drm/i915: Be paranoid and bail on resetting if we can't take the lock.
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76 }
77
78 int
79 i915_gem_check_is_wedged(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 /* Success, we reset the GPU! */
94 if (!atomic_read(&dev_priv->mm.wedged))
95 return 0;
96
97 /* GPU is hung, bump the completion count to account for
98 * the token we just consumed so that we never hit zero and
99 * end up waiting upon a subsequent completion event that
100 * will never happen.
101 */
102 spin_lock_irqsave(&x->wait.lock, flags);
103 x->done++;
104 spin_unlock_irqrestore(&x->wait.lock, flags);
105 return -EIO;
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_check_is_wedged(dev);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 if (atomic_read(&dev_priv->mm.wedged)) {
122 mutex_unlock(&dev->struct_mutex);
123 return -EAGAIN;
124 }
125
126 WARN_ON(i915_verify_lists(dev));
127 return 0;
128 }
129
130 static inline bool
131 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132 {
133 return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 }
135
136 void i915_gem_do_init(struct drm_device *dev,
137 unsigned long start,
138 unsigned long mappable_end,
139 unsigned long end)
140 {
141 drm_i915_private_t *dev_priv = dev->dev_private;
142
143 drm_mm_init(&dev_priv->mm.gtt_space, start,
144 end - start);
145
146 dev_priv->mm.gtt_total = end - start;
147 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
148 dev_priv->mm.gtt_mappable_end = mappable_end;
149 }
150
151 int
152 i915_gem_init_ioctl(struct drm_device *dev, void *data,
153 struct drm_file *file)
154 {
155 struct drm_i915_gem_init *args = data;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 mutex_lock(&dev->struct_mutex);
162 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
163 mutex_unlock(&dev->struct_mutex);
164
165 return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_get_aperture *args = data;
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
176
177 if (!(dev->driver->driver_features & DRIVER_GEM))
178 return -ENODEV;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
183 pinned += obj->gtt_space->size;
184 mutex_unlock(&dev->struct_mutex);
185
186 args->aper_size = dev_priv->mm.gtt_total;
187 args->aper_available_size = args->aper_size -pinned;
188
189 return 0;
190 }
191
192 /**
193 * Creates a new mm object and returns a handle to it.
194 */
195 int
196 i915_gem_create_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_gem_create *args = data;
200 struct drm_i915_gem_object *obj;
201 int ret;
202 u32 handle;
203
204 args->size = roundup(args->size, PAGE_SIZE);
205
206 /* Allocate the new object */
207 obj = i915_gem_alloc_object(dev, args->size);
208 if (obj == NULL)
209 return -ENOMEM;
210
211 ret = drm_gem_handle_create(file, &obj->base, &handle);
212 if (ret) {
213 drm_gem_object_release(&obj->base);
214 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
215 kfree(obj);
216 return ret;
217 }
218
219 /* drop reference from allocate - handle holds it now */
220 drm_gem_object_unreference(&obj->base);
221 trace_i915_gem_object_create(obj);
222
223 args->handle = handle;
224 return 0;
225 }
226
227 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
228 {
229 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
230
231 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
232 obj->tiling_mode != I915_TILING_NONE;
233 }
234
235 static inline void
236 slow_shmem_copy(struct page *dst_page,
237 int dst_offset,
238 struct page *src_page,
239 int src_offset,
240 int length)
241 {
242 char *dst_vaddr, *src_vaddr;
243
244 dst_vaddr = kmap(dst_page);
245 src_vaddr = kmap(src_page);
246
247 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
248
249 kunmap(src_page);
250 kunmap(dst_page);
251 }
252
253 static inline void
254 slow_shmem_bit17_copy(struct page *gpu_page,
255 int gpu_offset,
256 struct page *cpu_page,
257 int cpu_offset,
258 int length,
259 int is_read)
260 {
261 char *gpu_vaddr, *cpu_vaddr;
262
263 /* Use the unswizzled path if this page isn't affected. */
264 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
265 if (is_read)
266 return slow_shmem_copy(cpu_page, cpu_offset,
267 gpu_page, gpu_offset, length);
268 else
269 return slow_shmem_copy(gpu_page, gpu_offset,
270 cpu_page, cpu_offset, length);
271 }
272
273 gpu_vaddr = kmap(gpu_page);
274 cpu_vaddr = kmap(cpu_page);
275
276 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
277 * XORing with the other bits (A9 for Y, A9 and A10 for X)
278 */
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 if (is_read) {
285 memcpy(cpu_vaddr + cpu_offset,
286 gpu_vaddr + swizzled_gpu_offset,
287 this_length);
288 } else {
289 memcpy(gpu_vaddr + swizzled_gpu_offset,
290 cpu_vaddr + cpu_offset,
291 this_length);
292 }
293 cpu_offset += this_length;
294 gpu_offset += this_length;
295 length -= this_length;
296 }
297
298 kunmap(cpu_page);
299 kunmap(gpu_page);
300 }
301
302 /**
303 * This is the fast shmem pread path, which attempts to copy_from_user directly
304 * from the backing pages of the object to the user's address space. On a
305 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
306 */
307 static int
308 i915_gem_shmem_pread_fast(struct drm_device *dev,
309 struct drm_i915_gem_object *obj,
310 struct drm_i915_gem_pread *args,
311 struct drm_file *file)
312 {
313 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
314 ssize_t remain;
315 loff_t offset;
316 char __user *user_data;
317 int page_offset, page_length;
318
319 user_data = (char __user *) (uintptr_t) args->data_ptr;
320 remain = args->size;
321
322 offset = args->offset;
323
324 while (remain > 0) {
325 struct page *page;
326 char *vaddr;
327 int ret;
328
329 /* Operation in this page
330 *
331 * page_offset = offset within page
332 * page_length = bytes to copy for this page
333 */
334 page_offset = offset & (PAGE_SIZE-1);
335 page_length = remain;
336 if ((page_offset + remain) > PAGE_SIZE)
337 page_length = PAGE_SIZE - page_offset;
338
339 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
340 GFP_HIGHUSER | __GFP_RECLAIMABLE);
341 if (IS_ERR(page))
342 return PTR_ERR(page);
343
344 vaddr = kmap_atomic(page);
345 ret = __copy_to_user_inatomic(user_data,
346 vaddr + page_offset,
347 page_length);
348 kunmap_atomic(vaddr);
349
350 mark_page_accessed(page);
351 page_cache_release(page);
352 if (ret)
353 return -EFAULT;
354
355 remain -= page_length;
356 user_data += page_length;
357 offset += page_length;
358 }
359
360 return 0;
361 }
362
363 /**
364 * This is the fallback shmem pread path, which allocates temporary storage
365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
366 * can copy out of the object's backing pages while holding the struct mutex
367 * and not take page faults.
368 */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev,
371 struct drm_i915_gem_object *obj,
372 struct drm_i915_gem_pread *args,
373 struct drm_file *file)
374 {
375 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
376 struct mm_struct *mm = current->mm;
377 struct page **user_pages;
378 ssize_t remain;
379 loff_t offset, pinned_pages, i;
380 loff_t first_data_page, last_data_page, num_pages;
381 int shmem_page_offset;
382 int data_page_index, data_page_offset;
383 int page_length;
384 int ret;
385 uint64_t data_ptr = args->data_ptr;
386 int do_bit17_swizzling;
387
388 remain = args->size;
389
390 /* Pin the user pages containing the data. We can't fault while
391 * holding the struct mutex, yet we want to hold it while
392 * dereferencing the user data.
393 */
394 first_data_page = data_ptr / PAGE_SIZE;
395 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
396 num_pages = last_data_page - first_data_page + 1;
397
398 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
399 if (user_pages == NULL)
400 return -ENOMEM;
401
402 mutex_unlock(&dev->struct_mutex);
403 down_read(&mm->mmap_sem);
404 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
405 num_pages, 1, 0, user_pages, NULL);
406 up_read(&mm->mmap_sem);
407 mutex_lock(&dev->struct_mutex);
408 if (pinned_pages < num_pages) {
409 ret = -EFAULT;
410 goto out;
411 }
412
413 ret = i915_gem_object_set_cpu_read_domain_range(obj,
414 args->offset,
415 args->size);
416 if (ret)
417 goto out;
418
419 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 offset = args->offset;
422
423 while (remain > 0) {
424 struct page *page;
425
426 /* Operation in this page
427 *
428 * shmem_page_offset = offset within page in shmem file
429 * data_page_index = page number in get_user_pages return
430 * data_page_offset = offset with data_page_index page.
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset & ~PAGE_MASK;
434 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
435 data_page_offset = data_ptr & ~PAGE_MASK;
436
437 page_length = remain;
438 if ((shmem_page_offset + page_length) > PAGE_SIZE)
439 page_length = PAGE_SIZE - shmem_page_offset;
440 if ((data_page_offset + page_length) > PAGE_SIZE)
441 page_length = PAGE_SIZE - data_page_offset;
442
443 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
444 GFP_HIGHUSER | __GFP_RECLAIMABLE);
445 if (IS_ERR(page))
446 return PTR_ERR(page);
447
448 if (do_bit17_swizzling) {
449 slow_shmem_bit17_copy(page,
450 shmem_page_offset,
451 user_pages[data_page_index],
452 data_page_offset,
453 page_length,
454 1);
455 } else {
456 slow_shmem_copy(user_pages[data_page_index],
457 data_page_offset,
458 page,
459 shmem_page_offset,
460 page_length);
461 }
462
463 mark_page_accessed(page);
464 page_cache_release(page);
465
466 remain -= page_length;
467 data_ptr += page_length;
468 offset += page_length;
469 }
470
471 out:
472 for (i = 0; i < pinned_pages; i++) {
473 SetPageDirty(user_pages[i]);
474 mark_page_accessed(user_pages[i]);
475 page_cache_release(user_pages[i]);
476 }
477 drm_free_large(user_pages);
478
479 return ret;
480 }
481
482 /**
483 * Reads data from the object referenced by handle.
484 *
485 * On error, the contents of *data are undefined.
486 */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 struct drm_file *file)
490 {
491 struct drm_i915_gem_pread *args = data;
492 struct drm_i915_gem_object *obj;
493 int ret = 0;
494
495 if (args->size == 0)
496 return 0;
497
498 if (!access_ok(VERIFY_WRITE,
499 (char __user *)(uintptr_t)args->data_ptr,
500 args->size))
501 return -EFAULT;
502
503 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
504 args->size);
505 if (ret)
506 return -EFAULT;
507
508 ret = i915_mutex_lock_interruptible(dev);
509 if (ret)
510 return ret;
511
512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
513 if (obj == NULL) {
514 ret = -ENOENT;
515 goto unlock;
516 }
517
518 /* Bounds check source. */
519 if (args->offset > obj->base.size ||
520 args->size > obj->base.size - args->offset) {
521 ret = -EINVAL;
522 goto out;
523 }
524
525 ret = i915_gem_object_set_cpu_read_domain_range(obj,
526 args->offset,
527 args->size);
528 if (ret)
529 goto out;
530
531 ret = -EFAULT;
532 if (!i915_gem_object_needs_bit17_swizzle(obj))
533 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
534 if (ret == -EFAULT)
535 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
536
537 out:
538 drm_gem_object_unreference(&obj->base);
539 unlock:
540 mutex_unlock(&dev->struct_mutex);
541 return ret;
542 }
543
544 /* This is the fast write path which cannot handle
545 * page faults in the source data
546 */
547
548 static inline int
549 fast_user_write(struct io_mapping *mapping,
550 loff_t page_base, int page_offset,
551 char __user *user_data,
552 int length)
553 {
554 char *vaddr_atomic;
555 unsigned long unwritten;
556
557 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
558 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
559 user_data, length);
560 io_mapping_unmap_atomic(vaddr_atomic);
561 return unwritten;
562 }
563
564 /* Here's the write path which can sleep for
565 * page faults
566 */
567
568 static inline void
569 slow_kernel_write(struct io_mapping *mapping,
570 loff_t gtt_base, int gtt_offset,
571 struct page *user_page, int user_offset,
572 int length)
573 {
574 char __iomem *dst_vaddr;
575 char *src_vaddr;
576
577 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
578 src_vaddr = kmap(user_page);
579
580 memcpy_toio(dst_vaddr + gtt_offset,
581 src_vaddr + user_offset,
582 length);
583
584 kunmap(user_page);
585 io_mapping_unmap(dst_vaddr);
586 }
587
588 /**
589 * This is the fast pwrite path, where we copy the data directly from the
590 * user into the GTT, uncached.
