drm/i915: Simplify flush_cpu_write_domain
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
56 struct shrink_control *sc);
57 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static int i915_gem_shrinker_oom(struct notifier_block *nb,
60 unsigned long event,
61 void *ptr);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63
64 static bool cpu_cache_is_coherent(struct drm_device *dev,
65 enum i915_cache_level level)
66 {
67 return HAS_LLC(dev) || level != I915_CACHE_NONE;
68 }
69
70 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
71 {
72 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
73 return true;
74
75 return obj->pin_display;
76 }
77
78 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
79 {
80 if (obj->tiling_mode)
81 i915_gem_release_mmap(obj);
82
83 /* As we do not have an associated fence register, we will force
84 * a tiling change if we ever need to acquire one.
85 */
86 obj->fence_dirty = false;
87 obj->fence_reg = I915_FENCE_REG_NONE;
88 }
89
90 /* some bookkeeping */
91 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count++;
96 dev_priv->mm.object_memory += size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
101 size_t size)
102 {
103 spin_lock(&dev_priv->mm.object_stat_lock);
104 dev_priv->mm.object_count--;
105 dev_priv->mm.object_memory -= size;
106 spin_unlock(&dev_priv->mm.object_stat_lock);
107 }
108
109 static int
110 i915_gem_wait_for_error(struct i915_gpu_error *error)
111 {
112 int ret;
113
114 #define EXIT_COND (!i915_reset_in_progress(error) || \
115 i915_terminally_wedged(error))
116 if (EXIT_COND)
117 return 0;
118
119 /*
120 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
121 * userspace. If it takes that long something really bad is going on and
122 * we should simply try to bail out and fail as gracefully as possible.
123 */
124 ret = wait_event_interruptible_timeout(error->reset_queue,
125 EXIT_COND,
126 10*HZ);
127 if (ret == 0) {
128 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
129 return -EIO;
130 } else if (ret < 0) {
131 return ret;
132 }
133 #undef EXIT_COND
134
135 return 0;
136 }
137
138 int i915_mutex_lock_interruptible(struct drm_device *dev)
139 {
140 struct drm_i915_private *dev_priv = dev->dev_private;
141 int ret;
142
143 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
144 if (ret)
145 return ret;
146
147 ret = mutex_lock_interruptible(&dev->struct_mutex);
148 if (ret)
149 return ret;
150
151 WARN_ON(i915_verify_lists(dev));
152 return 0;
153 }
154
155 int
156 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
157 struct drm_file *file)
158 {
159 struct drm_i915_private *dev_priv = dev->dev_private;
160 struct drm_i915_gem_get_aperture *args = data;
161 struct drm_i915_gem_object *obj;
162 size_t pinned;
163
164 pinned = 0;
165 mutex_lock(&dev->struct_mutex);
166 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
167 if (i915_gem_obj_is_pinned(obj))
168 pinned += i915_gem_obj_ggtt_size(obj);
169 mutex_unlock(&dev->struct_mutex);
170
171 args->aper_size = dev_priv->gtt.base.total;
172 args->aper_available_size = args->aper_size - pinned;
173
174 return 0;
175 }
176
177 static int
178 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
179 {
180 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
181 char *vaddr = obj->phys_handle->vaddr;
182 struct sg_table *st;
183 struct scatterlist *sg;
184 int i;
185
186 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
187 return -EINVAL;
188
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page))
195 return PTR_ERR(page);
196
197 src = kmap_atomic(page);
198 memcpy(vaddr, src, PAGE_SIZE);
199 drm_clflush_virt_range(vaddr, PAGE_SIZE);
200 kunmap_atomic(src);
201
202 page_cache_release(page);
203 vaddr += PAGE_SIZE;
204 }
205
206 i915_gem_chipset_flush(obj->base.dev);
207
208 st = kmalloc(sizeof(*st), GFP_KERNEL);
209 if (st == NULL)
210 return -ENOMEM;
211
212 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
213 kfree(st);
214 return -ENOMEM;
215 }
216
217 sg = st->sgl;
218 sg->offset = 0;
219 sg->length = obj->base.size;
220
221 sg_dma_address(sg) = obj->phys_handle->busaddr;
222 sg_dma_len(sg) = obj->base.size;
223
224 obj->pages = st;
225 obj->has_dma_mapping = true;
226 return 0;
227 }
228
229 static void
230 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
231 {
232 int ret;
233
234 BUG_ON(obj->madv == __I915_MADV_PURGED);
235
236 ret = i915_gem_object_set_to_cpu_domain(obj, true);
237 if (ret) {
238 /* In the event of a disaster, abandon all caches and
239 * hope for the best.
240 */
241 WARN_ON(ret != -EIO);
242 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
243 }
244
245 if (obj->madv == I915_MADV_DONTNEED)
246 obj->dirty = 0;
247
248 if (obj->dirty) {
249 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
250 char *vaddr = obj->phys_handle->vaddr;
251 int i;
252
253 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
254 struct page *page;
255 char *dst;
256
257 page = shmem_read_mapping_page(mapping, i);
258 if (IS_ERR(page))
259 continue;
260
261 dst = kmap_atomic(page);
262 drm_clflush_virt_range(vaddr, PAGE_SIZE);
263 memcpy(dst, vaddr, PAGE_SIZE);
264 kunmap_atomic(dst);
265
266 set_page_dirty(page);
267 if (obj->madv == I915_MADV_WILLNEED)
268 mark_page_accessed(page);
269 page_cache_release(page);
270 vaddr += PAGE_SIZE;
271 }
272 obj->dirty = 0;
273 }
274
275 sg_free_table(obj->pages);
276 kfree(obj->pages);
277
278 obj->has_dma_mapping = false;
279 }
280
281 static void
282 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
283 {
284 drm_pci_free(obj->base.dev, obj->phys_handle);
285 }
286
287 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
288 .get_pages = i915_gem_object_get_pages_phys,
289 .put_pages = i915_gem_object_put_pages_phys,
290 .release = i915_gem_object_release_phys,
291 };
292
293 static int
294 drop_pages(struct drm_i915_gem_object *obj)
295 {
296 struct i915_vma *vma, *next;
297 int ret;
298
299 drm_gem_object_reference(&obj->base);
300 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
301 if (i915_vma_unbind(vma))
302 break;
303
304 ret = i915_gem_object_put_pages(obj);
305 drm_gem_object_unreference(&obj->base);
306
307 return ret;
308 }
309
310 int
311 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
312 int align)
313 {
314 drm_dma_handle_t *phys;
315 int ret;
316
317 if (obj->phys_handle) {
318 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
319 return -EBUSY;
320
321 return 0;
322 }
323
324 if (obj->madv != I915_MADV_WILLNEED)
325 return -EFAULT;
326
327 if (obj->base.filp == NULL)
328 return -EINVAL;
329
330 ret = drop_pages(obj);
331 if (ret)
332 return ret;
333
334 /* create a new object */
335 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
336 if (!phys)
337 return -ENOMEM;
338
339 obj->phys_handle = phys;
340 obj->ops = &i915_gem_phys_ops;
341
342 return i915_gem_object_get_pages(obj);
343 }
344
345 static int
346 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
347 struct drm_i915_gem_pwrite *args,
348 struct drm_file *file_priv)
349 {
350 struct drm_device *dev = obj->base.dev;
351 void *vaddr = obj->phys_handle->vaddr + args->offset;
352 char __user *user_data = to_user_ptr(args->data_ptr);
353 int ret;
354
355 /* We manually control the domain here and pretend that it
356 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
357 */
358 ret = i915_gem_object_wait_rendering(obj, false);
359 if (ret)
360 return ret;
361
362 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
363 unsigned long unwritten;
364
365 /* The physical object once assigned is fixed for the lifetime
366 * of the obj, so we can safely drop the lock and continue
367 * to access vaddr.
368 */
369 mutex_unlock(&dev->struct_mutex);
370 unwritten = copy_from_user(vaddr, user_data, args->size);
371 mutex_lock(&dev->struct_mutex);
372 if (unwritten)
373 return -EFAULT;
374 }
375
376 drm_clflush_virt_range(vaddr, args->size);
377 i915_gem_chipset_flush(dev);
378 return 0;
379 }
380
381 void *i915_gem_object_alloc(struct drm_device *dev)
382 {
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
385 }
386
387 void i915_gem_object_free(struct drm_i915_gem_object *obj)
388 {
389 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
390 kmem_cache_free(dev_priv->slab, obj);
391 }
392
393 static int
394 i915_gem_create(struct drm_file *file,
395 struct drm_device *dev,
396 uint64_t size,
397 uint32_t *handle_p)
398 {
399 struct drm_i915_gem_object *obj;
400 int ret;
401 u32 handle;
402
403 size = roundup(size, PAGE_SIZE);
404 if (size == 0)
405 return -EINVAL;
406
407 /* Allocate the new object */
408 obj = i915_gem_alloc_object(dev, size);
409 if (obj == NULL)
410 return -ENOMEM;
411
412 ret = drm_gem_handle_create(file, &obj->base, &handle);
413 /* drop reference from allocate - handle holds it now */
414 drm_gem_object_unreference_unlocked(&obj->base);
415 if (ret)
416 return ret;
417
418 *handle_p = handle;
419 return 0;
420 }
421
422 int
423 i915_gem_dumb_create(struct drm_file *file,
424 struct drm_device *dev,
425 struct drm_mode_create_dumb *args)
426 {
427 /* have to work out size/pitch and return them */
428 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
429 args->size = args->pitch * args->height;
430 return i915_gem_create(file, dev,
431 args->size, &args->handle);
432 }
433
434 /**
435 * Creates a new mm object and returns a handle to it.
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (!obj->base.filp)
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524
525 i915_gem_object_retire(obj);
526 }
527
528 ret = i915_gem_object_get_pages(obj);
529 if (ret)
530 return ret;
531
532 i915_gem_object_pin_pages(obj);
533
534 return ret;
535 }
536
537 /* Per-page copy function for the shmem pread fastpath.
538 * Flushes invalid cachelines before reading the target if
539 * needs_clflush is set. */
540 static int
541 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 char *vaddr;
546 int ret;
547
548 if (unlikely(page_do_bit17_swizzling))
549 return -EINVAL;
550
551 vaddr = kmap_atomic(page);
552 if (needs_clflush)
553 drm_clflush_virt_range(vaddr + shmem_page_offset,
554 page_length);
555 ret = __copy_to_user_inatomic(user_data,
556 vaddr + shmem_page_offset,
557 page_length);
558 kunmap_atomic(vaddr);
559
560 return ret ? -EFAULT : 0;
561 }
562
563 static void
564 shmem_clflush_swizzled_range(char *addr, unsigned long length,
565 bool swizzled)
566 {
567 if (unlikely(swizzled)) {
568 unsigned long start = (unsigned long) addr;
569 unsigned long end = (unsigned long) addr + length;
570
571 /* For swizzling simply ensure that we always flush both
572 * channels. Lame, but simple and it works. Swizzled
573 * pwrite/pread is far from a hotpath - current userspace
574 * doesn't use it at all. */
575 start = round_down(start, 128);
576 end = round_up(end, 128);
577
578 drm_clflush_virt_range((void *)start, end - start);
579 } else {
580 drm_clflush_virt_range(addr, length);
581 }
582
583 }
584
585 /* Only difference to the fast-path function is that this can handle bit17
586 * and uses non-atomic copy and kmap functions. */
587 static int
588 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
589 char __user *user_data,
590 bool page_do_bit17_swizzling, bool needs_clflush)
591 {
592 char *vaddr;
593 int ret;
594
595 vaddr = kmap(page);
596 if (needs_clflush)
597 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
598 page_length,
599 page_do_bit17_swizzling);
600
601 if (page_do_bit17_swizzling)
602 ret = __copy_to_user_swizzled(user_data,
603 vaddr, shmem_page_offset,
604 page_length);
605 else
606 ret = __copy_to_user(user_data,
607 vaddr + shmem_page_offset,
608 page_length);
609 kunmap(page);
610
611 return ret ? - EFAULT : 0;
612 }
613
614 static int
615 i915_gem_shmem_pread(struct drm_device *dev,
616 struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pread *args,
618 struct drm_file *file)
619 {
620 char __user *user_data;
621 ssize_t remain;
622 loff_t offset;
623 int shmem_page_offset, page_length, ret = 0;
624 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
625 int prefaulted = 0;
626 int needs_clflush = 0;
627 struct sg_page_iter sg_iter;
628
629 user_data = to_user_ptr(args->data_ptr);
630 remain = args->size;
631
632 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
633
634 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
635 if (ret)
636 return ret;
637
638 offset = args->offset;
639
640 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
641 offset >> PAGE_SHIFT) {
642 struct page *page = sg_page_iter_page(&sg_iter);
643
644 if (remain <= 0)
645 break;
646
647 /* Operation in this page
648 *
649 * shmem_page_offset = offset within page in shmem file
650 * page_length = bytes to copy for this page
651 */
652 shmem_page_offset = offset_in_page(offset);
653 page_length = remain;
654 if ((shmem_page_offset + page_length) > PAGE_SIZE)
655 page_length = PAGE_SIZE - shmem_page_offset;
656
657 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
658 (page_to_phys(page) & (1 << 17)) != 0;
659
660 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
661 user_data, page_do_bit17_swizzling,
662 needs_clflush);
663 if (ret == 0)
664 goto next_page;
665
666 mutex_unlock(&dev->struct_mutex);
667
668 if (likely(!i915.prefault_disable) && !prefaulted) {
669 ret = fault_in_multipages_writeable(user_data, remain);
670 /* Userspace is tricking us, but we've already clobbered
671 * its pages with the prefault and promised to write the
672 * data up to the first fault. Hence ignore any errors
673 * and just continue. */
674 (void)ret;
675 prefaulted = 1;
676 }
677
678 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
679 user_data, page_do_bit17_swizzling,
680 needs_clflush);
681
682 mutex_lock(&dev->struct_mutex);
683
684 if (ret)
685 goto out;
686
687 next_page:
688 remain -= page_length;
689 user_data += page_length;
690 offset += page_length;
691 }
692
693 out:
694 i915_gem_object_unpin_pages(obj);
695
696 return ret;
697 }
698
699 /**
700 * Reads data from the object referenced by handle.
701 *
702 * On error, the contents of *data are undefined.
703 */
704 int
705 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
706 struct drm_file *file)
707 {
708 struct drm_i915_gem_pread *args = data;
709 struct drm_i915_gem_object *obj;
710 int ret = 0;
711
712 if (args->size == 0)
713 return 0;
714
715 if (!access_ok(VERIFY_WRITE,
716 to_user_ptr(args->data_ptr),
717 args->size))
718 return -EFAULT;
719
720 ret = i915_mutex_lock_interruptible(dev);
721 if (ret)
722 return ret;
723
724 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
725 if (&obj->base == NULL) {
726 ret = -ENOENT;
727 goto unlock;
728 }
729
730 /* Bounds check source. */
731 if (args->offset > obj->base.size ||
732 args->size > obj->base.size - args->offset) {
733 ret = -EINVAL;
734 goto out;
735 }
736
737 /* prime objects have no backing filp to GEM pread/pwrite
738 * pages from.
739 */
740 if (!obj->base.filp) {
741 ret = -EINVAL;
742 goto out;
743 }
744
745 trace_i915_gem_object_pread(obj, args->offset, args->size);
746
747 ret = i915_gem_shmem_pread(dev, obj, args, file);
748
749 out:
750 drm_gem_object_unreference(&obj->base);
751 unlock:
752 mutex_unlock(&dev->struct_mutex);
753 return ret;
754 }
755
756 /* This is the fast write path which cannot handle
757 * page faults in the source data
758 */
759
760 static inline int
761 fast_user_write(struct io_mapping *mapping,
762 loff_t page_base, int page_offset,
763 char __user *user_data,
764 int length)
765 {
766 void __iomem *vaddr_atomic;
767 void *vaddr;
768 unsigned long unwritten;
769
770 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
771 /* We can use the cpu mem copy function because this is X86. */
772 vaddr = (void __force*)vaddr_atomic + page_offset;
773 unwritten = __copy_from_user_inatomic_nocache(vaddr,
774 user_data, length);
775 io_mapping_unmap_atomic(vaddr_atomic);
776 return unwritten;
777 }
778
779 /**
780 * This is the fast pwrite path, where we copy the data directly from the
781 * user into the GTT, uncached.
782 */
783 static int
784 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
785 struct drm_i915_gem_object *obj,
786 struct drm_i915_gem_pwrite *args,
787 struct drm_file *file)
788 {
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 ssize_t remain;
791 loff_t offset, page_base;
792 char __user *user_data;
793 int page_offset, page_length, ret;
794
795 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
796 if (ret)
797 goto out;
798
799 ret = i915_gem_object_set_to_gtt_domain(obj, true);
800 if (ret)
801 goto out_unpin;
802
803 ret = i915_gem_object_put_fence(obj);
804 if (ret)
805 goto out_unpin;
806
807 user_data = to_user_ptr(args->data_ptr);
808 remain = args->size;
809
810 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
811
812 while (remain > 0) {
813 /* Operation in this page
814 *
815 * page_base = page offset within aperture
816 * page_offset = offset within page
817 * page_length = bytes to copy for this page
818 */
819 page_base = offset & PAGE_MASK;
820 page_offset = offset_in_page(offset);
821 page_length = remain;
822 if ((page_offset + remain) > PAGE_SIZE)
823 page_length = PAGE_SIZE - page_offset;
824
825 /* If we get a fault while copying data, then (presumably) our
826 * source page isn't available. Return the error and we'll
827 * retry in the slow path.
