drm/i915: Handle inactivating objects for all VMAs
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
1021 int ret;
1022
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
1040 return -ENODEV;
1041
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
1044 getrawmonotonic(&before);
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
1085 io_schedule();
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
1095 getrawmonotonic(&now);
1096 trace_i915_gem_request_wait_end(ring, seqno);
1097
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
1390
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
1399 /* Now bind it into the GTT if needed */
1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1401 if (ret)
1402 goto unlock;
1403
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
1407
1408 ret = i915_gem_object_get_fence(obj);
1409 if (ret)
1410 goto unpin;
1411
1412 obj->fault_mappable = true;
1413
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 i915_gem_object_unpin(obj);
1422 unlock:
1423 mutex_unlock(&dev->struct_mutex);
1424 out:
1425 switch (ret) {
1426 case -EIO:
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 return VM_FAULT_SIGBUS;
1432 case -EAGAIN:
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
1437 */
1438 case 0:
1439 case -ERESTARTSYS:
1440 case -EINTR:
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
1446 return VM_FAULT_NOPAGE;
1447 case -ENOMEM:
1448 return VM_FAULT_OOM;
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
1451 default:
1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 return VM_FAULT_SIGBUS;
1454 }
1455 }
1456
1457 /**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
1461 * Preserve the reservation of the mmapping with the DRM core code, but
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 if (!obj->fault_mappable)
1475 return;
1476
1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 uint32_t gtt_size;
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
1492 gtt_size = 1024*1024;
1493 else
1494 gtt_size = 512*1024;
1495
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
1498
1499 return gtt_size;
1500 }
1501
1502 /**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
1507 * potential fence register mapping.
1508 */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
1512 {
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 tiling_mode == I915_TILING_NONE)
1519 return 4096;
1520
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 return 0;
1535
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
1540 goto out;
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
1552 goto out;
1553
1554 i915_gem_shrink_all(dev_priv);
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
1572 {
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 struct drm_i915_gem_object *obj;
1575 int ret;
1576
1577 ret = i915_mutex_lock_interruptible(dev);
1578 if (ret)
1579 return ret;
1580
1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 if (&obj->base == NULL) {
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
1586
1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 ret = -E2BIG;
1589 goto out;
1590 }
1591
1592 if (obj->madv != I915_MADV_WILLNEED) {
1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 ret = -EINVAL;
1595 goto out;
1596 }
1597
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
1601
1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605 drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 mutex_unlock(&dev->struct_mutex);
1608 return ret;
1609 }
1610
1611 /**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 struct inode *inode;
1640
1641 i915_gem_object_free_mmap_offset(obj);
1642
1643 if (obj->base.filp == NULL)
1644 return;
1645
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
1651 inode = file_inode(obj->base.filp);
1652 shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654 obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 struct sg_page_iter sg_iter;
1667 int ret;
1668
1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
1677 i915_gem_clflush_object(obj, true);
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
1681 if (i915_gem_object_needs_bit17_swizzle(obj))
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
1686
1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690 if (obj->dirty)
1691 set_page_dirty(page);
1692
1693 if (obj->madv == I915_MADV_WILLNEED)
1694 mark_page_accessed(page);
1695
1696 page_cache_release(page);
1697 }
1698 obj->dirty = 0;
1699
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709 if (obj->pages == NULL)
1710 return 0;
1711
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
1715 BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
1720 list_del(&obj->global_list);
1721
1722 ops->put_pages(obj);
1723 obj->pages = NULL;
1724
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729 }
1730
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
1734 {
1735 struct list_head still_bound_list;
1736 struct drm_i915_gem_object *obj, *next;
1737 unsigned long count = 0;
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
1741 global_list) {
1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 i915_gem_object_put_pages(obj) == 0) {
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 struct i915_vma *vma, *v;
1759
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
1792
1793 if (i915_gem_object_put_pages(obj) == 0)
1794 count += obj->base.size >> PAGE_SHIFT;
1795
1796 drm_gem_object_unreference(&obj->base);
1797 }
1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800 return count;
1801 }
1802
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 struct drm_i915_gem_object *obj, *next;
1813 long freed = 0;
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 global_list) {
1819 if (i915_gem_object_put_pages(obj) == 0)
1820 freed += obj->base.size >> PAGE_SHIFT;
1821 }
1822 return freed;
1823 }
1824
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 int page_count, i;
1830 struct address_space *mapping;
1831 struct sg_table *st;
1832 struct scatterlist *sg;
1833 struct sg_page_iter sg_iter;
1834 struct page *page;
1835 unsigned long last_pfn = 0; /* suppress gcc warning */
1836 gfp_t gfp;
1837
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
1849 page_count = obj->base.size / PAGE_SIZE;
1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 kfree(st);
1852 return -ENOMEM;
1853 }
1854
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
1860 mapping = file_inode(obj->base.filp)->i_mapping;
1861 gfp = mapping_gfp_mask(mapping);
1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
1888 #ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895 #endif
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 }
1909 #ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911 #endif
1912 sg_mark_end(sg);
1913 obj->pages = st;
1914
1915 if (i915_gem_object_needs_bit17_swizzle(obj))
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920 err_pages:
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 page_cache_release(sg_page_iter_page(&sg_iter));
1924 sg_free_table(st);
1925 kfree(st);
1926 return PTR_ERR(page);
1927 }
1928
1929 /* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
1943 if (obj->pages)
1944 return 0;
1945
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
1951 BUG_ON(obj->pages_pin_count);
1952
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 return 0;
1959 }
1960
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 struct intel_ring_buffer *ring)
1964 {
1965 struct drm_device *dev = obj->base.dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 u32 seqno = intel_ring_get_seqno(ring);
1968
1969 BUG_ON(ring == NULL);
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
1974 obj->ring = ring;
1975
1976 /* Add a reference if we're newly entering the active list. */
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
1980 }
1981
1982 list_move_tail(&obj->ring_list, &ring->active_list);
1983
1984 obj->last_read_seqno = seqno;
1985
1986 if (obj->fenced_gpu_access) {
1987 obj->last_fenced_seqno = seqno;
1988
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
1997 }
1998 }
1999
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002 {
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *vm;
2012 struct i915_vma *vma;
2013
2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 BUG_ON(!obj->active);
2016
2017 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2018 vma = i915_gem_obj_to_vma(obj, vm);
2019 if (vma && !list_empty(&vma->mm_list))
2020 list_move_tail(&vma->mm_list, &vm->inactive_list);
2021 }
2022
2023 list_del_init(&obj->ring_list);
2024 obj->ring = NULL;
2025
2026 obj->last_read_seqno = 0;
2027 obj->last_write_seqno = 0;
2028 obj->base.write_domain = 0;
2029
2030 obj->last_fenced_seqno = 0;
2031 obj->fenced_gpu_access = false;
2032
2033 obj->active = 0;
2034 drm_gem_object_unreference(&obj->base);
2035
2036 WARN_ON(i915_verify_lists(dev));
2037 }
2038
2039 static int
2040 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2041 {
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_ring_buffer *ring;
2044 int ret, i, j;
2045
2046 /* Carefully retire all requests without writing to the rings */
2047 for_each_ring(ring, dev_priv, i) {
2048 ret = intel_ring_idle(ring);
2049 if (ret)
2050 return ret;
2051 }
2052 i915_gem_retire_requests(dev);
2053
2054 /* Finally reset hw state */
2055 for_each_ring(ring, dev_priv, i) {
2056 intel_ring_init_seqno(ring, seqno);
2057
2058 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2059 ring->sync_seqno[j] = 0;
2060 }
2061
2062 return 0;
2063 }
2064
2065 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 int ret;
2069
2070 if (seqno == 0)
2071 return -EINVAL;
2072
2073 /* HWS page needs to be set less than what we
2074 * will inject to ring
2075 */
2076 ret = i915_gem_init_seqno(dev, seqno - 1);
2077 if (ret)
2078 return ret;
2079
2080 /* Carefully set the last_seqno value so that wrap
2081 * detection still works
2082 */
2083 dev_priv->next_seqno = seqno;
2084 dev_priv->last_seqno = seqno - 1;
2085 if (dev_priv->last_seqno == 0)
2086 dev_priv->last_seqno--;
2087
2088 return 0;
2089 }
2090
2091 int
2092 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2093 {
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096 /* reserve 0 for non-seqno */
2097 if (dev_priv->next_seqno == 0) {
2098 int ret = i915_gem_init_seqno(dev, 0);
2099 if (ret)
2100 return ret;
2101
2102 dev_priv->next_seqno = 1;
2103 }
2104
2105 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2106 return 0;
2107 }
2108
2109 int __i915_add_request(struct intel_ring_buffer *ring,
2110 struct drm_file *file,
2111 struct drm_i915_gem_object *obj,
2112 u32 *out_seqno)
2113 {
2114 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2115 struct drm_i915_gem_request *request;
2116 u32 request_ring_position, request_start;
2117 int was_empty;
2118 int ret;
2119
2120 request_start = intel_ring_get_tail(ring);
2121 /*
2122 * Emit any outstanding flushes - execbuf can fail to emit the flush
2123 * after having emitted the batchbuffer command. Hence we need to fix
2124 * things up similar to emitting the lazy request. The difference here
2125 * is that the flush _must_ happen before the next request, no matter
2126 * what.
2127 */
2128 ret = intel_ring_flush_all_caches(ring);
2129 if (ret)
2130 return ret;
2131
2132 request = ring->preallocated_lazy_request;
2133 if (WARN_ON(request == NULL))
2134 return -ENOMEM;
2135
2136 /* Record the position of the start of the request so that
2137 * should we detect the updated seqno part-way through the
2138 * GPU processing the request, we never over-estimate the
2139 * position of the head.
2140 */
2141 request_ring_position = intel_ring_get_tail(ring);
2142
2143 ret = ring->add_request(ring);
2144 if (ret)
2145 return ret;
2146
2147 request->seqno = intel_ring_get_seqno(ring);
2148 request->ring = ring;
2149 request->head = request_start;
2150 request->tail = request_ring_position;
2151
2152 /* Whilst this request exists, batch_obj will be on the
2153 * active_list, and so will hold the active reference. Only when this
2154 * request is retired will the the batch_obj be moved onto the
2155 * inactive_list and lose its active reference. Hence we do not need
2156 * to explicitly hold another reference here.
2157 */
2158 request->batch_obj = obj;
2159
2160 /* Hold a reference to the current context so that we can inspect
2161 * it later in case a hangcheck error event fires.