591 */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 drm_i915_private_t *dev_priv = dev->dev_private;
599 ssize_t remain;
600 loff_t offset, page_base;
601 char __user *user_data;
602 int page_offset, page_length;
603
604 user_data = (char __user *) (uintptr_t) args->data_ptr;
605 remain = args->size;
606
607 offset = obj->gtt_offset + args->offset;
608
609 while (remain > 0) {
610 /* Operation in this page
611 *
612 * page_base = page offset within aperture
613 * page_offset = offset within page
614 * page_length = bytes to copy for this page
615 */
616 page_base = (offset & ~(PAGE_SIZE-1));
617 page_offset = offset & (PAGE_SIZE-1);
618 page_length = remain;
619 if ((page_offset + remain) > PAGE_SIZE)
620 page_length = PAGE_SIZE - page_offset;
621
622 /* If we get a fault while copying data, then (presumably) our
623 * source page isn't available. Return the error and we'll
624 * retry in the slow path.
625 */
626 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
627 page_offset, user_data, page_length))
628
629 return -EFAULT;
630
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
634 }
635
636 return 0;
637 }
638
639 /**
640 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
641 * the memory and maps it using kmap_atomic for copying.
642 *
643 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
644 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
645 */
646 static int
647 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
648 struct drm_i915_gem_object *obj,
649 struct drm_i915_gem_pwrite *args,
650 struct drm_file *file)
651 {
652 drm_i915_private_t *dev_priv = dev->dev_private;
653 ssize_t remain;
654 loff_t gtt_page_base, offset;
655 loff_t first_data_page, last_data_page, num_pages;
656 loff_t pinned_pages, i;
657 struct page **user_pages;
658 struct mm_struct *mm = current->mm;
659 int gtt_page_offset, data_page_offset, data_page_index, page_length;
660 int ret;
661 uint64_t data_ptr = args->data_ptr;
662
663 remain = args->size;
664
665 /* Pin the user pages containing the data. We can't fault while
666 * holding the struct mutex, and all of the pwrite implementations
667 * want to hold it while dereferencing the user data.
668 */
669 first_data_page = data_ptr / PAGE_SIZE;
670 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
671 num_pages = last_data_page - first_data_page + 1;
672
673 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
674 if (user_pages == NULL)
675 return -ENOMEM;
676
677 mutex_unlock(&dev->struct_mutex);
678 down_read(&mm->mmap_sem);
679 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
680 num_pages, 0, 0, user_pages, NULL);
681 up_read(&mm->mmap_sem);
682 mutex_lock(&dev->struct_mutex);
683 if (pinned_pages < num_pages) {
684 ret = -EFAULT;
685 goto out_unpin_pages;
686 }
687
688 ret = i915_gem_object_set_to_gtt_domain(obj, true);
689 if (ret)
690 goto out_unpin_pages;
691
692 ret = i915_gem_object_put_fence(obj);
693 if (ret)
694 goto out_unpin_pages;
695
696 offset = obj->gtt_offset + args->offset;
697
698 while (remain > 0) {
699 /* Operation in this page
700 *
701 * gtt_page_base = page offset within aperture
702 * gtt_page_offset = offset within page in aperture
703 * data_page_index = page number in get_user_pages return
704 * data_page_offset = offset with data_page_index page.
705 * page_length = bytes to copy for this page
706 */
707 gtt_page_base = offset & PAGE_MASK;
708 gtt_page_offset = offset & ~PAGE_MASK;
709 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
710 data_page_offset = data_ptr & ~PAGE_MASK;
711
712 page_length = remain;
713 if ((gtt_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - gtt_page_offset;
715 if ((data_page_offset + page_length) > PAGE_SIZE)
716 page_length = PAGE_SIZE - data_page_offset;
717
718 slow_kernel_write(dev_priv->mm.gtt_mapping,
719 gtt_page_base, gtt_page_offset,
720 user_pages[data_page_index],
721 data_page_offset,
722 page_length);
723
724 remain -= page_length;
725 offset += page_length;
726 data_ptr += page_length;
727 }
728
729 out_unpin_pages:
730 for (i = 0; i < pinned_pages; i++)
731 page_cache_release(user_pages[i]);
732 drm_free_large(user_pages);
733
734 return ret;
735 }
736
737 /**
738 * This is the fast shmem pwrite path, which attempts to directly
739 * copy_from_user into the kmapped pages backing the object.
740 */
741 static int
742 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
743 struct drm_i915_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file)
746 {
747 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
748 ssize_t remain;
749 loff_t offset;
750 char __user *user_data;
751 int page_offset, page_length;
752
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
755
756 offset = args->offset;
757 obj->dirty = 1;
758
759 while (remain > 0) {
760 struct page *page;
761 char *vaddr;
762 int ret;
763
764 /* Operation in this page
765 *
766 * page_offset = offset within page
767 * page_length = bytes to copy for this page
768 */
769 page_offset = offset & (PAGE_SIZE-1);
770 page_length = remain;
771 if ((page_offset + remain) > PAGE_SIZE)
772 page_length = PAGE_SIZE - page_offset;
773
774 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
775 GFP_HIGHUSER | __GFP_RECLAIMABLE);
776 if (IS_ERR(page))
777 return PTR_ERR(page);
778
779 vaddr = kmap_atomic(page, KM_USER0);
780 ret = __copy_from_user_inatomic(vaddr + page_offset,
781 user_data,
782 page_length);
783 kunmap_atomic(vaddr, KM_USER0);
784
785 set_page_dirty(page);
786 mark_page_accessed(page);
787 page_cache_release(page);
788
789 /* If we get a fault while copying data, then (presumably) our
790 * source page isn't available. Return the error and we'll
791 * retry in the slow path.
792 */
793 if (ret)
794 return -EFAULT;
795
796 remain -= page_length;
797 user_data += page_length;
798 offset += page_length;
799 }
800
801 return 0;
802 }
803
804 /**
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
807 *
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
810 */
811 static int
812 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
813 struct drm_i915_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file)
816 {
817 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
828 int do_bit17_swizzling;
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
840 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 mutex_unlock(&dev->struct_mutex);
845 down_read(&mm->mmap_sem);
846 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
847 num_pages, 0, 0, user_pages, NULL);
848 up_read(&mm->mmap_sem);
849 mutex_lock(&dev->struct_mutex);
850 if (pinned_pages < num_pages) {
851 ret = -EFAULT;
852 goto out;
853 }
854
855 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
856 if (ret)
857 goto out;
858
859 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
860
861 offset = args->offset;
862 obj->dirty = 1;
863
864 while (remain > 0) {
865 struct page *page;
866
867 /* Operation in this page
868 *
869 * shmem_page_offset = offset within page in shmem file
870 * data_page_index = page number in get_user_pages return
871 * data_page_offset = offset with data_page_index page.
872 * page_length = bytes to copy for this page
873 */
874 shmem_page_offset = offset & ~PAGE_MASK;
875 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
876 data_page_offset = data_ptr & ~PAGE_MASK;
877
878 page_length = remain;
879 if ((shmem_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - shmem_page_offset;
881 if ((data_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - data_page_offset;
883
884 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
885 GFP_HIGHUSER | __GFP_RECLAIMABLE);
886 if (IS_ERR(page)) {
887 ret = PTR_ERR(page);
888 goto out;
889 }
890
891 if (do_bit17_swizzling) {
892 slow_shmem_bit17_copy(page,
893 shmem_page_offset,
894 user_pages[data_page_index],
895 data_page_offset,
896 page_length,
897 0);
898 } else {
899 slow_shmem_copy(page,
900 shmem_page_offset,
901 user_pages[data_page_index],
902 data_page_offset,
903 page_length);
904 }
905
906 set_page_dirty(page);
907 mark_page_accessed(page);
908 page_cache_release(page);
909
910 remain -= page_length;
911 data_ptr += page_length;
912 offset += page_length;
913 }
914
915 out:
916 for (i = 0; i < pinned_pages; i++)
917 page_cache_release(user_pages[i]);
918 drm_free_large(user_pages);
919
920 return ret;
921 }
922
923 /**
924 * Writes data to the object referenced by handle.
925 *
926 * On error, the contents of the buffer that were to be modified are undefined.
927 */
928 int
929 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
930 struct drm_file *file)
931 {
932 struct drm_i915_gem_pwrite *args = data;
933 struct drm_i915_gem_object *obj;
934 int ret;
935
936 if (args->size == 0)
937 return 0;
938
939 if (!access_ok(VERIFY_READ,
940 (char __user *)(uintptr_t)args->data_ptr,
941 args->size))
942 return -EFAULT;
943
944 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
945 args->size);
946 if (ret)
947 return -EFAULT;
948
949 ret = i915_mutex_lock_interruptible(dev);
950 if (ret)
951 return ret;
952
953 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
954 if (obj == NULL) {
955 ret = -ENOENT;
956 goto unlock;
957 }
958
959 /* Bounds check destination. */
960 if (args->offset > obj->base.size ||
961 args->size > obj->base.size - args->offset) {
962 ret = -EINVAL;
963 goto out;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file);
974 else if (obj->gtt_space &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 ret = i915_gem_object_pin(obj, 0, true);
977 if (ret)
978 goto out;
979
980 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981 if (ret)
982 goto out_unpin;
983
984 ret = i915_gem_object_put_fence(obj);
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989 if (ret == -EFAULT)
990 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
991
992 out_unpin:
993 i915_gem_object_unpin(obj);
994 } else {
995 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996 if (ret)
997 goto out;
998
999 ret = -EFAULT;
1000 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002 if (ret == -EFAULT)
1003 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1004 }
1005
1006 out:
1007 drm_gem_object_unreference(&obj->base);
1008 unlock:
1009 mutex_unlock(&dev->struct_mutex);
1010 return ret;
1011 }
1012
1013 /**
1014 * Called when user space prepares to use an object with the CPU, either
1015 * through the mmap ioctl's mapping or a GTT mapping.
1016 */
1017 int
1018 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1019 struct drm_file *file)
1020 {
1021 struct drm_i915_gem_set_domain *args = data;
1022 struct drm_i915_gem_object *obj;
1023 uint32_t read_domains = args->read_domains;
1024 uint32_t write_domain = args->write_domain;
1025 int ret;
1026
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1029
1030 /* Only handle setting domains to types used by the CPU. */
1031 if (write_domain & I915_GEM_GPU_DOMAINS)
1032 return -EINVAL;
1033
1034 if (read_domains & I915_GEM_GPU_DOMAINS)
1035 return -EINVAL;
1036
1037 /* Having something in the write domain implies it's in the read
1038 * domain, and only that read domain. Enforce that in the request.
1039 */
1040 if (write_domain != 0 && read_domains != write_domain)
1041 return -EINVAL;
1042
1043 ret = i915_mutex_lock_interruptible(dev);
1044 if (ret)
1045 return ret;
1046
1047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1048 if (obj == NULL) {
1049 ret = -ENOENT;
1050 goto unlock;
1051 }
1052
1053 if (read_domains & I915_GEM_DOMAIN_GTT) {
1054 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1055
1056 /* Silently promote "you're not bound, there was nothing to do"
1057 * to success, since the client was just asking us to
1058 * make sure everything was done.
1059 */
1060 if (ret == -EINVAL)
1061 ret = 0;
1062 } else {
1063 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1064 }
1065
1066 drm_gem_object_unreference(&obj->base);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_i915_gem_object *obj;
1081 int ret = 0;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
1086 ret = i915_mutex_lock_interruptible(dev);
1087 if (ret)
1088 return ret;
1089
1090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1091 if (obj == NULL) {
1092 ret = -ENOENT;
1093 goto unlock;
1094 }
1095
1096 /* Pinned buffers may be scanout, so flush the cache */
1097 if (obj->pin_count)
1098 i915_gem_object_flush_cpu_write_domain(obj);
1099
1100 drm_gem_object_unreference(&obj->base);
1101 unlock:
1102 mutex_unlock(&dev->struct_mutex);
1103 return ret;
1104 }
1105
1106 /**
1107 * Maps the contents of an object, returning the address it is mapped
1108 * into.
1109 *
1110 * While the mapping holds a reference on the contents of the object, it doesn't
1111 * imply a ref on the object itself.
1112 */
1113 int
1114 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file)
1116 {
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 struct drm_i915_gem_mmap *args = data;
1119 struct drm_gem_object *obj;
1120 loff_t offset;
1121 unsigned long addr;
1122
1123 if (!(dev->driver->driver_features & DRIVER_GEM))
1124 return -ENODEV;
1125
1126 obj = drm_gem_object_lookup(dev, file, args->handle);
1127 if (obj == NULL)
1128 return -ENOENT;
1129
1130 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1131 drm_gem_object_unreference_unlocked(obj);
1132 return -E2BIG;
1133 }
1134
1135 offset = args->offset;
1136
1137 down_write(&current->mm->mmap_sem);
1138 addr = do_mmap(obj->filp, 0, args->size,
1139 PROT_READ | PROT_WRITE, MAP_SHARED,
1140 args->offset);
1141 up_write(&current->mm->mmap_sem);
1142 drm_gem_object_unreference_unlocked(obj);
1143 if (IS_ERR((void *)addr))
1144 return addr;
1145
1146 args->addr_ptr = (uint64_t) addr;
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * i915_gem_fault - fault a page into the GTT
1153 * vma: VMA in question
1154 * vmf: fault info
1155 *
1156 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1157 * from userspace. The fault handler takes care of binding the object to
1158 * the GTT (if needed), allocating and programming a fence register (again,
1159 * only if needed based on whether the old reg is still valid or the object
1160 * is tiled) and inserting a new PTE into the faulting process.