828 */
829 if (fast_user_write(dev_priv->gtt.mappable, page_base,
830 page_offset, user_data, page_length)) {
831 ret = -EFAULT;
832 goto out_unpin;
833 }
834
835 remain -= page_length;
836 user_data += page_length;
837 offset += page_length;
838 }
839
840 out_unpin:
841 i915_gem_object_ggtt_unpin(obj);
842 out:
843 return ret;
844 }
845
846 /* Per-page copy function for the shmem pwrite fastpath.
847 * Flushes invalid cachelines before writing to the target if
848 * needs_clflush_before is set and flushes out any written cachelines after
849 * writing if needs_clflush is set. */
850 static int
851 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 char __user *user_data,
853 bool page_do_bit17_swizzling,
854 bool needs_clflush_before,
855 bool needs_clflush_after)
856 {
857 char *vaddr;
858 int ret;
859
860 if (unlikely(page_do_bit17_swizzling))
861 return -EINVAL;
862
863 vaddr = kmap_atomic(page);
864 if (needs_clflush_before)
865 drm_clflush_virt_range(vaddr + shmem_page_offset,
866 page_length);
867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 user_data, page_length);
869 if (needs_clflush_after)
870 drm_clflush_virt_range(vaddr + shmem_page_offset,
871 page_length);
872 kunmap_atomic(vaddr);
873
874 return ret ? -EFAULT : 0;
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling,
883 bool needs_clflush_before,
884 bool needs_clflush_after)
885 {
886 char *vaddr;
887 int ret;
888
889 vaddr = kmap(page);
890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
894 if (page_do_bit17_swizzling)
895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
896 user_data,
897 page_length);
898 else
899 ret = __copy_from_user(vaddr + shmem_page_offset,
900 user_data,
901 page_length);
902 if (needs_clflush_after)
903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 page_length,
905 page_do_bit17_swizzling);
906 kunmap(page);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 static int
912 i915_gem_shmem_pwrite(struct drm_device *dev,
913 struct drm_i915_gem_object *obj,
914 struct drm_i915_gem_pwrite *args,
915 struct drm_file *file)
916 {
917 ssize_t remain;
918 loff_t offset;
919 char __user *user_data;
920 int shmem_page_offset, page_length, ret = 0;
921 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
922 int hit_slowpath = 0;
923 int needs_clflush_after = 0;
924 int needs_clflush_before = 0;
925 struct sg_page_iter sg_iter;
926
927 user_data = to_user_ptr(args->data_ptr);
928 remain = args->size;
929
930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
931
932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 /* If we're not in the cpu write domain, set ourself into the gtt
934 * write domain and manually flush cachelines (if required). This
935 * optimizes for the case when the gpu will use the data
936 * right away and we therefore have to clflush anyway. */
937 needs_clflush_after = cpu_write_needs_clflush(obj);
938 ret = i915_gem_object_wait_rendering(obj, false);
939 if (ret)
940 return ret;
941
942 i915_gem_object_retire(obj);
943 }
944 /* Same trick applies to invalidate partially written cachelines read
945 * before writing. */
946 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
947 needs_clflush_before =
948 !cpu_cache_is_coherent(dev, obj->cache_level);
949
950 ret = i915_gem_object_get_pages(obj);
951 if (ret)
952 return ret;
953
954 i915_gem_object_pin_pages(obj);
955
956 offset = args->offset;
957 obj->dirty = 1;
958
959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 offset >> PAGE_SHIFT) {
961 struct page *page = sg_page_iter_page(&sg_iter);
962 int partial_cacheline_write;
963
964 if (remain <= 0)
965 break;
966
967 /* Operation in this page
968 *
969 * shmem_page_offset = offset within page in shmem file
970 * page_length = bytes to copy for this page
971 */
972 shmem_page_offset = offset_in_page(offset);
973
974 page_length = remain;
975 if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - shmem_page_offset;
977
978 /* If we don't overwrite a cacheline completely we need to be
979 * careful to have up-to-date data by first clflushing. Don't
980 * overcomplicate things and flush the entire patch. */
981 partial_cacheline_write = needs_clflush_before &&
982 ((shmem_page_offset | page_length)
983 & (boot_cpu_data.x86_clflush_size - 1));
984
985 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 (page_to_phys(page) & (1 << 17)) != 0;
987
988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 user_data, page_do_bit17_swizzling,
990 partial_cacheline_write,
991 needs_clflush_after);
992 if (ret == 0)
993 goto next_page;
994
995 hit_slowpath = 1;
996 mutex_unlock(&dev->struct_mutex);
997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001
1002 mutex_lock(&dev->struct_mutex);
1003
1004 if (ret)
1005 goto out;
1006
1007 next_page:
1008 remain -= page_length;
1009 user_data += page_length;
1010 offset += page_length;
1011 }
1012
1013 out:
1014 i915_gem_object_unpin_pages(obj);
1015
1016 if (hit_slowpath) {
1017 /*
1018 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 * cachelines in-line while writing and the object moved
1020 * out of the cpu write domain while we've dropped the lock.
1021 */
1022 if (!needs_clflush_after &&
1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 if (i915_gem_clflush_object(obj, obj->pin_display))
1025 i915_gem_chipset_flush(dev);
1026 }
1027 }
1028
1029 if (needs_clflush_after)
1030 i915_gem_chipset_flush(dev);
1031
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 int ret;
1159
1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162 ret = 0;
1163 if (req == req->ring->outstanding_lazy_request)
1164 ret = i915_add_request(req->ring);
1165
1166 return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171 wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 struct intel_engine_cs *ring)
1176 {
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1181 {
1182 if (file_priv == NULL)
1183 return true;
1184
1185 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1186 }
1187
1188 /**
1189 * __i915_wait_request - wait until execution of request has finished
1190 * @req: duh!
1191 * @reset_counter: reset sequence associated with the given request
1192 * @interruptible: do an interruptible wait (normally yes)
1193 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1194 *
1195 * Note: It is of utmost importance that the passed in seqno and reset_counter
1196 * values have been read by the caller in an smp safe manner. Where read-side
1197 * locks are involved, it is sufficient to read the reset_counter before
1198 * unlocking the lock that protects the seqno. For lockless tricks, the
1199 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1200 * inserted.
1201 *
1202 * Returns 0 if the request was found within the alloted time. Else returns the
1203 * errno with remaining time filled in timeout argument.
1204 */
1205 int __i915_wait_request(struct drm_i915_gem_request *req,
1206 unsigned reset_counter,
1207 bool interruptible,
1208 s64 *timeout,
1209 struct drm_i915_file_private *file_priv)
1210 {
1211 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1212 struct drm_device *dev = ring->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 const bool irq_test_in_progress =
1215 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1216 DEFINE_WAIT(wait);
1217 unsigned long timeout_expire;
1218 s64 before, now;
1219 int ret;
1220
1221 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1222
1223 if (i915_gem_request_completed(req, true))
1224 return 0;
1225
1226 timeout_expire = timeout ?
1227 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1228
1229 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1230 gen6_rps_boost(dev_priv);
1231 if (file_priv)
1232 mod_delayed_work(dev_priv->wq,
1233 &file_priv->mm.idle_work,
1234 msecs_to_jiffies(100));
1235 }
1236
1237 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1238 return -ENODEV;
1239
1240 /* Record current time in case interrupted by signal, or wedged */
1241 trace_i915_gem_request_wait_begin(req);
1242 before = ktime_get_raw_ns();
1243 for (;;) {
1244 struct timer_list timer;
1245
1246 prepare_to_wait(&ring->irq_queue, &wait,
1247 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1248
1249 /* We need to check whether any gpu reset happened in between
1250 * the caller grabbing the seqno and now ... */
1251 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1252 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1253 * is truely gone. */
1254 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1255 if (ret == 0)
1256 ret = -EAGAIN;
1257 break;
1258 }
1259
1260 if (i915_gem_request_completed(req, false)) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 if (interruptible && signal_pending(current)) {
1266 ret = -ERESTARTSYS;
1267 break;
1268 }
1269
1270 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1271 ret = -ETIME;
1272 break;
1273 }
1274
1275 timer.function = NULL;
1276 if (timeout || missed_irq(dev_priv, ring)) {
1277 unsigned long expire;
1278
1279 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1280 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1281 mod_timer(&timer, expire);
1282 }
1283
1284 io_schedule();
1285
1286 if (timer.function) {
1287 del_singleshot_timer_sync(&timer);
1288 destroy_timer_on_stack(&timer);
1289 }
1290 }
1291 now = ktime_get_raw_ns();
1292 trace_i915_gem_request_wait_end(req);
1293
1294 if (!irq_test_in_progress)
1295 ring->irq_put(ring);
1296
1297 finish_wait(&ring->irq_queue, &wait);
1298
1299 if (timeout) {
1300 s64 tres = *timeout - (now - before);
1301
1302 *timeout = tres < 0 ? 0 : tres;
1303
1304 /*
1305 * Apparently ktime isn't accurate enough and occasionally has a
1306 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1307 * things up to make the test happy. We allow up to 1 jiffy.
1308 *
1309 * This is a regrssion from the timespec->ktime conversion.
1310 */
1311 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1312 *timeout = 0;
1313 }
1314
1315 return ret;
1316 }
1317
1318 /**
1319 * Waits for a request to be signaled, and cleans up the
1320 * request and object lists appropriately for that event.
1321 */
1322 int
1323 i915_wait_request(struct drm_i915_gem_request *req)
1324 {
1325 struct drm_device *dev;
1326 struct drm_i915_private *dev_priv;
1327 bool interruptible;
1328 unsigned reset_counter;
1329 int ret;
1330
1331 BUG_ON(req == NULL);
1332
1333 dev = req->ring->dev;
1334 dev_priv = dev->dev_private;
1335 interruptible = dev_priv->mm.interruptible;
1336
1337 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1338
1339 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1340 if (ret)
1341 return ret;
1342
1343 ret = i915_gem_check_olr(req);
1344 if (ret)
1345 return ret;
1346
1347 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1348 i915_gem_request_reference(req);
1349 ret = __i915_wait_request(req, reset_counter,
1350 interruptible, NULL, NULL);
1351 i915_gem_request_unreference(req);
1352 return ret;
1353 }
1354
1355 static int
1356 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357 {
1358 if (!obj->active)
1359 return 0;
1360
1361 /* Manually manage the write flush as we may have not yet
1362 * retired the buffer.
1363 *
1364 * Note that the last_write_req is always the earlier of
1365 * the two (read/write) requests, so if we haved successfully waited,
1366 * we know we have passed the last write.
1367 */
1368 i915_gem_request_assign(&obj->last_write_req, NULL);
1369
1370 return 0;
1371 }
1372
1373 /**
1374 * Ensures that all rendering to the object has completed and the object is
1375 * safe to unbind from the GTT or access from the CPU.
1376 */
1377 static __must_check int
1378 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1379 bool readonly)
1380 {
1381 struct drm_i915_gem_request *req;
1382 int ret;
1383
1384 req = readonly ? obj->last_write_req : obj->last_read_req;
1385 if (!req)
1386 return 0;
1387
1388 ret = i915_wait_request(req);
1389 if (ret)
1390 return ret;
1391
1392 return i915_gem_object_wait_rendering__tail(obj);
1393 }
1394
1395 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1396 * as the object state may change during this call.
1397 */
1398 static __must_check int
1399 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1400 struct drm_i915_file_private *file_priv,
1401 bool readonly)
1402 {
1403 struct drm_i915_gem_request *req;
1404 struct drm_device *dev = obj->base.dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 unsigned reset_counter;
1407 int ret;
1408
1409 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1410 BUG_ON(!dev_priv->mm.interruptible);
1411
1412 req = readonly ? obj->last_write_req : obj->last_read_req;
1413 if (!req)
1414 return 0;
1415
1416 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1417 if (ret)
1418 return ret;
1419
1420 ret = i915_gem_check_olr(req);
1421 if (ret)
1422 return ret;
1423
1424 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1425 i915_gem_request_reference(req);
1426 mutex_unlock(&dev->struct_mutex);
1427 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1428 mutex_lock(&dev->struct_mutex);
1429 i915_gem_request_unreference(req);
1430 if (ret)
1431 return ret;
1432
1433 return i915_gem_object_wait_rendering__tail(obj);
1434 }
1435
1436 /**
1437 * Called when user space prepares to use an object with the CPU, either
1438 * through the mmap ioctl's mapping or a GTT mapping.
1439 */
1440 int
1441 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1442 struct drm_file *file)
1443 {
1444 struct drm_i915_gem_set_domain *args = data;
1445 struct drm_i915_gem_object *obj;
1446 uint32_t read_domains = args->read_domains;
1447 uint32_t write_domain = args->write_domain;
1448 int ret;
1449
1450 /* Only handle setting domains to types used by the CPU. */
1451 if (write_domain & I915_GEM_GPU_DOMAINS)
1452 return -EINVAL;
1453
1454 if (read_domains & I915_GEM_GPU_DOMAINS)
1455 return -EINVAL;
1456
1457 /* Having something in the write domain implies it's in the read
1458 * domain, and only that read domain. Enforce that in the request.
1459 */
1460 if (write_domain != 0 && read_domains != write_domain)
1461 return -EINVAL;
1462
1463 ret = i915_mutex_lock_interruptible(dev);
1464 if (ret)
1465 return ret;
1466
1467 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1468 if (&obj->base == NULL) {
1469 ret = -ENOENT;
1470 goto unlock;
1471 }
1472
1473 /* Try to flush the object off the GPU without holding the lock.
1474 * We will repeat the flush holding the lock in the normal manner
1475 * to catch cases where we are gazumped.
1476 */
1477 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1478 file->driver_priv,
1479 !write_domain);
1480 if (ret)
1481 goto unref;
1482
1483 if (read_domains & I915_GEM_DOMAIN_GTT)
1484 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1485 else
1486 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1487
1488 unref:
1489 drm_gem_object_unreference(&obj->base);
1490 unlock:
1491 mutex_unlock(&dev->struct_mutex);
1492 return ret;
1493 }
1494
1495 /**
1496 * Called when user space has done writes to this buffer
1497 */
1498 int
1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500 struct drm_file *file)
1501 {
1502 struct drm_i915_gem_sw_finish *args = data;
1503 struct drm_i915_gem_object *obj;
1504 int ret = 0;
1505
1506 ret = i915_mutex_lock_interruptible(dev);
1507 if (ret)
1508 return ret;
1509
1510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511 if (&obj->base == NULL) {
1512 ret = -ENOENT;
1513 goto unlock;
1514 }
1515
1516 /* Pinned buffers may be scanout, so flush the cache */
1517 if (obj->pin_display)
1518 i915_gem_object_flush_cpu_write_domain(obj);
1519
1520 drm_gem_object_unreference(&obj->base);
1521 unlock:
1522 mutex_unlock(&dev->struct_mutex);
1523 return ret;
1524 }
1525
1526 /**
1527 * Maps the contents of an object, returning the address it is mapped
1528 * into.
1529 *
1530 * While the mapping holds a reference on the contents of the object, it doesn't
1531 * imply a ref on the object itself.
1532 *
1533 * IMPORTANT:
1534 *
1535 * DRM driver writers who look a this function as an example for how to do GEM
1536 * mmap support, please don't implement mmap support like here. The modern way
1537 * to implement DRM mmap support is with an mmap offset ioctl (like
1538 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539 * That way debug tooling like valgrind will understand what's going on, hiding
1540 * the mmap call in a driver private ioctl will break that. The i915 driver only
1541 * does cpu mmaps this way because we didn't know better.
1542 */
1543 int
1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545 struct drm_file *file)
1546 {
1547 struct drm_i915_gem_mmap *args = data;
1548 struct drm_gem_object *obj;
1549 unsigned long addr;
1550
1551 if (args->flags & ~(I915_MMAP_WC))
1552 return -EINVAL;
1553
1554 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1555 return -ENODEV;
1556
1557 obj = drm_gem_object_lookup(dev, file, args->handle);
1558 if (obj == NULL)
1559 return -ENOENT;
1560
1561 /* prime objects have no backing filp to GEM mmap
1562 * pages from.
1563 */
1564 if (!obj->filp) {
1565 drm_gem_object_unreference_unlocked(obj);
1566 return -EINVAL;
1567 }
1568
1569 addr = vm_mmap(obj->filp, 0, args->size,
1570 PROT_READ | PROT_WRITE, MAP_SHARED,
1571 args->offset);
1572 if (args->flags & I915_MMAP_WC) {
1573 struct mm_struct *mm = current->mm;
1574 struct vm_area_struct *vma;
1575
1576 down_write(&mm->mmap_sem);
1577 vma = find_vma(mm, addr);
1578 if (vma)
1579 vma->vm_page_prot =
1580 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1581 else
1582 addr = -ENOMEM;
1583 up_write(&mm->mmap_sem);
1584 }
1585 drm_gem_object_unreference_unlocked(obj);
1586 if (IS_ERR((void *)addr))
1587 return addr;
1588
1589 args->addr_ptr = (uint64_t) addr;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * i915_gem_fault - fault a page into the GTT
1596 * vma: VMA in question
1597 * vmf: fault info
1598 *
1599 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1600 * from userspace. The fault handler takes care of binding the object to
1601 * the GTT (if needed), allocating and programming a fence register (again,
1602 * only if needed based on whether the old reg is still valid or the object
1603 * is tiled) and inserting a new PTE into the faulting process.
1604 *
1605 * Note that the faulting process may involve evicting existing objects
1606 * from the GTT and/or fence registers to make room. So performance may
1607 * suffer if the GTT working set is large or there are few fence registers
1608 * left.