2162 */
2163 request->ctx = ring->last_context;
2164 if (request->ctx)
2165 i915_gem_context_reference(request->ctx);
2166
2167 request->emitted_jiffies = jiffies;
2168 was_empty = list_empty(&ring->request_list);
2169 list_add_tail(&request->list, &ring->request_list);
2170 request->file_priv = NULL;
2171
2172 if (file) {
2173 struct drm_i915_file_private *file_priv = file->driver_priv;
2174
2175 spin_lock(&file_priv->mm.lock);
2176 request->file_priv = file_priv;
2177 list_add_tail(&request->client_list,
2178 &file_priv->mm.request_list);
2179 spin_unlock(&file_priv->mm.lock);
2180 }
2181
2182 trace_i915_gem_request_add(ring, request->seqno);
2183 ring->outstanding_lazy_seqno = 0;
2184 ring->preallocated_lazy_request = NULL;
2185
2186 if (!dev_priv->ums.mm_suspended) {
2187 i915_queue_hangcheck(ring->dev);
2188
2189 if (was_empty) {
2190 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2191 queue_delayed_work(dev_priv->wq,
2192 &dev_priv->mm.retire_work,
2193 round_jiffies_up_relative(HZ));
2194 intel_mark_busy(dev_priv->dev);
2195 }
2196 }
2197
2198 if (out_seqno)
2199 *out_seqno = request->seqno;
2200 return 0;
2201 }
2202
2203 static inline void
2204 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2205 {
2206 struct drm_i915_file_private *file_priv = request->file_priv;
2207
2208 if (!file_priv)
2209 return;
2210
2211 spin_lock(&file_priv->mm.lock);
2212 list_del(&request->client_list);
2213 request->file_priv = NULL;
2214 spin_unlock(&file_priv->mm.lock);
2215 }
2216
2217 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2218 struct i915_address_space *vm)
2219 {
2220 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2221 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2222 return true;
2223
2224 return false;
2225 }
2226
2227 static bool i915_head_inside_request(const u32 acthd_unmasked,
2228 const u32 request_start,
2229 const u32 request_end)
2230 {
2231 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2232
2233 if (request_start < request_end) {
2234 if (acthd >= request_start && acthd < request_end)
2235 return true;
2236 } else if (request_start > request_end) {
2237 if (acthd >= request_start || acthd < request_end)
2238 return true;
2239 }
2240
2241 return false;
2242 }
2243
2244 static struct i915_address_space *
2245 request_to_vm(struct drm_i915_gem_request *request)
2246 {
2247 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2248 struct i915_address_space *vm;
2249
2250 vm = &dev_priv->gtt.base;
2251
2252 return vm;
2253 }
2254
2255 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2256 const u32 acthd, bool *inside)
2257 {
2258 /* There is a possibility that unmasked head address
2259 * pointing inside the ring, matches the batch_obj address range.
2260 * However this is extremely unlikely.
2261 */
2262 if (request->batch_obj) {
2263 if (i915_head_inside_object(acthd, request->batch_obj,
2264 request_to_vm(request))) {
2265 *inside = true;
2266 return true;
2267 }
2268 }
2269
2270 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2271 *inside = false;
2272 return true;
2273 }
2274
2275 return false;
2276 }
2277
2278 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2279 {
2280 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2281
2282 if (hs->banned)
2283 return true;
2284
2285 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2286 DRM_ERROR("context hanging too fast, declaring banned!\n");
2287 return true;
2288 }
2289
2290 return false;
2291 }
2292
2293 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2294 struct drm_i915_gem_request *request,
2295 u32 acthd)
2296 {
2297 struct i915_ctx_hang_stats *hs = NULL;
2298 bool inside, guilty;
2299 unsigned long offset = 0;
2300
2301 /* Innocent until proven guilty */
2302 guilty = false;
2303
2304 if (request->batch_obj)
2305 offset = i915_gem_obj_offset(request->batch_obj,
2306 request_to_vm(request));
2307
2308 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2309 i915_request_guilty(request, acthd, &inside)) {
2310 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2311 ring->name,
2312 inside ? "inside" : "flushing",
2313 offset,
2314 request->ctx ? request->ctx->id : 0,
2315 acthd);
2316
2317 guilty = true;
2318 }
2319
2320 /* If contexts are disabled or this is the default context, use
2321 * file_priv->reset_state
2322 */
2323 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2324 hs = &request->ctx->hang_stats;
2325 else if (request->file_priv)
2326 hs = &request->file_priv->hang_stats;
2327
2328 if (hs) {
2329 if (guilty) {
2330 hs->banned = i915_context_is_banned(hs);
2331 hs->batch_active++;
2332 hs->guilty_ts = get_seconds();
2333 } else {
2334 hs->batch_pending++;
2335 }
2336 }
2337 }
2338
2339 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2340 {
2341 list_del(&request->list);
2342 i915_gem_request_remove_from_client(request);
2343
2344 if (request->ctx)
2345 i915_gem_context_unreference(request->ctx);
2346
2347 kfree(request);
2348 }
2349
2350 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2351 struct intel_ring_buffer *ring)
2352 {
2353 u32 completed_seqno;
2354 u32 acthd;
2355
2356 acthd = intel_ring_get_active_head(ring);
2357 completed_seqno = ring->get_seqno(ring, false);
2358
2359 while (!list_empty(&ring->request_list)) {
2360 struct drm_i915_gem_request *request;
2361
2362 request = list_first_entry(&ring->request_list,
2363 struct drm_i915_gem_request,
2364 list);
2365
2366 if (request->seqno > completed_seqno)
2367 i915_set_reset_status(ring, request, acthd);
2368
2369 i915_gem_free_request(request);
2370 }
2371
2372 while (!list_empty(&ring->active_list)) {
2373 struct drm_i915_gem_object *obj;
2374
2375 obj = list_first_entry(&ring->active_list,
2376 struct drm_i915_gem_object,
2377 ring_list);
2378
2379 i915_gem_object_move_to_inactive(obj);
2380 }
2381 }
2382
2383 void i915_gem_restore_fences(struct drm_device *dev)
2384 {
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 int i;
2387
2388 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2389 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2390
2391 /*
2392 * Commit delayed tiling changes if we have an object still
2393 * attached to the fence, otherwise just clear the fence.
2394 */
2395 if (reg->obj) {
2396 i915_gem_object_update_fence(reg->obj, reg,
2397 reg->obj->tiling_mode);
2398 } else {
2399 i915_gem_write_fence(dev, i, NULL);
2400 }
2401 }
2402 }
2403
2404 void i915_gem_reset(struct drm_device *dev)
2405 {
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 struct intel_ring_buffer *ring;
2408 int i;
2409
2410 for_each_ring(ring, dev_priv, i)
2411 i915_gem_reset_ring_lists(dev_priv, ring);
2412
2413 i915_gem_cleanup_ringbuffer(dev);
2414
2415 i915_gem_restore_fences(dev);
2416 }
2417
2418 /**
2419 * This function clears the request list as sequence numbers are passed.
2420 */
2421 void
2422 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2423 {
2424 uint32_t seqno;
2425
2426 if (list_empty(&ring->request_list))
2427 return;
2428
2429 WARN_ON(i915_verify_lists(ring->dev));
2430
2431 seqno = ring->get_seqno(ring, true);
2432
2433 while (!list_empty(&ring->request_list)) {
2434 struct drm_i915_gem_request *request;
2435
2436 request = list_first_entry(&ring->request_list,
2437 struct drm_i915_gem_request,
2438 list);
2439
2440 if (!i915_seqno_passed(seqno, request->seqno))
2441 break;
2442
2443 trace_i915_gem_request_retire(ring, request->seqno);
2444 /* We know the GPU must have read the request to have
2445 * sent us the seqno + interrupt, so use the position
2446 * of tail of the request to update the last known position
2447 * of the GPU head.
2448 */
2449 ring->last_retired_head = request->tail;
2450
2451 i915_gem_free_request(request);
2452 }
2453
2454 /* Move any buffers on the active list that are no longer referenced
2455 * by the ringbuffer to the flushing/inactive lists as appropriate.
2456 */
2457 while (!list_empty(&ring->active_list)) {
2458 struct drm_i915_gem_object *obj;
2459
2460 obj = list_first_entry(&ring->active_list,
2461 struct drm_i915_gem_object,
2462 ring_list);
2463
2464 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2465 break;
2466
2467 i915_gem_object_move_to_inactive(obj);
2468 }
2469
2470 if (unlikely(ring->trace_irq_seqno &&
2471 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2472 ring->irq_put(ring);
2473 ring->trace_irq_seqno = 0;
2474 }
2475
2476 WARN_ON(i915_verify_lists(ring->dev));
2477 }
2478
2479 bool
2480 i915_gem_retire_requests(struct drm_device *dev)
2481 {
2482 drm_i915_private_t *dev_priv = dev->dev_private;
2483 struct intel_ring_buffer *ring;
2484 bool idle = true;
2485 int i;
2486
2487 for_each_ring(ring, dev_priv, i) {
2488 i915_gem_retire_requests_ring(ring);
2489 idle &= list_empty(&ring->request_list);
2490 }
2491
2492 if (idle)
2493 mod_delayed_work(dev_priv->wq,
2494 &dev_priv->mm.idle_work,
2495 msecs_to_jiffies(100));
2496
2497 return idle;
2498 }
2499
2500 static void
2501 i915_gem_retire_work_handler(struct work_struct *work)
2502 {
2503 struct drm_i915_private *dev_priv =
2504 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2505 struct drm_device *dev = dev_priv->dev;
2506 bool idle;
2507
2508 /* Come back later if the device is busy... */
2509 idle = false;
2510 if (mutex_trylock(&dev->struct_mutex)) {
2511 idle = i915_gem_retire_requests(dev);
2512 mutex_unlock(&dev->struct_mutex);
2513 }
2514 if (!idle)
2515 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2516 round_jiffies_up_relative(HZ));
2517 }
2518
2519 static void
2520 i915_gem_idle_work_handler(struct work_struct *work)
2521 {
2522 struct drm_i915_private *dev_priv =
2523 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2524
2525 intel_mark_idle(dev_priv->dev);
2526 }
2527
2528 /**
2529 * Ensures that an object will eventually get non-busy by flushing any required
2530 * write domains, emitting any outstanding lazy request and retiring and
2531 * completed requests.
2532 */
2533 static int
2534 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2535 {
2536 int ret;
2537
2538 if (obj->active) {
2539 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2540 if (ret)
2541 return ret;
2542
2543 i915_gem_retire_requests_ring(obj->ring);
2544 }
2545
2546 return 0;
2547 }
2548
2549 /**
2550 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2551 * @DRM_IOCTL_ARGS: standard ioctl arguments
2552 *
2553 * Returns 0 if successful, else an error is returned with the remaining time in
2554 * the timeout parameter.
2555 * -ETIME: object is still busy after timeout
2556 * -ERESTARTSYS: signal interrupted the wait
2557 * -ENONENT: object doesn't exist
2558 * Also possible, but rare:
2559 * -EAGAIN: GPU wedged
2560 * -ENOMEM: damn
2561 * -ENODEV: Internal IRQ fail
2562 * -E?: The add request failed
2563 *
2564 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2565 * non-zero timeout parameter the wait ioctl will wait for the given number of
2566 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2567 * without holding struct_mutex the object may become re-busied before this
2568 * function completes. A similar but shorter * race condition exists in the busy
2569 * ioctl
2570 */
2571 int
2572 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2573 {
2574 drm_i915_private_t *dev_priv = dev->dev_private;
2575 struct drm_i915_gem_wait *args = data;
2576 struct drm_i915_gem_object *obj;
2577 struct intel_ring_buffer *ring = NULL;
2578 struct timespec timeout_stack, *timeout = NULL;
2579 unsigned reset_counter;
2580 u32 seqno = 0;
2581 int ret = 0;
2582
2583 if (args->timeout_ns >= 0) {
2584 timeout_stack = ns_to_timespec(args->timeout_ns);
2585 timeout = &timeout_stack;
2586 }
2587
2588 ret = i915_mutex_lock_interruptible(dev);
2589 if (ret)
2590 return ret;
2591
2592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2593 if (&obj->base == NULL) {
2594 mutex_unlock(&dev->struct_mutex);
2595 return -ENOENT;
2596 }
2597
2598 /* Need to make sure the object gets inactive eventually. */
2599 ret = i915_gem_object_flush_active(obj);
2600 if (ret)
2601 goto out;
2602
2603 if (obj->active) {
2604 seqno = obj->last_read_seqno;
2605 ring = obj->ring;
2606 }
2607
2608 if (seqno == 0)
2609 goto out;
2610
2611 /* Do this after OLR check to make sure we make forward progress polling
2612 * on this IOCTL with a 0 timeout (like busy ioctl)
2613 */
2614 if (!args->timeout_ns) {
2615 ret = -ETIME;
2616 goto out;
2617 }
2618
2619 drm_gem_object_unreference(&obj->base);
2620 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2621 mutex_unlock(&dev->struct_mutex);
2622
2623 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2624 if (timeout)
2625 args->timeout_ns = timespec_to_ns(timeout);
2626 return ret;
2627
2628 out:
2629 drm_gem_object_unreference(&obj->base);
2630 mutex_unlock(&dev->struct_mutex);
2631 return ret;
2632 }
2633
2634 /**
2635 * i915_gem_object_sync - sync an object to a ring.