1161 *
1162 * Note that the faulting process may involve evicting existing objects
1163 * from the GTT and/or fence registers to make room. So performance may
1164 * suffer if the GTT working set is large or there are few fence registers
1165 * left.
1166 */
1167 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1168 {
1169 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1170 struct drm_device *dev = obj->base.dev;
1171 drm_i915_private_t *dev_priv = dev->dev_private;
1172 pgoff_t page_offset;
1173 unsigned long pfn;
1174 int ret = 0;
1175 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1176
1177 /* We don't use vmf->pgoff since that has the fake offset */
1178 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1179 PAGE_SHIFT;
1180
1181 /* Now bind it into the GTT if needed */
1182 mutex_lock(&dev->struct_mutex);
1183
1184 if (!obj->map_and_fenceable) {
1185 ret = i915_gem_object_unbind(obj);
1186 if (ret)
1187 goto unlock;
1188 }
1189 if (!obj->gtt_space) {
1190 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1191 if (ret)
1192 goto unlock;
1193 }
1194
1195 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1196 if (ret)
1197 goto unlock;
1198
1199 if (obj->tiling_mode == I915_TILING_NONE)
1200 ret = i915_gem_object_put_fence(obj);
1201 else
1202 ret = i915_gem_object_get_fence(obj, NULL, true);
1203 if (ret)
1204 goto unlock;
1205
1206 if (i915_gem_object_is_inactive(obj))
1207 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1208
1209 obj->fault_mappable = true;
1210
1211 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1212 page_offset;
1213
1214 /* Finally, remap it using the new GTT offset */
1215 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1216 unlock:
1217 mutex_unlock(&dev->struct_mutex);
1218
1219 switch (ret) {
1220 case -EAGAIN:
1221 set_need_resched();
1222 case 0:
1223 case -ERESTARTSYS:
1224 return VM_FAULT_NOPAGE;
1225 case -ENOMEM:
1226 return VM_FAULT_OOM;
1227 default:
1228 return VM_FAULT_SIGBUS;
1229 }
1230 }
1231
1232 /**
1233 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1234 * @obj: obj in question
1235 *
1236 * GEM memory mapping works by handing back to userspace a fake mmap offset
1237 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1238 * up the object based on the offset and sets up the various memory mapping
1239 * structures.
1240 *
1241 * This routine allocates and attaches a fake offset for @obj.
1242 */
1243 static int
1244 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1245 {
1246 struct drm_device *dev = obj->base.dev;
1247 struct drm_gem_mm *mm = dev->mm_private;
1248 struct drm_map_list *list;
1249 struct drm_local_map *map;
1250 int ret = 0;
1251
1252 /* Set the object up for mmap'ing */
1253 list = &obj->base.map_list;
1254 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1255 if (!list->map)
1256 return -ENOMEM;
1257
1258 map = list->map;
1259 map->type = _DRM_GEM;
1260 map->size = obj->base.size;
1261 map->handle = obj;
1262
1263 /* Get a DRM GEM mmap offset allocated... */
1264 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1265 obj->base.size / PAGE_SIZE,
1266 0, 0);
1267 if (!list->file_offset_node) {
1268 DRM_ERROR("failed to allocate offset for bo %d\n",
1269 obj->base.name);
1270 ret = -ENOSPC;
1271 goto out_free_list;
1272 }
1273
1274 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1275 obj->base.size / PAGE_SIZE,
1276 0);
1277 if (!list->file_offset_node) {
1278 ret = -ENOMEM;
1279 goto out_free_list;
1280 }
1281
1282 list->hash.key = list->file_offset_node->start;
1283 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1284 if (ret) {
1285 DRM_ERROR("failed to add to map hash\n");
1286 goto out_free_mm;
1287 }
1288
1289 return 0;
1290
1291 out_free_mm:
1292 drm_mm_put_block(list->file_offset_node);
1293 out_free_list:
1294 kfree(list->map);
1295 list->map = NULL;
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * i915_gem_release_mmap - remove physical page mappings
1302 * @obj: obj in question
1303 *
1304 * Preserve the reservation of the mmapping with the DRM core code, but
1305 * relinquish ownership of the pages back to the system.
1306 *
1307 * It is vital that we remove the page mapping if we have mapped a tiled
1308 * object through the GTT and then lose the fence register due to
1309 * resource pressure. Similarly if the object has been moved out of the
1310 * aperture, than pages mapped into userspace must be revoked. Removing the
1311 * mapping will then trigger a page fault on the next user access, allowing
1312 * fixup by i915_gem_fault().
1313 */
1314 void
1315 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1316 {
1317 if (!obj->fault_mappable)
1318 return;
1319
1320 unmap_mapping_range(obj->base.dev->dev_mapping,
1321 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1322 obj->base.size, 1);
1323
1324 obj->fault_mappable = false;
1325 }
1326
1327 static void
1328 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1329 {
1330 struct drm_device *dev = obj->base.dev;
1331 struct drm_gem_mm *mm = dev->mm_private;
1332 struct drm_map_list *list = &obj->base.map_list;
1333
1334 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1335 drm_mm_put_block(list->file_offset_node);
1336 kfree(list->map);
1337 list->map = NULL;
1338 }
1339
1340 static uint32_t
1341 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1342 {
1343 struct drm_device *dev = obj->base.dev;
1344 uint32_t size;
1345
1346 if (INTEL_INFO(dev)->gen >= 4 ||
1347 obj->tiling_mode == I915_TILING_NONE)
1348 return obj->base.size;
1349
1350 /* Previous chips need a power-of-two fence region when tiling */
1351 if (INTEL_INFO(dev)->gen == 3)
1352 size = 1024*1024;
1353 else
1354 size = 512*1024;
1355
1356 while (size < obj->base.size)
1357 size <<= 1;
1358
1359 return size;
1360 }
1361
1362 /**
1363 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364 * @obj: object to check
1365 *
1366 * Return the required GTT alignment for an object, taking into account
1367 * potential fence register mapping.
1368 */
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1371 {
1372 struct drm_device *dev = obj->base.dev;
1373
1374 /*
1375 * Minimum alignment is 4k (GTT page size), but might be greater
1376 * if a fence register is needed for the object.
1377 */
1378 if (INTEL_INFO(dev)->gen >= 4 ||
1379 obj->tiling_mode == I915_TILING_NONE)
1380 return 4096;
1381
1382 /*
1383 * Previous chips need to be aligned to the size of the smallest
1384 * fence register that can contain the object.
1385 */
1386 return i915_gem_get_gtt_size(obj);
1387 }
1388
1389 /**
1390 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1391 * unfenced object
1392 * @obj: object to check
1393 *
1394 * Return the required GTT alignment for an object, only taking into account
1395 * unfenced tiled surface requirements.
1396 */
1397 static uint32_t
1398 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1399 {
1400 struct drm_device *dev = obj->base.dev;
1401 int tile_height;
1402
1403 /*
1404 * Minimum alignment is 4k (GTT page size) for sane hw.
1405 */
1406 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1407 obj->tiling_mode == I915_TILING_NONE)
1408 return 4096;
1409
1410 /*
1411 * Older chips need unfenced tiled buffers to be aligned to the left
1412 * edge of an even tile row (where tile rows are counted as if the bo is
1413 * placed in a fenced gtt region).
1414 */
1415 if (IS_GEN2(dev) ||
1416 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1417 tile_height = 32;
1418 else
1419 tile_height = 8;
1420
1421 return tile_height * obj->stride * 2;
1422 }
1423
1424 /**
1425 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1426 * @dev: DRM device
1427 * @data: GTT mapping ioctl data
1428 * @file: GEM object info
1429 *
1430 * Simply returns the fake offset to userspace so it can mmap it.
1431 * The mmap call will end up in drm_gem_mmap(), which will set things
1432 * up so we can get faults in the handler above.
1433 *
1434 * The fault handler will take care of binding the object into the GTT
1435 * (since it may have been evicted to make room for something), allocating
1436 * a fence register, and mapping the appropriate aperture address into
1437 * userspace.
1438 */
1439 int
1440 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1441 struct drm_file *file)
1442 {
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 struct drm_i915_gem_mmap_gtt *args = data;
1445 struct drm_i915_gem_object *obj;
1446 int ret;
1447
1448 if (!(dev->driver->driver_features & DRIVER_GEM))
1449 return -ENODEV;
1450
1451 ret = i915_mutex_lock_interruptible(dev);
1452 if (ret)
1453 return ret;
1454
1455 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1456 if (obj == NULL) {
1457 ret = -ENOENT;
1458 goto unlock;
1459 }
1460
1461 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1462 ret = -E2BIG;
1463 goto unlock;
1464 }
1465
1466 if (obj->madv != I915_MADV_WILLNEED) {
1467 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1468 ret = -EINVAL;
1469 goto out;
1470 }
1471
1472 if (!obj->base.map_list.map) {
1473 ret = i915_gem_create_mmap_offset(obj);
1474 if (ret)
1475 goto out;
1476 }
1477
1478 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1479
1480 out:
1481 drm_gem_object_unreference(&obj->base);
1482 unlock:
1483 mutex_unlock(&dev->struct_mutex);
1484 return ret;
1485 }
1486
1487 static int
1488 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1489 gfp_t gfpmask)
1490 {
1491 int page_count, i;
1492 struct address_space *mapping;
1493 struct inode *inode;
1494 struct page *page;
1495
1496 /* Get the list of pages out of our struct file. They'll be pinned
1497 * at this point until we release them.
1498 */
1499 page_count = obj->base.size / PAGE_SIZE;
1500 BUG_ON(obj->pages != NULL);
1501 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1502 if (obj->pages == NULL)
1503 return -ENOMEM;
1504
1505 inode = obj->base.filp->f_path.dentry->d_inode;
1506 mapping = inode->i_mapping;
1507 for (i = 0; i < page_count; i++) {
1508 page = read_cache_page_gfp(mapping, i,
1509 GFP_HIGHUSER |
1510 __GFP_COLD |
1511 __GFP_RECLAIMABLE |
1512 gfpmask);
1513 if (IS_ERR(page))
1514 goto err_pages;
1515
1516 obj->pages[i] = page;
1517 }
1518
1519 if (obj->tiling_mode != I915_TILING_NONE)
1520 i915_gem_object_do_bit_17_swizzle(obj);
1521
1522 return 0;
1523
1524 err_pages:
1525 while (i--)
1526 page_cache_release(obj->pages[i]);
1527
1528 drm_free_large(obj->pages);
1529 obj->pages = NULL;
1530 return PTR_ERR(page);
1531 }
1532
1533 static void
1534 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1535 {
1536 int page_count = obj->base.size / PAGE_SIZE;
1537 int i;
1538
1539 BUG_ON(obj->madv == __I915_MADV_PURGED);
1540
1541 if (obj->tiling_mode != I915_TILING_NONE)
1542 i915_gem_object_save_bit_17_swizzle(obj);
1543
1544 if (obj->madv == I915_MADV_DONTNEED)
1545 obj->dirty = 0;
1546
1547 for (i = 0; i < page_count; i++) {
1548 if (obj->dirty)
1549 set_page_dirty(obj->pages[i]);
1550
1551 if (obj->madv == I915_MADV_WILLNEED)
1552 mark_page_accessed(obj->pages[i]);
1553
1554 page_cache_release(obj->pages[i]);
1555 }
1556 obj->dirty = 0;
1557
1558 drm_free_large(obj->pages);
1559 obj->pages = NULL;
1560 }
1561
1562 void
1563 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1564 struct intel_ring_buffer *ring)
1565 {
1566 struct drm_device *dev = obj->base.dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1569
1570 BUG_ON(ring == NULL);
1571 obj->ring = ring;
1572
1573 /* Add a reference if we're newly entering the active list. */
1574 if (!obj->active) {
1575 drm_gem_object_reference(&obj->base);
1576 obj->active = 1;
1577 }
1578
1579 /* Move from whatever list we were on to the tail of execution. */
1580 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1581 list_move_tail(&obj->ring_list, &ring->active_list);
1582
1583 obj->last_rendering_seqno = seqno;
1584 if (obj->fenced_gpu_access) {
1585 struct drm_i915_fence_reg *reg;
1586
1587 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1588
1589 obj->last_fenced_seqno = seqno;
1590 obj->last_fenced_ring = ring;
1591
1592 reg = &dev_priv->fence_regs[obj->fence_reg];
1593 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1594 }
1595 }
1596
1597 static void
1598 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1599 {
1600 list_del_init(&obj->ring_list);
1601 obj->last_rendering_seqno = 0;
1602 }
1603
1604 static void
1605 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1606 {
1607 struct drm_device *dev = obj->base.dev;
1608 drm_i915_private_t *dev_priv = dev->dev_private;
1609
1610 BUG_ON(!obj->active);
1611 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1612
1613 i915_gem_object_move_off_active(obj);
1614 }
1615
1616 static void
1617 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1618 {
1619 struct drm_device *dev = obj->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621
1622 if (obj->pin_count != 0)
1623 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1624 else
1625 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1626
1627 BUG_ON(!list_empty(&obj->gpu_write_list));
1628 BUG_ON(!obj->active);
1629 obj->ring = NULL;
1630
1631 i915_gem_object_move_off_active(obj);
1632 obj->fenced_gpu_access = false;
1633
1634 obj->active = 0;
1635 obj->pending_gpu_write = false;
1636 drm_gem_object_unreference(&obj->base);
1637
1638 WARN_ON(i915_verify_lists(dev));
1639 }
1640
1641 /* Immediately discard the backing storage */
1642 static void
1643 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1644 {
1645 struct inode *inode;
1646
1647 /* Our goal here is to return as much of the memory as
1648 * is possible back to the system as we are called from OOM.
