 return true;
4735 }
4736
4737 static void init_unused_ring(struct drm_device *dev, u32 base)
4738 {
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741 I915_WRITE(RING_CTL(base), 0);
4742 I915_WRITE(RING_HEAD(base), 0);
4743 I915_WRITE(RING_TAIL(base), 0);
4744 I915_WRITE(RING_START(base), 0);
4745 }
4746
4747 static void init_unused_rings(struct drm_device *dev)
4748 {
4749 if (IS_I830(dev)) {
4750 init_unused_ring(dev, PRB1_BASE);
4751 init_unused_ring(dev, SRB0_BASE);
4752 init_unused_ring(dev, SRB1_BASE);
4753 init_unused_ring(dev, SRB2_BASE);
4754 init_unused_ring(dev, SRB3_BASE);
4755 } else if (IS_GEN2(dev)) {
4756 init_unused_ring(dev, SRB0_BASE);
4757 init_unused_ring(dev, SRB1_BASE);
4758 } else if (IS_GEN3(dev)) {
4759 init_unused_ring(dev, PRB1_BASE);
4760 init_unused_ring(dev, PRB2_BASE);
4761 }
4762 }
4763
4764 int i915_gem_init_rings(struct drm_device *dev)
4765 {
4766 struct drm_i915_private *dev_priv = dev->dev_private;
4767 int ret;
4768
4769 ret = intel_init_render_ring_buffer(dev);
4770 if (ret)
4771 return ret;
4772
4773 if (HAS_BSD(dev)) {
4774 ret = intel_init_bsd_ring_buffer(dev);
4775 if (ret)
4776 goto cleanup_render_ring;
4777 }
4778
4779 if (intel_enable_blt(dev)) {
4780 ret = intel_init_blt_ring_buffer(dev);
4781 if (ret)
4782 goto cleanup_bsd_ring;
4783 }
4784
4785 if (HAS_VEBOX(dev)) {
4786 ret = intel_init_vebox_ring_buffer(dev);
4787 if (ret)
4788 goto cleanup_blt_ring;
4789 }
4790
4791 if (HAS_BSD2(dev)) {
4792 ret = intel_init_bsd2_ring_buffer(dev);
4793 if (ret)
4794 goto cleanup_vebox_ring;
4795 }
4796
4797 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4798 if (ret)
4799 goto cleanup_bsd2_ring;
4800
4801 return 0;
4802
4803 cleanup_bsd2_ring:
4804 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4805 cleanup_vebox_ring:
4806 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4807 cleanup_blt_ring:
4808 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4809 cleanup_bsd_ring:
4810 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4811 cleanup_render_ring:
4812 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4813
4814 return ret;
4815 }
4816
4817 int
4818 i915_gem_init_hw(struct drm_device *dev)
4819 {
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 struct intel_engine_cs *ring;
4822 int ret, i;
4823
4824 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4825 return -EIO;
4826
4827 /* Double layer security blanket, see i915_gem_init() */
4828 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4829
4830 if (dev_priv->ellc_size)
4831 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4832
4833 if (IS_HASWELL(dev))
4834 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4835 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4836
4837 if (HAS_PCH_NOP(dev)) {
4838 if (IS_IVYBRIDGE(dev)) {
4839 u32 temp = I915_READ(GEN7_MSG_CTL);
4840 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4841 I915_WRITE(GEN7_MSG_CTL, temp);
4842 } else if (INTEL_INFO(dev)->gen >= 7) {
4843 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4844 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4845 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4846 }
4847 }
4848
4849 i915_gem_init_swizzling(dev);
4850
4851 /*
4852 * At least 830 can leave some of the unused rings
4853 * "active" (ie. head != tail) after resume which
4854 * will prevent c3 entry. Makes sure all unused rings
4855 * are totally idle.
4856 */
4857 init_unused_rings(dev);
4858
4859 for_each_ring(ring, dev_priv, i) {
4860 ret = ring->init_hw(ring);
4861 if (ret)
4862 goto out;
4863 }
4864
4865 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4866 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4867
4868 ret = i915_ppgtt_init_hw(dev);
4869 if (ret && ret != -EIO) {
4870 DRM_ERROR("PPGTT enable failed %d\n", ret);
4871 i915_gem_cleanup_ringbuffer(dev);
4872 }
4873
4874 ret = i915_gem_context_enable(dev_priv);
4875 if (ret && ret != -EIO) {
4876 DRM_ERROR("Context enable failed %d\n", ret);
4877 i915_gem_cleanup_ringbuffer(dev);
4878
4879 goto out;
4880 }
4881
4882 out:
4883 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4884 return ret;
4885 }
4886
4887 int i915_gem_init(struct drm_device *dev)
4888 {
4889 struct drm_i915_private *dev_priv = dev->dev_private;
4890 int ret;
4891
4892 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4893 i915.enable_execlists);
4894
4895 mutex_lock(&dev->struct_mutex);
4896
4897 if (IS_VALLEYVIEW(dev)) {
4898 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4899 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4900 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4901 VLV_GTLC_ALLOWWAKEACK), 10))
4902 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4903 }
4904
4905 if (!i915.enable_execlists) {
4906 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4907 dev_priv->gt.init_rings = i915_gem_init_rings;
4908 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4909 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4910 } else {
4911 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4912 dev_priv->gt.init_rings = intel_logical_rings_init;
4913 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4914 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4915 }
4916
4917 /* This is just a security blanket to placate dragons.