2636 *
2637 * @obj: object which may be in use on another ring.
2638 * @to: ring we wish to use the object on. May be NULL.
2639 *
2640 * This code is meant to abstract object synchronization with the GPU.
2641 * Calling with NULL implies synchronizing the object with the CPU
2642 * rather than a particular GPU ring.
2643 *
2644 * Returns 0 if successful, else propagates up the lower layer error.
2645 */
2646 int
2647 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2648 struct intel_ring_buffer *to)
2649 {
2650 struct intel_ring_buffer *from = obj->ring;
2651 u32 seqno;
2652 int ret, idx;
2653
2654 if (from == NULL || to == from)
2655 return 0;
2656
2657 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2658 return i915_gem_object_wait_rendering(obj, false);
2659
2660 idx = intel_ring_sync_index(from, to);
2661
2662 seqno = obj->last_read_seqno;
2663 if (seqno <= from->sync_seqno[idx])
2664 return 0;
2665
2666 ret = i915_gem_check_olr(obj->ring, seqno);
2667 if (ret)
2668 return ret;
2669
2670 trace_i915_gem_ring_sync_to(from, to, seqno);
2671 ret = to->sync_to(to, from, seqno);
2672 if (!ret)
2673 /* We use last_read_seqno because sync_to()
2674 * might have just caused seqno wrap under
2675 * the radar.
2676 */
2677 from->sync_seqno[idx] = obj->last_read_seqno;
2678
2679 return ret;
2680 }
2681
2682 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2683 {
2684 u32 old_write_domain, old_read_domains;
2685
2686 /* Force a pagefault for domain tracking on next user access */
2687 i915_gem_release_mmap(obj);
2688
2689 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2690 return;
2691
2692 /* Wait for any direct GTT access to complete */
2693 mb();
2694
2695 old_read_domains = obj->base.read_domains;
2696 old_write_domain = obj->base.write_domain;
2697
2698 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2699 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2700
2701 trace_i915_gem_object_change_domain(obj,
2702 old_read_domains,
2703 old_write_domain);
2704 }
2705
2706 int i915_vma_unbind(struct i915_vma *vma)
2707 {
2708 struct drm_i915_gem_object *obj = vma->obj;
2709 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2710 int ret;
2711
2712 /* For now we only ever use 1 vma per object */
2713 WARN_ON(!list_is_singular(&obj->vma_list));
2714
2715 if (list_empty(&vma->vma_link))
2716 return 0;
2717
2718 if (!drm_mm_node_allocated(&vma->node)) {
2719 i915_gem_vma_destroy(vma);
2720
2721 return 0;
2722 }
2723
2724 if (obj->pin_count)
2725 return -EBUSY;
2726
2727 BUG_ON(obj->pages == NULL);
2728
2729 ret = i915_gem_object_finish_gpu(obj);
2730 if (ret)
2731 return ret;
2732 /* Continue on if we fail due to EIO, the GPU is hung so we
2733 * should be safe and we need to cleanup or else we might
2734 * cause memory corruption through use-after-free.
2735 */
2736
2737 i915_gem_object_finish_gtt(obj);
2738
2739 /* release the fence reg _after_ flushing */
2740 ret = i915_gem_object_put_fence(obj);
2741 if (ret)
2742 return ret;
2743
2744 trace_i915_vma_unbind(vma);
2745
2746 if (obj->has_global_gtt_mapping)
2747 i915_gem_gtt_unbind_object(obj);
2748 if (obj->has_aliasing_ppgtt_mapping) {
2749 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2750 obj->has_aliasing_ppgtt_mapping = 0;
2751 }
2752 i915_gem_gtt_finish_object(obj);
2753
2754 list_del(&vma->mm_list);
2755 /* Avoid an unnecessary call to unbind on rebind. */
2756 if (i915_is_ggtt(vma->vm))
2757 obj->map_and_fenceable = true;
2758
2759 drm_mm_remove_node(&vma->node);
2760 i915_gem_vma_destroy(vma);
2761
2762 /* Since the unbound list is global, only move to that list if
2763 * no more VMAs exist. */
2764 if (list_empty(&obj->vma_list))
2765 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2766
2767 /* And finally now the object is completely decoupled from this vma,
2768 * we can drop its hold on the backing storage and allow it to be
2769 * reaped by the shrinker.
2770 */
2771 i915_gem_object_unpin_pages(obj);
2772
2773 return 0;
2774 }
2775
2776 /**
2777 * Unbinds an object from the global GTT aperture.
2778 */
2779 int
2780 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2781 {
2782 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2783 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2784
2785 if (!i915_gem_obj_ggtt_bound(obj))
2786 return 0;
2787
2788 if (obj->pin_count)
2789 return -EBUSY;
2790
2791 BUG_ON(obj->pages == NULL);
2792
2793 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2794 }
2795
2796 int i915_gpu_idle(struct drm_device *dev)
2797 {
2798 drm_i915_private_t *dev_priv = dev->dev_private;
2799 struct intel_ring_buffer *ring;
2800 int ret, i;
2801
2802 /* Flush everything onto the inactive list. */
2803 for_each_ring(ring, dev_priv, i) {
2804 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2805 if (ret)
2806 return ret;
2807
2808 ret = intel_ring_idle(ring);
2809 if (ret)
2810 return ret;
2811 }
2812
2813 return 0;
2814 }
2815
2816 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2817 struct drm_i915_gem_object *obj)
2818 {
2819 drm_i915_private_t *dev_priv = dev->dev_private;
2820 int fence_reg;
2821 int fence_pitch_shift;
2822
2823 if (INTEL_INFO(dev)->gen >= 6) {
2824 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2825 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2826 } else {
2827 fence_reg = FENCE_REG_965_0;
2828 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2829 }
2830
2831 fence_reg += reg * 8;
2832
2833 /* To w/a incoherency with non-atomic 64-bit register updates,
2834 * we split the 64-bit update into two 32-bit writes. In order
2835 * for a partial fence not to be evaluated between writes, we
2836 * precede the update with write to turn off the fence register,
2837 * and only enable the fence as the last step.
2838 *
2839 * For extra levels of paranoia, we make sure each step lands
2840 * before applying the next step.
2841 */
2842 I915_WRITE(fence_reg, 0);
2843 POSTING_READ(fence_reg);
2844
2845 if (obj) {
2846 u32 size = i915_gem_obj_ggtt_size(obj);
2847 uint64_t val;
2848
2849 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2850 0xfffff000) << 32;
2851 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2852 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2853 if (obj->tiling_mode == I915_TILING_Y)
2854 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2855 val |= I965_FENCE_REG_VALID;
2856
2857 I915_WRITE(fence_reg + 4, val >> 32);
2858 POSTING_READ(fence_reg + 4);
2859
2860 I915_WRITE(fence_reg + 0, val);
2861 POSTING_READ(fence_reg);
2862 } else {
2863 I915_WRITE(fence_reg + 4, 0);
2864 POSTING_READ(fence_reg + 4);
2865 }
2866 }
2867
2868 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2869 struct drm_i915_gem_object *obj)
2870 {
2871 drm_i915_private_t *dev_priv = dev->dev_private;
2872 u32 val;
2873
2874 if (obj) {
2875 u32 size = i915_gem_obj_ggtt_size(obj);
2876 int pitch_val;
2877 int tile_width;
2878
2879 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2880 (size & -size) != size ||
2881 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2882 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2883 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2884
2885 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2886 tile_width = 128;
2887 else
2888 tile_width = 512;
2889
2890 /* Note: pitch better be a power of two tile widths */
2891 pitch_val = obj->stride / tile_width;
2892 pitch_val = ffs(pitch_val) - 1;
2893
2894 val = i915_gem_obj_ggtt_offset(obj);
2895 if (obj->tiling_mode == I915_TILING_Y)
2896 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2897 val |= I915_FENCE_SIZE_BITS(size);
2898 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2899 val |= I830_FENCE_REG_VALID;
2900 } else
2901 val = 0;
2902
2903 if (reg < 8)
2904 reg = FENCE_REG_830_0 + reg * 4;
2905 else
2906 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2907
2908 I915_WRITE(reg, val);
2909 POSTING_READ(reg);
2910 }
2911
2912 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2913 struct drm_i915_gem_object *obj)
2914 {
2915 drm_i915_private_t *dev_priv = dev->dev_private;
2916 uint32_t val;
2917
2918 if (obj) {
2919 u32 size = i915_gem_obj_ggtt_size(obj);
2920 uint32_t pitch_val;
2921
2922 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2923 (size & -size) != size ||
2924 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2925 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2926 i915_gem_obj_ggtt_offset(obj), size);
2927
2928 pitch_val = obj->stride / 128;
2929 pitch_val = ffs(pitch_val) - 1;
2930
2931 val = i915_gem_obj_ggtt_offset(obj);
2932 if (obj->tiling_mode == I915_TILING_Y)
2933 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2934 val |= I830_FENCE_SIZE_BITS(size);
2935 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2936 val |= I830_FENCE_REG_VALID;
2937 } else
2938 val = 0;
2939
2940 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2941 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2942 }
2943
2944 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2945 {
2946 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2947 }
2948
2949 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2950 struct drm_i915_gem_object *obj)
2951 {
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953
2954 /* Ensure that all CPU reads are completed before installing a fence
2955 * and all writes before removing the fence.
2956 */
2957 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2958 mb();
2959
2960 WARN(obj && (!obj->stride || !obj->tiling_mode),
2961 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2962 obj->stride, obj->tiling_mode);
2963
2964 switch (INTEL_INFO(dev)->gen) {
2965 case 8:
2966 case 7:
2967 case 6:
2968 case 5:
2969 case 4: i965_write_fence_reg(dev, reg, obj); break;
2970 case 3: i915_write_fence_reg(dev, reg, obj); break;
2971 case 2: i830_write_fence_reg(dev, reg, obj); break;
2972 default: BUG();
2973 }
2974
2975 /* And similarly be paranoid that no direct access to this region
2976 * is reordered to before the fence is installed.