1649 * To do this we must instruct the shmfs to drop all of its
1650 * backing pages, *now*. Here we mirror the actions taken
1651 * when by shmem_delete_inode() to release the backing store.
1652 */
1653 inode = obj->base.filp->f_path.dentry->d_inode;
1654 truncate_inode_pages(inode->i_mapping, 0);
1655 if (inode->i_op->truncate_range)
1656 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1657
1658 obj->madv = __I915_MADV_PURGED;
1659 }
1660
1661 static inline int
1662 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1663 {
1664 return obj->madv == I915_MADV_DONTNEED;
1665 }
1666
1667 static void
1668 i915_gem_process_flushing_list(struct drm_device *dev,
1669 uint32_t flush_domains,
1670 struct intel_ring_buffer *ring)
1671 {
1672 struct drm_i915_gem_object *obj, *next;
1673
1674 list_for_each_entry_safe(obj, next,
1675 &ring->gpu_write_list,
1676 gpu_write_list) {
1677 if (obj->base.write_domain & flush_domains) {
1678 uint32_t old_write_domain = obj->base.write_domain;
1679
1680 obj->base.write_domain = 0;
1681 list_del_init(&obj->gpu_write_list);
1682 i915_gem_object_move_to_active(obj, ring);
1683
1684 trace_i915_gem_object_change_domain(obj,
1685 obj->base.read_domains,
1686 old_write_domain);
1687 }
1688 }
1689 }
1690
1691 int
1692 i915_add_request(struct drm_device *dev,
1693 struct drm_file *file,
1694 struct drm_i915_gem_request *request,
1695 struct intel_ring_buffer *ring)
1696 {
1697 drm_i915_private_t *dev_priv = dev->dev_private;
1698 struct drm_i915_file_private *file_priv = NULL;
1699 uint32_t seqno;
1700 int was_empty;
1701 int ret;
1702
1703 BUG_ON(request == NULL);
1704
1705 if (file != NULL)
1706 file_priv = file->driver_priv;
1707
1708 ret = ring->add_request(ring, &seqno);
1709 if (ret)
1710 return ret;
1711
1712 ring->outstanding_lazy_request = false;
1713
1714 request->seqno = seqno;
1715 request->ring = ring;
1716 request->emitted_jiffies = jiffies;
1717 was_empty = list_empty(&ring->request_list);
1718 list_add_tail(&request->list, &ring->request_list);
1719
1720 if (file_priv) {
1721 spin_lock(&file_priv->mm.lock);
1722 request->file_priv = file_priv;
1723 list_add_tail(&request->client_list,
1724 &file_priv->mm.request_list);
1725 spin_unlock(&file_priv->mm.lock);
1726 }
1727
1728 if (!dev_priv->mm.suspended) {
1729 mod_timer(&dev_priv->hangcheck_timer,
1730 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1731 if (was_empty)
1732 queue_delayed_work(dev_priv->wq,
1733 &dev_priv->mm.retire_work, HZ);
1734 }
1735 return 0;
1736 }
1737
1738 static inline void
1739 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1740 {
1741 struct drm_i915_file_private *file_priv = request->file_priv;
1742
1743 if (!file_priv)
1744 return;
1745
1746 spin_lock(&file_priv->mm.lock);
1747 list_del(&request->client_list);
1748 request->file_priv = NULL;
1749 spin_unlock(&file_priv->mm.lock);
1750 }
1751
1752 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1753 struct intel_ring_buffer *ring)
1754 {
1755 while (!list_empty(&ring->request_list)) {
1756 struct drm_i915_gem_request *request;
1757
1758 request = list_first_entry(&ring->request_list,
1759 struct drm_i915_gem_request,
1760 list);
1761
1762 list_del(&request->list);
1763 i915_gem_request_remove_from_client(request);
1764 kfree(request);
1765 }
1766
1767 while (!list_empty(&ring->active_list)) {
1768 struct drm_i915_gem_object *obj;
1769
1770 obj = list_first_entry(&ring->active_list,
1771 struct drm_i915_gem_object,
1772 ring_list);
1773
1774 obj->base.write_domain = 0;
1775 list_del_init(&obj->gpu_write_list);
1776 i915_gem_object_move_to_inactive(obj);
1777 }
1778 }
1779
1780 static void i915_gem_reset_fences(struct drm_device *dev)
1781 {
1782 struct drm_i915_private *dev_priv = dev->dev_private;
1783 int i;
1784
1785 for (i = 0; i < 16; i++) {
1786 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1787 struct drm_i915_gem_object *obj = reg->obj;
1788
1789 if (!obj)
1790 continue;
1791
1792 if (obj->tiling_mode)
1793 i915_gem_release_mmap(obj);
1794
1795 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1796 reg->obj->fenced_gpu_access = false;
1797 reg->obj->last_fenced_seqno = 0;
1798 reg->obj->last_fenced_ring = NULL;
1799 i915_gem_clear_fence_reg(dev, reg);
1800 }
1801 }
1802
1803 void i915_gem_reset(struct drm_device *dev)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 struct drm_i915_gem_object *obj;
1807
1808 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1809 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1810 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1811
1812 /* Remove anything from the flushing lists. The GPU cache is likely
1813 * to be lost on reset along with the data, so simply move the
1814 * lost bo to the inactive list.
1815 */
1816 while (!list_empty(&dev_priv->mm.flushing_list)) {
1817 obj= list_first_entry(&dev_priv->mm.flushing_list,
1818 struct drm_i915_gem_object,
1819 mm_list);
1820
1821 obj->base.write_domain = 0;
1822 list_del_init(&obj->gpu_write_list);
1823 i915_gem_object_move_to_inactive(obj);
1824 }
1825
1826 /* Move everything out of the GPU domains to ensure we do any
1827 * necessary invalidation upon reuse.
1828 */
1829 list_for_each_entry(obj,
1830 &dev_priv->mm.inactive_list,
1831 mm_list)
1832 {
1833 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1834 }
1835
1836 /* The fence registers are invalidated so clear them out */
1837 i915_gem_reset_fences(dev);
1838 }
1839
1840 /**
1841 * This function clears the request list as sequence numbers are passed.
1842 */
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
1846 {
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1849
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
1852 return;
1853
1854 WARN_ON(i915_verify_lists(dev));
1855
1856 seqno = ring->get_seqno(ring);
1857 while (!list_empty(&ring->request_list)) {
1858 struct drm_i915_gem_request *request;
1859
1860 request = list_first_entry(&ring->request_list,
1861 struct drm_i915_gem_request,
1862 list);
1863
1864 if (!i915_seqno_passed(seqno, request->seqno))
1865 break;
1866
1867 trace_i915_gem_request_retire(dev, request->seqno);
1868
1869 list_del(&request->list);
1870 i915_gem_request_remove_from_client(request);
1871 kfree(request);
1872 }
1873
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1876 */
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_i915_gem_object *obj;
1879
1880 obj= list_first_entry(&ring->active_list,
1881 struct drm_i915_gem_object,
1882 ring_list);
1883
1884 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1885 break;
1886
1887 if (obj->base.write_domain != 0)
1888 i915_gem_object_move_to_flushing(obj);
1889 else
1890 i915_gem_object_move_to_inactive(obj);
1891 }
1892
1893 if (unlikely (dev_priv->trace_irq_seqno &&
1894 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1895 ring->user_irq_put(ring);
1896 dev_priv->trace_irq_seqno = 0;
1897 }
1898
1899 WARN_ON(i915_verify_lists(dev));
1900 }
1901
1902 void
1903 i915_gem_retire_requests(struct drm_device *dev)
1904 {
1905 drm_i915_private_t *dev_priv = dev->dev_private;
1906
1907 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1908 struct drm_i915_gem_object *obj, *next;
1909
1910 /* We must be careful that during unbind() we do not
1911 * accidentally infinitely recurse into retire requests.
1912 * Currently:
1913 * retire -> free -> unbind -> wait -> retire_ring
1914 */
1915 list_for_each_entry_safe(obj, next,
1916 &dev_priv->mm.deferred_free_list,
1917 mm_list)
1918 i915_gem_free_object_tail(obj);
1919 }
1920
1921 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1922 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1923 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1924 }
1925
1926 static void
1927 i915_gem_retire_work_handler(struct work_struct *work)
1928 {
1929 drm_i915_private_t *dev_priv;
1930 struct drm_device *dev;
1931
1932 dev_priv = container_of(work, drm_i915_private_t,
1933 mm.retire_work.work);
1934 dev = dev_priv->dev;
1935
1936 /* Come back later if the device is busy... */
1937 if (!mutex_trylock(&dev->struct_mutex)) {
1938 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1939 return;
1940 }
1941
1942 i915_gem_retire_requests(dev);
1943
1944 if (!dev_priv->mm.suspended &&
1945 (!list_empty(&dev_priv->render_ring.request_list) ||
1946 !list_empty(&dev_priv->bsd_ring.request_list) ||
1947 !list_empty(&dev_priv->blt_ring.request_list)))
1948 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1949 mutex_unlock(&dev->struct_mutex);
1950 }
1951
1952 int
1953 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1954 bool interruptible, struct intel_ring_buffer *ring)
1955 {
1956 drm_i915_private_t *dev_priv = dev->dev_private;
1957 u32 ier;
1958 int ret = 0;
1959
1960 BUG_ON(seqno == 0);
1961
1962 if (atomic_read(&dev_priv->mm.wedged))
1963 return -EAGAIN;
1964
1965 if (seqno == ring->outstanding_lazy_request) {
1966 struct drm_i915_gem_request *request;
1967
1968 request = kzalloc(sizeof(*request), GFP_KERNEL);
1969 if (request == NULL)
1970 return -ENOMEM;
1971
1972 ret = i915_add_request(dev, NULL, request, ring);
1973 if (ret) {
1974 kfree(request);
1975 return ret;
1976 }
1977
1978 seqno = request->seqno;
1979 }
1980
1981 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1982 if (HAS_PCH_SPLIT(dev))
1983 ier = I915_READ(DEIER) | I915_READ(GTIER);
1984 else
1985 ier = I915_READ(IER);
1986 if (!ier) {
1987 DRM_ERROR("something (likely vbetool) disabled "
1988 "interrupts, re-enabling\n");
1989 i915_driver_irq_preinstall(dev);
1990 i915_driver_irq_postinstall(dev);
1991 }
1992
1993 trace_i915_gem_request_wait_begin(dev, seqno);
1994
1995 ring->waiting_seqno = seqno;
1996 ring->user_irq_get(ring);
1997 if (interruptible)
1998 ret = wait_event_interruptible(ring->irq_queue,
1999 i915_seqno_passed(ring->get_seqno(ring), seqno)
2000 || atomic_read(&dev_priv->mm.wedged));
2001 else
2002 wait_event(ring->irq_queue,
2003 i915_seqno_passed(ring->get_seqno(ring), seqno)
2004 || atomic_read(&dev_priv->mm.wedged));
2005
2006 ring->user_irq_put(ring);
2007 ring->waiting_seqno = 0;
2008
2009 trace_i915_gem_request_wait_end(dev, seqno);
2010 }
2011 if (atomic_read(&dev_priv->mm.wedged))
2012 ret = -EAGAIN;
2013
2014 if (ret && ret != -ERESTARTSYS)
2015 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2016 __func__, ret, seqno, ring->get_seqno(ring),
2017 dev_priv->next_seqno);
2018
2019 /* Directly dispatch request retiring. While we have the work queue
2020 * to handle this, the waiter on a request often wants an associated
2021 * buffer to have made it to the inactive list, and we would need
2022 * a separate wait queue to handle that.
2023 */
2024 if (ret == 0)
2025 i915_gem_retire_requests_ring(dev, ring);
2026
2027 return ret;
2028 }
2029
2030 /**
2031 * Waits for a sequence number to be signaled, and cleans up the
2032 * request and object lists appropriately for that event.
2033 */
2034 static int
2035 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2036 struct intel_ring_buffer *ring)
2037 {
2038 return i915_do_wait_request(dev, seqno, 1, ring);
2039 }
2040
2041 /**
2042 * Ensures that all rendering to the object has completed and the object is
2043 * safe to unbind from the GTT or access from the CPU.