4918 * On some systems, we very sporadically observe that the first TLBs
4919 * used by the CS may be stale, despite us poking the TLB reset. If
4920 * we hold the forcewake during initialisation these problems
4921 * just magically go away.
4922 */
4923 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924
4925 ret = i915_gem_init_userptr(dev);
4926 if (ret)
4927 goto out_unlock;
4928
4929 i915_gem_init_global_gtt(dev);
4930
4931 ret = i915_gem_context_init(dev);
4932 if (ret)
4933 goto out_unlock;
4934
4935 ret = dev_priv->gt.init_rings(dev);
4936 if (ret)
4937 goto out_unlock;
4938
4939 ret = i915_gem_init_hw(dev);
4940 if (ret == -EIO) {
4941 /* Allow ring initialisation to fail by marking the GPU as
4942 * wedged. But we only want to do this where the GPU is angry,
4943 * for all other failure, such as an allocation failure, bail.
4944 */
4945 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4946 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4947 ret = 0;
4948 }
4949
4950 out_unlock:
4951 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4952 mutex_unlock(&dev->struct_mutex);
4953
4954 return ret;
4955 }
4956
4957 void
4958 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4959 {
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 struct intel_engine_cs *ring;
4962 int i;
4963
4964 for_each_ring(ring, dev_priv, i)
4965 dev_priv->gt.cleanup_ring(ring);
4966 }
4967
4968 static void
4969 init_ring_lists(struct intel_engine_cs *ring)
4970 {
4971 INIT_LIST_HEAD(&ring->active_list);
4972 INIT_LIST_HEAD(&ring->request_list);
4973 }
4974
4975 void i915_init_vm(struct drm_i915_private *dev_priv,
4976 struct i915_address_space *vm)
4977 {
4978 if (!i915_is_ggtt(vm))
4979 drm_mm_init(&vm->mm, vm->start, vm->total);
4980 vm->dev = dev_priv->dev;
4981 INIT_LIST_HEAD(&vm->active_list);
4982 INIT_LIST_HEAD(&vm->inactive_list);
4983 INIT_LIST_HEAD(&vm->global_link);
4984 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4985 }
4986
4987 void
4988 i915_gem_load(struct drm_device *dev)
4989 {
4990 struct drm_i915_private *dev_priv = dev->dev_private;
4991 int i;
4992
4993 dev_priv->objects =
4994 kmem_cache_create("i915_gem_object",
4995 sizeof(struct drm_i915_gem_object), 0,
4996 SLAB_HWCACHE_ALIGN,
4997 NULL);
4998 dev_priv->vmas =
4999 kmem_cache_create("i915_gem_vma",
5000 sizeof(struct i915_vma), 0,
5001 SLAB_HWCACHE_ALIGN,
5002 NULL);
5003 dev_priv->requests =
5004 kmem_cache_create("i915_gem_request",
5005 sizeof(struct drm_i915_gem_request), 0,
5006 SLAB_HWCACHE_ALIGN,
5007 NULL);
5008
5009 INIT_LIST_HEAD(&dev_priv->vm_list);
5010 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5011
5012 INIT_LIST_HEAD(&dev_priv->context_list);
5013 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5014 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5015 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5016 for (i = 0; i < I915_NUM_RINGS; i++)
5017 init_ring_lists(&dev_priv->ring[i]);
5018 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5019 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5020 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5021 i915_gem_retire_work_handler);
5022 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5023 i915_gem_idle_work_handler);
5024 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5025
5026 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5027
5028 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5029 dev_priv->num_fence_regs = 32;
5030 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5031 dev_priv->num_fence_regs = 16;
5032 else
5033 dev_priv->num_fence_regs = 8;
5034
5035 if (intel_vgpu_active(dev))
5036 dev_priv->num_fence_regs =
5037 I915_READ(vgtif_reg(avail_rs.fence_num));
5038
5039 /* Initialize fence registers to zero */
5040 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5041 i915_gem_restore_fences(dev);
5042
5043 i915_gem_detect_bit_6_swizzle(dev);
5044 init_waitqueue_head(&dev_priv->pending_flip_queue);
5045
5046 dev_priv->mm.interruptible = true;
5047
5048 i915_gem_shrinker_init(dev_priv);
5049
5050 mutex_init(&dev_priv->fb_tracking.lock);
5051 }
5052
5053 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5054 {
5055 struct drm_i915_file_private *file_priv = file->driver_priv;
5056
5057 /* Clean up our request list when the client is going away, so that
5058 * later retire_requests won't dereference our soon-to-be-gone
5059 * file_priv.