1609 */
1610 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1611 {
1612 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1613 struct drm_device *dev = obj->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 pgoff_t page_offset;
1616 unsigned long pfn;
1617 int ret = 0;
1618 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619
1620 intel_runtime_pm_get(dev_priv);
1621
1622 /* We don't use vmf->pgoff since that has the fake offset */
1623 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1624 PAGE_SHIFT;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 goto out;
1629
1630 trace_i915_gem_object_fault(obj, page_offset, true, write);
1631
1632 /* Try to flush the object off the GPU first without holding the lock.
1633 * Upon reacquiring the lock, we will perform our sanity checks and then
1634 * repeat the flush holding the lock in the normal manner to catch cases
1635 * where we are gazumped.
1636 */
1637 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1638 if (ret)
1639 goto unlock;
1640
1641 /* Access to snoopable pages through the GTT is incoherent. */
1642 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643 ret = -EFAULT;
1644 goto unlock;
1645 }
1646
1647 /* Now bind it into the GTT if needed */
1648 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 if (ret)
1650 goto unlock;
1651
1652 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1653 if (ret)
1654 goto unpin;
1655
1656 ret = i915_gem_object_get_fence(obj);
1657 if (ret)
1658 goto unpin;
1659
1660 /* Finally, remap it using the new GTT offset */
1661 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1662 pfn >>= PAGE_SHIFT;
1663
1664 if (!obj->fault_mappable) {
1665 unsigned long size = min_t(unsigned long,
1666 vma->vm_end - vma->vm_start,
1667 obj->base.size);
1668 int i;
1669
1670 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 ret = vm_insert_pfn(vma,
1672 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1673 pfn + i);
1674 if (ret)
1675 break;
1676 }
1677
1678 obj->fault_mappable = true;
1679 } else
1680 ret = vm_insert_pfn(vma,
1681 (unsigned long)vmf->virtual_address,
1682 pfn + page_offset);
1683 unpin:
1684 i915_gem_object_ggtt_unpin(obj);
1685 unlock:
1686 mutex_unlock(&dev->struct_mutex);
1687 out:
1688 switch (ret) {
1689 case -EIO:
1690 /*
1691 * We eat errors when the gpu is terminally wedged to avoid
1692 * userspace unduly crashing (gl has no provisions for mmaps to
1693 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1694 * and so needs to be reported.
1695 */
1696 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 ret = VM_FAULT_SIGBUS;
1698 break;
1699 }
1700 case -EAGAIN:
1701 /*
1702 * EAGAIN means the gpu is hung and we'll wait for the error
1703 * handler to reset everything when re-faulting in
1704 * i915_mutex_lock_interruptible.
1705 */
1706 case 0:
1707 case -ERESTARTSYS:
1708 case -EINTR:
1709 case -EBUSY:
1710 /*
1711 * EBUSY is ok: this just means that another thread
1712 * already did the job.
1713 */
1714 ret = VM_FAULT_NOPAGE;
1715 break;
1716 case -ENOMEM:
1717 ret = VM_FAULT_OOM;
1718 break;
1719 case -ENOSPC:
1720 case -EFAULT:
1721 ret = VM_FAULT_SIGBUS;
1722 break;
1723 default:
1724 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 }
1728
1729 intel_runtime_pm_put(dev_priv);
1730 return ret;
1731 }
1732
1733 /**
1734 * i915_gem_release_mmap - remove physical page mappings
1735 * @obj: obj in question
1736 *
1737 * Preserve the reservation of the mmapping with the DRM core code, but
1738 * relinquish ownership of the pages back to the system.
1739 *
1740 * It is vital that we remove the page mapping if we have mapped a tiled
1741 * object through the GTT and then lose the fence register due to
1742 * resource pressure. Similarly if the object has been moved out of the
1743 * aperture, than pages mapped into userspace must be revoked. Removing the
1744 * mapping will then trigger a page fault on the next user access, allowing
1745 * fixup by i915_gem_fault().
1746 */
1747 void
1748 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749 {
1750 if (!obj->fault_mappable)
1751 return;
1752
1753 drm_vma_node_unmap(&obj->base.vma_node,
1754 obj->base.dev->anon_inode->i_mapping);
1755 obj->fault_mappable = false;
1756 }
1757
1758 void
1759 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_i915_gem_object *obj;
1762
1763 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1764 i915_gem_release_mmap(obj);
1765 }
1766
1767 uint32_t
1768 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769 {
1770 uint32_t gtt_size;
1771
1772 if (INTEL_INFO(dev)->gen >= 4 ||
1773 tiling_mode == I915_TILING_NONE)
1774 return size;
1775
1776 /* Previous chips need a power-of-two fence region when tiling */
1777 if (INTEL_INFO(dev)->gen == 3)
1778 gtt_size = 1024*1024;
1779 else
1780 gtt_size = 512*1024;
1781
1782 while (gtt_size < size)
1783 gtt_size <<= 1;
1784
1785 return gtt_size;
1786 }
1787
1788 /**
1789 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1790 * @obj: object to check
1791 *
1792 * Return the required GTT alignment for an object, taking into account
1793 * potential fence register mapping.
1794 */
1795 uint32_t
1796 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1797 int tiling_mode, bool fenced)
1798 {
1799 /*
1800 * Minimum alignment is 4k (GTT page size), but might be greater
1801 * if a fence register is needed for the object.
1802 */
1803 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804 tiling_mode == I915_TILING_NONE)
1805 return 4096;
1806
1807 /*
1808 * Previous chips need to be aligned to the size of the smallest
1809 * fence register that can contain the object.
1810 */
1811 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 }
1813
1814 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1815 {
1816 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1817 int ret;
1818
1819 if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 return 0;
1821
1822 dev_priv->mm.shrinker_no_lock_stealing = true;
1823
1824 ret = drm_gem_create_mmap_offset(&obj->base);
1825 if (ret != -ENOSPC)
1826 goto out;
1827
1828 /* Badly fragmented mmap space? The only way we can recover
1829 * space is by destroying unwanted objects. We can't randomly release
1830 * mmap_offsets as userspace expects them to be persistent for the
1831 * lifetime of the objects. The closest we can is to release the
1832 * offsets on purgeable objects by truncating it and marking it purged,
1833 * which prevents userspace from ever using that object again.
1834 */
1835 i915_gem_shrink(dev_priv,
1836 obj->base.size >> PAGE_SHIFT,
1837 I915_SHRINK_BOUND |
1838 I915_SHRINK_UNBOUND |
1839 I915_SHRINK_PURGEABLE);
1840 ret = drm_gem_create_mmap_offset(&obj->base);
1841 if (ret != -ENOSPC)
1842 goto out;
1843
1844 i915_gem_shrink_all(dev_priv);
1845 ret = drm_gem_create_mmap_offset(&obj->base);
1846 out:
1847 dev_priv->mm.shrinker_no_lock_stealing = false;
1848
1849 return ret;
1850 }
1851
1852 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1853 {
1854 drm_gem_free_mmap_offset(&obj->base);
1855 }
1856
1857 int
1858 i915_gem_mmap_gtt(struct drm_file *file,
1859 struct drm_device *dev,
1860 uint32_t handle,
1861 uint64_t *offset)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct drm_i915_gem_object *obj;
1865 int ret;
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 return ret;
1870
1871 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872 if (&obj->base == NULL) {
1873 ret = -ENOENT;
1874 goto unlock;
1875 }
1876
1877 if (obj->base.size > dev_priv->gtt.mappable_end) {
1878 ret = -E2BIG;
1879 goto out;
1880 }
1881
1882 if (obj->madv != I915_MADV_WILLNEED) {
1883 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884 ret = -EFAULT;
1885 goto out;
1886 }
1887
1888 ret = i915_gem_object_create_mmap_offset(obj);
1889 if (ret)
1890 goto out;
1891
1892 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893
1894 out:
1895 drm_gem_object_unreference(&obj->base);
1896 unlock:
1897 mutex_unlock(&dev->struct_mutex);
1898 return ret;
1899 }
1900
1901 /**
1902 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1903 * @dev: DRM device
1904 * @data: GTT mapping ioctl data
1905 * @file: GEM object info
1906 *
1907 * Simply returns the fake offset to userspace so it can mmap it.
1908 * The mmap call will end up in drm_gem_mmap(), which will set things
1909 * up so we can get faults in the handler above.
1910 *
1911 * The fault handler will take care of binding the object into the GTT
1912 * (since it may have been evicted to make room for something), allocating
1913 * a fence register, and mapping the appropriate aperture address into
1914 * userspace.
1915 */
1916 int
1917 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1918 struct drm_file *file)
1919 {
1920 struct drm_i915_gem_mmap_gtt *args = data;
1921
1922 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 }
1924
1925 static inline int
1926 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1927 {
1928 return obj->madv == I915_MADV_DONTNEED;
1929 }
1930
1931 /* Immediately discard the backing storage */
1932 static void
1933 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934 {
1935 i915_gem_object_free_mmap_offset(obj);
1936
1937 if (obj->base.filp == NULL)
1938 return;
1939
1940 /* Our goal here is to return as much of the memory as
1941 * is possible back to the system as we are called from OOM.
1942 * To do this we must instruct the shmfs to drop all of its
1943 * backing pages, *now*.
1944 */
1945 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1946 obj->madv = __I915_MADV_PURGED;
1947 }
1948
1949 /* Try to discard unwanted pages */
1950 static void
1951 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1952 {
1953 struct address_space *mapping;
1954
1955 switch (obj->madv) {
1956 case I915_MADV_DONTNEED:
1957 i915_gem_object_truncate(obj);
1958 case __I915_MADV_PURGED:
1959 return;
1960 }
1961
1962 if (obj->base.filp == NULL)
1963 return;
1964
1965 mapping = file_inode(obj->base.filp)->i_mapping,
1966 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 }
1968
1969 static void
1970 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971 {
1972 struct sg_page_iter sg_iter;
1973 int ret;
1974
1975 BUG_ON(obj->madv == __I915_MADV_PURGED);
1976
1977 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1978 if (ret) {
1979 /* In the event of a disaster, abandon all caches and
1980 * hope for the best.
1981 */
1982 WARN_ON(ret != -EIO);
1983 i915_gem_clflush_object(obj, true);
1984 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1985 }
1986
1987 if (i915_gem_object_needs_bit17_swizzle(obj))
1988 i915_gem_object_save_bit_17_swizzle(obj);
1989
1990 if (obj->madv == I915_MADV_DONTNEED)
1991 obj->dirty = 0;
1992
1993 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994 struct page *page = sg_page_iter_page(&sg_iter);
1995
1996 if (obj->dirty)
1997 set_page_dirty(page);
1998
1999 if (obj->madv == I915_MADV_WILLNEED)
2000 mark_page_accessed(page);
2001
2002 page_cache_release(page);
2003 }
2004 obj->dirty = 0;
2005
2006 sg_free_table(obj->pages);
2007 kfree(obj->pages);
2008 }
2009
2010 int
2011 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2012 {
2013 const struct drm_i915_gem_object_ops *ops = obj->ops;
2014
2015 if (obj->pages == NULL)
2016 return 0;
2017
2018 if (obj->pages_pin_count)
2019 return -EBUSY;
2020
2021 BUG_ON(i915_gem_obj_bound_any(obj));
2022
2023 /* ->put_pages might need to allocate memory for the bit17 swizzle
2024 * array, hence protect them from being reaped by removing them from gtt
2025 * lists early. */
2026 list_del(&obj->global_list);
2027
2028 ops->put_pages(obj);
2029 obj->pages = NULL;
2030
2031 i915_gem_object_invalidate(obj);
2032
2033 return 0;
2034 }
2035
2036 unsigned long
2037 i915_gem_shrink(struct drm_i915_private *dev_priv,
2038 long target, unsigned flags)
2039 {
2040 const struct {
2041 struct list_head *list;
2042 unsigned int bit;
2043 } phases[] = {
2044 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2045 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2046 { NULL, 0 },
2047 }, *phase;
2048 unsigned long count = 0;
2049
2050 /*
2051 * As we may completely rewrite the (un)bound list whilst unbinding
2052 * (due to retiring requests) we have to strictly process only
2053 * one element of the list at the time, and recheck the list
2054 * on every iteration.
2055 *
2056 * In particular, we must hold a reference whilst removing the
2057 * object as we may end up waiting for and/or retiring the objects.
2058 * This might release the final reference (held by the active list)
2059 * and result in the object being freed from under us. This is
2060 * similar to the precautions the eviction code must take whilst
2061 * removing objects.
2062 *
2063 * Also note that although these lists do not hold a reference to
2064 * the object we can safely grab one here: The final object
2065 * unreferencing and the bound_list are both protected by the
2066 * dev->struct_mutex and so we won't ever be able to observe an
2067 * object on the bound_list with a reference count equals 0.
2068 */
2069 for (phase = phases; phase->list; phase++) {
2070 struct list_head still_in_list;
2071
2072 if ((flags & phase->bit) == 0)
2073 continue;
2074
2075 INIT_LIST_HEAD(&still_in_list);
2076 while (count < target && !list_empty(phase->list)) {
2077 struct drm_i915_gem_object *obj;
2078 struct i915_vma *vma, *v;
2079
2080 obj = list_first_entry(phase->list,
2081 typeof(*obj), global_list);
2082 list_move_tail(&obj->global_list, &still_in_list);
2083
2084 if (flags & I915_SHRINK_PURGEABLE &&
2085 !i915_gem_object_is_purgeable(obj))
2086 continue;
2087
2088 drm_gem_object_reference(&obj->base);
2089
2090 /* For the unbound phase, this should be a no-op! */
2091 list_for_each_entry_safe(vma, v,
2092 &obj->vma_list, vma_link)
2093 if (i915_vma_unbind(vma))
2094 break;
2095
2096 if (i915_gem_object_put_pages(obj) == 0)
2097 count += obj->base.size >> PAGE_SHIFT;
2098
2099 drm_gem_object_unreference(&obj->base);
2100 }
2101 list_splice(&still_in_list, phase->list);
2102 }
2103
2104 return count;
2105 }
2106
2107 static unsigned long
2108 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2109 {
2110 i915_gem_evict_everything(dev_priv->dev);
2111 return i915_gem_shrink(dev_priv, LONG_MAX,
2112 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2113 }
2114
2115 static int
2116 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117 {
2118 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 int page_count, i;
2120 struct address_space *mapping;
2121 struct sg_table *st;
2122 struct scatterlist *sg;
2123 struct sg_page_iter sg_iter;
2124 struct page *page;
2125 unsigned long last_pfn = 0; /* suppress gcc warning */
2126 gfp_t gfp;
2127
2128 /* Assert that the object is not currently in any GPU domain. As it
2129 * wasn't in the GTT, there shouldn't be any way it could have been in
2130 * a GPU cache
2131 */
2132 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2133 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2134
2135 st = kmalloc(sizeof(*st), GFP_KERNEL);
2136 if (st == NULL)
2137 return -ENOMEM;
2138
2139 page_count = obj->base.size / PAGE_SIZE;
2140 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2141 kfree(st);
2142 return -ENOMEM;
2143 }
2144
2145 /* Get the list of pages out of our struct file. They'll be pinned
2146 * at this point until we release them.
2147 *
2148 * Fail silently without starting the shrinker
2149 */
2150 mapping = file_inode(obj->base.filp)->i_mapping;
2151 gfp = mapping_gfp_mask(mapping);
2152 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2153 gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 sg = st->sgl;
2155 st->nents = 0;
2156 for (i = 0; i < page_count; i++) {
2157 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2158 if (IS_ERR(page)) {
2159 i915_gem_shrink(dev_priv,
2160 page_count,
2161 I915_SHRINK_BOUND |
2162 I915_SHRINK_UNBOUND |
2163 I915_SHRINK_PURGEABLE);
2164 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2165 }
2166 if (IS_ERR(page)) {
2167 /* We've tried hard to allocate the memory by reaping
2168 * our own buffer, now let the real VM do its job and
2169 * go down in flames if truly OOM.
2170 */
2171 i915_gem_shrink_all(dev_priv);
2172 page = shmem_read_mapping_page(mapping, i);
2173 if (IS_ERR(page))
2174 goto err_pages;
2175 }
2176 #ifdef CONFIG_SWIOTLB
2177 if (swiotlb_nr_tbl()) {
2178 st->nents++;
2179 sg_set_page(sg, page, PAGE_SIZE, 0);
2180 sg = sg_next(sg);
2181 continue;
2182 }
2183 #endif
2184 if (!i || page_to_pfn(page) != last_pfn + 1) {
2185 if (i)
2186 sg = sg_next(sg);
2187 st->nents++;
2188 sg_set_page(sg, page, PAGE_SIZE, 0);
2189 } else {
2190 sg->length += PAGE_SIZE;
2191 }
2192 last_pfn = page_to_pfn(page);
2193
2194 /* Check that the i965g/gm workaround works. */
2195 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196 }
2197 #ifdef CONFIG_SWIOTLB
2198 if (!swiotlb_nr_tbl())
2199 #endif
2200 sg_mark_end(sg);
2201 obj->pages = st;
2202
2203 if (i915_gem_object_needs_bit17_swizzle(obj))
2204 i915_gem_object_do_bit_17_swizzle(obj);
2205
2206 if (obj->tiling_mode != I915_TILING_NONE &&
2207 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2208 i915_gem_object_pin_pages(obj);
2209
2210 return 0;
2211
2212 err_pages:
2213 sg_mark_end(sg);
2214 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2215 page_cache_release(sg_page_iter_page(&sg_iter));
2216 sg_free_table(st);
2217 kfree(st);
2218
2219 /* shmemfs first checks if there is enough memory to allocate the page
2220 * and reports ENOSPC should there be insufficient, along with the usual
2221 * ENOMEM for a genuine allocation failure.
2222 *
2223 * We use ENOSPC in our driver to mean that we have run out of aperture
2224 * space and so want to translate the error from shmemfs back to our
2225 * usual understanding of ENOMEM.