2977 */
2978 if (i915_gem_object_needs_mb(obj))
2979 mb();
2980 }
2981
2982 static inline int fence_number(struct drm_i915_private *dev_priv,
2983 struct drm_i915_fence_reg *fence)
2984 {
2985 return fence - dev_priv->fence_regs;
2986 }
2987
2988 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2989 struct drm_i915_fence_reg *fence,
2990 bool enable)
2991 {
2992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2993 int reg = fence_number(dev_priv, fence);
2994
2995 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2996
2997 if (enable) {
2998 obj->fence_reg = reg;
2999 fence->obj = obj;
3000 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3001 } else {
3002 obj->fence_reg = I915_FENCE_REG_NONE;
3003 fence->obj = NULL;
3004 list_del_init(&fence->lru_list);
3005 }
3006 obj->fence_dirty = false;
3007 }
3008
3009 static int
3010 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3011 {
3012 if (obj->last_fenced_seqno) {
3013 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3014 if (ret)
3015 return ret;
3016
3017 obj->last_fenced_seqno = 0;
3018 }
3019
3020 obj->fenced_gpu_access = false;
3021 return 0;
3022 }
3023
3024 int
3025 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3026 {
3027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3028 struct drm_i915_fence_reg *fence;
3029 int ret;
3030
3031 ret = i915_gem_object_wait_fence(obj);
3032 if (ret)
3033 return ret;
3034
3035 if (obj->fence_reg == I915_FENCE_REG_NONE)
3036 return 0;
3037
3038 fence = &dev_priv->fence_regs[obj->fence_reg];
3039
3040 i915_gem_object_fence_lost(obj);
3041 i915_gem_object_update_fence(obj, fence, false);
3042
3043 return 0;
3044 }
3045
3046 static struct drm_i915_fence_reg *
3047 i915_find_fence_reg(struct drm_device *dev)
3048 {
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3050 struct drm_i915_fence_reg *reg, *avail;
3051 int i;
3052
3053 /* First try to find a free reg */
3054 avail = NULL;
3055 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3056 reg = &dev_priv->fence_regs[i];
3057 if (!reg->obj)
3058 return reg;
3059
3060 if (!reg->pin_count)
3061 avail = reg;
3062 }
3063
3064 if (avail == NULL)
3065 return NULL;
3066
3067 /* None available, try to steal one or wait for a user to finish */
3068 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3069 if (reg->pin_count)
3070 continue;
3071
3072 return reg;
3073 }
3074
3075 return NULL;
3076 }
3077
3078 /**
3079 * i915_gem_object_get_fence - set up fencing for an object
3080 * @obj: object to map through a fence reg
3081 *
3082 * When mapping objects through the GTT, userspace wants to be able to write
3083 * to them without having to worry about swizzling if the object is tiled.
3084 * This function walks the fence regs looking for a free one for @obj,
3085 * stealing one if it can't find any.
3086 *
3087 * It then sets up the reg based on the object's properties: address, pitch
3088 * and tiling format.
3089 *
3090 * For an untiled surface, this removes any existing fence.
3091 */
3092 int
3093 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3094 {
3095 struct drm_device *dev = obj->base.dev;
3096 struct drm_i915_private *dev_priv = dev->dev_private;
3097 bool enable = obj->tiling_mode != I915_TILING_NONE;
3098 struct drm_i915_fence_reg *reg;
3099 int ret;
3100
3101 /* Have we updated the tiling parameters upon the object and so
3102 * will need to serialise the write to the associated fence register?
3103 */
3104 if (obj->fence_dirty) {
3105 ret = i915_gem_object_wait_fence(obj);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 /* Just update our place in the LRU if our fence is getting reused. */
3111 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3112 reg = &dev_priv->fence_regs[obj->fence_reg];
3113 if (!obj->fence_dirty) {
3114 list_move_tail(&reg->lru_list,
3115 &dev_priv->mm.fence_list);
3116 return 0;
3117 }
3118 } else if (enable) {
3119 reg = i915_find_fence_reg(dev);
3120 if (reg == NULL)
3121 return -EDEADLK;
3122
3123 if (reg->obj) {
3124 struct drm_i915_gem_object *old = reg->obj;
3125
3126 ret = i915_gem_object_wait_fence(old);
3127 if (ret)
3128 return ret;
3129
3130 i915_gem_object_fence_lost(old);
3131 }
3132 } else
3133 return 0;
3134
3135 i915_gem_object_update_fence(obj, reg, enable);
3136
3137 return 0;
3138 }
3139
3140 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3141 struct drm_mm_node *gtt_space,
3142 unsigned long cache_level)
3143 {
3144 struct drm_mm_node *other;
3145
3146 /* On non-LLC machines we have to be careful when putting differing
3147 * types of snoopable memory together to avoid the prefetcher
3148 * crossing memory domains and dying.
3149 */
3150 if (HAS_LLC(dev))
3151 return true;
3152
3153 if (!drm_mm_node_allocated(gtt_space))
3154 return true;
3155
3156 if (list_empty(&gtt_space->node_list))
3157 return true;
3158
3159 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3160 if (other->allocated && !other->hole_follows && other->color != cache_level)
3161 return false;
3162
3163 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3164 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3165 return false;
3166
3167 return true;
3168 }
3169
3170 static void i915_gem_verify_gtt(struct drm_device *dev)
3171 {
3172 #if WATCH_GTT
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 struct drm_i915_gem_object *obj;
3175 int err = 0;
3176
3177 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3178 if (obj->gtt_space == NULL) {
3179 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3180 err++;
3181 continue;
3182 }
3183
3184 if (obj->cache_level != obj->gtt_space->color) {
3185 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3186 i915_gem_obj_ggtt_offset(obj),
3187 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3188 obj->cache_level,
3189 obj->gtt_space->color);
3190 err++;
3191 continue;
3192 }
3193
3194 if (!i915_gem_valid_gtt_space(dev,
3195 obj->gtt_space,
3196 obj->cache_level)) {
3197 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3198 i915_gem_obj_ggtt_offset(obj),
3199 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3200 obj->cache_level);
3201 err++;
3202 continue;
3203 }
3204 }
3205
3206 WARN_ON(err);
3207 #endif
3208 }
3209
3210 /**
3211 * Finds free space in the GTT aperture and binds the object there.
3212 */
3213 static int
3214 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3215 struct i915_address_space *vm,
3216 unsigned alignment,
3217 bool map_and_fenceable,
3218 bool nonblocking)
3219 {
3220 struct drm_device *dev = obj->base.dev;
3221 drm_i915_private_t *dev_priv = dev->dev_private;
3222 u32 size, fence_size, fence_alignment, unfenced_alignment;
3223 size_t gtt_max =
3224 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3225 struct i915_vma *vma;
3226 int ret;
3227
3228 fence_size = i915_gem_get_gtt_size(dev,
3229 obj->base.size,
3230 obj->tiling_mode);
3231 fence_alignment = i915_gem_get_gtt_alignment(dev,
3232 obj->base.size,
3233 obj->tiling_mode, true);
3234 unfenced_alignment =
3235 i915_gem_get_gtt_alignment(dev,
3236 obj->base.size,
3237 obj->tiling_mode, false);
3238
3239 if (alignment == 0)
3240 alignment = map_and_fenceable ? fence_alignment :
3241 unfenced_alignment;
3242 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3243 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3244 return -EINVAL;
3245 }
3246
3247 size = map_and_fenceable ? fence_size : obj->base.size;
3248
3249 /* If the object is bigger than the entire aperture, reject it early
3250 * before evicting everything in a vain attempt to find space.
3251 */
3252 if (obj->base.size > gtt_max) {
3253 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3254 obj->base.size,
3255 map_and_fenceable ? "mappable" : "total",
3256 gtt_max);
3257 return -E2BIG;
3258 }
3259
3260 ret = i915_gem_object_get_pages(obj);
3261 if (ret)
3262 return ret;
3263
3264 i915_gem_object_pin_pages(obj);
3265
3266 BUG_ON(!i915_is_ggtt(vm));
3267
3268 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3269 if (IS_ERR(vma)) {
3270 ret = PTR_ERR(vma);
3271 goto err_unpin;
3272 }
3273
3274 /* For now we only ever use 1 vma per object */
3275 WARN_ON(!list_is_singular(&obj->vma_list));
3276
3277 search_free:
3278 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3279 size, alignment,
3280 obj->cache_level, 0, gtt_max,
3281 DRM_MM_SEARCH_DEFAULT);
3282 if (ret) {
3283 ret = i915_gem_evict_something(dev, vm, size, alignment,
3284 obj->cache_level,
3285 map_and_fenceable,
3286 nonblocking);
3287 if (ret == 0)
3288 goto search_free;
3289
3290 goto err_free_vma;
3291 }
3292 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3293 obj->cache_level))) {
3294 ret = -EINVAL;
3295 goto err_remove_node;
3296 }
3297
3298 ret = i915_gem_gtt_prepare_object(obj);
3299 if (ret)
3300 goto err_remove_node;
3301
3302 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3303 list_add_tail(&vma->mm_list, &vm->inactive_list);
3304
3305 if (i915_is_ggtt(vm)) {
3306 bool mappable, fenceable;
3307
3308 fenceable = (vma->node.size == fence_size &&
3309 (vma->node.start & (fence_alignment - 1)) == 0);
3310
3311 mappable = (vma->node.start + obj->base.size <=
3312 dev_priv->gtt.mappable_end);
3313
3314 obj->map_and_fenceable = mappable && fenceable;
3315 }
3316
3317 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3318
3319 trace_i915_vma_bind(vma, map_and_fenceable);
3320 i915_gem_verify_gtt(dev);
3321 return 0;
3322
3323 err_remove_node:
3324 drm_mm_remove_node(&vma->node);
3325 err_free_vma:
3326 i915_gem_vma_destroy(vma);
3327 err_unpin:
3328 i915_gem_object_unpin_pages(obj);
3329 return ret;
3330 }
3331
3332 bool
3333 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3334 bool force)
3335 {
3336 /* If we don't have a page list set up, then we're not pinned
3337 * to GPU, and we can ignore the cache flush because it'll happen
3338 * again at bind time.
3339 */
3340 if (obj->pages == NULL)
3341 return false;
3342
3343 /*
3344 * Stolen memory is always coherent with the GPU as it is explicitly
3345 * marked as wc by the system, or the system is cache-coherent.
3346 */
3347 if (obj->stolen)
3348 return false;
3349
3350 /* If the GPU is snooping the contents of the CPU cache,
3351 * we do not need to manually clear the CPU cache lines. However,
3352 * the caches are only snooped when the render cache is
3353 * flushed/invalidated. As we always have to emit invalidations
3354 * and flushes when moving into and out of the RENDER domain, correct
3355 * snooping behaviour occurs naturally as the result of our domain
3356 * tracking.
3357 */
3358 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3359 return false;
3360
3361 trace_i915_gem_object_clflush(obj);
3362 drm_clflush_sg(obj->pages);
3363
3364 return true;
3365 }
3366
3367 /** Flushes the GTT write domain for the object if it's dirty. */
3368 static void
3369 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3370 {
3371 uint32_t old_write_domain;
3372
3373 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3374 return;
3375
3376 /* No actual flushing is required for the GTT write domain. Writes
3377 * to it immediately go to main memory as far as we know, so there's
3378 * no chipset flush. It also doesn't land in render cache.
3379 *
3380 * However, we do have to enforce the order so that all writes through
3381 * the GTT land before any writes to the device, such as updates to
3382 * the GATT itself.
3383 */
3384 wmb();
3385
3386 old_write_domain = obj->base.write_domain;
3387 obj->base.write_domain = 0;
3388
3389 trace_i915_gem_object_change_domain(obj,
3390 obj->base.read_domains,
3391 old_write_domain);
3392 }
3393
3394 /** Flushes the CPU write domain for the object if it's dirty. */
3395 static void
3396 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3397 bool force)
3398 {
3399 uint32_t old_write_domain;
3400
3401 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3402 return;
3403
3404 if (i915_gem_clflush_object(obj, force))
3405 i915_gem_chipset_flush(obj->base.dev);
3406
3407 old_write_domain = obj->base.write_domain;
3408 obj->base.write_domain = 0;
3409
3410 trace_i915_gem_object_change_domain(obj,
3411 obj->base.read_domains,
3412 old_write_domain);
3413 }
3414
3415 /**
3416 * Moves a single object to the GTT read, and possibly write domain.
3417 *
3418 * This function returns when the move is complete, including waiting on
3419 * flushes to occur.