5060 */
5061 spin_lock(&file_priv->mm.lock);
5062 while (!list_empty(&file_priv->mm.request_list)) {
5063 struct drm_i915_gem_request *request;
5064
5065 request = list_first_entry(&file_priv->mm.request_list,
5066 struct drm_i915_gem_request,
5067 client_list);
5068 list_del(&request->client_list);
5069 request->file_priv = NULL;
5070 }
5071 spin_unlock(&file_priv->mm.lock);
5072
5073 if (!list_empty(&file_priv->rps_boost)) {
5074 mutex_lock(&to_i915(dev)->rps.hw_lock);
5075 list_del(&file_priv->rps_boost);
5076 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5077 }
5078 }
5079
5080 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5081 {
5082 struct drm_i915_file_private *file_priv;
5083 int ret;
5084
5085 DRM_DEBUG_DRIVER("\n");
5086
5087 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5088 if (!file_priv)
5089 return -ENOMEM;
5090
5091 file->driver_priv = file_priv;
5092 file_priv->dev_priv = dev->dev_private;
5093 file_priv->file = file;
5094 INIT_LIST_HEAD(&file_priv->rps_boost);
5095
5096 spin_lock_init(&file_priv->mm.lock);
5097 INIT_LIST_HEAD(&file_priv->mm.request_list);
5098
5099 ret = i915_gem_context_open(dev, file);
5100 if (ret)
5101 kfree(file_priv);
5102
5103 return ret;
5104 }
5105
5106 /**
5107 * i915_gem_track_fb - update frontbuffer tracking
5108 * old: current GEM buffer for the frontbuffer slots
5109 * new: new GEM buffer for the frontbuffer slots
5110 * frontbuffer_bits: bitmask of frontbuffer slots
5111 *
5112 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5113 * from @old and setting them in @new. Both @old and @new can be NULL.
5114 */
5115 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5116 struct drm_i915_gem_object *new,
5117 unsigned frontbuffer_bits)
5118 {
5119 if (old) {
5120 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5121 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5122 old->frontbuffer_bits &= ~frontbuffer_bits;
5123 }
5124
5125 if (new) {
5126 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5127 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5128 new->frontbuffer_bits |= frontbuffer_bits;
5129 }
5130 }
5131
5132 /* All the new VM stuff */
5133 unsigned long
5134 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5135 struct i915_address_space *vm)
5136 {
5137 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5138 struct i915_vma *vma;
5139
5140 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5141
5142 list_for_each_entry(vma, &o->vma_list, vma_link) {
5143 if (i915_is_ggtt(vma->vm) &&
5144 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5145 continue;
5146 if (vma->vm == vm)
5147 return vma->node.start;
5148 }
5149
5150 WARN(1, "%s vma for this object not found.\n",
5151 i915_is_ggtt(vm) ? "global" : "ppgtt");
5152 return -1;
5153 }
5154
5155 unsigned long
5156 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5157 const struct i915_ggtt_view *view)
5158 {
5159 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5160 struct i915_vma *vma;
5161
5162 list_for_each_entry(vma, &o->vma_list, vma_link)
5163 if (vma->vm == ggtt &&
5164 i915_ggtt_view_equal(&vma->ggtt_view, view))
5165 return vma->node.start;
5166
5167 WARN(1, "global vma for this object not found.\n");
5168 return -1;
5169 }
5170
5171 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5172 struct i915_address_space *vm)
5173 {
5174 struct i915_vma *vma;
5175
5176 list_for_each_entry(vma, &o->vma_list, vma_link) {
5177 if (i915_is_ggtt(vma->vm) &&
5178 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5179 continue;
5180 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5181 return true;
5182 }
5183
5184 return false;
5185 }
5186
5187 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5188 const struct i915_ggtt_view *view)
5189 {
5190 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5191 struct i915_vma *vma;
5192
5193 list_for_each_entry(vma, &o->vma_list, vma_link)
5194 if (vma->vm == ggtt &&
5195 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5196 drm_mm_node_allocated(&vma->node))
5197 return true;
5198
5199 return false;
5200 }
5201
5202 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5203 {
5204 struct i915_vma *vma;
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
5207 if (drm_mm_node_allocated(&vma->node))
5208 return true;
5209
5210 return false;
5211 }
5212
5213 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5214 struct i915_address_space *vm)
5215 {
5216 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5217 struct i915_vma *vma;
5218
5219 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5220
5221 BUG_ON(list_empty(&o->vma_list));
5222
5223 list_for_each_entry(vma, &o->vma_list, vma_link) {
5224 if (i915_is_ggtt(vma->vm) &&
5225 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5226 continue;
5227 if (vma->vm == vm)
5228 return vma->node.size;
5229 }
5230 return 0;
5231 }
5232
5233 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5234 {
5235 struct i915_vma *vma;
5236 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5237 if (i915_is_ggtt(vma->vm) &&
5238 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5239 continue;
5240 if (vma->pin_count > 0)
5241 return true;
5242 }
5243 return false;
5244 }
5245
This page took 0.393746 seconds and 5 git commands to generate.