2226 */
2227 if (PTR_ERR(page) == -ENOSPC)
2228 return -ENOMEM;
2229 else
2230 return PTR_ERR(page);
2231 }
2232
2233 /* Ensure that the associated pages are gathered from the backing storage
2234 * and pinned into our object. i915_gem_object_get_pages() may be called
2235 * multiple times before they are released by a single call to
2236 * i915_gem_object_put_pages() - once the pages are no longer referenced
2237 * either as a result of memory pressure (reaping pages under the shrinker)
2238 * or as the object is itself released.
2239 */
2240 int
2241 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2242 {
2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244 const struct drm_i915_gem_object_ops *ops = obj->ops;
2245 int ret;
2246
2247 if (obj->pages)
2248 return 0;
2249
2250 if (obj->madv != I915_MADV_WILLNEED) {
2251 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2252 return -EFAULT;
2253 }
2254
2255 BUG_ON(obj->pages_pin_count);
2256
2257 ret = ops->get_pages(obj);
2258 if (ret)
2259 return ret;
2260
2261 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2262 return 0;
2263 }
2264
2265 static void
2266 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2267 struct intel_engine_cs *ring)
2268 {
2269 struct drm_i915_gem_request *req;
2270 struct intel_engine_cs *old_ring;
2271
2272 BUG_ON(ring == NULL);
2273
2274 req = intel_ring_get_request(ring);
2275 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2276
2277 if (old_ring != ring && obj->last_write_req) {
2278 /* Keep the request relative to the current ring */
2279 i915_gem_request_assign(&obj->last_write_req, req);
2280 }
2281
2282 /* Add a reference if we're newly entering the active list. */
2283 if (!obj->active) {
2284 drm_gem_object_reference(&obj->base);
2285 obj->active = 1;
2286 }
2287
2288 list_move_tail(&obj->ring_list, &ring->active_list);
2289
2290 i915_gem_request_assign(&obj->last_read_req, req);
2291 }
2292
2293 void i915_vma_move_to_active(struct i915_vma *vma,
2294 struct intel_engine_cs *ring)
2295 {
2296 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2297 return i915_gem_object_move_to_active(vma->obj, ring);
2298 }
2299
2300 static void
2301 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2302 {
2303 struct i915_vma *vma;
2304
2305 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306 BUG_ON(!obj->active);
2307
2308 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2309 if (!list_empty(&vma->mm_list))
2310 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2311 }
2312
2313 intel_fb_obj_flush(obj, true);
2314
2315 list_del_init(&obj->ring_list);
2316
2317 i915_gem_request_assign(&obj->last_read_req, NULL);
2318 i915_gem_request_assign(&obj->last_write_req, NULL);
2319 obj->base.write_domain = 0;
2320
2321 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2322
2323 obj->active = 0;
2324 drm_gem_object_unreference(&obj->base);
2325
2326 WARN_ON(i915_verify_lists(dev));
2327 }
2328
2329 static void
2330 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2331 {
2332 if (obj->last_read_req == NULL)
2333 return;
2334
2335 if (i915_gem_request_completed(obj->last_read_req, true))
2336 i915_gem_object_move_to_inactive(obj);
2337 }
2338
2339 static int
2340 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2341 {
2342 struct drm_i915_private *dev_priv = dev->dev_private;
2343 struct intel_engine_cs *ring;
2344 int ret, i, j;
2345
2346 /* Carefully retire all requests without writing to the rings */
2347 for_each_ring(ring, dev_priv, i) {
2348 ret = intel_ring_idle(ring);
2349 if (ret)
2350 return ret;
2351 }
2352 i915_gem_retire_requests(dev);
2353
2354 /* Finally reset hw state */
2355 for_each_ring(ring, dev_priv, i) {
2356 intel_ring_init_seqno(ring, seqno);
2357
2358 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2359 ring->semaphore.sync_seqno[j] = 0;
2360 }
2361
2362 return 0;
2363 }
2364
2365 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 int ret;
2369
2370 if (seqno == 0)
2371 return -EINVAL;
2372
2373 /* HWS page needs to be set less than what we
2374 * will inject to ring
2375 */
2376 ret = i915_gem_init_seqno(dev, seqno - 1);
2377 if (ret)
2378 return ret;
2379
2380 /* Carefully set the last_seqno value so that wrap
2381 * detection still works
2382 */
2383 dev_priv->next_seqno = seqno;
2384 dev_priv->last_seqno = seqno - 1;
2385 if (dev_priv->last_seqno == 0)
2386 dev_priv->last_seqno--;
2387
2388 return 0;
2389 }
2390
2391 int
2392 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2393 {
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395
2396 /* reserve 0 for non-seqno */
2397 if (dev_priv->next_seqno == 0) {
2398 int ret = i915_gem_init_seqno(dev, 0);
2399 if (ret)
2400 return ret;
2401
2402 dev_priv->next_seqno = 1;
2403 }
2404
2405 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2406 return 0;
2407 }
2408
2409 int __i915_add_request(struct intel_engine_cs *ring,
2410 struct drm_file *file,
2411 struct drm_i915_gem_object *obj)
2412 {
2413 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414 struct drm_i915_gem_request *request;
2415 struct intel_ringbuffer *ringbuf;
2416 u32 request_start;
2417 int ret;
2418
2419 request = ring->outstanding_lazy_request;
2420 if (WARN_ON(request == NULL))
2421 return -ENOMEM;
2422
2423 if (i915.enable_execlists) {
2424 ringbuf = request->ctx->engine[ring->id].ringbuf;
2425 } else
2426 ringbuf = ring->buffer;
2427
2428 request_start = intel_ring_get_tail(ringbuf);
2429 /*
2430 * Emit any outstanding flushes - execbuf can fail to emit the flush
2431 * after having emitted the batchbuffer command. Hence we need to fix
2432 * things up similar to emitting the lazy request. The difference here
2433 * is that the flush _must_ happen before the next request, no matter
2434 * what.
2435 */
2436 if (i915.enable_execlists) {
2437 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2438 if (ret)
2439 return ret;
2440 } else {
2441 ret = intel_ring_flush_all_caches(ring);
2442 if (ret)
2443 return ret;
2444 }
2445
2446 /* Record the position of the start of the request so that
2447 * should we detect the updated seqno part-way through the
2448 * GPU processing the request, we never over-estimate the
2449 * position of the head.
2450 */
2451 request->postfix = intel_ring_get_tail(ringbuf);
2452
2453 if (i915.enable_execlists) {
2454 ret = ring->emit_request(ringbuf, request);
2455 if (ret)
2456 return ret;
2457 } else {
2458 ret = ring->add_request(ring);
2459 if (ret)
2460 return ret;
2461 }
2462
2463 request->head = request_start;
2464 request->tail = intel_ring_get_tail(ringbuf);
2465
2466 /* Whilst this request exists, batch_obj will be on the
2467 * active_list, and so will hold the active reference. Only when this
2468 * request is retired will the the batch_obj be moved onto the
2469 * inactive_list and lose its active reference. Hence we do not need
2470 * to explicitly hold another reference here.
2471 */
2472 request->batch_obj = obj;
2473
2474 if (!i915.enable_execlists) {
2475 /* Hold a reference to the current context so that we can inspect
2476 * it later in case a hangcheck error event fires.
2477 */
2478 request->ctx = ring->last_context;
2479 if (request->ctx)
2480 i915_gem_context_reference(request->ctx);
2481 }
2482
2483 request->emitted_jiffies = jiffies;
2484 list_add_tail(&request->list, &ring->request_list);
2485 request->file_priv = NULL;
2486
2487 if (file) {
2488 struct drm_i915_file_private *file_priv = file->driver_priv;
2489
2490 spin_lock(&file_priv->mm.lock);
2491 request->file_priv = file_priv;
2492 list_add_tail(&request->client_list,
2493 &file_priv->mm.request_list);
2494 spin_unlock(&file_priv->mm.lock);
2495 }
2496
2497 trace_i915_gem_request_add(request);
2498 ring->outstanding_lazy_request = NULL;
2499
2500 i915_queue_hangcheck(ring->dev);
2501
2502 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503 queue_delayed_work(dev_priv->wq,
2504 &dev_priv->mm.retire_work,
2505 round_jiffies_up_relative(HZ));
2506 intel_mark_busy(dev_priv->dev);
2507
2508 return 0;
2509 }
2510
2511 static inline void
2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513 {
2514 struct drm_i915_file_private *file_priv = request->file_priv;
2515
2516 if (!file_priv)
2517 return;
2518
2519 spin_lock(&file_priv->mm.lock);
2520 list_del(&request->client_list);
2521 request->file_priv = NULL;
2522 spin_unlock(&file_priv->mm.lock);
2523 }
2524
2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526 const struct intel_context *ctx)
2527 {
2528 unsigned long elapsed;
2529
2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532 if (ctx->hang_stats.banned)
2533 return true;
2534
2535 if (ctx->hang_stats.ban_period_seconds &&
2536 elapsed <= ctx->hang_stats.ban_period_seconds) {
2537 if (!i915_gem_context_is_default(ctx)) {
2538 DRM_DEBUG("context hanging too fast, banning!\n");
2539 return true;
2540 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2541 if (i915_stop_ring_allow_warn(dev_priv))
2542 DRM_ERROR("gpu hanging too fast, banning!\n");
2543 return true;
2544 }
2545 }
2546
2547 return false;
2548 }
2549
2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551 struct intel_context *ctx,
2552 const bool guilty)
2553 {
2554 struct i915_ctx_hang_stats *hs;
2555
2556 if (WARN_ON(!ctx))
2557 return;
2558
2559 hs = &ctx->hang_stats;
2560
2561 if (guilty) {
2562 hs->banned = i915_context_is_banned(dev_priv, ctx);
2563 hs->batch_active++;
2564 hs->guilty_ts = get_seconds();
2565 } else {
2566 hs->batch_pending++;
2567 }
2568 }
2569
2570 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571 {
2572 list_del(&request->list);
2573 i915_gem_request_remove_from_client(request);
2574
2575 i915_gem_request_unreference(request);
2576 }
2577
2578 void i915_gem_request_free(struct kref *req_ref)
2579 {
2580 struct drm_i915_gem_request *req = container_of(req_ref,
2581 typeof(*req), ref);
2582 struct intel_context *ctx = req->ctx;
2583
2584 if (ctx) {
2585 if (i915.enable_execlists) {
2586 struct intel_engine_cs *ring = req->ring;
2587
2588 if (ctx != ring->default_context)
2589 intel_lr_context_unpin(ring, ctx);
2590 }
2591
2592 i915_gem_context_unreference(ctx);
2593 }
2594
2595 kfree(req);
2596 }
2597
2598 struct drm_i915_gem_request *
2599 i915_gem_find_active_request(struct intel_engine_cs *ring)
2600 {
2601 struct drm_i915_gem_request *request;
2602
2603 list_for_each_entry(request, &ring->request_list, list) {
2604 if (i915_gem_request_completed(request, false))
2605 continue;
2606
2607 return request;
2608 }
2609
2610 return NULL;
2611 }
2612
2613 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2614 struct intel_engine_cs *ring)
2615 {
2616 struct drm_i915_gem_request *request;
2617 bool ring_hung;
2618
2619 request = i915_gem_find_active_request(ring);
2620
2621 if (request == NULL)
2622 return;
2623
2624 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2625
2626 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2627
2628 list_for_each_entry_continue(request, &ring->request_list, list)
2629 i915_set_reset_status(dev_priv, request->ctx, false);
2630 }
2631
2632 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2633 struct intel_engine_cs *ring)
2634 {
2635 while (!list_empty(&ring->active_list)) {
2636 struct drm_i915_gem_object *obj;
2637
2638 obj = list_first_entry(&ring->active_list,
2639 struct drm_i915_gem_object,
2640 ring_list);
2641
2642 i915_gem_object_move_to_inactive(obj);
2643 }
2644
2645 /*
2646 * Clear the execlists queue up before freeing the requests, as those
2647 * are the ones that keep the context and ringbuffer backing objects
2648 * pinned in place.
2649 */
2650 while (!list_empty(&ring->execlist_queue)) {
2651 struct drm_i915_gem_request *submit_req;
2652
2653 submit_req = list_first_entry(&ring->execlist_queue,
2654 struct drm_i915_gem_request,
2655 execlist_link);
2656 list_del(&submit_req->execlist_link);
2657 intel_runtime_pm_put(dev_priv);
2658
2659 if (submit_req->ctx != ring->default_context)
2660 intel_lr_context_unpin(ring, submit_req->ctx);
2661
2662 i915_gem_context_unreference(submit_req->ctx);
2663 kfree(submit_req);
2664 }
2665
2666 /*
2667 * We must free the requests after all the corresponding objects have
2668 * been moved off active lists. Which is the same order as the normal
2669 * retire_requests function does. This is important if object hold
2670 * implicit references on things like e.g. ppgtt address spaces through
2671 * the request.
2672 */
2673 while (!list_empty(&ring->request_list)) {
2674 struct drm_i915_gem_request *request;
2675
2676 request = list_first_entry(&ring->request_list,
2677 struct drm_i915_gem_request,
2678 list);
2679
2680 i915_gem_free_request(request);
2681 }
2682
2683 /* This may not have been flushed before the reset, so clean it now */
2684 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2685 }
2686
2687 void i915_gem_restore_fences(struct drm_device *dev)
2688 {
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 int i;
2691
2692 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2693 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2694
2695 /*
2696 * Commit delayed tiling changes if we have an object still
2697 * attached to the fence, otherwise just clear the fence.
2698 */
2699 if (reg->obj) {
2700 i915_gem_object_update_fence(reg->obj, reg,
2701 reg->obj->tiling_mode);
2702 } else {
2703 i915_gem_write_fence(dev, i, NULL);
2704 }
2705 }
2706 }
2707
2708 void i915_gem_reset(struct drm_device *dev)
2709 {
2710 struct drm_i915_private *dev_priv = dev->dev_private;
2711 struct intel_engine_cs *ring;
2712 int i;
2713
2714 /*
2715 * Before we free the objects from the requests, we need to inspect
2716 * them for finding the guilty party. As the requests only borrow
2717 * their reference to the objects, the inspection must be done first.
2718 */
2719 for_each_ring(ring, dev_priv, i)
2720 i915_gem_reset_ring_status(dev_priv, ring);
2721
2722 for_each_ring(ring, dev_priv, i)
2723 i915_gem_reset_ring_cleanup(dev_priv, ring);
2724
2725 i915_gem_context_reset(dev);
2726
2727 i915_gem_restore_fences(dev);
2728 }
2729
2730 /**
2731 * This function clears the request list as sequence numbers are passed.
2732 */
2733 void
2734 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2735 {
2736 if (list_empty(&ring->request_list))
2737 return;
2738
2739 WARN_ON(i915_verify_lists(ring->dev));
2740
2741 /* Move any buffers on the active list that are no longer referenced
2742 * by the ringbuffer to the flushing/inactive lists as appropriate,
2743 * before we free the context associated with the requests.
2744 */
2745 while (!list_empty(&ring->active_list)) {
2746 struct drm_i915_gem_object *obj;
2747
2748 obj = list_first_entry(&ring->active_list,
2749 struct drm_i915_gem_object,
2750 ring_list);
2751
2752 if (!i915_gem_request_completed(obj->last_read_req, true))
2753 break;
2754
2755 i915_gem_object_move_to_inactive(obj);
2756 }
2757
2758
2759 while (!list_empty(&ring->request_list)) {
2760 struct drm_i915_gem_request *request;
2761 struct intel_ringbuffer *ringbuf;
2762
2763 request = list_first_entry(&ring->request_list,
2764 struct drm_i915_gem_request,
2765 list);
2766
2767 if (!i915_gem_request_completed(request, true))
2768 break;
2769
2770 trace_i915_gem_request_retire(request);
2771
2772 /* This is one of the few common intersection points
2773 * between legacy ringbuffer submission and execlists:
2774 * we need to tell them apart in order to find the correct
2775 * ringbuffer to which the request belongs to.
2776 */
2777 if (i915.enable_execlists) {
2778 struct intel_context *ctx = request->ctx;
2779 ringbuf = ctx->engine[ring->id].ringbuf;
2780 } else
2781 ringbuf = ring->buffer;
2782
2783 /* We know the GPU must have read the request to have
2784 * sent us the seqno + interrupt, so use the position
2785 * of tail of the request to update the last known position
2786 * of the GPU head.
2787 */
2788 ringbuf->last_retired_head = request->postfix;
2789
2790 i915_gem_free_request(request);
2791 }
2792
2793 if (unlikely(ring->trace_irq_req &&
2794 i915_gem_request_completed(ring->trace_irq_req, true))) {
2795 ring->irq_put(ring);
2796 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2797 }
2798
2799 WARN_ON(i915_verify_lists(ring->dev));
2800 }
2801
2802 bool
2803 i915_gem_retire_requests(struct drm_device *dev)
2804 {
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct intel_engine_cs *ring;
2807 bool idle = true;
2808 int i;
2809
2810 for_each_ring(ring, dev_priv, i) {
2811 i915_gem_retire_requests_ring(ring);
2812 idle &= list_empty(&ring->request_list);
2813 if (i915.enable_execlists) {
2814 unsigned long flags;
2815
2816 spin_lock_irqsave(&ring->execlist_lock, flags);
2817 idle &= list_empty(&ring->execlist_queue);
2818 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2819
2820 intel_execlists_retire_requests(ring);
2821 }
2822 }
2823
2824 if (idle)
2825 mod_delayed_work(dev_priv->wq,
2826 &dev_priv->mm.idle_work,
2827 msecs_to_jiffies(100));
2828
2829 return idle;
2830 }
2831
2832 static void
2833 i915_gem_retire_work_handler(struct work_struct *work)
2834 {
2835 struct drm_i915_private *dev_priv =
2836 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2837 struct drm_device *dev = dev_priv->dev;
2838 bool idle;
2839
2840 /* Come back later if the device is busy... */
2841 idle = false;
2842 if (mutex_trylock(&dev->struct_mutex)) {
2843 idle = i915_gem_retire_requests(dev);
2844 mutex_unlock(&dev->struct_mutex);
2845 }
2846 if (!idle)
2847 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2848 round_jiffies_up_relative(HZ));
2849 }
2850
2851 static void
2852 i915_gem_idle_work_handler(struct work_struct *work)
2853 {
2854 struct drm_i915_private *dev_priv =
2855 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2856
2857 intel_mark_idle(dev_priv->dev);
2858 }
2859
2860 /**
2861 * Ensures that an object will eventually get non-busy by flushing any required
2862 * write domains, emitting any outstanding lazy request and retiring and
2863 * completed requests.