3420 */
3421 int
3422 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3423 {
3424 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3425 uint32_t old_write_domain, old_read_domains;
3426 int ret;
3427
3428 /* Not valid to be called on unbound objects. */
3429 if (!i915_gem_obj_bound_any(obj))
3430 return -EINVAL;
3431
3432 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3433 return 0;
3434
3435 ret = i915_gem_object_wait_rendering(obj, !write);
3436 if (ret)
3437 return ret;
3438
3439 i915_gem_object_flush_cpu_write_domain(obj, false);
3440
3441 /* Serialise direct access to this object with the barriers for
3442 * coherent writes from the GPU, by effectively invalidating the
3443 * GTT domain upon first access.
3444 */
3445 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3446 mb();
3447
3448 old_write_domain = obj->base.write_domain;
3449 old_read_domains = obj->base.read_domains;
3450
3451 /* It should now be out of any other write domains, and we can update
3452 * the domain values for our changes.
3453 */
3454 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3455 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3456 if (write) {
3457 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3458 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3459 obj->dirty = 1;
3460 }
3461
3462 trace_i915_gem_object_change_domain(obj,
3463 old_read_domains,
3464 old_write_domain);
3465
3466 /* And bump the LRU for this access */
3467 if (i915_gem_object_is_inactive(obj)) {
3468 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3469 if (vma)
3470 list_move_tail(&vma->mm_list,
3471 &dev_priv->gtt.base.inactive_list);
3472
3473 }
3474
3475 return 0;
3476 }
3477
3478 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3479 enum i915_cache_level cache_level)
3480 {
3481 struct drm_device *dev = obj->base.dev;
3482 drm_i915_private_t *dev_priv = dev->dev_private;
3483 struct i915_vma *vma;
3484 int ret;
3485
3486 if (obj->cache_level == cache_level)
3487 return 0;
3488
3489 if (obj->pin_count) {
3490 DRM_DEBUG("can not change the cache level of pinned objects\n");
3491 return -EBUSY;
3492 }
3493
3494 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3495 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3496 ret = i915_vma_unbind(vma);
3497 if (ret)
3498 return ret;
3499
3500 break;
3501 }
3502 }
3503
3504 if (i915_gem_obj_bound_any(obj)) {
3505 ret = i915_gem_object_finish_gpu(obj);
3506 if (ret)
3507 return ret;
3508
3509 i915_gem_object_finish_gtt(obj);
3510
3511 /* Before SandyBridge, you could not use tiling or fence
3512 * registers with snooped memory, so relinquish any fences
3513 * currently pointing to our region in the aperture.
3514 */
3515 if (INTEL_INFO(dev)->gen < 6) {
3516 ret = i915_gem_object_put_fence(obj);
3517 if (ret)
3518 return ret;
3519 }
3520
3521 if (obj->has_global_gtt_mapping)
3522 i915_gem_gtt_bind_object(obj, cache_level);
3523 if (obj->has_aliasing_ppgtt_mapping)
3524 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3525 obj, cache_level);
3526 }
3527
3528 list_for_each_entry(vma, &obj->vma_list, vma_link)
3529 vma->node.color = cache_level;
3530 obj->cache_level = cache_level;
3531
3532 if (cpu_write_needs_clflush(obj)) {
3533 u32 old_read_domains, old_write_domain;
3534
3535 /* If we're coming from LLC cached, then we haven't
3536 * actually been tracking whether the data is in the
3537 * CPU cache or not, since we only allow one bit set
3538 * in obj->write_domain and have been skipping the clflushes.
3539 * Just set it to the CPU cache for now.
3540 */
3541 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3542
3543 old_read_domains = obj->base.read_domains;
3544 old_write_domain = obj->base.write_domain;
3545
3546 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3547 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3548
3549 trace_i915_gem_object_change_domain(obj,
3550 old_read_domains,
3551 old_write_domain);
3552 }
3553
3554 i915_gem_verify_gtt(dev);
3555 return 0;
3556 }
3557
3558 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3559 struct drm_file *file)
3560 {
3561 struct drm_i915_gem_caching *args = data;
3562 struct drm_i915_gem_object *obj;
3563 int ret;
3564
3565 ret = i915_mutex_lock_interruptible(dev);
3566 if (ret)
3567 return ret;
3568
3569 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3570 if (&obj->base == NULL) {
3571 ret = -ENOENT;
3572 goto unlock;
3573 }
3574
3575 switch (obj->cache_level) {
3576 case I915_CACHE_LLC:
3577 case I915_CACHE_L3_LLC:
3578 args->caching = I915_CACHING_CACHED;
3579 break;
3580
3581 case I915_CACHE_WT:
3582 args->caching = I915_CACHING_DISPLAY;
3583 break;
3584
3585 default:
3586 args->caching = I915_CACHING_NONE;
3587 break;
3588 }
3589
3590 drm_gem_object_unreference(&obj->base);
3591 unlock:
3592 mutex_unlock(&dev->struct_mutex);
3593 return ret;
3594 }
3595
3596 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file)
3598 {
3599 struct drm_i915_gem_caching *args = data;
3600 struct drm_i915_gem_object *obj;
3601 enum i915_cache_level level;
3602 int ret;
3603
3604 switch (args->caching) {
3605 case I915_CACHING_NONE:
3606 level = I915_CACHE_NONE;
3607 break;
3608 case I915_CACHING_CACHED:
3609 level = I915_CACHE_LLC;
3610 break;
3611 case I915_CACHING_DISPLAY:
3612 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3613 break;
3614 default:
3615 return -EINVAL;
3616 }
3617
3618 ret = i915_mutex_lock_interruptible(dev);
3619 if (ret)
3620 return ret;
3621
3622 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3623 if (&obj->base == NULL) {
3624 ret = -ENOENT;
3625 goto unlock;
3626 }
3627
3628 ret = i915_gem_object_set_cache_level(obj, level);
3629
3630 drm_gem_object_unreference(&obj->base);
3631 unlock:
3632 mutex_unlock(&dev->struct_mutex);
3633 return ret;
3634 }
3635
3636 static bool is_pin_display(struct drm_i915_gem_object *obj)
3637 {
3638 /* There are 3 sources that pin objects:
3639 * 1. The display engine (scanouts, sprites, cursors);
3640 * 2. Reservations for execbuffer;
3641 * 3. The user.
3642 *
3643 * We can ignore reservations as we hold the struct_mutex and
3644 * are only called outside of the reservation path. The user
3645 * can only increment pin_count once, and so if after
3646 * subtracting the potential reference by the user, any pin_count
3647 * remains, it must be due to another use by the display engine.
3648 */
3649 return obj->pin_count - !!obj->user_pin_count;
3650 }
3651
3652 /*
3653 * Prepare buffer for display plane (scanout, cursors, etc).
3654 * Can be called from an uninterruptible phase (modesetting) and allows
3655 * any flushes to be pipelined (for pageflips).
3656 */
3657 int
3658 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3659 u32 alignment,
3660 struct intel_ring_buffer *pipelined)
3661 {
3662 u32 old_read_domains, old_write_domain;
3663 int ret;
3664
3665 if (pipelined != obj->ring) {
3666 ret = i915_gem_object_sync(obj, pipelined);
3667 if (ret)
3668 return ret;
3669 }
3670
3671 /* Mark the pin_display early so that we account for the
3672 * display coherency whilst setting up the cache domains.
3673 */
3674 obj->pin_display = true;
3675
3676 /* The display engine is not coherent with the LLC cache on gen6. As
3677 * a result, we make sure that the pinning that is about to occur is
3678 * done with uncached PTEs. This is lowest common denominator for all
3679 * chipsets.
3680 *
3681 * However for gen6+, we could do better by using the GFDT bit instead
3682 * of uncaching, which would allow us to flush all the LLC-cached data
3683 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3684 */
3685 ret = i915_gem_object_set_cache_level(obj,
3686 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3687 if (ret)
3688 goto err_unpin_display;
3689
3690 /* As the user may map the buffer once pinned in the display plane
3691 * (e.g. libkms for the bootup splash), we have to ensure that we
3692 * always use map_and_fenceable for all scanout buffers.
3693 */
3694 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3695 if (ret)
3696 goto err_unpin_display;
3697
3698 i915_gem_object_flush_cpu_write_domain(obj, true);
3699
3700 old_write_domain = obj->base.write_domain;
3701 old_read_domains = obj->base.read_domains;
3702
3703 /* It should now be out of any other write domains, and we can update
3704 * the domain values for our changes.
3705 */
3706 obj->base.write_domain = 0;
3707 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3708
3709 trace_i915_gem_object_change_domain(obj,
3710 old_read_domains,
3711 old_write_domain);
3712
3713 return 0;
3714
3715 err_unpin_display:
3716 obj->pin_display = is_pin_display(obj);
3717 return ret;
3718 }
3719
3720 void
3721 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3722 {
3723 i915_gem_object_unpin(obj);
3724 obj->pin_display = is_pin_display(obj);
3725 }
3726
3727 int
3728 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3729 {
3730 int ret;
3731
3732 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3733 return 0;
3734
3735 ret = i915_gem_object_wait_rendering(obj, false);
3736 if (ret)
3737 return ret;
3738
3739 /* Ensure that we invalidate the GPU's caches and TLBs. */
3740 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3741 return 0;
3742 }
3743
3744 /**
3745 * Moves a single object to the CPU read, and possibly write domain.
3746 *
3747 * This function returns when the move is complete, including waiting on
3748 * flushes to occur.
3749 */
3750 int
3751 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3752 {
3753 uint32_t old_write_domain, old_read_domains;
3754 int ret;
3755
3756 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3757 return 0;
3758
3759 ret = i915_gem_object_wait_rendering(obj, !write);
3760 if (ret)
3761 return ret;
3762
3763 i915_gem_object_flush_gtt_write_domain(obj);
3764
3765 old_write_domain = obj->base.write_domain;
3766 old_read_domains = obj->base.read_domains;
3767
3768 /* Flush the CPU cache if it's still invalid. */
3769 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3770 i915_gem_clflush_object(obj, false);
3771
3772 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3773 }
3774
3775 /* It should now be out of any other write domains, and we can update
3776 * the domain values for our changes.
3777 */
3778 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3779
3780 /* If we're writing through the CPU, then the GPU read domains will
3781 * need to be invalidated at next use.
3782 */
3783 if (write) {
3784 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3785 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3786 }
3787
3788 trace_i915_gem_object_change_domain(obj,
3789 old_read_domains,
3790 old_write_domain);
3791
3792 return 0;
3793 }
3794
3795 /* Throttle our rendering by waiting until the ring has completed our requests
3796 * emitted over 20 msec ago.
3797 *
3798 * Note that if we were to use the current jiffies each time around the loop,
3799 * we wouldn't escape the function with any frames outstanding if the time to
3800 * render a frame was over 20ms.
3801 *
3802 * This should get us reasonable parallelism between CPU and GPU but also
3803 * relatively low latency when blocking on a particular request to finish.