2044 */
2045 int
2046 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2047 bool interruptible)
2048 {
2049 struct drm_device *dev = obj->base.dev;
2050 int ret;
2051
2052 /* This function only exists to support waiting for existing rendering,
2053 * not for emitting required flushes.
2054 */
2055 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2056
2057 /* If there is rendering queued on the buffer being evicted, wait for
2058 * it.
2059 */
2060 if (obj->active) {
2061 ret = i915_do_wait_request(dev,
2062 obj->last_rendering_seqno,
2063 interruptible,
2064 obj->ring);
2065 if (ret)
2066 return ret;
2067 }
2068
2069 return 0;
2070 }
2071
2072 /**
2073 * Unbinds an object from the GTT aperture.
2074 */
2075 int
2076 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2077 {
2078 int ret = 0;
2079
2080 if (obj->gtt_space == NULL)
2081 return 0;
2082
2083 if (obj->pin_count != 0) {
2084 DRM_ERROR("Attempting to unbind pinned buffer\n");
2085 return -EINVAL;
2086 }
2087
2088 /* blow away mappings if mapped through GTT */
2089 i915_gem_release_mmap(obj);
2090
2091 /* Move the object to the CPU domain to ensure that
2092 * any possible CPU writes while it's not in the GTT
2093 * are flushed when we go to remap it. This will
2094 * also ensure that all pending GPU writes are finished
2095 * before we unbind.
2096 */
2097 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2098 if (ret == -ERESTARTSYS)
2099 return ret;
2100 /* Continue on if we fail due to EIO, the GPU is hung so we
2101 * should be safe and we need to cleanup or else we might
2102 * cause memory corruption through use-after-free.
2103 */
2104 if (ret) {
2105 i915_gem_clflush_object(obj);
2106 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2107 }
2108
2109 /* release the fence reg _after_ flushing */
2110 ret = i915_gem_object_put_fence(obj);
2111 if (ret == -ERESTARTSYS)
2112 return ret;
2113
2114 i915_gem_gtt_unbind_object(obj);
2115 i915_gem_object_put_pages_gtt(obj);
2116
2117 list_del_init(&obj->gtt_list);
2118 list_del_init(&obj->mm_list);
2119 /* Avoid an unnecessary call to unbind on rebind. */
2120 obj->map_and_fenceable = true;
2121
2122 drm_mm_put_block(obj->gtt_space);
2123 obj->gtt_space = NULL;
2124 obj->gtt_offset = 0;
2125
2126 if (i915_gem_object_is_purgeable(obj))
2127 i915_gem_object_truncate(obj);
2128
2129 trace_i915_gem_object_unbind(obj);
2130
2131 return ret;
2132 }
2133
2134 void
2135 i915_gem_flush_ring(struct drm_device *dev,
2136 struct intel_ring_buffer *ring,
2137 uint32_t invalidate_domains,
2138 uint32_t flush_domains)
2139 {
2140 ring->flush(ring, invalidate_domains, flush_domains);
2141 i915_gem_process_flushing_list(dev, flush_domains, ring);
2142 }
2143
2144 static int i915_ring_idle(struct drm_device *dev,
2145 struct intel_ring_buffer *ring)
2146 {
2147 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2148 return 0;
2149
2150 i915_gem_flush_ring(dev, ring,
2151 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2152 return i915_wait_request(dev,
2153 i915_gem_next_request_seqno(dev, ring),
2154 ring);
2155 }
2156
2157 int
2158 i915_gpu_idle(struct drm_device *dev)
2159 {
2160 drm_i915_private_t *dev_priv = dev->dev_private;
2161 bool lists_empty;
2162 int ret;
2163
2164 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2165 list_empty(&dev_priv->mm.active_list));
2166 if (lists_empty)
2167 return 0;
2168
2169 /* Flush everything onto the inactive list. */
2170 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2171 if (ret)
2172 return ret;
2173
2174 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2175 if (ret)
2176 return ret;
2177
2178 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2179 if (ret)
2180 return ret;
2181
2182 return 0;
2183 }
2184
2185 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2186 struct intel_ring_buffer *pipelined)
2187 {
2188 struct drm_device *dev = obj->base.dev;
2189 drm_i915_private_t *dev_priv = dev->dev_private;
2190 u32 size = obj->gtt_space->size;
2191 int regnum = obj->fence_reg;
2192 uint64_t val;
2193
2194 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2195 0xfffff000) << 32;
2196 val |= obj->gtt_offset & 0xfffff000;
2197 val |= (uint64_t)((obj->stride / 128) - 1) <<
2198 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2199
2200 if (obj->tiling_mode == I915_TILING_Y)
2201 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2202 val |= I965_FENCE_REG_VALID;
2203
2204 if (pipelined) {
2205 int ret = intel_ring_begin(pipelined, 6);
2206 if (ret)
2207 return ret;
2208
2209 intel_ring_emit(pipelined, MI_NOOP);
2210 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2211 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2212 intel_ring_emit(pipelined, (u32)val);
2213 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2214 intel_ring_emit(pipelined, (u32)(val >> 32));
2215 intel_ring_advance(pipelined);
2216 } else
2217 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2218
2219 return 0;
2220 }
2221
2222 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2223 struct intel_ring_buffer *pipelined)
2224 {
2225 struct drm_device *dev = obj->base.dev;
2226 drm_i915_private_t *dev_priv = dev->dev_private;
2227 u32 size = obj->gtt_space->size;
2228 int regnum = obj->fence_reg;
2229 uint64_t val;
2230
2231 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2232 0xfffff000) << 32;
2233 val |= obj->gtt_offset & 0xfffff000;
2234 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2235 if (obj->tiling_mode == I915_TILING_Y)
2236 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2237 val |= I965_FENCE_REG_VALID;
2238
2239 if (pipelined) {
2240 int ret = intel_ring_begin(pipelined, 6);
2241 if (ret)
2242 return ret;
2243
2244 intel_ring_emit(pipelined, MI_NOOP);
2245 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2246 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2247 intel_ring_emit(pipelined, (u32)val);
2248 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2249 intel_ring_emit(pipelined, (u32)(val >> 32));
2250 intel_ring_advance(pipelined);
2251 } else
2252 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2253
2254 return 0;
2255 }
2256
2257 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2258 struct intel_ring_buffer *pipelined)
2259 {
2260 struct drm_device *dev = obj->base.dev;
2261 drm_i915_private_t *dev_priv = dev->dev_private;
2262 u32 size = obj->gtt_space->size;
2263 u32 fence_reg, val, pitch_val;
2264 int tile_width;
2265
2266 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2267 (size & -size) != size ||
2268 (obj->gtt_offset & (size - 1)),
2269 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2270 obj->gtt_offset, obj->map_and_fenceable, size))
2271 return -EINVAL;
2272
2273 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2274 tile_width = 128;
2275 else
2276 tile_width = 512;
2277
2278 /* Note: pitch better be a power of two tile widths */
2279 pitch_val = obj->stride / tile_width;
2280 pitch_val = ffs(pitch_val) - 1;
2281
2282 val = obj->gtt_offset;
2283 if (obj->tiling_mode == I915_TILING_Y)
2284 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2285 val |= I915_FENCE_SIZE_BITS(size);
2286 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2287 val |= I830_FENCE_REG_VALID;
2288
2289 fence_reg = obj->fence_reg;
2290 if (fence_reg < 8)
2291 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2292 else
2293 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2294
2295 if (pipelined) {
2296 int ret = intel_ring_begin(pipelined, 4);
2297 if (ret)
2298 return ret;
2299
2300 intel_ring_emit(pipelined, MI_NOOP);
2301 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2302 intel_ring_emit(pipelined, fence_reg);
2303 intel_ring_emit(pipelined, val);
2304 intel_ring_advance(pipelined);
2305 } else
2306 I915_WRITE(fence_reg, val);
2307
2308 return 0;
2309 }
2310
2311 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2312 struct intel_ring_buffer *pipelined)
2313 {
2314 struct drm_device *dev = obj->base.dev;
2315 drm_i915_private_t *dev_priv = dev->dev_private;
2316 u32 size = obj->gtt_space->size;
2317 int regnum = obj->fence_reg;
2318 uint32_t val;
2319 uint32_t pitch_val;
2320
2321 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2322 (size & -size) != size ||
2323 (obj->gtt_offset & (size - 1)),
2324 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2325 obj->gtt_offset, size))
2326 return -EINVAL;
2327
2328 pitch_val = obj->stride / 128;
2329 pitch_val = ffs(pitch_val) - 1;
2330
2331 val = obj->gtt_offset;
2332 if (obj->tiling_mode == I915_TILING_Y)
2333 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2334 val |= I830_FENCE_SIZE_BITS(size);
2335 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2336 val |= I830_FENCE_REG_VALID;
2337
2338 if (pipelined) {
2339 int ret = intel_ring_begin(pipelined, 4);
2340 if (ret)
2341 return ret;
2342
2343 intel_ring_emit(pipelined, MI_NOOP);
2344 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2345 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2346 intel_ring_emit(pipelined, val);
2347 intel_ring_advance(pipelined);
2348 } else
2349 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2350
2351 return 0;
2352 }
2353
2354 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2355 {
2356 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2357 }
2358
2359 static int
2360 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2361 struct intel_ring_buffer *pipelined,
2362 bool interruptible)
2363 {
2364 int ret;
2365
2366 if (obj->fenced_gpu_access) {
2367 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2368 i915_gem_flush_ring(obj->base.dev,
2369 obj->last_fenced_ring,
2370 0, obj->base.write_domain);
2371
2372 obj->fenced_gpu_access = false;
2373 }
2374
2375 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2376 if (!ring_passed_seqno(obj->last_fenced_ring,
2377 obj->last_fenced_seqno)) {
2378 ret = i915_do_wait_request(obj->base.dev,
2379 obj->last_fenced_seqno,
2380 interruptible,
2381 obj->last_fenced_ring);
2382 if (ret)
2383 return ret;
2384 }
2385
2386 obj->last_fenced_seqno = 0;
2387 obj->last_fenced_ring = NULL;
2388 }
2389
2390 return 0;
2391 }
2392
2393 int
2394 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2395 {
2396 int ret;
2397
2398 if (obj->tiling_mode)
2399 i915_gem_release_mmap(obj);
2400
2401 ret = i915_gem_object_flush_fence(obj, NULL, true);
2402 if (ret)
2403 return ret;
2404
2405 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2406 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2407 i915_gem_clear_fence_reg(obj->base.dev,
2408 &dev_priv->fence_regs[obj->fence_reg]);
2409
2410 obj->fence_reg = I915_FENCE_REG_NONE;
2411 }
2412
2413 return 0;
2414 }
2415
2416 static struct drm_i915_fence_reg *
2417 i915_find_fence_reg(struct drm_device *dev,
2418 struct intel_ring_buffer *pipelined)
2419 {
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 struct drm_i915_fence_reg *reg, *first, *avail;
2422 int i;
2423
2424 /* First try to find a free reg */
2425 avail = NULL;
2426 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2427 reg = &dev_priv->fence_regs[i];
2428 if (!reg->obj)
2429 return reg;
2430
2431 if (!reg->obj->pin_count)
2432 avail = reg;
2433 }
2434
2435 if (avail == NULL)
2436 return NULL;
2437
2438 /* None available, try to steal one or wait for a user to finish */
2439 avail = first = NULL;
2440 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2441 if (reg->obj->pin_count)
2442 continue;
2443
2444 if (first == NULL)
2445 first = reg;
2446
2447 if (!pipelined ||
2448 !reg->obj->last_fenced_ring ||
2449 reg->obj->last_fenced_ring == pipelined) {
2450 avail = reg;
2451 break;
2452 }
2453 }
2454
2455 if (avail == NULL)
2456 avail = first;
2457
2458 return avail;
2459 }
2460
2461 /**
2462 * i915_gem_object_get_fence - set up a fence reg for an object
2463 * @obj: object to map through a fence reg
2464 * @pipelined: ring on which to queue the change, or NULL for CPU access
2465 * @interruptible: must we wait uninterruptibly for the register to retire?
2466 *
2467 * When mapping objects through the GTT, userspace wants to be able to write
2468 * to them without having to worry about swizzling if the object is tiled.
2469 *
2470 * This function walks the fence regs looking for a free one for @obj,
2471 * stealing one if it can't find any.
2472 *
2473 * It then sets up the reg based on the object's properties: address, pitch
2474 * and tiling format.