2864 */
2865 static int
2866 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2867 {
2868 struct intel_engine_cs *ring;
2869 int ret;
2870
2871 if (obj->active) {
2872 ring = i915_gem_request_get_ring(obj->last_read_req);
2873
2874 ret = i915_gem_check_olr(obj->last_read_req);
2875 if (ret)
2876 return ret;
2877
2878 i915_gem_retire_requests_ring(ring);
2879 }
2880
2881 return 0;
2882 }
2883
2884 /**
2885 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2886 * @DRM_IOCTL_ARGS: standard ioctl arguments
2887 *
2888 * Returns 0 if successful, else an error is returned with the remaining time in
2889 * the timeout parameter.
2890 * -ETIME: object is still busy after timeout
2891 * -ERESTARTSYS: signal interrupted the wait
2892 * -ENONENT: object doesn't exist
2893 * Also possible, but rare:
2894 * -EAGAIN: GPU wedged
2895 * -ENOMEM: damn
2896 * -ENODEV: Internal IRQ fail
2897 * -E?: The add request failed
2898 *
2899 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2900 * non-zero timeout parameter the wait ioctl will wait for the given number of
2901 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2902 * without holding struct_mutex the object may become re-busied before this
2903 * function completes. A similar but shorter * race condition exists in the busy
2904 * ioctl
2905 */
2906 int
2907 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2908 {
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 struct drm_i915_gem_wait *args = data;
2911 struct drm_i915_gem_object *obj;
2912 struct drm_i915_gem_request *req;
2913 unsigned reset_counter;
2914 int ret = 0;
2915
2916 if (args->flags != 0)
2917 return -EINVAL;
2918
2919 ret = i915_mutex_lock_interruptible(dev);
2920 if (ret)
2921 return ret;
2922
2923 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2924 if (&obj->base == NULL) {
2925 mutex_unlock(&dev->struct_mutex);
2926 return -ENOENT;
2927 }
2928
2929 /* Need to make sure the object gets inactive eventually. */
2930 ret = i915_gem_object_flush_active(obj);
2931 if (ret)
2932 goto out;
2933
2934 if (!obj->active || !obj->last_read_req)
2935 goto out;
2936
2937 req = obj->last_read_req;
2938
2939 /* Do this after OLR check to make sure we make forward progress polling
2940 * on this IOCTL with a timeout <=0 (like busy ioctl)
2941 */
2942 if (args->timeout_ns <= 0) {
2943 ret = -ETIME;
2944 goto out;
2945 }
2946
2947 drm_gem_object_unreference(&obj->base);
2948 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2949 i915_gem_request_reference(req);
2950 mutex_unlock(&dev->struct_mutex);
2951
2952 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2953 file->driver_priv);
2954 mutex_lock(&dev->struct_mutex);
2955 i915_gem_request_unreference(req);
2956 mutex_unlock(&dev->struct_mutex);
2957 return ret;
2958
2959 out:
2960 drm_gem_object_unreference(&obj->base);
2961 mutex_unlock(&dev->struct_mutex);
2962 return ret;
2963 }
2964
2965 /**
2966 * i915_gem_object_sync - sync an object to a ring.
2967 *
2968 * @obj: object which may be in use on another ring.
2969 * @to: ring we wish to use the object on. May be NULL.
2970 *
2971 * This code is meant to abstract object synchronization with the GPU.
2972 * Calling with NULL implies synchronizing the object with the CPU
2973 * rather than a particular GPU ring.
2974 *
2975 * Returns 0 if successful, else propagates up the lower layer error.
2976 */
2977 int
2978 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2979 struct intel_engine_cs *to)
2980 {
2981 struct intel_engine_cs *from;
2982 u32 seqno;
2983 int ret, idx;
2984
2985 from = i915_gem_request_get_ring(obj->last_read_req);
2986
2987 if (from == NULL || to == from)
2988 return 0;
2989
2990 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2991 return i915_gem_object_wait_rendering(obj, false);
2992
2993 idx = intel_ring_sync_index(from, to);
2994
2995 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2996 /* Optimization: Avoid semaphore sync when we are sure we already
2997 * waited for an object with higher seqno */
2998 if (seqno <= from->semaphore.sync_seqno[idx])
2999 return 0;
3000
3001 ret = i915_gem_check_olr(obj->last_read_req);
3002 if (ret)
3003 return ret;
3004
3005 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3006 ret = to->semaphore.sync_to(to, from, seqno);
3007 if (!ret)
3008 /* We use last_read_req because sync_to()
3009 * might have just caused seqno wrap under
3010 * the radar.
3011 */
3012 from->semaphore.sync_seqno[idx] =
3013 i915_gem_request_get_seqno(obj->last_read_req);
3014
3015 return ret;
3016 }
3017
3018 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3019 {
3020 u32 old_write_domain, old_read_domains;
3021
3022 /* Force a pagefault for domain tracking on next user access */
3023 i915_gem_release_mmap(obj);
3024
3025 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3026 return;
3027
3028 /* Wait for any direct GTT access to complete */
3029 mb();
3030
3031 old_read_domains = obj->base.read_domains;
3032 old_write_domain = obj->base.write_domain;
3033
3034 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3035 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3036
3037 trace_i915_gem_object_change_domain(obj,
3038 old_read_domains,
3039 old_write_domain);
3040 }
3041
3042 int i915_vma_unbind(struct i915_vma *vma)
3043 {
3044 struct drm_i915_gem_object *obj = vma->obj;
3045 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046 int ret;
3047
3048 if (list_empty(&vma->vma_link))
3049 return 0;
3050
3051 if (!drm_mm_node_allocated(&vma->node)) {
3052 i915_gem_vma_destroy(vma);
3053 return 0;
3054 }
3055
3056 if (vma->pin_count)
3057 return -EBUSY;
3058
3059 BUG_ON(obj->pages == NULL);
3060
3061 ret = i915_gem_object_finish_gpu(obj);
3062 if (ret)
3063 return ret;
3064 /* Continue on if we fail due to EIO, the GPU is hung so we
3065 * should be safe and we need to cleanup or else we might
3066 * cause memory corruption through use-after-free.
3067 */
3068
3069 if (i915_is_ggtt(vma->vm) &&
3070 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3071 i915_gem_object_finish_gtt(obj);
3072
3073 /* release the fence reg _after_ flushing */
3074 ret = i915_gem_object_put_fence(obj);
3075 if (ret)
3076 return ret;
3077 }
3078
3079 trace_i915_vma_unbind(vma);
3080
3081 vma->unbind_vma(vma);
3082
3083 list_del_init(&vma->mm_list);
3084 if (i915_is_ggtt(vma->vm)) {
3085 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3086 obj->map_and_fenceable = false;
3087 } else if (vma->ggtt_view.pages) {
3088 sg_free_table(vma->ggtt_view.pages);
3089 kfree(vma->ggtt_view.pages);
3090 vma->ggtt_view.pages = NULL;
3091 }
3092 }
3093
3094 drm_mm_remove_node(&vma->node);
3095 i915_gem_vma_destroy(vma);
3096
3097 /* Since the unbound list is global, only move to that list if
3098 * no more VMAs exist. */
3099 if (list_empty(&obj->vma_list)) {
3100 /* Throw away the active reference before
3101 * moving to the unbound list. */
3102 i915_gem_object_retire(obj);
3103
3104 i915_gem_gtt_finish_object(obj);
3105 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3106 }
3107
3108 /* And finally now the object is completely decoupled from this vma,
3109 * we can drop its hold on the backing storage and allow it to be
3110 * reaped by the shrinker.
3111 */
3112 i915_gem_object_unpin_pages(obj);
3113
3114 return 0;
3115 }
3116
3117 int i915_gpu_idle(struct drm_device *dev)
3118 {
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120 struct intel_engine_cs *ring;
3121 int ret, i;
3122
3123 /* Flush everything onto the inactive list. */
3124 for_each_ring(ring, dev_priv, i) {
3125 if (!i915.enable_execlists) {
3126 ret = i915_switch_context(ring, ring->default_context);
3127 if (ret)
3128 return ret;
3129 }
3130
3131 ret = intel_ring_idle(ring);
3132 if (ret)
3133 return ret;
3134 }
3135
3136 return 0;
3137 }
3138
3139 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3140 struct drm_i915_gem_object *obj)
3141 {
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 int fence_reg;
3144 int fence_pitch_shift;
3145
3146 if (INTEL_INFO(dev)->gen >= 6) {
3147 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3148 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3149 } else {
3150 fence_reg = FENCE_REG_965_0;
3151 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3152 }
3153
3154 fence_reg += reg * 8;
3155
3156 /* To w/a incoherency with non-atomic 64-bit register updates,
3157 * we split the 64-bit update into two 32-bit writes. In order
3158 * for a partial fence not to be evaluated between writes, we
3159 * precede the update with write to turn off the fence register,
3160 * and only enable the fence as the last step.
3161 *
3162 * For extra levels of paranoia, we make sure each step lands
3163 * before applying the next step.
3164 */
3165 I915_WRITE(fence_reg, 0);
3166 POSTING_READ(fence_reg);
3167
3168 if (obj) {
3169 u32 size = i915_gem_obj_ggtt_size(obj);
3170 uint64_t val;
3171
3172 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3173 0xfffff000) << 32;
3174 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3175 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3176 if (obj->tiling_mode == I915_TILING_Y)
3177 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3178 val |= I965_FENCE_REG_VALID;
3179
3180 I915_WRITE(fence_reg + 4, val >> 32);
3181 POSTING_READ(fence_reg + 4);
3182
3183 I915_WRITE(fence_reg + 0, val);
3184 POSTING_READ(fence_reg);
3185 } else {
3186 I915_WRITE(fence_reg + 4, 0);
3187 POSTING_READ(fence_reg + 4);
3188 }
3189 }
3190
3191 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3192 struct drm_i915_gem_object *obj)
3193 {
3194 struct drm_i915_private *dev_priv = dev->dev_private;
3195 u32 val;
3196
3197 if (obj) {
3198 u32 size = i915_gem_obj_ggtt_size(obj);
3199 int pitch_val;
3200 int tile_width;
3201
3202 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3203 (size & -size) != size ||
3204 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3205 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3206 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3207
3208 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3209 tile_width = 128;
3210 else
3211 tile_width = 512;
3212
3213 /* Note: pitch better be a power of two tile widths */
3214 pitch_val = obj->stride / tile_width;
3215 pitch_val = ffs(pitch_val) - 1;
3216
3217 val = i915_gem_obj_ggtt_offset(obj);
3218 if (obj->tiling_mode == I915_TILING_Y)
3219 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3220 val |= I915_FENCE_SIZE_BITS(size);
3221 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3222 val |= I830_FENCE_REG_VALID;
3223 } else
3224 val = 0;
3225
3226 if (reg < 8)
3227 reg = FENCE_REG_830_0 + reg * 4;
3228 else
3229 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3230
3231 I915_WRITE(reg, val);
3232 POSTING_READ(reg);
3233 }
3234
3235 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3236 struct drm_i915_gem_object *obj)
3237 {
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 uint32_t val;
3240
3241 if (obj) {
3242 u32 size = i915_gem_obj_ggtt_size(obj);
3243 uint32_t pitch_val;
3244
3245 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3246 (size & -size) != size ||
3247 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3248 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3249 i915_gem_obj_ggtt_offset(obj), size);
3250
3251 pitch_val = obj->stride / 128;
3252 pitch_val = ffs(pitch_val) - 1;
3253
3254 val = i915_gem_obj_ggtt_offset(obj);
3255 if (obj->tiling_mode == I915_TILING_Y)
3256 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3257 val |= I830_FENCE_SIZE_BITS(size);
3258 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3259 val |= I830_FENCE_REG_VALID;
3260 } else
3261 val = 0;
3262
3263 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3264 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3265 }
3266
3267 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3268 {
3269 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3270 }
3271
3272 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3273 struct drm_i915_gem_object *obj)
3274 {
3275 struct drm_i915_private *dev_priv = dev->dev_private;
3276
3277 /* Ensure that all CPU reads are completed before installing a fence
3278 * and all writes before removing the fence.
3279 */
3280 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3281 mb();
3282
3283 WARN(obj && (!obj->stride || !obj->tiling_mode),
3284 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3285 obj->stride, obj->tiling_mode);
3286
3287 if (IS_GEN2(dev))
3288 i830_write_fence_reg(dev, reg, obj);
3289 else if (IS_GEN3(dev))
3290 i915_write_fence_reg(dev, reg, obj);
3291 else if (INTEL_INFO(dev)->gen >= 4)
3292 i965_write_fence_reg(dev, reg, obj);
3293
3294 /* And similarly be paranoid that no direct access to this region
3295 * is reordered to before the fence is installed.
3296 */
3297 if (i915_gem_object_needs_mb(obj))
3298 mb();
3299 }
3300
3301 static inline int fence_number(struct drm_i915_private *dev_priv,
3302 struct drm_i915_fence_reg *fence)
3303 {
3304 return fence - dev_priv->fence_regs;
3305 }
3306
3307 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3308 struct drm_i915_fence_reg *fence,
3309 bool enable)
3310 {
3311 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3312 int reg = fence_number(dev_priv, fence);
3313
3314 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3315
3316 if (enable) {
3317 obj->fence_reg = reg;
3318 fence->obj = obj;
3319 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3320 } else {
3321 obj->fence_reg = I915_FENCE_REG_NONE;
3322 fence->obj = NULL;
3323 list_del_init(&fence->lru_list);
3324 }
3325 obj->fence_dirty = false;
3326 }
3327
3328 static int
3329 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3330 {
3331 if (obj->last_fenced_req) {
3332 int ret = i915_wait_request(obj->last_fenced_req);
3333 if (ret)
3334 return ret;
3335
3336 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3337 }
3338
3339 return 0;
3340 }
3341
3342 int
3343 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3344 {
3345 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3346 struct drm_i915_fence_reg *fence;
3347 int ret;
3348
3349 ret = i915_gem_object_wait_fence(obj);
3350 if (ret)
3351 return ret;
3352
3353 if (obj->fence_reg == I915_FENCE_REG_NONE)
3354 return 0;
3355
3356 fence = &dev_priv->fence_regs[obj->fence_reg];
3357
3358 if (WARN_ON(fence->pin_count))
3359 return -EBUSY;
3360
3361 i915_gem_object_fence_lost(obj);
3362 i915_gem_object_update_fence(obj, fence, false);
3363
3364 return 0;
3365 }
3366
3367 static struct drm_i915_fence_reg *
3368 i915_find_fence_reg(struct drm_device *dev)
3369 {
3370 struct drm_i915_private *dev_priv = dev->dev_private;
3371 struct drm_i915_fence_reg *reg, *avail;
3372 int i;
3373
3374 /* First try to find a free reg */
3375 avail = NULL;
3376 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3377 reg = &dev_priv->fence_regs[i];
3378 if (!reg->obj)
3379 return reg;
3380
3381 if (!reg->pin_count)
3382 avail = reg;
3383 }
3384
3385 if (avail == NULL)
3386 goto deadlock;
3387
3388 /* None available, try to steal one or wait for a user to finish */
3389 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3390 if (reg->pin_count)
3391 continue;
3392
3393 return reg;
3394 }
3395
3396 deadlock:
3397 /* Wait for completion of pending flips which consume fences */
3398 if (intel_has_pending_fb_unpin(dev))
3399 return ERR_PTR(-EAGAIN);
3400
3401 return ERR_PTR(-EDEADLK);
3402 }
3403
3404 /**
3405 * i915_gem_object_get_fence - set up fencing for an object
3406 * @obj: object to map through a fence reg
3407 *
3408 * When mapping objects through the GTT, userspace wants to be able to write
3409 * to them without having to worry about swizzling if the object is tiled.
3410 * This function walks the fence regs looking for a free one for @obj,
3411 * stealing one if it can't find any.
3412 *
3413 * It then sets up the reg based on the object's properties: address, pitch
3414 * and tiling format.
3415 *
3416 * For an untiled surface, this removes any existing fence.
3417 */
3418 int
3419 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3420 {
3421 struct drm_device *dev = obj->base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 bool enable = obj->tiling_mode != I915_TILING_NONE;
3424 struct drm_i915_fence_reg *reg;
3425 int ret;
3426
3427 /* Have we updated the tiling parameters upon the object and so
3428 * will need to serialise the write to the associated fence register?