3804 */
3805 static int
3806 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3807 {
3808 struct drm_i915_private *dev_priv = dev->dev_private;
3809 struct drm_i915_file_private *file_priv = file->driver_priv;
3810 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3811 struct drm_i915_gem_request *request;
3812 struct intel_ring_buffer *ring = NULL;
3813 unsigned reset_counter;
3814 u32 seqno = 0;
3815 int ret;
3816
3817 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3818 if (ret)
3819 return ret;
3820
3821 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3822 if (ret)
3823 return ret;
3824
3825 spin_lock(&file_priv->mm.lock);
3826 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3827 if (time_after_eq(request->emitted_jiffies, recent_enough))
3828 break;
3829
3830 ring = request->ring;
3831 seqno = request->seqno;
3832 }
3833 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3834 spin_unlock(&file_priv->mm.lock);
3835
3836 if (seqno == 0)
3837 return 0;
3838
3839 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3840 if (ret == 0)
3841 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3842
3843 return ret;
3844 }
3845
3846 int
3847 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3848 struct i915_address_space *vm,
3849 uint32_t alignment,
3850 bool map_and_fenceable,
3851 bool nonblocking)
3852 {
3853 struct i915_vma *vma;
3854 int ret;
3855
3856 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3857 return -EBUSY;
3858
3859 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3860
3861 vma = i915_gem_obj_to_vma(obj, vm);
3862
3863 if (vma) {
3864 if ((alignment &&
3865 vma->node.start & (alignment - 1)) ||
3866 (map_and_fenceable && !obj->map_and_fenceable)) {
3867 WARN(obj->pin_count,
3868 "bo is already pinned with incorrect alignment:"
3869 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3870 " obj->map_and_fenceable=%d\n",
3871 i915_gem_obj_offset(obj, vm), alignment,
3872 map_and_fenceable,
3873 obj->map_and_fenceable);
3874 ret = i915_vma_unbind(vma);
3875 if (ret)
3876 return ret;
3877 }
3878 }
3879
3880 if (!i915_gem_obj_bound(obj, vm)) {
3881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3882
3883 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3884 map_and_fenceable,
3885 nonblocking);
3886 if (ret)
3887 return ret;
3888
3889 if (!dev_priv->mm.aliasing_ppgtt)
3890 i915_gem_gtt_bind_object(obj, obj->cache_level);
3891 }
3892
3893 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3894 i915_gem_gtt_bind_object(obj, obj->cache_level);
3895
3896 obj->pin_count++;
3897 obj->pin_mappable |= map_and_fenceable;
3898
3899 return 0;
3900 }
3901
3902 void
3903 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3904 {
3905 BUG_ON(obj->pin_count == 0);
3906 BUG_ON(!i915_gem_obj_bound_any(obj));
3907
3908 if (--obj->pin_count == 0)
3909 obj->pin_mappable = false;
3910 }
3911
3912 int
3913 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3914 struct drm_file *file)
3915 {
3916 struct drm_i915_gem_pin *args = data;
3917 struct drm_i915_gem_object *obj;
3918 int ret;
3919
3920 ret = i915_mutex_lock_interruptible(dev);
3921 if (ret)
3922 return ret;
3923
3924 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3925 if (&obj->base == NULL) {
3926 ret = -ENOENT;
3927 goto unlock;
3928 }
3929
3930 if (obj->madv != I915_MADV_WILLNEED) {
3931 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3937 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3938 args->handle);
3939 ret = -EINVAL;
3940 goto out;
3941 }
3942
3943 if (obj->user_pin_count == ULONG_MAX) {
3944 ret = -EBUSY;
3945 goto out;
3946 }
3947
3948 if (obj->user_pin_count == 0) {
3949 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3950 if (ret)
3951 goto out;
3952 }
3953
3954 obj->user_pin_count++;
3955 obj->pin_filp = file;
3956
3957 args->offset = i915_gem_obj_ggtt_offset(obj);
3958 out:
3959 drm_gem_object_unreference(&obj->base);
3960 unlock:
3961 mutex_unlock(&dev->struct_mutex);
3962 return ret;
3963 }
3964
3965 int
3966 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3967 struct drm_file *file)
3968 {
3969 struct drm_i915_gem_pin *args = data;
3970 struct drm_i915_gem_object *obj;
3971 int ret;
3972
3973 ret = i915_mutex_lock_interruptible(dev);
3974 if (ret)
3975 return ret;
3976
3977 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3978 if (&obj->base == NULL) {
3979 ret = -ENOENT;
3980 goto unlock;
3981 }
3982
3983 if (obj->pin_filp != file) {
3984 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3985 args->handle);
3986 ret = -EINVAL;
3987 goto out;
3988 }
3989 obj->user_pin_count--;
3990 if (obj->user_pin_count == 0) {
3991 obj->pin_filp = NULL;
3992 i915_gem_object_unpin(obj);
3993 }
3994
3995 out:
3996 drm_gem_object_unreference(&obj->base);
3997 unlock:
3998 mutex_unlock(&dev->struct_mutex);
3999 return ret;
4000 }
4001
4002 int
4003 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4004 struct drm_file *file)
4005 {
4006 struct drm_i915_gem_busy *args = data;
4007 struct drm_i915_gem_object *obj;
4008 int ret;
4009
4010 ret = i915_mutex_lock_interruptible(dev);
4011 if (ret)
4012 return ret;
4013
4014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4015 if (&obj->base == NULL) {
4016 ret = -ENOENT;
4017 goto unlock;
4018 }
4019
4020 /* Count all active objects as busy, even if they are currently not used
4021 * by the gpu. Users of this interface expect objects to eventually
4022 * become non-busy without any further actions, therefore emit any
4023 * necessary flushes here.
4024 */
4025 ret = i915_gem_object_flush_active(obj);
4026
4027 args->busy = obj->active;
4028 if (obj->ring) {
4029 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4030 args->busy |= intel_ring_flag(obj->ring) << 16;
4031 }
4032
4033 drm_gem_object_unreference(&obj->base);
4034 unlock:
4035 mutex_unlock(&dev->struct_mutex);
4036 return ret;
4037 }
4038
4039 int
4040 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4041 struct drm_file *file_priv)
4042 {
4043 return i915_gem_ring_throttle(dev, file_priv);
4044 }
4045
4046 int
4047 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4048 struct drm_file *file_priv)
4049 {
4050 struct drm_i915_gem_madvise *args = data;
4051 struct drm_i915_gem_object *obj;
4052 int ret;
4053
4054 switch (args->madv) {
4055 case I915_MADV_DONTNEED:
4056 case I915_MADV_WILLNEED:
4057 break;
4058 default:
4059 return -EINVAL;
4060 }
4061
4062 ret = i915_mutex_lock_interruptible(dev);
4063 if (ret)
4064 return ret;
4065
4066 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4067 if (&obj->base == NULL) {
4068 ret = -ENOENT;
4069 goto unlock;
4070 }
4071
4072 if (obj->pin_count) {
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076
4077 if (obj->madv != __I915_MADV_PURGED)
4078 obj->madv = args->madv;
4079
4080 /* if the object is no longer attached, discard its backing storage */
4081 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4082 i915_gem_object_truncate(obj);
4083
4084 args->retained = obj->madv != __I915_MADV_PURGED;
4085
4086 out:
4087 drm_gem_object_unreference(&obj->base);
4088 unlock:
4089 mutex_unlock(&dev->struct_mutex);
4090 return ret;
4091 }
4092
4093 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4094 const struct drm_i915_gem_object_ops *ops)
4095 {
4096 INIT_LIST_HEAD(&obj->global_list);
4097 INIT_LIST_HEAD(&obj->ring_list);
4098 INIT_LIST_HEAD(&obj->obj_exec_link);
4099 INIT_LIST_HEAD(&obj->vma_list);
4100
4101 obj->ops = ops;
4102
4103 obj->fence_reg = I915_FENCE_REG_NONE;
4104 obj->madv = I915_MADV_WILLNEED;
4105 /* Avoid an unnecessary call to unbind on the first bind. */
4106 obj->map_and_fenceable = true;
4107
4108 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4109 }
4110
4111 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4112 .get_pages = i915_gem_object_get_pages_gtt,
4113 .put_pages = i915_gem_object_put_pages_gtt,
4114 };
4115
4116 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4117 size_t size)
4118 {
4119 struct drm_i915_gem_object *obj;
4120 struct address_space *mapping;
4121 gfp_t mask;
4122
4123 obj = i915_gem_object_alloc(dev);
4124 if (obj == NULL)
4125 return NULL;
4126
4127 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4128 i915_gem_object_free(obj);
4129 return NULL;
4130 }
4131
4132 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4133 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4134 /* 965gm cannot relocate objects above 4GiB. */
4135 mask &= ~__GFP_HIGHMEM;
4136 mask |= __GFP_DMA32;
4137 }
4138
4139 mapping = file_inode(obj->base.filp)->i_mapping;
4140 mapping_set_gfp_mask(mapping, mask);
4141
4142 i915_gem_object_init(obj, &i915_gem_object_ops);
4143
4144 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4145 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4146
4147 if (HAS_LLC(dev)) {
4148 /* On some devices, we can have the GPU use the LLC (the CPU
4149 * cache) for about a 10% performance improvement
4150 * compared to uncached. Graphics requests other than
4151 * display scanout are coherent with the CPU in
4152 * accessing this cache. This means in this mode we
4153 * don't need to clflush on the CPU side, and on the
4154 * GPU side we only need to flush internal caches to
4155 * get data visible to the CPU.
4156 *
4157 * However, we maintain the display planes as UC, and so
4158 * need to rebind when first used as such.
4159 */
4160 obj->cache_level = I915_CACHE_LLC;
4161 } else
4162 obj->cache_level = I915_CACHE_NONE;
4163
4164 trace_i915_gem_object_create(obj);
4165
4166 return obj;
4167 }
4168
4169 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170 {
4171 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172 struct drm_device *dev = obj->base.dev;
4173 drm_i915_private_t *dev_priv = dev->dev_private;
4174 struct i915_vma *vma, *next;
4175
4176 trace_i915_gem_object_destroy(obj);
4177
4178 if (obj->phys_obj)
4179 i915_gem_detach_phys_object(dev, obj);
4180
4181 obj->pin_count = 0;
4182 /* NB: 0 or 1 elements */
4183 WARN_ON(!list_empty(&obj->vma_list) &&
4184 !list_is_singular(&obj->vma_list));
4185 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4186 int ret = i915_vma_unbind(vma);
4187 if (WARN_ON(ret == -ERESTARTSYS)) {
4188 bool was_interruptible;
4189
4190 was_interruptible = dev_priv->mm.interruptible;
4191 dev_priv->mm.interruptible = false;
4192
4193 WARN_ON(i915_vma_unbind(vma));
4194
4195 dev_priv->mm.interruptible = was_interruptible;
4196 }
4197 }
4198
4199 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4200 * before progressing. */
4201 if (obj->stolen)
4202 i915_gem_object_unpin_pages(obj);
4203
4204 if (WARN_ON(obj->pages_pin_count))
4205 obj->pages_pin_count = 0;
4206 i915_gem_object_put_pages(obj);
4207 i915_gem_object_free_mmap_offset(obj);
4208 i915_gem_object_release_stolen(obj);
4209
4210 BUG_ON(obj->pages);
4211
4212 if (obj->base.import_attach)
4213 drm_prime_gem_destroy(&obj->base, NULL);
4214
4215 drm_gem_object_release(&obj->base);
4216 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4217
4218 kfree(obj->bit_17);
4219 i915_gem_object_free(obj);
4220 }
4221
4222 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4223 struct i915_address_space *vm)
4224 {
4225 struct i915_vma *vma;
4226 list_for_each_entry(vma, &obj->vma_list, vma_link)
4227 if (vma->vm == vm)
4228 return vma;
4229
4230 return NULL;
4231 }
4232
4233 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4234 struct i915_address_space *vm)
4235 {
4236 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4237 if (vma == NULL)
4238 return ERR_PTR(-ENOMEM);
4239
4240 INIT_LIST_HEAD(&vma->vma_link);
4241 INIT_LIST_HEAD(&vma->mm_list);
4242 INIT_LIST_HEAD(&vma->exec_list);
4243 vma->vm = vm;
4244 vma->obj = obj;
4245
4246 /* Keep GGTT vmas first to make debug easier */
4247 if (i915_is_ggtt(vm))
4248 list_add(&vma->vma_link, &obj->vma_list);
4249 else
4250 list_add_tail(&vma->vma_link, &obj->vma_list);
4251
4252 return vma;
4253 }
4254
4255 struct i915_vma *
4256 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4257 struct i915_address_space *vm)
4258 {
4259 struct i915_vma *vma;
4260
4261 vma = i915_gem_obj_to_vma(obj, vm);
4262 if (!vma)
4263 vma = __i915_gem_vma_create(obj, vm);
4264
4265 return vma;
4266 }
4267
4268 void i915_gem_vma_destroy(struct i915_vma *vma)
4269 {
4270 WARN_ON(vma->node.allocated);
4271
4272 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4273 if (!list_empty(&vma->exec_list))
4274 return;
4275
4276 list_del(&vma->vma_link);
4277
4278 kfree(vma);
4279 }
4280
4281 int
4282 i915_gem_suspend(struct drm_device *dev)
4283 {
4284 drm_i915_private_t *dev_priv = dev->dev_private;
4285 int ret = 0;
4286
4287 mutex_lock(&dev->struct_mutex);
4288 if (dev_priv->ums.mm_suspended)
4289 goto err;
4290
4291 ret = i915_gpu_idle(dev);
4292 if (ret)
4293 goto err;
4294
4295 i915_gem_retire_requests(dev);
4296
4297 /* Under UMS, be paranoid and evict. */
4298 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4299 i915_gem_evict_everything(dev);
4300
4301 i915_kernel_lost_context(dev);
4302 i915_gem_cleanup_ringbuffer(dev);
4303
4304 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4305 * We need to replace this with a semaphore, or something.