2475 */
2476 int
2477 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2478 struct intel_ring_buffer *pipelined,
2479 bool interruptible)
2480 {
2481 struct drm_device *dev = obj->base.dev;
2482 struct drm_i915_private *dev_priv = dev->dev_private;
2483 struct drm_i915_fence_reg *reg;
2484 int ret;
2485
2486 /* Just update our place in the LRU if our fence is getting reused. */
2487 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2488 reg = &dev_priv->fence_regs[obj->fence_reg];
2489 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2490
2491 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2492 pipelined = NULL;
2493
2494 if (!pipelined) {
2495 if (reg->setup_seqno) {
2496 if (!ring_passed_seqno(obj->last_fenced_ring,
2497 reg->setup_seqno)) {
2498 ret = i915_do_wait_request(obj->base.dev,
2499 reg->setup_seqno,
2500 interruptible,
2501 obj->last_fenced_ring);
2502 if (ret)
2503 return ret;
2504 }
2505
2506 reg->setup_seqno = 0;
2507 }
2508 } else if (obj->last_fenced_ring &&
2509 obj->last_fenced_ring != pipelined) {
2510 ret = i915_gem_object_flush_fence(obj,
2511 pipelined,
2512 interruptible);
2513 if (ret)
2514 return ret;
2515 } else if (obj->tiling_changed) {
2516 if (obj->fenced_gpu_access) {
2517 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2518 i915_gem_flush_ring(obj->base.dev, obj->ring,
2519 0, obj->base.write_domain);
2520
2521 obj->fenced_gpu_access = false;
2522 }
2523 }
2524
2525 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2526 pipelined = NULL;
2527 BUG_ON(!pipelined && reg->setup_seqno);
2528
2529 if (obj->tiling_changed) {
2530 if (pipelined) {
2531 reg->setup_seqno =
2532 i915_gem_next_request_seqno(dev, pipelined);
2533 obj->last_fenced_seqno = reg->setup_seqno;
2534 obj->last_fenced_ring = pipelined;
2535 }
2536 goto update;
2537 }
2538
2539 return 0;
2540 }
2541
2542 reg = i915_find_fence_reg(dev, pipelined);
2543 if (reg == NULL)
2544 return -ENOSPC;
2545
2546 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2547 if (ret)
2548 return ret;
2549
2550 if (reg->obj) {
2551 struct drm_i915_gem_object *old = reg->obj;
2552
2553 drm_gem_object_reference(&old->base);
2554
2555 if (old->tiling_mode)
2556 i915_gem_release_mmap(old);
2557
2558 /* XXX The pipelined change over appears to be incoherent. */
2559 ret = i915_gem_object_flush_fence(old,
2560 NULL, //pipelined,
2561 interruptible);
2562 if (ret) {
2563 drm_gem_object_unreference(&old->base);
2564 return ret;
2565 }
2566
2567 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2568 pipelined = NULL;
2569
2570 old->fence_reg = I915_FENCE_REG_NONE;
2571 old->last_fenced_ring = pipelined;
2572 old->last_fenced_seqno =
2573 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2574
2575 drm_gem_object_unreference(&old->base);
2576 } else if (obj->last_fenced_seqno == 0)
2577 pipelined = NULL;
2578
2579 reg->obj = obj;
2580 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2581 obj->fence_reg = reg - dev_priv->fence_regs;
2582 obj->last_fenced_ring = pipelined;
2583
2584 reg->setup_seqno =
2585 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2586 obj->last_fenced_seqno = reg->setup_seqno;
2587
2588 update:
2589 obj->tiling_changed = false;
2590 switch (INTEL_INFO(dev)->gen) {
2591 case 6:
2592 ret = sandybridge_write_fence_reg(obj, pipelined);
2593 break;
2594 case 5:
2595 case 4:
2596 ret = i965_write_fence_reg(obj, pipelined);
2597 break;
2598 case 3:
2599 ret = i915_write_fence_reg(obj, pipelined);
2600 break;
2601 case 2:
2602 ret = i830_write_fence_reg(obj, pipelined);
2603 break;
2604 }
2605
2606 return ret;
2607 }
2608
2609 /**
2610 * i915_gem_clear_fence_reg - clear out fence register info
2611 * @obj: object to clear
2612 *
2613 * Zeroes out the fence register itself and clears out the associated
2614 * data structures in dev_priv and obj.
2615 */
2616 static void
2617 i915_gem_clear_fence_reg(struct drm_device *dev,
2618 struct drm_i915_fence_reg *reg)
2619 {
2620 drm_i915_private_t *dev_priv = dev->dev_private;
2621 uint32_t fence_reg = reg - dev_priv->fence_regs;
2622
2623 switch (INTEL_INFO(dev)->gen) {
2624 case 6:
2625 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2626 break;
2627 case 5:
2628 case 4:
2629 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2630 break;
2631 case 3:
2632 if (fence_reg >= 8)
2633 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2634 else
2635 case 2:
2636 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2637
2638 I915_WRITE(fence_reg, 0);
2639 break;
2640 }
2641
2642 list_del_init(&reg->lru_list);
2643 reg->obj = NULL;
2644 reg->setup_seqno = 0;
2645 }
2646
2647 /**
2648 * Finds free space in the GTT aperture and binds the object there.
2649 */
2650 static int
2651 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2652 unsigned alignment,
2653 bool map_and_fenceable)
2654 {
2655 struct drm_device *dev = obj->base.dev;
2656 drm_i915_private_t *dev_priv = dev->dev_private;
2657 struct drm_mm_node *free_space;
2658 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2659 u32 size, fence_size, fence_alignment, unfenced_alignment;
2660 bool mappable, fenceable;
2661 int ret;
2662
2663 if (obj->madv != I915_MADV_WILLNEED) {
2664 DRM_ERROR("Attempting to bind a purgeable object\n");
2665 return -EINVAL;
2666 }
2667
2668 fence_size = i915_gem_get_gtt_size(obj);
2669 fence_alignment = i915_gem_get_gtt_alignment(obj);
2670 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2671
2672 if (alignment == 0)
2673 alignment = map_and_fenceable ? fence_alignment :
2674 unfenced_alignment;
2675 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2676 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2677 return -EINVAL;
2678 }
2679
2680 size = map_and_fenceable ? fence_size : obj->base.size;
2681
2682 /* If the object is bigger than the entire aperture, reject it early
2683 * before evicting everything in a vain attempt to find space.
2684 */
2685 if (obj->base.size >
2686 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2687 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2688 return -E2BIG;
2689 }
2690
2691 search_free:
2692 if (map_and_fenceable)
2693 free_space =
2694 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2695 size, alignment, 0,
2696 dev_priv->mm.gtt_mappable_end,
2697 0);
2698 else
2699 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2700 size, alignment, 0);
2701
2702 if (free_space != NULL) {
2703 if (map_and_fenceable)
2704 obj->gtt_space =
2705 drm_mm_get_block_range_generic(free_space,
2706 size, alignment, 0,
2707 dev_priv->mm.gtt_mappable_end,
2708 0);
2709 else
2710 obj->gtt_space =
2711 drm_mm_get_block(free_space, size, alignment);
2712 }
2713 if (obj->gtt_space == NULL) {
2714 /* If the gtt is empty and we're still having trouble
2715 * fitting our object in, we're out of memory.
2716 */
2717 ret = i915_gem_evict_something(dev, size, alignment,
2718 map_and_fenceable);
2719 if (ret)
2720 return ret;
2721
2722 goto search_free;
2723 }
2724
2725 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2726 if (ret) {
2727 drm_mm_put_block(obj->gtt_space);
2728 obj->gtt_space = NULL;
2729
2730 if (ret == -ENOMEM) {
2731 /* first try to clear up some space from the GTT */
2732 ret = i915_gem_evict_something(dev, size,
2733 alignment,
2734 map_and_fenceable);
2735 if (ret) {
2736 /* now try to shrink everyone else */
2737 if (gfpmask) {
2738 gfpmask = 0;
2739 goto search_free;
2740 }
2741
2742 return ret;
2743 }
2744
2745 goto search_free;
2746 }
2747
2748 return ret;
2749 }
2750
2751 ret = i915_gem_gtt_bind_object(obj);
2752 if (ret) {
2753 i915_gem_object_put_pages_gtt(obj);
2754 drm_mm_put_block(obj->gtt_space);
2755 obj->gtt_space = NULL;
2756
2757 ret = i915_gem_evict_something(dev, size,
2758 alignment, map_and_fenceable);
2759 if (ret)
2760 return ret;
2761
2762 goto search_free;
2763 }
2764
2765 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2766 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2767
2768 /* Assert that the object is not currently in any GPU domain. As it
2769 * wasn't in the GTT, there shouldn't be any way it could have been in
2770 * a GPU cache
2771 */
2772 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2773 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2774
2775 obj->gtt_offset = obj->gtt_space->start;
2776
2777 fenceable =
2778 obj->gtt_space->size == fence_size &&
2779 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2780
2781 mappable =
2782 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2783
2784 obj->map_and_fenceable = mappable && fenceable;
2785
2786 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2787 return 0;
2788 }
2789
2790 void
2791 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2792 {
2793 /* If we don't have a page list set up, then we're not pinned
2794 * to GPU, and we can ignore the cache flush because it'll happen
2795 * again at bind time.
2796 */
2797 if (obj->pages == NULL)
2798 return;
2799
2800 trace_i915_gem_object_clflush(obj);
2801
2802 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2803 }
2804
2805 /** Flushes any GPU write domain for the object if it's dirty. */
2806 static void
2807 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2808 {
2809 struct drm_device *dev = obj->base.dev;
2810
2811 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2812 return;
2813
2814 /* Queue the GPU write cache flushing we need. */
2815 i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2816 BUG_ON(obj->base.write_domain);
2817 }
2818
2819 /** Flushes the GTT write domain for the object if it's dirty. */
2820 static void
2821 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2822 {
2823 uint32_t old_write_domain;
2824
2825 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2826 return;
2827
2828 /* No actual flushing is required for the GTT write domain. Writes
2829 * to it immediately go to main memory as far as we know, so there's
2830 * no chipset flush. It also doesn't land in render cache.
2831 */
2832 i915_gem_release_mmap(obj);
2833
2834 old_write_domain = obj->base.write_domain;
2835 obj->base.write_domain = 0;
2836
2837 trace_i915_gem_object_change_domain(obj,
2838 obj->base.read_domains,
2839 old_write_domain);
2840 }
2841
2842 /** Flushes the CPU write domain for the object if it's dirty. */
2843 static void
2844 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2845 {
2846 uint32_t old_write_domain;
2847
2848 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2849 return;
2850
2851 i915_gem_clflush_object(obj);
2852 intel_gtt_chipset_flush();
2853 old_write_domain = obj->base.write_domain;
2854 obj->base.write_domain = 0;
2855
2856 trace_i915_gem_object_change_domain(obj,
2857 obj->base.read_domains,
2858 old_write_domain);
2859 }
2860
2861 /**
2862 * Moves a single object to the GTT read, and possibly write domain.
2863 *
2864 * This function returns when the move is complete, including waiting on
2865 * flushes to occur.
2866 */
2867 int
2868 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2869 {
2870 uint32_t old_write_domain, old_read_domains;
2871 int ret;
2872
2873 /* Not valid to be called on unbound objects. */
2874 if (obj->gtt_space == NULL)
2875 return -EINVAL;
2876
2877 i915_gem_object_flush_gpu_write_domain(obj);
2878 if (obj->pending_gpu_write || write) {
2879 ret = i915_gem_object_wait_rendering(obj, true);
2880 if (ret)
2881 return ret;
2882 }
2883
2884 i915_gem_object_flush_cpu_write_domain(obj);
2885
2886 old_write_domain = obj->base.write_domain;
2887 old_read_domains = obj->base.read_domains;
2888
2889 /* It should now be out of any other write domains, and we can update
2890 * the domain values for our changes.
2891 */
2892 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2893 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2894 if (write) {
2895 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2896 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2897 obj->dirty = 1;
2898 }
2899
2900 trace_i915_gem_object_change_domain(obj,
2901 old_read_domains,
2902 old_write_domain);
2903
2904 return 0;
2905 }
2906
2907 /*
2908 * Prepare buffer for display plane. Use uninterruptible for possible flush
2909 * wait, as in modesetting process we're not supposed to be interrupted.
2910 */
2911 int
2912 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2913 struct intel_ring_buffer *pipelined)
2914 {
2915 uint32_t old_read_domains;
2916 int ret;
2917
2918 /* Not valid to be called on unbound objects. */
2919 if (obj->gtt_space == NULL)
2920 return -EINVAL;
2921
2922 i915_gem_object_flush_gpu_write_domain(obj);
2923
2924 /* Currently, we are always called from an non-interruptible context. */
2925 if (!pipelined) {
2926 ret = i915_gem_object_wait_rendering(obj, false);
2927 if (ret)
2928 return ret;
2929 }
2930
2931 i915_gem_object_flush_cpu_write_domain(obj);
2932
2933 old_read_domains = obj->base.read_domains;
2934 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2935
2936 trace_i915_gem_object_change_domain(obj,
2937 old_read_domains,
2938 obj->base.write_domain);
2939
2940 return 0;
2941 }
2942
2943 int
2944 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2945 bool interruptible)
2946 {
2947 if (!obj->active)
2948 return 0;
2949
2950 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2951 i915_gem_flush_ring(obj->base.dev, obj->ring,
2952 0, obj->base.write_domain);
2953
2954 return i915_gem_object_wait_rendering(obj, interruptible);
2955 }
2956
2957 /**
2958 * Moves a single object to the CPU read, and possibly write domain.