3429 */
3430 if (obj->fence_dirty) {
3431 ret = i915_gem_object_wait_fence(obj);
3432 if (ret)
3433 return ret;
3434 }
3435
3436 /* Just update our place in the LRU if our fence is getting reused. */
3437 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3438 reg = &dev_priv->fence_regs[obj->fence_reg];
3439 if (!obj->fence_dirty) {
3440 list_move_tail(&reg->lru_list,
3441 &dev_priv->mm.fence_list);
3442 return 0;
3443 }
3444 } else if (enable) {
3445 if (WARN_ON(!obj->map_and_fenceable))
3446 return -EINVAL;
3447
3448 reg = i915_find_fence_reg(dev);
3449 if (IS_ERR(reg))
3450 return PTR_ERR(reg);
3451
3452 if (reg->obj) {
3453 struct drm_i915_gem_object *old = reg->obj;
3454
3455 ret = i915_gem_object_wait_fence(old);
3456 if (ret)
3457 return ret;
3458
3459 i915_gem_object_fence_lost(old);
3460 }
3461 } else
3462 return 0;
3463
3464 i915_gem_object_update_fence(obj, reg, enable);
3465
3466 return 0;
3467 }
3468
3469 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3470 unsigned long cache_level)
3471 {
3472 struct drm_mm_node *gtt_space = &vma->node;
3473 struct drm_mm_node *other;
3474
3475 /*
3476 * On some machines we have to be careful when putting differing types
3477 * of snoopable memory together to avoid the prefetcher crossing memory
3478 * domains and dying. During vm initialisation, we decide whether or not
3479 * these constraints apply and set the drm_mm.color_adjust
3480 * appropriately.
3481 */
3482 if (vma->vm->mm.color_adjust == NULL)
3483 return true;
3484
3485 if (!drm_mm_node_allocated(gtt_space))
3486 return true;
3487
3488 if (list_empty(&gtt_space->node_list))
3489 return true;
3490
3491 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3492 if (other->allocated && !other->hole_follows && other->color != cache_level)
3493 return false;
3494
3495 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3496 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3497 return false;
3498
3499 return true;
3500 }
3501
3502 /**
3503 * Finds free space in the GTT aperture and binds the object there.
3504 */
3505 static struct i915_vma *
3506 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3507 struct i915_address_space *vm,
3508 unsigned alignment,
3509 uint64_t flags,
3510 const struct i915_ggtt_view *view)
3511 {
3512 struct drm_device *dev = obj->base.dev;
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 u32 size, fence_size, fence_alignment, unfenced_alignment;
3515 unsigned long start =
3516 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3517 unsigned long end =
3518 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3519 struct i915_vma *vma;
3520 int ret;
3521
3522 fence_size = i915_gem_get_gtt_size(dev,
3523 obj->base.size,
3524 obj->tiling_mode);
3525 fence_alignment = i915_gem_get_gtt_alignment(dev,
3526 obj->base.size,
3527 obj->tiling_mode, true);
3528 unfenced_alignment =
3529 i915_gem_get_gtt_alignment(dev,
3530 obj->base.size,
3531 obj->tiling_mode, false);
3532
3533 if (alignment == 0)
3534 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3535 unfenced_alignment;
3536 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3537 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3538 return ERR_PTR(-EINVAL);
3539 }
3540
3541 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3542
3543 /* If the object is bigger than the entire aperture, reject it early
3544 * before evicting everything in a vain attempt to find space.
3545 */
3546 if (obj->base.size > end) {
3547 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3548 obj->base.size,
3549 flags & PIN_MAPPABLE ? "mappable" : "total",
3550 end);
3551 return ERR_PTR(-E2BIG);
3552 }
3553
3554 ret = i915_gem_object_get_pages(obj);
3555 if (ret)
3556 return ERR_PTR(ret);
3557
3558 i915_gem_object_pin_pages(obj);
3559
3560 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3561 if (IS_ERR(vma))
3562 goto err_unpin;
3563
3564 search_free:
3565 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3566 size, alignment,
3567 obj->cache_level,
3568 start, end,
3569 DRM_MM_SEARCH_DEFAULT,
3570 DRM_MM_CREATE_DEFAULT);
3571 if (ret) {
3572 ret = i915_gem_evict_something(dev, vm, size, alignment,
3573 obj->cache_level,
3574 start, end,
3575 flags);
3576 if (ret == 0)
3577 goto search_free;
3578
3579 goto err_free_vma;
3580 }
3581 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3582 ret = -EINVAL;
3583 goto err_remove_node;
3584 }
3585
3586 ret = i915_gem_gtt_prepare_object(obj);
3587 if (ret)
3588 goto err_remove_node;
3589
3590 trace_i915_vma_bind(vma, flags);
3591 ret = i915_vma_bind(vma, obj->cache_level,
3592 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3593 if (ret)
3594 goto err_finish_gtt;
3595
3596 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3597 list_add_tail(&vma->mm_list, &vm->inactive_list);
3598
3599 return vma;
3600
3601 err_finish_gtt:
3602 i915_gem_gtt_finish_object(obj);
3603 err_remove_node:
3604 drm_mm_remove_node(&vma->node);
3605 err_free_vma:
3606 i915_gem_vma_destroy(vma);
3607 vma = ERR_PTR(ret);
3608 err_unpin:
3609 i915_gem_object_unpin_pages(obj);
3610 return vma;
3611 }
3612
3613 bool
3614 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3615 bool force)
3616 {
3617 /* If we don't have a page list set up, then we're not pinned
3618 * to GPU, and we can ignore the cache flush because it'll happen
3619 * again at bind time.
3620 */
3621 if (obj->pages == NULL)
3622 return false;
3623
3624 /*
3625 * Stolen memory is always coherent with the GPU as it is explicitly
3626 * marked as wc by the system, or the system is cache-coherent.
3627 */
3628 if (obj->stolen || obj->phys_handle)
3629 return false;
3630
3631 /* If the GPU is snooping the contents of the CPU cache,
3632 * we do not need to manually clear the CPU cache lines. However,
3633 * the caches are only snooped when the render cache is
3634 * flushed/invalidated. As we always have to emit invalidations
3635 * and flushes when moving into and out of the RENDER domain, correct
3636 * snooping behaviour occurs naturally as the result of our domain
3637 * tracking.
3638 */
3639 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3640 obj->cache_dirty = true;
3641 return false;
3642 }
3643
3644 trace_i915_gem_object_clflush(obj);
3645 drm_clflush_sg(obj->pages);
3646 obj->cache_dirty = false;
3647
3648 return true;
3649 }
3650
3651 /** Flushes the GTT write domain for the object if it's dirty. */
3652 static void
3653 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3654 {
3655 uint32_t old_write_domain;
3656
3657 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3658 return;
3659
3660 /* No actual flushing is required for the GTT write domain. Writes
3661 * to it immediately go to main memory as far as we know, so there's
3662 * no chipset flush. It also doesn't land in render cache.
3663 *
3664 * However, we do have to enforce the order so that all writes through
3665 * the GTT land before any writes to the device, such as updates to
3666 * the GATT itself.
3667 */
3668 wmb();
3669
3670 old_write_domain = obj->base.write_domain;
3671 obj->base.write_domain = 0;
3672
3673 intel_fb_obj_flush(obj, false);
3674
3675 trace_i915_gem_object_change_domain(obj,
3676 obj->base.read_domains,
3677 old_write_domain);
3678 }
3679
3680 /** Flushes the CPU write domain for the object if it's dirty. */
3681 static void
3682 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3683 {
3684 uint32_t old_write_domain;
3685
3686 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3687 return;
3688
3689 if (i915_gem_clflush_object(obj, obj->pin_display))
3690 i915_gem_chipset_flush(obj->base.dev);
3691
3692 old_write_domain = obj->base.write_domain;
3693 obj->base.write_domain = 0;
3694
3695 intel_fb_obj_flush(obj, false);
3696
3697 trace_i915_gem_object_change_domain(obj,
3698 obj->base.read_domains,
3699 old_write_domain);
3700 }
3701
3702 /**
3703 * Moves a single object to the GTT read, and possibly write domain.
3704 *
3705 * This function returns when the move is complete, including waiting on
3706 * flushes to occur.
3707 */
3708 int
3709 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3710 {
3711 uint32_t old_write_domain, old_read_domains;
3712 struct i915_vma *vma;
3713 int ret;
3714
3715 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3716 return 0;
3717
3718 ret = i915_gem_object_wait_rendering(obj, !write);
3719 if (ret)
3720 return ret;
3721
3722 i915_gem_object_retire(obj);
3723
3724 /* Flush and acquire obj->pages so that we are coherent through
3725 * direct access in memory with previous cached writes through
3726 * shmemfs and that our cache domain tracking remains valid.
3727 * For example, if the obj->filp was moved to swap without us
3728 * being notified and releasing the pages, we would mistakenly
3729 * continue to assume that the obj remained out of the CPU cached
3730 * domain.
3731 */
3732 ret = i915_gem_object_get_pages(obj);
3733 if (ret)
3734 return ret;
3735
3736 i915_gem_object_flush_cpu_write_domain(obj);
3737
3738 /* Serialise direct access to this object with the barriers for
3739 * coherent writes from the GPU, by effectively invalidating the
3740 * GTT domain upon first access.
3741 */
3742 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3743 mb();
3744
3745 old_write_domain = obj->base.write_domain;
3746 old_read_domains = obj->base.read_domains;
3747
3748 /* It should now be out of any other write domains, and we can update
3749 * the domain values for our changes.
3750 */
3751 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3752 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3753 if (write) {
3754 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3755 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3756 obj->dirty = 1;
3757 }
3758
3759 if (write)
3760 intel_fb_obj_invalidate(obj, NULL);
3761
3762 trace_i915_gem_object_change_domain(obj,
3763 old_read_domains,
3764 old_write_domain);
3765
3766 /* And bump the LRU for this access */
3767 vma = i915_gem_obj_to_ggtt(obj);
3768 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3769 list_move_tail(&vma->mm_list,
3770 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3771
3772 return 0;
3773 }
3774
3775 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3776 enum i915_cache_level cache_level)
3777 {
3778 struct drm_device *dev = obj->base.dev;
3779 struct i915_vma *vma, *next;
3780 int ret;
3781
3782 if (obj->cache_level == cache_level)
3783 return 0;
3784
3785 if (i915_gem_obj_is_pinned(obj)) {
3786 DRM_DEBUG("can not change the cache level of pinned objects\n");
3787 return -EBUSY;
3788 }
3789
3790 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3791 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3792 ret = i915_vma_unbind(vma);
3793 if (ret)
3794 return ret;
3795 }
3796 }
3797
3798 if (i915_gem_obj_bound_any(obj)) {
3799 ret = i915_gem_object_finish_gpu(obj);
3800 if (ret)
3801 return ret;
3802
3803 i915_gem_object_finish_gtt(obj);
3804
3805 /* Before SandyBridge, you could not use tiling or fence
3806 * registers with snooped memory, so relinquish any fences
3807 * currently pointing to our region in the aperture.
3808 */
3809 if (INTEL_INFO(dev)->gen < 6) {
3810 ret = i915_gem_object_put_fence(obj);
3811 if (ret)
3812 return ret;
3813 }
3814
3815 list_for_each_entry(vma, &obj->vma_list, vma_link)
3816 if (drm_mm_node_allocated(&vma->node)) {
3817 ret = i915_vma_bind(vma, cache_level,
3818 vma->bound & GLOBAL_BIND);
3819 if (ret)
3820 return ret;
3821 }
3822 }
3823
3824 list_for_each_entry(vma, &obj->vma_list, vma_link)
3825 vma->node.color = cache_level;
3826 obj->cache_level = cache_level;
3827
3828 if (obj->cache_dirty &&
3829 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3830 cpu_write_needs_clflush(obj)) {
3831 if (i915_gem_clflush_object(obj, true))
3832 i915_gem_chipset_flush(obj->base.dev);
3833 }
3834
3835 return 0;
3836 }
3837
3838 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3839 struct drm_file *file)
3840 {
3841 struct drm_i915_gem_caching *args = data;
3842 struct drm_i915_gem_object *obj;
3843 int ret;
3844
3845 ret = i915_mutex_lock_interruptible(dev);
3846 if (ret)
3847 return ret;
3848
3849 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3850 if (&obj->base == NULL) {
3851 ret = -ENOENT;
3852 goto unlock;
3853 }
3854
3855 switch (obj->cache_level) {
3856 case I915_CACHE_LLC:
3857 case I915_CACHE_L3_LLC:
3858 args->caching = I915_CACHING_CACHED;
3859 break;
3860
3861 case I915_CACHE_WT:
3862 args->caching = I915_CACHING_DISPLAY;
3863 break;
3864
3865 default:
3866 args->caching = I915_CACHING_NONE;
3867 break;
3868 }
3869
3870 drm_gem_object_unreference(&obj->base);
3871 unlock:
3872 mutex_unlock(&dev->struct_mutex);
3873 return ret;
3874 }
3875
3876 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3877 struct drm_file *file)
3878 {
3879 struct drm_i915_gem_caching *args = data;
3880 struct drm_i915_gem_object *obj;
3881 enum i915_cache_level level;
3882 int ret;
3883
3884 switch (args->caching) {
3885 case I915_CACHING_NONE:
3886 level = I915_CACHE_NONE;
3887 break;
3888 case I915_CACHING_CACHED:
3889 level = I915_CACHE_LLC;
3890 break;
3891 case I915_CACHING_DISPLAY:
3892 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3893 break;
3894 default:
3895 return -EINVAL;
3896 }
3897
3898 ret = i915_mutex_lock_interruptible(dev);
3899 if (ret)
3900 return ret;
3901
3902 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3903 if (&obj->base == NULL) {
3904 ret = -ENOENT;
3905 goto unlock;
3906 }
3907
3908 ret = i915_gem_object_set_cache_level(obj, level);
3909
3910 drm_gem_object_unreference(&obj->base);
3911 unlock:
3912 mutex_unlock(&dev->struct_mutex);
3913 return ret;
3914 }
3915
3916 static bool is_pin_display(struct drm_i915_gem_object *obj)
3917 {
3918 struct i915_vma *vma;
3919
3920 vma = i915_gem_obj_to_ggtt(obj);
3921 if (!vma)
3922 return false;
3923
3924 /* There are 2 sources that pin objects:
3925 * 1. The display engine (scanouts, sprites, cursors);
3926 * 2. Reservations for execbuffer;
3927 *
3928 * We can ignore reservations as we hold the struct_mutex and
3929 * are only called outside of the reservation path.
3930 */
3931 return vma->pin_count;
3932 }
3933
3934 /*
3935 * Prepare buffer for display plane (scanout, cursors, etc).
3936 * Can be called from an uninterruptible phase (modesetting) and allows
3937 * any flushes to be pipelined (for pageflips).
3938 */
3939 int
3940 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3941 u32 alignment,
3942 struct intel_engine_cs *pipelined)
3943 {
3944 u32 old_read_domains, old_write_domain;
3945 bool was_pin_display;
3946 int ret;
3947
3948 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3949 ret = i915_gem_object_sync(obj, pipelined);
3950 if (ret)
3951 return ret;
3952 }
3953
3954 /* Mark the pin_display early so that we account for the
3955 * display coherency whilst setting up the cache domains.
3956 */
3957 was_pin_display = obj->pin_display;
3958 obj->pin_display = true;
3959
3960 /* The display engine is not coherent with the LLC cache on gen6. As
3961 * a result, we make sure that the pinning that is about to occur is
3962 * done with uncached PTEs. This is lowest common denominator for all
3963 * chipsets.
3964 *
3965 * However for gen6+, we could do better by using the GFDT bit instead
3966 * of uncaching, which would allow us to flush all the LLC-cached data
3967 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3968 */
3969 ret = i915_gem_object_set_cache_level(obj,
3970 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3971 if (ret)
3972 goto err_unpin_display;
3973
3974 /* As the user may map the buffer once pinned in the display plane
3975 * (e.g. libkms for the bootup splash), we have to ensure that we
3976 * always use map_and_fenceable for all scanout buffers.
3977 */
3978 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3979 if (ret)
3980 goto err_unpin_display;
3981
3982 i915_gem_object_flush_cpu_write_domain(obj);
3983
3984 old_write_domain = obj->base.write_domain;
3985 old_read_domains = obj->base.read_domains;
3986
3987 /* It should now be out of any other write domains, and we can update
3988 * the domain values for our changes.
3989 */
3990 obj->base.write_domain = 0;
3991 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3992
3993 trace_i915_gem_object_change_domain(obj,
3994 old_read_domains,
3995 old_write_domain);
3996
3997 return 0;
3998
3999 err_unpin_display:
4000 WARN_ON(was_pin_display != is_pin_display(obj));
4001 obj->pin_display = was_pin_display;
4002 return ret;
4003 }
4004
4005 void
4006 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4007 {
4008 i915_gem_object_ggtt_unpin(obj);
4009 obj->pin_display = is_pin_display(obj);
4010 }
4011
4012 int
4013 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4014 {
4015 int ret;
4016
4017 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4018 return 0;
4019
4020 ret = i915_gem_object_wait_rendering(obj, false);
4021 if (ret)
4022 return ret;
4023
4024 /* Ensure that we invalidate the GPU's caches and TLBs. */
4025 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4026 return 0;
4027 }
4028
4029 /**
4030 * Moves a single object to the CPU read, and possibly write domain.
4031 *
4032 * This function returns when the move is complete, including waiting on
4033 * flushes to occur.
4034 */
4035 int
4036 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4037 {
4038 uint32_t old_write_domain, old_read_domains;
4039 int ret;
4040
4041 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4042 return 0;
4043
4044 ret = i915_gem_object_wait_rendering(obj, !write);
4045 if (ret)
4046 return ret;
4047
4048 i915_gem_object_retire(obj);
4049 i915_gem_object_flush_gtt_write_domain(obj);
4050
4051 old_write_domain = obj->base.write_domain;
4052 old_read_domains = obj->base.read_domains;
4053
4054 /* Flush the CPU cache if it's still invalid. */
4055 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4056 i915_gem_clflush_object(obj, false);
4057
4058 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4059 }
4060
4061 /* It should now be out of any other write domains, and we can update
4062 * the domain values for our changes.