4306 * And not confound ums.mm_suspended!
4307 */
4308 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4309 DRIVER_MODESET);
4310 mutex_unlock(&dev->struct_mutex);
4311
4312 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4313 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4314 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4315
4316 return 0;
4317
4318 err:
4319 mutex_unlock(&dev->struct_mutex);
4320 return ret;
4321 }
4322
4323 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4324 {
4325 struct drm_device *dev = ring->dev;
4326 drm_i915_private_t *dev_priv = dev->dev_private;
4327 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4328 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4329 int i, ret;
4330
4331 if (!HAS_L3_DPF(dev) || !remap_info)
4332 return 0;
4333
4334 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4335 if (ret)
4336 return ret;
4337
4338 /*
4339 * Note: We do not worry about the concurrent register cacheline hang
4340 * here because no other code should access these registers other than
4341 * at initialization time.
4342 */
4343 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4344 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4345 intel_ring_emit(ring, reg_base + i);
4346 intel_ring_emit(ring, remap_info[i/4]);
4347 }
4348
4349 intel_ring_advance(ring);
4350
4351 return ret;
4352 }
4353
4354 void i915_gem_init_swizzling(struct drm_device *dev)
4355 {
4356 drm_i915_private_t *dev_priv = dev->dev_private;
4357
4358 if (INTEL_INFO(dev)->gen < 5 ||
4359 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4360 return;
4361
4362 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4363 DISP_TILE_SURFACE_SWIZZLING);
4364
4365 if (IS_GEN5(dev))
4366 return;
4367
4368 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4369 if (IS_GEN6(dev))
4370 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4371 else if (IS_GEN7(dev))
4372 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4373 else if (IS_GEN8(dev))
4374 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4375 else
4376 BUG();
4377 }
4378
4379 static bool
4380 intel_enable_blt(struct drm_device *dev)
4381 {
4382 if (!HAS_BLT(dev))
4383 return false;
4384
4385 /* The blitter was dysfunctional on early prototypes */
4386 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4387 DRM_INFO("BLT not supported on this pre-production hardware;"
4388 " graphics performance will be degraded.\n");
4389 return false;
4390 }
4391
4392 return true;
4393 }
4394
4395 static int i915_gem_init_rings(struct drm_device *dev)
4396 {
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 int ret;
4399
4400 ret = intel_init_render_ring_buffer(dev);
4401 if (ret)
4402 return ret;
4403
4404 if (HAS_BSD(dev)) {
4405 ret = intel_init_bsd_ring_buffer(dev);
4406 if (ret)
4407 goto cleanup_render_ring;
4408 }
4409
4410 if (intel_enable_blt(dev)) {
4411 ret = intel_init_blt_ring_buffer(dev);
4412 if (ret)
4413 goto cleanup_bsd_ring;
4414 }
4415
4416 if (HAS_VEBOX(dev)) {
4417 ret = intel_init_vebox_ring_buffer(dev);
4418 if (ret)
4419 goto cleanup_blt_ring;
4420 }
4421
4422
4423 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4424 if (ret)
4425 goto cleanup_vebox_ring;
4426
4427 return 0;
4428
4429 cleanup_vebox_ring:
4430 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4431 cleanup_blt_ring:
4432 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4433 cleanup_bsd_ring:
4434 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4435 cleanup_render_ring:
4436 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4437
4438 return ret;
4439 }
4440
4441 int
4442 i915_gem_init_hw(struct drm_device *dev)
4443 {
4444 drm_i915_private_t *dev_priv = dev->dev_private;
4445 int ret, i;
4446
4447 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4448 return -EIO;
4449
4450 if (dev_priv->ellc_size)
4451 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4452
4453 if (IS_HSW_GT3(dev))
4454 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4455 else
4456 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4457
4458 if (HAS_PCH_NOP(dev)) {
4459 u32 temp = I915_READ(GEN7_MSG_CTL);
4460 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4461 I915_WRITE(GEN7_MSG_CTL, temp);
4462 }
4463
4464 i915_gem_init_swizzling(dev);
4465
4466 ret = i915_gem_init_rings(dev);
4467 if (ret)
4468 return ret;
4469
4470 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4471 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4472
4473 /*
4474 * XXX: There was some w/a described somewhere suggesting loading
4475 * contexts before PPGTT.
4476 */
4477 ret = i915_gem_context_init(dev);
4478 if (ret) {
4479 i915_gem_cleanup_ringbuffer(dev);
4480 DRM_ERROR("Context initialization failed %d\n", ret);
4481 return ret;
4482 }
4483
4484 if (dev_priv->mm.aliasing_ppgtt) {
4485 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4486 if (ret) {
4487 i915_gem_cleanup_aliasing_ppgtt(dev);
4488 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4489 }
4490 }
4491
4492 return 0;
4493 }
4494
4495 int i915_gem_init(struct drm_device *dev)
4496 {
4497 struct drm_i915_private *dev_priv = dev->dev_private;
4498 int ret;
4499
4500 mutex_lock(&dev->struct_mutex);
4501
4502 if (IS_VALLEYVIEW(dev)) {
4503 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4504 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4505 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4506 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4507 }
4508
4509 i915_gem_init_global_gtt(dev);
4510
4511 ret = i915_gem_init_hw(dev);
4512 mutex_unlock(&dev->struct_mutex);
4513 if (ret) {
4514 i915_gem_cleanup_aliasing_ppgtt(dev);
4515 drm_mm_takedown(&dev_priv->gtt.base.mm);
4516 return ret;
4517 }
4518
4519 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4520 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4521 dev_priv->dri1.allow_batchbuffer = 1;
4522 return 0;
4523 }
4524
4525 void
4526 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4527 {
4528 drm_i915_private_t *dev_priv = dev->dev_private;
4529 struct intel_ring_buffer *ring;
4530 int i;
4531
4532 for_each_ring(ring, dev_priv, i)
4533 intel_cleanup_ring_buffer(ring);
4534 }
4535
4536 int
4537 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4538 struct drm_file *file_priv)
4539 {
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 int ret;
4542
4543 if (drm_core_check_feature(dev, DRIVER_MODESET))
4544 return 0;
4545
4546 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4547 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4548 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4549 }
4550
4551 mutex_lock(&dev->struct_mutex);
4552 dev_priv->ums.mm_suspended = 0;
4553
4554 ret = i915_gem_init_hw(dev);
4555 if (ret != 0) {
4556 mutex_unlock(&dev->struct_mutex);
4557 return ret;
4558 }
4559
4560 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4561 mutex_unlock(&dev->struct_mutex);
4562
4563 ret = drm_irq_install(dev);
4564 if (ret)
4565 goto cleanup_ringbuffer;
4566
4567 return 0;
4568
4569 cleanup_ringbuffer:
4570 mutex_lock(&dev->struct_mutex);
4571 i915_gem_cleanup_ringbuffer(dev);
4572 dev_priv->ums.mm_suspended = 1;
4573 mutex_unlock(&dev->struct_mutex);
4574
4575 return ret;
4576 }
4577
4578 int
4579 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4580 struct drm_file *file_priv)
4581 {
4582 if (drm_core_check_feature(dev, DRIVER_MODESET))
4583 return 0;
4584
4585 drm_irq_uninstall(dev);
4586
4587 return i915_gem_suspend(dev);
4588 }
4589
4590 void
4591 i915_gem_lastclose(struct drm_device *dev)
4592 {
4593 int ret;
4594
4595 if (drm_core_check_feature(dev, DRIVER_MODESET))
4596 return;
4597
4598 ret = i915_gem_suspend(dev);
4599 if (ret)
4600 DRM_ERROR("failed to idle hardware: %d\n", ret);
4601 }
4602
4603 static void
4604 init_ring_lists(struct intel_ring_buffer *ring)
4605 {
4606 INIT_LIST_HEAD(&ring->active_list);
4607 INIT_LIST_HEAD(&ring->request_list);
4608 }
4609
4610 static void i915_init_vm(struct drm_i915_private *dev_priv,
4611 struct i915_address_space *vm)
4612 {
4613 vm->dev = dev_priv->dev;
4614 INIT_LIST_HEAD(&vm->active_list);
4615 INIT_LIST_HEAD(&vm->inactive_list);
4616 INIT_LIST_HEAD(&vm->global_link);
4617 list_add(&vm->global_link, &dev_priv->vm_list);
4618 }
4619
4620 void
4621 i915_gem_load(struct drm_device *dev)
4622 {
4623 drm_i915_private_t *dev_priv = dev->dev_private;
4624 int i;
4625
4626 dev_priv->slab =
4627 kmem_cache_create("i915_gem_object",
4628 sizeof(struct drm_i915_gem_object), 0,
4629 SLAB_HWCACHE_ALIGN,
4630 NULL);
4631
4632 INIT_LIST_HEAD(&dev_priv->vm_list);
4633 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4634
4635 INIT_LIST_HEAD(&dev_priv->context_list);
4636 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4637 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4638 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4639 for (i = 0; i < I915_NUM_RINGS; i++)
4640 init_ring_lists(&dev_priv->ring[i]);
4641 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4642 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4643 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4644 i915_gem_retire_work_handler);
4645 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4646 i915_gem_idle_work_handler);
4647 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4648
4649 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4650 if (IS_GEN3(dev)) {
4651 I915_WRITE(MI_ARB_STATE,
4652 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4653 }
4654
4655 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4656
4657 /* Old X drivers will take 0-2 for front, back, depth buffers */
4658 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4659 dev_priv->fence_reg_start = 3;
4660
4661 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4662 dev_priv->num_fence_regs = 32;
4663 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4664 dev_priv->num_fence_regs = 16;
4665 else
4666 dev_priv->num_fence_regs = 8;
4667
4668 /* Initialize fence registers to zero */
4669 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4670 i915_gem_restore_fences(dev);
4671
4672 i915_gem_detect_bit_6_swizzle(dev);
4673 init_waitqueue_head(&dev_priv->pending_flip_queue);
4674
4675 dev_priv->mm.interruptible = true;
4676
4677 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4678 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4679 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4680 register_shrinker(&dev_priv->mm.inactive_shrinker);
4681 }
4682
4683 /*
4684 * Create a physically contiguous memory object for this object