2959 *
2960 * This function returns when the move is complete, including waiting on
2961 * flushes to occur.
2962 */
2963 static int
2964 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2965 {
2966 uint32_t old_write_domain, old_read_domains;
2967 int ret;
2968
2969 i915_gem_object_flush_gpu_write_domain(obj);
2970 ret = i915_gem_object_wait_rendering(obj, true);
2971 if (ret)
2972 return ret;
2973
2974 i915_gem_object_flush_gtt_write_domain(obj);
2975
2976 /* If we have a partially-valid cache of the object in the CPU,
2977 * finish invalidating it and free the per-page flags.
2978 */
2979 i915_gem_object_set_to_full_cpu_read_domain(obj);
2980
2981 old_write_domain = obj->base.write_domain;
2982 old_read_domains = obj->base.read_domains;
2983
2984 /* Flush the CPU cache if it's still invalid. */
2985 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2986 i915_gem_clflush_object(obj);
2987
2988 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2989 }
2990
2991 /* It should now be out of any other write domains, and we can update
2992 * the domain values for our changes.
2993 */
2994 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2995
2996 /* If we're writing through the CPU, then the GPU read domains will
2997 * need to be invalidated at next use.
2998 */
2999 if (write) {
3000 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3001 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3002 }
3003
3004 trace_i915_gem_object_change_domain(obj,
3005 old_read_domains,
3006 old_write_domain);
3007
3008 return 0;
3009 }
3010
3011 /**
3012 * Moves the object from a partially CPU read to a full one.
3013 *
3014 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3015 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3016 */
3017 static void
3018 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3019 {
3020 if (!obj->page_cpu_valid)
3021 return;
3022
3023 /* If we're partially in the CPU read domain, finish moving it in.
3024 */
3025 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3026 int i;
3027
3028 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3029 if (obj->page_cpu_valid[i])
3030 continue;
3031 drm_clflush_pages(obj->pages + i, 1);
3032 }
3033 }
3034
3035 /* Free the page_cpu_valid mappings which are now stale, whether
3036 * or not we've got I915_GEM_DOMAIN_CPU.
3037 */
3038 kfree(obj->page_cpu_valid);
3039 obj->page_cpu_valid = NULL;
3040 }
3041
3042 /**
3043 * Set the CPU read domain on a range of the object.
3044 *
3045 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3046 * not entirely valid. The page_cpu_valid member of the object flags which
3047 * pages have been flushed, and will be respected by
3048 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3049 * of the whole object.
3050 *
3051 * This function returns when the move is complete, including waiting on
3052 * flushes to occur.
3053 */
3054 static int
3055 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3056 uint64_t offset, uint64_t size)
3057 {
3058 uint32_t old_read_domains;
3059 int i, ret;
3060
3061 if (offset == 0 && size == obj->base.size)
3062 return i915_gem_object_set_to_cpu_domain(obj, 0);
3063
3064 i915_gem_object_flush_gpu_write_domain(obj);
3065 ret = i915_gem_object_wait_rendering(obj, true);
3066 if (ret)
3067 return ret;
3068
3069 i915_gem_object_flush_gtt_write_domain(obj);
3070
3071 /* If we're already fully in the CPU read domain, we're done. */
3072 if (obj->page_cpu_valid == NULL &&
3073 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3074 return 0;
3075
3076 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3077 * newly adding I915_GEM_DOMAIN_CPU
3078 */
3079 if (obj->page_cpu_valid == NULL) {
3080 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3081 GFP_KERNEL);
3082 if (obj->page_cpu_valid == NULL)
3083 return -ENOMEM;
3084 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3085 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3086
3087 /* Flush the cache on any pages that are still invalid from the CPU's
3088 * perspective.
3089 */
3090 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3091 i++) {
3092 if (obj->page_cpu_valid[i])
3093 continue;
3094
3095 drm_clflush_pages(obj->pages + i, 1);
3096
3097 obj->page_cpu_valid[i] = 1;
3098 }
3099
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3104
3105 old_read_domains = obj->base.read_domains;
3106 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3107
3108 trace_i915_gem_object_change_domain(obj,
3109 old_read_domains,
3110 obj->base.write_domain);
3111
3112 return 0;
3113 }
3114
3115 /* Throttle our rendering by waiting until the ring has completed our requests
3116 * emitted over 20 msec ago.
3117 *
3118 * Note that if we were to use the current jiffies each time around the loop,
3119 * we wouldn't escape the function with any frames outstanding if the time to
3120 * render a frame was over 20ms.
3121 *
3122 * This should get us reasonable parallelism between CPU and GPU but also
3123 * relatively low latency when blocking on a particular request to finish.
3124 */
3125 static int
3126 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3127 {
3128 struct drm_i915_private *dev_priv = dev->dev_private;
3129 struct drm_i915_file_private *file_priv = file->driver_priv;
3130 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3131 struct drm_i915_gem_request *request;
3132 struct intel_ring_buffer *ring = NULL;
3133 u32 seqno = 0;
3134 int ret;
3135
3136 spin_lock(&file_priv->mm.lock);
3137 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3138 if (time_after_eq(request->emitted_jiffies, recent_enough))
3139 break;
3140
3141 ring = request->ring;
3142 seqno = request->seqno;
3143 }
3144 spin_unlock(&file_priv->mm.lock);
3145
3146 if (seqno == 0)
3147 return 0;
3148
3149 ret = 0;
3150 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3151 /* And wait for the seqno passing without holding any locks and
3152 * causing extra latency for others. This is safe as the irq
3153 * generation is designed to be run atomically and so is
3154 * lockless.
3155 */
3156 ring->user_irq_get(ring);
3157 ret = wait_event_interruptible(ring->irq_queue,
3158 i915_seqno_passed(ring->get_seqno(ring), seqno)
3159 || atomic_read(&dev_priv->mm.wedged));
3160 ring->user_irq_put(ring);
3161
3162 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3163 ret = -EIO;
3164 }
3165
3166 if (ret == 0)
3167 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3168
3169 return ret;
3170 }
3171
3172 int
3173 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3174 uint32_t alignment,
3175 bool map_and_fenceable)
3176 {
3177 struct drm_device *dev = obj->base.dev;
3178 struct drm_i915_private *dev_priv = dev->dev_private;
3179 int ret;
3180
3181 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3182 WARN_ON(i915_verify_lists(dev));
3183
3184 if (obj->gtt_space != NULL) {
3185 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3186 (map_and_fenceable && !obj->map_and_fenceable)) {
3187 WARN(obj->pin_count,
3188 "bo is already pinned with incorrect alignment:"
3189 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3190 " obj->map_and_fenceable=%d\n",
3191 obj->gtt_offset, alignment,
3192 map_and_fenceable,
3193 obj->map_and_fenceable);
3194 ret = i915_gem_object_unbind(obj);
3195 if (ret)
3196 return ret;
3197 }
3198 }
3199
3200 if (obj->gtt_space == NULL) {
3201 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3202 map_and_fenceable);
3203 if (ret)
3204 return ret;
3205 }
3206
3207 if (obj->pin_count++ == 0) {
3208 if (!obj->active)
3209 list_move_tail(&obj->mm_list,
3210 &dev_priv->mm.pinned_list);
3211 }
3212 obj->pin_mappable |= map_and_fenceable;
3213
3214 WARN_ON(i915_verify_lists(dev));
3215 return 0;
3216 }
3217
3218 void
3219 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3220 {
3221 struct drm_device *dev = obj->base.dev;
3222 drm_i915_private_t *dev_priv = dev->dev_private;
3223
3224 WARN_ON(i915_verify_lists(dev));
3225 BUG_ON(obj->pin_count == 0);
3226 BUG_ON(obj->gtt_space == NULL);
3227
3228 if (--obj->pin_count == 0) {
3229 if (!obj->active)
3230 list_move_tail(&obj->mm_list,
3231 &dev_priv->mm.inactive_list);
3232 obj->pin_mappable = false;
3233 }
3234 WARN_ON(i915_verify_lists(dev));
3235 }
3236
3237 int
3238 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3239 struct drm_file *file)
3240 {
3241 struct drm_i915_gem_pin *args = data;
3242 struct drm_i915_gem_object *obj;
3243 int ret;
3244
3245 ret = i915_mutex_lock_interruptible(dev);
3246 if (ret)
3247 return ret;
3248
3249 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3250 if (obj == NULL) {
3251 ret = -ENOENT;
3252 goto unlock;
3253 }
3254
3255 if (obj->madv != I915_MADV_WILLNEED) {
3256 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3257 ret = -EINVAL;
3258 goto out;
3259 }
3260
3261 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3262 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3263 args->handle);
3264 ret = -EINVAL;
3265 goto out;
3266 }
3267
3268 obj->user_pin_count++;
3269 obj->pin_filp = file;
3270 if (obj->user_pin_count == 1) {
3271 ret = i915_gem_object_pin(obj, args->alignment, true);
3272 if (ret)
3273 goto out;
3274 }
3275
3276 /* XXX - flush the CPU caches for pinned objects
3277 * as the X server doesn't manage domains yet
3278 */
3279 i915_gem_object_flush_cpu_write_domain(obj);
3280 args->offset = obj->gtt_offset;
3281 out:
3282 drm_gem_object_unreference(&obj->base);
3283 unlock:
3284 mutex_unlock(&dev->struct_mutex);
3285 return ret;
3286 }
3287
3288 int
3289 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3290 struct drm_file *file)
3291 {
3292 struct drm_i915_gem_pin *args = data;
3293 struct drm_i915_gem_object *obj;
3294 int ret;
3295
3296 ret = i915_mutex_lock_interruptible(dev);
3297 if (ret)
3298 return ret;
3299
3300 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3301 if (obj == NULL) {
3302 ret = -ENOENT;
3303 goto unlock;
3304 }
3305
3306 if (obj->pin_filp != file) {
3307 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3308 args->handle);
3309 ret = -EINVAL;
3310 goto out;
3311 }
3312 obj->user_pin_count--;
3313 if (obj->user_pin_count == 0) {
3314 obj->pin_filp = NULL;
3315 i915_gem_object_unpin(obj);
3316 }
3317
3318 out:
3319 drm_gem_object_unreference(&obj->base);
3320 unlock:
3321 mutex_unlock(&dev->struct_mutex);
3322 return ret;
3323 }
3324
3325 int
3326 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3327 struct drm_file *file)
3328 {
3329 struct drm_i915_gem_busy *args = data;
3330 struct drm_i915_gem_object *obj;
3331 int ret;
3332
3333 ret = i915_mutex_lock_interruptible(dev);
3334 if (ret)
3335 return ret;
3336
3337 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3338 if (obj == NULL) {
3339 ret = -ENOENT;
3340 goto unlock;
3341 }
3342
3343 /* Count all active objects as busy, even if they are currently not used
3344 * by the gpu. Users of this interface expect objects to eventually
3345 * become non-busy without any further actions, therefore emit any
3346 * necessary flushes here.
3347 */
3348 args->busy = obj->active;
3349 if (args->busy) {
3350 /* Unconditionally flush objects, even when the gpu still uses this
3351 * object. Userspace calling this function indicates that it wants to
3352 * use this buffer rather sooner than later, so issuing the required
3353 * flush earlier is beneficial.
3354 */
3355 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3356 i915_gem_flush_ring(dev, obj->ring,
3357 0, obj->base.write_domain);
3358
3359 /* Update the active list for the hardware's current position.
3360 * Otherwise this only updates on a delayed timer or when irqs
3361 * are actually unmasked, and our working set ends up being
3362 * larger than required.