4063 */
4064 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4065
4066 /* If we're writing through the CPU, then the GPU read domains will
4067 * need to be invalidated at next use.
4068 */
4069 if (write) {
4070 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4071 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4072 }
4073
4074 if (write)
4075 intel_fb_obj_invalidate(obj, NULL);
4076
4077 trace_i915_gem_object_change_domain(obj,
4078 old_read_domains,
4079 old_write_domain);
4080
4081 return 0;
4082 }
4083
4084 /* Throttle our rendering by waiting until the ring has completed our requests
4085 * emitted over 20 msec ago.
4086 *
4087 * Note that if we were to use the current jiffies each time around the loop,
4088 * we wouldn't escape the function with any frames outstanding if the time to
4089 * render a frame was over 20ms.
4090 *
4091 * This should get us reasonable parallelism between CPU and GPU but also
4092 * relatively low latency when blocking on a particular request to finish.
4093 */
4094 static int
4095 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4096 {
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct drm_i915_file_private *file_priv = file->driver_priv;
4099 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4100 struct drm_i915_gem_request *request, *target = NULL;
4101 unsigned reset_counter;
4102 int ret;
4103
4104 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4105 if (ret)
4106 return ret;
4107
4108 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4109 if (ret)
4110 return ret;
4111
4112 spin_lock(&file_priv->mm.lock);
4113 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4114 if (time_after_eq(request->emitted_jiffies, recent_enough))
4115 break;
4116
4117 target = request;
4118 }
4119 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4120 if (target)
4121 i915_gem_request_reference(target);
4122 spin_unlock(&file_priv->mm.lock);
4123
4124 if (target == NULL)
4125 return 0;
4126
4127 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4128 if (ret == 0)
4129 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4130
4131 mutex_lock(&dev->struct_mutex);
4132 i915_gem_request_unreference(target);
4133 mutex_unlock(&dev->struct_mutex);
4134
4135 return ret;
4136 }
4137
4138 static bool
4139 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4140 {
4141 struct drm_i915_gem_object *obj = vma->obj;
4142
4143 if (alignment &&
4144 vma->node.start & (alignment - 1))
4145 return true;
4146
4147 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4148 return true;
4149
4150 if (flags & PIN_OFFSET_BIAS &&
4151 vma->node.start < (flags & PIN_OFFSET_MASK))
4152 return true;
4153
4154 return false;
4155 }
4156
4157 int
4158 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4159 struct i915_address_space *vm,
4160 uint32_t alignment,
4161 uint64_t flags,
4162 const struct i915_ggtt_view *view)
4163 {
4164 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4165 struct i915_vma *vma;
4166 unsigned bound;
4167 int ret;
4168
4169 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4170 return -ENODEV;
4171
4172 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4173 return -EINVAL;
4174
4175 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4176 return -EINVAL;
4177
4178 vma = i915_gem_obj_to_vma_view(obj, vm, view);
4179 if (vma) {
4180 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4181 return -EBUSY;
4182
4183 if (i915_vma_misplaced(vma, alignment, flags)) {
4184 WARN(vma->pin_count,
4185 "bo is already pinned with incorrect alignment:"
4186 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4187 " obj->map_and_fenceable=%d\n",
4188 i915_gem_obj_offset_view(obj, vm, view->type),
4189 alignment,
4190 !!(flags & PIN_MAPPABLE),
4191 obj->map_and_fenceable);
4192 ret = i915_vma_unbind(vma);
4193 if (ret)
4194 return ret;
4195
4196 vma = NULL;
4197 }
4198 }
4199
4200 bound = vma ? vma->bound : 0;
4201 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4202 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4203 flags, view);
4204 if (IS_ERR(vma))
4205 return PTR_ERR(vma);
4206 }
4207
4208 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4209 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4210 if (ret)
4211 return ret;
4212 }
4213
4214 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4215 bool mappable, fenceable;
4216 u32 fence_size, fence_alignment;
4217
4218 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4219 obj->base.size,
4220 obj->tiling_mode);
4221 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4222 obj->base.size,
4223 obj->tiling_mode,
4224 true);
4225
4226 fenceable = (vma->node.size == fence_size &&
4227 (vma->node.start & (fence_alignment - 1)) == 0);
4228
4229 mappable = (vma->node.start + obj->base.size <=
4230 dev_priv->gtt.mappable_end);
4231
4232 obj->map_and_fenceable = mappable && fenceable;
4233 }
4234
4235 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4236
4237 vma->pin_count++;
4238 if (flags & PIN_MAPPABLE)
4239 obj->pin_mappable |= true;
4240
4241 return 0;
4242 }
4243
4244 void
4245 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4246 {
4247 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4248
4249 BUG_ON(!vma);
4250 BUG_ON(vma->pin_count == 0);
4251 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4252
4253 if (--vma->pin_count == 0)
4254 obj->pin_mappable = false;
4255 }
4256
4257 bool
4258 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4259 {
4260 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4261 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4262 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4263
4264 WARN_ON(!ggtt_vma ||
4265 dev_priv->fence_regs[obj->fence_reg].pin_count >
4266 ggtt_vma->pin_count);
4267 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4268 return true;
4269 } else
4270 return false;
4271 }
4272
4273 void
4274 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4275 {
4276 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4277 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4278 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4279 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4280 }
4281 }
4282
4283 int
4284 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4285 struct drm_file *file)
4286 {
4287 struct drm_i915_gem_busy *args = data;
4288 struct drm_i915_gem_object *obj;
4289 int ret;
4290
4291 ret = i915_mutex_lock_interruptible(dev);
4292 if (ret)
4293 return ret;
4294
4295 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4296 if (&obj->base == NULL) {
4297 ret = -ENOENT;
4298 goto unlock;
4299 }
4300
4301 /* Count all active objects as busy, even if they are currently not used
4302 * by the gpu. Users of this interface expect objects to eventually
4303 * become non-busy without any further actions, therefore emit any
4304 * necessary flushes here.
4305 */
4306 ret = i915_gem_object_flush_active(obj);
4307
4308 args->busy = obj->active;
4309 if (obj->last_read_req) {
4310 struct intel_engine_cs *ring;
4311 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4312 ring = i915_gem_request_get_ring(obj->last_read_req);
4313 args->busy |= intel_ring_flag(ring) << 16;
4314 }
4315
4316 drm_gem_object_unreference(&obj->base);
4317 unlock:
4318 mutex_unlock(&dev->struct_mutex);
4319 return ret;
4320 }
4321
4322 int
4323 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4324 struct drm_file *file_priv)
4325 {
4326 return i915_gem_ring_throttle(dev, file_priv);
4327 }
4328
4329 int
4330 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4331 struct drm_file *file_priv)
4332 {
4333 struct drm_i915_private *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_madvise *args = data;
4335 struct drm_i915_gem_object *obj;
4336 int ret;
4337
4338 switch (args->madv) {
4339 case I915_MADV_DONTNEED:
4340 case I915_MADV_WILLNEED:
4341 break;
4342 default:
4343 return -EINVAL;
4344 }
4345
4346 ret = i915_mutex_lock_interruptible(dev);
4347 if (ret)
4348 return ret;
4349
4350 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4351 if (&obj->base == NULL) {
4352 ret = -ENOENT;
4353 goto unlock;
4354 }
4355
4356 if (i915_gem_obj_is_pinned(obj)) {
4357 ret = -EINVAL;
4358 goto out;
4359 }
4360
4361 if (obj->pages &&
4362 obj->tiling_mode != I915_TILING_NONE &&
4363 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4364 if (obj->madv == I915_MADV_WILLNEED)
4365 i915_gem_object_unpin_pages(obj);
4366 if (args->madv == I915_MADV_WILLNEED)
4367 i915_gem_object_pin_pages(obj);
4368 }
4369
4370 if (obj->madv != __I915_MADV_PURGED)
4371 obj->madv = args->madv;
4372
4373 /* if the object is no longer attached, discard its backing storage */
4374 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4375 i915_gem_object_truncate(obj);
4376
4377 args->retained = obj->madv != __I915_MADV_PURGED;
4378
4379 out:
4380 drm_gem_object_unreference(&obj->base);
4381 unlock:
4382 mutex_unlock(&dev->struct_mutex);
4383 return ret;
4384 }
4385
4386 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4387 const struct drm_i915_gem_object_ops *ops)
4388 {
4389 INIT_LIST_HEAD(&obj->global_list);
4390 INIT_LIST_HEAD(&obj->ring_list);
4391 INIT_LIST_HEAD(&obj->obj_exec_link);
4392 INIT_LIST_HEAD(&obj->vma_list);
4393 INIT_LIST_HEAD(&obj->batch_pool_list);
4394
4395 obj->ops = ops;
4396
4397 obj->fence_reg = I915_FENCE_REG_NONE;
4398 obj->madv = I915_MADV_WILLNEED;
4399
4400 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4401 }
4402
4403 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4404 .get_pages = i915_gem_object_get_pages_gtt,
4405 .put_pages = i915_gem_object_put_pages_gtt,
4406 };
4407
4408 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4409 size_t size)
4410 {
4411 struct drm_i915_gem_object *obj;
4412 struct address_space *mapping;
4413 gfp_t mask;
4414
4415 obj = i915_gem_object_alloc(dev);
4416 if (obj == NULL)
4417 return NULL;
4418
4419 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4420 i915_gem_object_free(obj);
4421 return NULL;
4422 }
4423
4424 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4425 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4426 /* 965gm cannot relocate objects above 4GiB. */
4427 mask &= ~__GFP_HIGHMEM;
4428 mask |= __GFP_DMA32;
4429 }
4430
4431 mapping = file_inode(obj->base.filp)->i_mapping;
4432 mapping_set_gfp_mask(mapping, mask);
4433
4434 i915_gem_object_init(obj, &i915_gem_object_ops);
4435
4436 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4437 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4438
4439 if (HAS_LLC(dev)) {
4440 /* On some devices, we can have the GPU use the LLC (the CPU
4441 * cache) for about a 10% performance improvement
4442 * compared to uncached. Graphics requests other than
4443 * display scanout are coherent with the CPU in
4444 * accessing this cache. This means in this mode we
4445 * don't need to clflush on the CPU side, and on the
4446 * GPU side we only need to flush internal caches to
4447 * get data visible to the CPU.
4448 *
4449 * However, we maintain the display planes as UC, and so
4450 * need to rebind when first used as such.
4451 */
4452 obj->cache_level = I915_CACHE_LLC;
4453 } else
4454 obj->cache_level = I915_CACHE_NONE;
4455
4456 trace_i915_gem_object_create(obj);
4457
4458 return obj;
4459 }
4460
4461 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4462 {
4463 /* If we are the last user of the backing storage (be it shmemfs
4464 * pages or stolen etc), we know that the pages are going to be
4465 * immediately released. In this case, we can then skip copying
4466 * back the contents from the GPU.
4467 */
4468
4469 if (obj->madv != I915_MADV_WILLNEED)
4470 return false;
4471
4472 if (obj->base.filp == NULL)
4473 return true;
4474
4475 /* At first glance, this looks racy, but then again so would be
4476 * userspace racing mmap against close. However, the first external
4477 * reference to the filp can only be obtained through the
4478 * i915_gem_mmap_ioctl() which safeguards us against the user
4479 * acquiring such a reference whilst we are in the middle of
4480 * freeing the object.
4481 */
4482 return atomic_long_read(&obj->base.filp->f_count) == 1;
4483 }
4484
4485 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4486 {
4487 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4488 struct drm_device *dev = obj->base.dev;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 struct i915_vma *vma, *next;
4491
4492 intel_runtime_pm_get(dev_priv);
4493
4494 trace_i915_gem_object_destroy(obj);
4495
4496 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4497 int ret;
4498
4499 vma->pin_count = 0;
4500 ret = i915_vma_unbind(vma);
4501 if (WARN_ON(ret == -ERESTARTSYS)) {
4502 bool was_interruptible;
4503
4504 was_interruptible = dev_priv->mm.interruptible;
4505 dev_priv->mm.interruptible = false;
4506
4507 WARN_ON(i915_vma_unbind(vma));
4508
4509 dev_priv->mm.interruptible = was_interruptible;
4510 }
4511 }
4512
4513 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4514 * before progressing. */
4515 if (obj->stolen)
4516 i915_gem_object_unpin_pages(obj);
4517
4518 WARN_ON(obj->frontbuffer_bits);
4519
4520 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4521 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4522 obj->tiling_mode != I915_TILING_NONE)
4523 i915_gem_object_unpin_pages(obj);
4524
4525 if (WARN_ON(obj->pages_pin_count))
4526 obj->pages_pin_count = 0;
4527 if (discard_backing_storage(obj))
4528 obj->madv = I915_MADV_DONTNEED;
4529 i915_gem_object_put_pages(obj);
4530 i915_gem_object_free_mmap_offset(obj);
4531
4532 BUG_ON(obj->pages);
4533
4534 if (obj->base.import_attach)
4535 drm_prime_gem_destroy(&obj->base, NULL);
4536
4537 if (obj->ops->release)
4538 obj->ops->release(obj);
4539
4540 drm_gem_object_release(&obj->base);
4541 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4542
4543 kfree(obj->bit_17);
4544 i915_gem_object_free(obj);
4545
4546 intel_runtime_pm_put(dev_priv);
4547 }
4548
4549 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4550 struct i915_address_space *vm,
4551 const struct i915_ggtt_view *view)
4552 {
4553 struct i915_vma *vma;
4554 list_for_each_entry(vma, &obj->vma_list, vma_link)
4555 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4556 return vma;
4557
4558 return NULL;
4559 }
4560
4561 void i915_gem_vma_destroy(struct i915_vma *vma)
4562 {
4563 struct i915_address_space *vm = NULL;
4564 WARN_ON(vma->node.allocated);
4565
4566 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4567 if (!list_empty(&vma->exec_list))
4568 return;
4569
4570 vm = vma->vm;
4571
4572 if (!i915_is_ggtt(vm))
4573 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4574
4575 list_del(&vma->vma_link);
4576
4577 kfree(vma);
4578 }
4579
4580 static void
4581 i915_gem_stop_ringbuffers(struct drm_device *dev)
4582 {
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 struct intel_engine_cs *ring;
4585 int i;
4586
4587 for_each_ring(ring, dev_priv, i)
4588 dev_priv->gt.stop_ring(ring);
4589 }
4590
4591 int
4592 i915_gem_suspend(struct drm_device *dev)
4593 {
4594 struct drm_i915_private *dev_priv = dev->dev_private;
4595 int ret = 0;
4596
4597 mutex_lock(&dev->struct_mutex);
4598 ret = i915_gpu_idle(dev);
4599 if (ret)
4600 goto err;
4601
4602 i915_gem_retire_requests(dev);
4603
4604 /* Under UMS, be paranoid and evict. */
4605 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4606 i915_gem_evict_everything(dev);
4607
4608 i915_gem_stop_ringbuffers(dev);
4609 mutex_unlock(&dev->struct_mutex);
4610
4611 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4612 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4613 flush_delayed_work(&dev_priv->mm.idle_work);
4614
4615 /* Assert that we sucessfully flushed all the work and
4616 * reset the GPU back to its idle, low power state.
4617 */
4618 WARN_ON(dev_priv->mm.busy);
4619
4620 return 0;
4621
4622 err:
4623 mutex_unlock(&dev->struct_mutex);
4624 return ret;
4625 }
4626
4627 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4628 {
4629 struct drm_device *dev = ring->dev;
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4632 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4633 int i, ret;
4634
4635 if (!HAS_L3_DPF(dev) || !remap_info)
4636 return 0;
4637
4638 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4639 if (ret)
4640 return ret;
4641
4642 /*
4643 * Note: We do not worry about the concurrent register cacheline hang
4644 * here because no other code should access these registers other than
4645 * at initialization time.