4685 * e.g. for cursor + overlay regs
4686 */
4687 static int i915_gem_init_phys_object(struct drm_device *dev,
4688 int id, int size, int align)
4689 {
4690 drm_i915_private_t *dev_priv = dev->dev_private;
4691 struct drm_i915_gem_phys_object *phys_obj;
4692 int ret;
4693
4694 if (dev_priv->mm.phys_objs[id - 1] || !size)
4695 return 0;
4696
4697 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4698 if (!phys_obj)
4699 return -ENOMEM;
4700
4701 phys_obj->id = id;
4702
4703 phys_obj->handle = drm_pci_alloc(dev, size, align);
4704 if (!phys_obj->handle) {
4705 ret = -ENOMEM;
4706 goto kfree_obj;
4707 }
4708 #ifdef CONFIG_X86
4709 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4710 #endif
4711
4712 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4713
4714 return 0;
4715 kfree_obj:
4716 kfree(phys_obj);
4717 return ret;
4718 }
4719
4720 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4721 {
4722 drm_i915_private_t *dev_priv = dev->dev_private;
4723 struct drm_i915_gem_phys_object *phys_obj;
4724
4725 if (!dev_priv->mm.phys_objs[id - 1])
4726 return;
4727
4728 phys_obj = dev_priv->mm.phys_objs[id - 1];
4729 if (phys_obj->cur_obj) {
4730 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4731 }
4732
4733 #ifdef CONFIG_X86
4734 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4735 #endif
4736 drm_pci_free(dev, phys_obj->handle);
4737 kfree(phys_obj);
4738 dev_priv->mm.phys_objs[id - 1] = NULL;
4739 }
4740
4741 void i915_gem_free_all_phys_object(struct drm_device *dev)
4742 {
4743 int i;
4744
4745 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4746 i915_gem_free_phys_object(dev, i);
4747 }
4748
4749 void i915_gem_detach_phys_object(struct drm_device *dev,
4750 struct drm_i915_gem_object *obj)
4751 {
4752 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4753 char *vaddr;
4754 int i;
4755 int page_count;
4756
4757 if (!obj->phys_obj)
4758 return;
4759 vaddr = obj->phys_obj->handle->vaddr;
4760
4761 page_count = obj->base.size / PAGE_SIZE;
4762 for (i = 0; i < page_count; i++) {
4763 struct page *page = shmem_read_mapping_page(mapping, i);
4764 if (!IS_ERR(page)) {
4765 char *dst = kmap_atomic(page);
4766 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4767 kunmap_atomic(dst);
4768
4769 drm_clflush_pages(&page, 1);
4770
4771 set_page_dirty(page);
4772 mark_page_accessed(page);
4773 page_cache_release(page);
4774 }
4775 }
4776 i915_gem_chipset_flush(dev);
4777
4778 obj->phys_obj->cur_obj = NULL;
4779 obj->phys_obj = NULL;
4780 }
4781
4782 int
4783 i915_gem_attach_phys_object(struct drm_device *dev,
4784 struct drm_i915_gem_object *obj,
4785 int id,
4786 int align)
4787 {
4788 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4789 drm_i915_private_t *dev_priv = dev->dev_private;
4790 int ret = 0;
4791 int page_count;
4792 int i;
4793
4794 if (id > I915_MAX_PHYS_OBJECT)
4795 return -EINVAL;
4796
4797 if (obj->phys_obj) {
4798 if (obj->phys_obj->id == id)
4799 return 0;
4800 i915_gem_detach_phys_object(dev, obj);
4801 }
4802
4803 /* create a new object */
4804 if (!dev_priv->mm.phys_objs[id - 1]) {
4805 ret = i915_gem_init_phys_object(dev, id,
4806 obj->base.size, align);
4807 if (ret) {
4808 DRM_ERROR("failed to init phys object %d size: %zu\n",
4809 id, obj->base.size);
4810 return ret;
4811 }
4812 }
4813
4814 /* bind to the object */
4815 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4816 obj->phys_obj->cur_obj = obj;
4817
4818 page_count = obj->base.size / PAGE_SIZE;
4819
4820 for (i = 0; i < page_count; i++) {
4821 struct page *page;
4822 char *dst, *src;
4823
4824 page = shmem_read_mapping_page(mapping, i);
4825 if (IS_ERR(page))
4826 return PTR_ERR(page);
4827
4828 src = kmap_atomic(page);
4829 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4830 memcpy(dst, src, PAGE_SIZE);
4831 kunmap_atomic(src);
4832
4833 mark_page_accessed(page);
4834 page_cache_release(page);
4835 }
4836
4837 return 0;
4838 }
4839
4840 static int
4841 i915_gem_phys_pwrite(struct drm_device *dev,
4842 struct drm_i915_gem_object *obj,
4843 struct drm_i915_gem_pwrite *args,
4844 struct drm_file *file_priv)
4845 {
4846 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4847 char __user *user_data = to_user_ptr(args->data_ptr);
4848
4849 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4850 unsigned long unwritten;
4851
4852 /* The physical object once assigned is fixed for the lifetime
4853 * of the obj, so we can safely drop the lock and continue
4854 * to access vaddr.
4855 */
4856 mutex_unlock(&dev->struct_mutex);
4857 unwritten = copy_from_user(vaddr, user_data, args->size);
4858 mutex_lock(&dev->struct_mutex);
4859 if (unwritten)
4860 return -EFAULT;
4861 }
4862
4863 i915_gem_chipset_flush(dev);
4864 return 0;
4865 }
4866
4867 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4868 {
4869 struct drm_i915_file_private *file_priv = file->driver_priv;
4870
4871 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4872
4873 /* Clean up our request list when the client is going away, so that
4874 * later retire_requests won't dereference our soon-to-be-gone
4875 * file_priv.
4876 */
4877 spin_lock(&file_priv->mm.lock);
4878 while (!list_empty(&file_priv->mm.request_list)) {
4879 struct drm_i915_gem_request *request;
4880
4881 request = list_first_entry(&file_priv->mm.request_list,
4882 struct drm_i915_gem_request,
4883 client_list);
4884 list_del(&request->client_list);
4885 request->file_priv = NULL;
4886 }
4887 spin_unlock(&file_priv->mm.lock);
4888 }
4889
4890 static void
4891 i915_gem_file_idle_work_handler(struct work_struct *work)
4892 {
4893 struct drm_i915_file_private *file_priv =
4894 container_of(work, typeof(*file_priv), mm.idle_work.work);
4895
4896 atomic_set(&file_priv->rps_wait_boost, false);
4897 }
4898
4899 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4900 {
4901 struct drm_i915_file_private *file_priv;
4902
4903 DRM_DEBUG_DRIVER("\n");
4904
4905 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4906 if (!file_priv)
4907 return -ENOMEM;
4908
4909 file->driver_priv = file_priv;
4910 file_priv->dev_priv = dev->dev_private;
4911
4912 spin_lock_init(&file_priv->mm.lock);
4913 INIT_LIST_HEAD(&file_priv->mm.request_list);
4914 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4915 i915_gem_file_idle_work_handler);
4916
4917 idr_init(&file_priv->context_idr);
4918
4919 return 0;
4920 }
4921
4922 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4923 {
4924 if (!mutex_is_locked(mutex))
4925 return false;
4926
4927 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4928 return mutex->owner == task;
4929 #else
4930 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4931 return false;
4932 #endif
4933 }
4934
4935 static unsigned long
4936 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4937 {
4938 struct drm_i915_private *dev_priv =
4939 container_of(shrinker,
4940 struct drm_i915_private,
4941 mm.inactive_shrinker);
4942 struct drm_device *dev = dev_priv->dev;
4943 struct drm_i915_gem_object *obj;
4944 bool unlock = true;
4945 unsigned long count;
4946
4947 if (!mutex_trylock(&dev->struct_mutex)) {
4948 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4949 return 0;
4950
4951 if (dev_priv->mm.shrinker_no_lock_stealing)
4952 return 0;
4953
4954 unlock = false;
4955 }
4956
4957 count = 0;
4958 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4959 if (obj->pages_pin_count == 0)
4960 count += obj->base.size >> PAGE_SHIFT;
4961
4962 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4963 if (obj->active)
4964 continue;
4965
4966 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4967 count += obj->base.size >> PAGE_SHIFT;
4968 }
4969
4970 if (unlock)
4971 mutex_unlock(&dev->struct_mutex);
4972
4973 return count;
4974 }
4975
4976 /* All the new VM stuff */
4977 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4978 struct i915_address_space *vm)
4979 {
4980 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4981 struct i915_vma *vma;
4982
4983 if (!dev_priv->mm.aliasing_ppgtt ||
4984 vm == &dev_priv->mm.aliasing_ppgtt->base)
4985 vm = &dev_priv->gtt.base;
4986
4987 BUG_ON(list_empty(&o->vma_list));
4988 list_for_each_entry(vma, &o->vma_list, vma_link) {
4989 if (vma->vm == vm)
4990 return vma->node.start;
4991
4992 }
4993 return -1;
4994 }
4995
4996 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4997 struct i915_address_space *vm)
4998 {
4999 struct i915_vma *vma;
5000
5001 list_for_each_entry(vma, &o->vma_list, vma_link)
5002 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5003 return true;
5004
5005 return false;
5006 }
5007
5008 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5009 {
5010 struct i915_vma *vma;
5011
5012 list_for_each_entry(vma, &o->vma_list, vma_link)
5013 if (drm_mm_node_allocated(&vma->node))
5014 return true;
5015
5016 return false;
5017 }
5018
5019 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5020 struct i915_address_space *vm)
5021 {
5022 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5023 struct i915_vma *vma;
5024
5025 if (!dev_priv->mm.aliasing_ppgtt ||
5026 vm == &dev_priv->mm.aliasing_ppgtt->base)
5027 vm = &dev_priv->gtt.base;
5028
5029 BUG_ON(list_empty(&o->vma_list));
5030
5031 list_for_each_entry(vma, &o->vma_list, vma_link)
5032 if (vma->vm == vm)
5033 return vma->node.size;
5034
5035 return 0;
5036 }
5037
5038 static unsigned long
5039 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5040 {
5041 struct drm_i915_private *dev_priv =
5042 container_of(shrinker,
5043 struct drm_i915_private,
5044 mm.inactive_shrinker);
5045 struct drm_device *dev = dev_priv->dev;
5046 unsigned long freed;
5047 bool unlock = true;
5048
5049 if (!mutex_trylock(&dev->struct_mutex)) {
5050 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5051 return SHRINK_STOP;
5052
5053 if (dev_priv->mm.shrinker_no_lock_stealing)
5054 return SHRINK_STOP;
5055
5056 unlock = false;
5057 }
5058
5059 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5060 if (freed < sc->nr_to_scan)
5061 freed += __i915_gem_shrink(dev_priv,
5062 sc->nr_to_scan - freed,
5063 false);
5064 if (freed < sc->nr_to_scan)
5065 freed += i915_gem_shrink_all(dev_priv);
5066
5067 if (unlock)
5068 mutex_unlock(&dev->struct_mutex);
5069
5070 return freed;
5071 }
5072
5073 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5074 {
5075 struct i915_vma *vma;
5076
5077 if (WARN_ON(list_empty(&obj->vma_list)))
5078 return NULL;
5079
5080 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5081 if (vma->vm != obj_to_ggtt(obj))
5082 return NULL;
5083
5084 return vma;
5085 }
This page took 0.20977 seconds and 5 git commands to generate.