4646 */
4647 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4648 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4649 intel_ring_emit(ring, reg_base + i);
4650 intel_ring_emit(ring, remap_info[i/4]);
4651 }
4652
4653 intel_ring_advance(ring);
4654
4655 return ret;
4656 }
4657
4658 void i915_gem_init_swizzling(struct drm_device *dev)
4659 {
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 if (INTEL_INFO(dev)->gen < 5 ||
4663 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4664 return;
4665
4666 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4667 DISP_TILE_SURFACE_SWIZZLING);
4668
4669 if (IS_GEN5(dev))
4670 return;
4671
4672 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4673 if (IS_GEN6(dev))
4674 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4675 else if (IS_GEN7(dev))
4676 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4677 else if (IS_GEN8(dev))
4678 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4679 else
4680 BUG();
4681 }
4682
4683 static bool
4684 intel_enable_blt(struct drm_device *dev)
4685 {
4686 if (!HAS_BLT(dev))
4687 return false;
4688
4689 /* The blitter was dysfunctional on early prototypes */
4690 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4691 DRM_INFO("BLT not supported on this pre-production hardware;"
4692 " graphics performance will be degraded.\n");
4693 return false;
4694 }
4695
4696 return true;
4697 }
4698
4699 static void init_unused_ring(struct drm_device *dev, u32 base)
4700 {
4701 struct drm_i915_private *dev_priv = dev->dev_private;
4702
4703 I915_WRITE(RING_CTL(base), 0);
4704 I915_WRITE(RING_HEAD(base), 0);
4705 I915_WRITE(RING_TAIL(base), 0);
4706 I915_WRITE(RING_START(base), 0);
4707 }
4708
4709 static void init_unused_rings(struct drm_device *dev)
4710 {
4711 if (IS_I830(dev)) {
4712 init_unused_ring(dev, PRB1_BASE);
4713 init_unused_ring(dev, SRB0_BASE);
4714 init_unused_ring(dev, SRB1_BASE);
4715 init_unused_ring(dev, SRB2_BASE);
4716 init_unused_ring(dev, SRB3_BASE);
4717 } else if (IS_GEN2(dev)) {
4718 init_unused_ring(dev, SRB0_BASE);
4719 init_unused_ring(dev, SRB1_BASE);
4720 } else if (IS_GEN3(dev)) {
4721 init_unused_ring(dev, PRB1_BASE);
4722 init_unused_ring(dev, PRB2_BASE);
4723 }
4724 }
4725
4726 int i915_gem_init_rings(struct drm_device *dev)
4727 {
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 int ret;
4730
4731 ret = intel_init_render_ring_buffer(dev);
4732 if (ret)
4733 return ret;
4734
4735 if (HAS_BSD(dev)) {
4736 ret = intel_init_bsd_ring_buffer(dev);
4737 if (ret)
4738 goto cleanup_render_ring;
4739 }
4740
4741 if (intel_enable_blt(dev)) {
4742 ret = intel_init_blt_ring_buffer(dev);
4743 if (ret)
4744 goto cleanup_bsd_ring;
4745 }
4746
4747 if (HAS_VEBOX(dev)) {
4748 ret = intel_init_vebox_ring_buffer(dev);
4749 if (ret)
4750 goto cleanup_blt_ring;
4751 }
4752
4753 if (HAS_BSD2(dev)) {
4754 ret = intel_init_bsd2_ring_buffer(dev);
4755 if (ret)
4756 goto cleanup_vebox_ring;
4757 }
4758
4759 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4760 if (ret)
4761 goto cleanup_bsd2_ring;
4762
4763 return 0;
4764
4765 cleanup_bsd2_ring:
4766 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4767 cleanup_vebox_ring:
4768 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4769 cleanup_blt_ring:
4770 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4771 cleanup_bsd_ring:
4772 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4773 cleanup_render_ring:
4774 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4775
4776 return ret;
4777 }
4778
4779 int
4780 i915_gem_init_hw(struct drm_device *dev)
4781 {
4782 struct drm_i915_private *dev_priv = dev->dev_private;
4783 struct intel_engine_cs *ring;
4784 int ret, i;
4785
4786 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4787 return -EIO;
4788
4789 if (dev_priv->ellc_size)
4790 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4791
4792 if (IS_HASWELL(dev))
4793 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4794 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4795
4796 if (HAS_PCH_NOP(dev)) {
4797 if (IS_IVYBRIDGE(dev)) {
4798 u32 temp = I915_READ(GEN7_MSG_CTL);
4799 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4800 I915_WRITE(GEN7_MSG_CTL, temp);
4801 } else if (INTEL_INFO(dev)->gen >= 7) {
4802 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4803 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4804 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4805 }
4806 }
4807
4808 i915_gem_init_swizzling(dev);
4809
4810 /*
4811 * At least 830 can leave some of the unused rings
4812 * "active" (ie. head != tail) after resume which
4813 * will prevent c3 entry. Makes sure all unused rings
4814 * are totally idle.
4815 */
4816 init_unused_rings(dev);
4817
4818 for_each_ring(ring, dev_priv, i) {
4819 ret = ring->init_hw(ring);
4820 if (ret)
4821 return ret;
4822 }
4823
4824 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4825 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4826
4827 /*
4828 * XXX: Contexts should only be initialized once. Doing a switch to the
4829 * default context switch however is something we'd like to do after
4830 * reset or thaw (the latter may not actually be necessary for HW, but
4831 * goes with our code better). Context switching requires rings (for
4832 * the do_switch), but before enabling PPGTT. So don't move this.
4833 */
4834 ret = i915_gem_context_enable(dev_priv);
4835 if (ret && ret != -EIO) {
4836 DRM_ERROR("Context enable failed %d\n", ret);
4837 i915_gem_cleanup_ringbuffer(dev);
4838
4839 return ret;
4840 }
4841
4842 ret = i915_ppgtt_init_hw(dev);
4843 if (ret && ret != -EIO) {
4844 DRM_ERROR("PPGTT enable failed %d\n", ret);
4845 i915_gem_cleanup_ringbuffer(dev);
4846 }
4847
4848 return ret;
4849 }
4850
4851 int i915_gem_init(struct drm_device *dev)
4852 {
4853 struct drm_i915_private *dev_priv = dev->dev_private;
4854 int ret;
4855
4856 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4857 i915.enable_execlists);
4858
4859 mutex_lock(&dev->struct_mutex);
4860
4861 if (IS_VALLEYVIEW(dev)) {
4862 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4863 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4864 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4865 VLV_GTLC_ALLOWWAKEACK), 10))
4866 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4867 }
4868
4869 if (!i915.enable_execlists) {
4870 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4871 dev_priv->gt.init_rings = i915_gem_init_rings;
4872 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4873 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4874 } else {
4875 dev_priv->gt.do_execbuf = intel_execlists_submission;
4876 dev_priv->gt.init_rings = intel_logical_rings_init;
4877 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4878 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4879 }
4880
4881 ret = i915_gem_init_userptr(dev);
4882 if (ret)
4883 goto out_unlock;
4884
4885 i915_gem_init_global_gtt(dev);
4886
4887 ret = i915_gem_context_init(dev);
4888 if (ret)
4889 goto out_unlock;
4890
4891 ret = dev_priv->gt.init_rings(dev);
4892 if (ret)
4893 goto out_unlock;
4894
4895 ret = i915_gem_init_hw(dev);
4896 if (ret == -EIO) {
4897 /* Allow ring initialisation to fail by marking the GPU as
4898 * wedged. But we only want to do this where the GPU is angry,
4899 * for all other failure, such as an allocation failure, bail.
4900 */
4901 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4902 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4903 ret = 0;
4904 }
4905
4906 out_unlock:
4907 mutex_unlock(&dev->struct_mutex);
4908
4909 return ret;
4910 }
4911
4912 void
4913 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4914 {
4915 struct drm_i915_private *dev_priv = dev->dev_private;
4916 struct intel_engine_cs *ring;
4917 int i;
4918
4919 for_each_ring(ring, dev_priv, i)
4920 dev_priv->gt.cleanup_ring(ring);
4921 }
4922
4923 static void
4924 init_ring_lists(struct intel_engine_cs *ring)
4925 {
4926 INIT_LIST_HEAD(&ring->active_list);
4927 INIT_LIST_HEAD(&ring->request_list);
4928 }
4929
4930 void i915_init_vm(struct drm_i915_private *dev_priv,
4931 struct i915_address_space *vm)
4932 {
4933 if (!i915_is_ggtt(vm))
4934 drm_mm_init(&vm->mm, vm->start, vm->total);
4935 vm->dev = dev_priv->dev;
4936 INIT_LIST_HEAD(&vm->active_list);
4937 INIT_LIST_HEAD(&vm->inactive_list);
4938 INIT_LIST_HEAD(&vm->global_link);
4939 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4940 }
4941
4942 void
4943 i915_gem_load(struct drm_device *dev)
4944 {
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int i;
4947
4948 dev_priv->slab =
4949 kmem_cache_create("i915_gem_object",
4950 sizeof(struct drm_i915_gem_object), 0,
4951 SLAB_HWCACHE_ALIGN,
4952 NULL);
4953
4954 INIT_LIST_HEAD(&dev_priv->vm_list);
4955 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4956
4957 INIT_LIST_HEAD(&dev_priv->context_list);
4958 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961 for (i = 0; i < I915_NUM_RINGS; i++)
4962 init_ring_lists(&dev_priv->ring[i]);
4963 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4964 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4965 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4966 i915_gem_retire_work_handler);
4967 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4968 i915_gem_idle_work_handler);
4969 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970
4971 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4972 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4973 I915_WRITE(MI_ARB_STATE,
4974 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4975 }
4976
4977 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4978
4979 /* Old X drivers will take 0-2 for front, back, depth buffers */
4980 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4981 dev_priv->fence_reg_start = 3;
4982
4983 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4984 dev_priv->num_fence_regs = 32;
4985 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
4990 /* Initialize fence registers to zero */
4991 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4992 i915_gem_restore_fences(dev);
4993
4994 i915_gem_detect_bit_6_swizzle(dev);
4995 init_waitqueue_head(&dev_priv->pending_flip_queue);
4996
4997 dev_priv->mm.interruptible = true;
4998
4999 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5000 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5001 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5002 register_shrinker(&dev_priv->mm.shrinker);
5003
5004 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5005 register_oom_notifier(&dev_priv->mm.oom_notifier);
5006
5007 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5008
5009 mutex_init(&dev_priv->fb_tracking.lock);
5010 }
5011
5012 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5013 {
5014 struct drm_i915_file_private *file_priv = file->driver_priv;
5015
5016 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5017
5018 /* Clean up our request list when the client is going away, so that
5019 * later retire_requests won't dereference our soon-to-be-gone
5020 * file_priv.
5021 */
5022 spin_lock(&file_priv->mm.lock);
5023 while (!list_empty(&file_priv->mm.request_list)) {
5024 struct drm_i915_gem_request *request;
5025
5026 request = list_first_entry(&file_priv->mm.request_list,
5027 struct drm_i915_gem_request,
5028 client_list);
5029 list_del(&request->client_list);
5030 request->file_priv = NULL;
5031 }
5032 spin_unlock(&file_priv->mm.lock);
5033 }
5034
5035 static void
5036 i915_gem_file_idle_work_handler(struct work_struct *work)
5037 {
5038 struct drm_i915_file_private *file_priv =
5039 container_of(work, typeof(*file_priv), mm.idle_work.work);
5040
5041 atomic_set(&file_priv->rps_wait_boost, false);
5042 }
5043
5044 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5045 {
5046 struct drm_i915_file_private *file_priv;
5047 int ret;
5048
5049 DRM_DEBUG_DRIVER("\n");
5050
5051 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5052 if (!file_priv)
5053 return -ENOMEM;
5054
5055 file->driver_priv = file_priv;
5056 file_priv->dev_priv = dev->dev_private;
5057 file_priv->file = file;
5058
5059 spin_lock_init(&file_priv->mm.lock);
5060 INIT_LIST_HEAD(&file_priv->mm.request_list);
5061 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5062 i915_gem_file_idle_work_handler);
5063
5064 ret = i915_gem_context_open(dev, file);
5065 if (ret)
5066 kfree(file_priv);
5067
5068 return ret;
5069 }
5070
5071 /**
5072 * i915_gem_track_fb - update frontbuffer tracking
5073 * old: current GEM buffer for the frontbuffer slots
5074 * new: new GEM buffer for the frontbuffer slots
5075 * frontbuffer_bits: bitmask of frontbuffer slots
5076 *
5077 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5078 * from @old and setting them in @new. Both @old and @new can be NULL.
5079 */
5080 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5081 struct drm_i915_gem_object *new,
5082 unsigned frontbuffer_bits)
5083 {
5084 if (old) {
5085 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5086 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5087 old->frontbuffer_bits &= ~frontbuffer_bits;
5088 }
5089
5090 if (new) {
5091 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5092 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5093 new->frontbuffer_bits |= frontbuffer_bits;
5094 }
5095 }
5096
5097 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5098 {
5099 if (!mutex_is_locked(mutex))
5100 return false;
5101
5102 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5103 return mutex->owner == task;
5104 #else
5105 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5106 return false;
5107 #endif
5108 }
5109
5110 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5111 {
5112 if (!mutex_trylock(&dev->struct_mutex)) {
5113 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5114 return false;
5115
5116 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5117 return false;
5118
5119 *unlock = false;
5120 } else
5121 *unlock = true;
5122
5123 return true;
5124 }
5125
5126 static int num_vma_bound(struct drm_i915_gem_object *obj)
5127 {
5128 struct i915_vma *vma;
5129 int count = 0;
5130
5131 list_for_each_entry(vma, &obj->vma_list, vma_link)
5132 if (drm_mm_node_allocated(&vma->node))
5133 count++;
5134
5135 return count;
5136 }
5137
5138 static unsigned long
5139 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5140 {
5141 struct drm_i915_private *dev_priv =
5142 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5143 struct drm_device *dev = dev_priv->dev;
5144 struct drm_i915_gem_object *obj;
5145 unsigned long count;
5146 bool unlock;
5147
5148 if (!i915_gem_shrinker_lock(dev, &unlock))
5149 return 0;
5150
5151 count = 0;
5152 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5153 if (obj->pages_pin_count == 0)
5154 count += obj->base.size >> PAGE_SHIFT;
5155
5156 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5157 if (!i915_gem_obj_is_pinned(obj) &&
5158 obj->pages_pin_count == num_vma_bound(obj))
5159 count += obj->base.size >> PAGE_SHIFT;
5160 }
5161
5162 if (unlock)
5163 mutex_unlock(&dev->struct_mutex);
5164
5165 return count;
5166 }
5167
5168 /* All the new VM stuff */
5169 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5170 struct i915_address_space *vm,
5171 enum i915_ggtt_view_type view)
5172 {
5173 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5174 struct i915_vma *vma;
5175
5176 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5177
5178 list_for_each_entry(vma, &o->vma_list, vma_link) {
5179 if (vma->vm == vm && vma->ggtt_view.type == view)
5180 return vma->node.start;
5181
5182 }
5183 WARN(1, "%s vma for this object not found.\n",
5184 i915_is_ggtt(vm) ? "global" : "ppgtt");
5185 return -1;
5186 }
5187
5188 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5189 struct i915_address_space *vm,
5190 enum i915_ggtt_view_type view)
5191 {
5192 struct i915_vma *vma;
5193
5194 list_for_each_entry(vma, &o->vma_list, vma_link)
5195 if (vma->vm == vm &&
5196 vma->ggtt_view.type == view &&
5197 drm_mm_node_allocated(&vma->node))
5198 return true;
5199
5200 return false;
5201 }
5202
5203 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5204 {
5205 struct i915_vma *vma;
5206
5207 list_for_each_entry(vma, &o->vma_list, vma_link)
5208 if (drm_mm_node_allocated(&vma->node))
5209 return true;
5210
5211 return false;
5212 }
5213
5214 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5215 struct i915_address_space *vm)
5216 {
5217 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5218 struct i915_vma *vma;
5219
5220 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5221
5222 BUG_ON(list_empty(&o->vma_list));
5223
5224 list_for_each_entry(vma, &o->vma_list, vma_link)
5225 if (vma->vm == vm)
5226 return vma->node.size;
5227
5228 return 0;
5229 }
5230
5231 static unsigned long
5232 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5233 {
5234 struct drm_i915_private *dev_priv =
5235 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5236 struct drm_device *dev = dev_priv->dev;
5237 unsigned long freed;
5238 bool unlock;
5239
5240 if (!i915_gem_shrinker_lock(dev, &unlock))
5241 return SHRINK_STOP;
5242
5243 freed = i915_gem_shrink(dev_priv,
5244 sc->nr_to_scan,
5245 I915_SHRINK_BOUND |
5246 I915_SHRINK_UNBOUND |
5247 I915_SHRINK_PURGEABLE);
5248 if (freed < sc->nr_to_scan)
5249 freed += i915_gem_shrink(dev_priv,
5250 sc->nr_to_scan - freed,
5251 I915_SHRINK_BOUND |
5252 I915_SHRINK_UNBOUND);
5253 if (unlock)
5254 mutex_unlock(&dev->struct_mutex);
5255
5256 return freed;
5257 }
5258
5259 static int
5260 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5261 {
5262 struct drm_i915_private *dev_priv =
5263 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5264 struct drm_device *dev = dev_priv->dev;
5265 struct drm_i915_gem_object *obj;
5266 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5267 unsigned long pinned, bound, unbound, freed_pages;
5268 bool was_interruptible;
5269 bool unlock;
5270
5271 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5272 schedule_timeout_killable(1);
5273 if (fatal_signal_pending(current))
5274 return NOTIFY_DONE;
5275 }
5276 if (timeout == 0) {
5277 pr_err("Unable to purge GPU memory due lock contention.\n");
5278 return NOTIFY_DONE;
5279 }
5280
5281 was_interruptible = dev_priv->mm.interruptible;
5282 dev_priv->mm.interruptible = false;
5283
5284 freed_pages = i915_gem_shrink_all(dev_priv);
5285
5286 dev_priv->mm.interruptible = was_interruptible;
5287
5288 /* Because we may be allocating inside our own driver, we cannot
5289 * assert that there are no objects with pinned pages that are not
5290 * being pointed to by hardware.
5291 */
5292 unbound = bound = pinned = 0;
5293 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5294 if (!obj->base.filp) /* not backed by a freeable object */
5295 continue;
5296
5297 if (obj->pages_pin_count)
5298 pinned += obj->base.size;
5299 else
5300 unbound += obj->base.size;
5301 }
5302 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5303 if (!obj->base.filp)
5304 continue;
5305
5306 if (obj->pages_pin_count)
5307 pinned += obj->base.size;
5308 else
5309 bound += obj->base.size;
5310 }
5311
5312 if (unlock)
5313 mutex_unlock(&dev->struct_mutex);
5314
5315 if (freed_pages || unbound || bound)
5316 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5317 freed_pages << PAGE_SHIFT, pinned);
5318 if (unbound || bound)
5319 pr_err("%lu and %lu bytes still available in the "
5320 "bound and unbound GPU page lists.\n",
5321 bound, unbound);
5322
5323 *(unsigned long *)ptr += freed_pages;
5324 return NOTIFY_DONE;
5325 }
5326
5327 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5328 {
5329 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5330 struct i915_vma *vma;
5331
5332 list_for_each_entry(vma, &obj->vma_list, vma_link)
5333 if (vma->vm == ggtt &&
5334 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5335 return vma;
5336
5337 return NULL;
5338 }
This page took 0.149221 seconds and 5 git commands to generate.