3363 */
3364 i915_gem_retire_requests_ring(dev, obj->ring);
3365
3366 args->busy = obj->active;
3367 }
3368
3369 drm_gem_object_unreference(&obj->base);
3370 unlock:
3371 mutex_unlock(&dev->struct_mutex);
3372 return ret;
3373 }
3374
3375 int
3376 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3377 struct drm_file *file_priv)
3378 {
3379 return i915_gem_ring_throttle(dev, file_priv);
3380 }
3381
3382 int
3383 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3384 struct drm_file *file_priv)
3385 {
3386 struct drm_i915_gem_madvise *args = data;
3387 struct drm_i915_gem_object *obj;
3388 int ret;
3389
3390 switch (args->madv) {
3391 case I915_MADV_DONTNEED:
3392 case I915_MADV_WILLNEED:
3393 break;
3394 default:
3395 return -EINVAL;
3396 }
3397
3398 ret = i915_mutex_lock_interruptible(dev);
3399 if (ret)
3400 return ret;
3401
3402 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3403 if (obj == NULL) {
3404 ret = -ENOENT;
3405 goto unlock;
3406 }
3407
3408 if (obj->pin_count) {
3409 ret = -EINVAL;
3410 goto out;
3411 }
3412
3413 if (obj->madv != __I915_MADV_PURGED)
3414 obj->madv = args->madv;
3415
3416 /* if the object is no longer bound, discard its backing storage */
3417 if (i915_gem_object_is_purgeable(obj) &&
3418 obj->gtt_space == NULL)
3419 i915_gem_object_truncate(obj);
3420
3421 args->retained = obj->madv != __I915_MADV_PURGED;
3422
3423 out:
3424 drm_gem_object_unreference(&obj->base);
3425 unlock:
3426 mutex_unlock(&dev->struct_mutex);
3427 return ret;
3428 }
3429
3430 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3431 size_t size)
3432 {
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 struct drm_i915_gem_object *obj;
3435
3436 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3437 if (obj == NULL)
3438 return NULL;
3439
3440 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3441 kfree(obj);
3442 return NULL;
3443 }
3444
3445 i915_gem_info_add_obj(dev_priv, size);
3446
3447 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3448 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3449
3450 obj->agp_type = AGP_USER_MEMORY;
3451 obj->base.driver_private = NULL;
3452 obj->fence_reg = I915_FENCE_REG_NONE;
3453 INIT_LIST_HEAD(&obj->mm_list);
3454 INIT_LIST_HEAD(&obj->gtt_list);
3455 INIT_LIST_HEAD(&obj->ring_list);
3456 INIT_LIST_HEAD(&obj->exec_list);
3457 INIT_LIST_HEAD(&obj->gpu_write_list);
3458 obj->madv = I915_MADV_WILLNEED;
3459 /* Avoid an unnecessary call to unbind on the first bind. */
3460 obj->map_and_fenceable = true;
3461
3462 return obj;
3463 }
3464
3465 int i915_gem_init_object(struct drm_gem_object *obj)
3466 {
3467 BUG();
3468
3469 return 0;
3470 }
3471
3472 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3473 {
3474 struct drm_device *dev = obj->base.dev;
3475 drm_i915_private_t *dev_priv = dev->dev_private;
3476 int ret;
3477
3478 ret = i915_gem_object_unbind(obj);
3479 if (ret == -ERESTARTSYS) {
3480 list_move(&obj->mm_list,
3481 &dev_priv->mm.deferred_free_list);
3482 return;
3483 }
3484
3485 if (obj->base.map_list.map)
3486 i915_gem_free_mmap_offset(obj);
3487
3488 drm_gem_object_release(&obj->base);
3489 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3490
3491 kfree(obj->page_cpu_valid);
3492 kfree(obj->bit_17);
3493 kfree(obj);
3494 }
3495
3496 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3497 {
3498 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3499 struct drm_device *dev = obj->base.dev;
3500
3501 trace_i915_gem_object_destroy(obj);
3502
3503 while (obj->pin_count > 0)
3504 i915_gem_object_unpin(obj);
3505
3506 if (obj->phys_obj)
3507 i915_gem_detach_phys_object(dev, obj);
3508
3509 i915_gem_free_object_tail(obj);
3510 }
3511
3512 int
3513 i915_gem_idle(struct drm_device *dev)
3514 {
3515 drm_i915_private_t *dev_priv = dev->dev_private;
3516 int ret;
3517
3518 mutex_lock(&dev->struct_mutex);
3519
3520 if (dev_priv->mm.suspended) {
3521 mutex_unlock(&dev->struct_mutex);
3522 return 0;
3523 }
3524
3525 ret = i915_gpu_idle(dev);
3526 if (ret) {
3527 mutex_unlock(&dev->struct_mutex);
3528 return ret;
3529 }
3530
3531 /* Under UMS, be paranoid and evict. */
3532 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3533 ret = i915_gem_evict_inactive(dev, false);
3534 if (ret) {
3535 mutex_unlock(&dev->struct_mutex);
3536 return ret;
3537 }
3538 }
3539
3540 i915_gem_reset_fences(dev);
3541
3542 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3543 * We need to replace this with a semaphore, or something.
3544 * And not confound mm.suspended!
3545 */
3546 dev_priv->mm.suspended = 1;
3547 del_timer_sync(&dev_priv->hangcheck_timer);
3548
3549 i915_kernel_lost_context(dev);
3550 i915_gem_cleanup_ringbuffer(dev);
3551
3552 mutex_unlock(&dev->struct_mutex);
3553
3554 /* Cancel the retire work handler, which should be idle now. */
3555 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3556
3557 return 0;
3558 }
3559
3560 int
3561 i915_gem_init_ringbuffer(struct drm_device *dev)
3562 {
3563 drm_i915_private_t *dev_priv = dev->dev_private;
3564 int ret;
3565
3566 ret = intel_init_render_ring_buffer(dev);
3567 if (ret)
3568 return ret;
3569
3570 if (HAS_BSD(dev)) {
3571 ret = intel_init_bsd_ring_buffer(dev);
3572 if (ret)
3573 goto cleanup_render_ring;
3574 }
3575
3576 if (HAS_BLT(dev)) {
3577 ret = intel_init_blt_ring_buffer(dev);
3578 if (ret)
3579 goto cleanup_bsd_ring;
3580 }
3581
3582 dev_priv->next_seqno = 1;
3583
3584 return 0;
3585
3586 cleanup_bsd_ring:
3587 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3588 cleanup_render_ring:
3589 intel_cleanup_ring_buffer(&dev_priv->render_ring);
3590 return ret;
3591 }
3592
3593 void
3594 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3595 {
3596 drm_i915_private_t *dev_priv = dev->dev_private;
3597
3598 intel_cleanup_ring_buffer(&dev_priv->render_ring);
3599 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3600 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
3601 }
3602
3603 int
3604 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3605 struct drm_file *file_priv)
3606 {
3607 drm_i915_private_t *dev_priv = dev->dev_private;
3608 int ret;
3609
3610 if (drm_core_check_feature(dev, DRIVER_MODESET))
3611 return 0;
3612
3613 if (atomic_read(&dev_priv->mm.wedged)) {
3614 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3615 atomic_set(&dev_priv->mm.wedged, 0);
3616 }
3617
3618 mutex_lock(&dev->struct_mutex);
3619 dev_priv->mm.suspended = 0;
3620
3621 ret = i915_gem_init_ringbuffer(dev);
3622 if (ret != 0) {
3623 mutex_unlock(&dev->struct_mutex);
3624 return ret;
3625 }
3626
3627 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3628 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
3629 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
3630 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
3631 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3632 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3633 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
3634 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
3635 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
3636 mutex_unlock(&dev->struct_mutex);
3637
3638 ret = drm_irq_install(dev);
3639 if (ret)
3640 goto cleanup_ringbuffer;
3641
3642 return 0;
3643
3644 cleanup_ringbuffer:
3645 mutex_lock(&dev->struct_mutex);
3646 i915_gem_cleanup_ringbuffer(dev);
3647 dev_priv->mm.suspended = 1;
3648 mutex_unlock(&dev->struct_mutex);
3649
3650 return ret;
3651 }
3652
3653 int
3654 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3655 struct drm_file *file_priv)
3656 {
3657 if (drm_core_check_feature(dev, DRIVER_MODESET))
3658 return 0;
3659
3660 drm_irq_uninstall(dev);
3661 return i915_gem_idle(dev);
3662 }
3663
3664 void
3665 i915_gem_lastclose(struct drm_device *dev)
3666 {
3667 int ret;
3668
3669 if (drm_core_check_feature(dev, DRIVER_MODESET))
3670 return;
3671
3672 ret = i915_gem_idle(dev);
3673 if (ret)
3674 DRM_ERROR("failed to idle hardware: %d\n", ret);
3675 }
3676
3677 static void
3678 init_ring_lists(struct intel_ring_buffer *ring)
3679 {
3680 INIT_LIST_HEAD(&ring->active_list);
3681 INIT_LIST_HEAD(&ring->request_list);
3682 INIT_LIST_HEAD(&ring->gpu_write_list);
3683 }
3684
3685 void
3686 i915_gem_load(struct drm_device *dev)
3687 {
3688 int i;
3689 drm_i915_private_t *dev_priv = dev->dev_private;
3690
3691 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3692 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3693 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3694 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3695 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3696 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3697 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3698 init_ring_lists(&dev_priv->render_ring);
3699 init_ring_lists(&dev_priv->bsd_ring);
3700 init_ring_lists(&dev_priv->blt_ring);
3701 for (i = 0; i < 16; i++)
3702 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3703 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3704 i915_gem_retire_work_handler);
3705 init_completion(&dev_priv->error_completion);
3706
3707 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3708 if (IS_GEN3(dev)) {
3709 u32 tmp = I915_READ(MI_ARB_STATE);
3710 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3711 /* arb state is a masked write, so set bit + bit in mask */
3712 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3713 I915_WRITE(MI_ARB_STATE, tmp);
3714 }
3715 }
3716
3717 /* Old X drivers will take 0-2 for front, back, depth buffers */
3718 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3719 dev_priv->fence_reg_start = 3;
3720
3721 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3722 dev_priv->num_fence_regs = 16;
3723 else
3724 dev_priv->num_fence_regs = 8;
3725
3726 /* Initialize fence registers to zero */
3727 switch (INTEL_INFO(dev)->gen) {
3728 case 6:
3729 for (i = 0; i < 16; i++)
3730 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3731 break;
3732 case 5:
3733 case 4:
3734 for (i = 0; i < 16; i++)
3735 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3736 break;
3737 case 3:
3738 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3739 for (i = 0; i < 8; i++)
3740 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3741 case 2:
3742 for (i = 0; i < 8; i++)
3743 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3744 break;
3745 }
3746 i915_gem_detect_bit_6_swizzle(dev);
3747 init_waitqueue_head(&dev_priv->pending_flip_queue);
3748
3749 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3750 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3751 register_shrinker(&dev_priv->mm.inactive_shrinker);
3752 }
3753
3754 /*
3755 * Create a physically contiguous memory object for this object
3756 * e.g. for cursor + overlay regs
3757 */
3758 static int i915_gem_init_phys_object(struct drm_device *dev,
3759 int id, int size, int align)
3760 {
3761 drm_i915_private_t *dev_priv = dev->dev_private;
3762 struct drm_i915_gem_phys_object *phys_obj;
3763 int ret;
3764
3765 if (dev_priv->mm.phys_objs[id - 1] || !size)
3766 return 0;
3767
3768 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3769 if (!phys_obj)
3770 return -ENOMEM;
3771
3772 phys_obj->id = id;
3773
3774 phys_obj->handle = drm_pci_alloc(dev, size, align);
3775 if (!phys_obj->handle) {
3776 ret = -ENOMEM;
3777 goto kfree_obj;
3778 }
3779 #ifdef CONFIG_X86
3780 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3781 #endif
3782
3783 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3784
3785 return 0;
3786 kfree_obj:
3787 kfree(phys_obj);
3788 return ret;
3789 }
3790
3791 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3792 {
3793 drm_i915_private_t *dev_priv = dev->dev_private;
3794 struct drm_i915_gem_phys_object *phys_obj;
3795
3796 if (!dev_priv->mm.phys_objs[id - 1])
3797 return;
3798
3799 phys_obj = dev_priv->mm.phys_objs[id - 1];
3800 if (phys_obj->cur_obj) {
3801 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3802 }
3803
3804 #ifdef CONFIG_X86
3805 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3806 #endif
3807 drm_pci_free(dev, phys_obj->handle);
3808 kfree(phys_obj);
3809 dev_priv->mm.phys_objs[id - 1] = NULL;
3810 }
3811
3812 void i915_gem_free_all_phys_object(struct drm_device *dev)
3813 {
3814 int i;
3815
3816 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3817 i915_gem_free_phys_object(dev, i);
3818 }
3819
3820 void i915_gem_detach_phys_object(struct drm_device *dev,
3821 struct drm_i915_gem_object *obj)
3822 {
3823 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3824 char *vaddr;
3825 int i;
3826 int page_count;
3827
3828 if (!obj->phys_obj)
3829 return;
3830 vaddr = obj->phys_obj->handle->vaddr;
3831
3832 page_count = obj->base.size / PAGE_SIZE;
3833 for (i = 0; i < page_count; i++) {
3834 struct page *page = read_cache_page_gfp(mapping, i,
3835 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3836 if (!IS_ERR(page)) {
3837 char *dst = kmap_atomic(page);
3838 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3839 kunmap_atomic(dst);
3840
3841 drm_clflush_pages(&page, 1);
3842
3843 set_page_dirty(page);
3844 mark_page_accessed(page);
3845 page_cache_release(page);
3846 }
3847 }
3848 intel_gtt_chipset_flush();
3849
3850 obj->phys_obj->cur_obj = NULL;
3851 obj->phys_obj = NULL;
3852 }
3853
3854 int
3855 i915_gem_attach_phys_object(struct drm_device *dev,
3856 struct drm_i915_gem_object *obj,
3857 int id,
3858 int align)
3859 {
3860 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3861 drm_i915_private_t *dev_priv = dev->dev_private;
3862 int ret = 0;
3863 int page_count;
3864 int i;
3865
3866 if (id > I915_MAX_PHYS_OBJECT)
3867 return -EINVAL;
3868
3869 if (obj->phys_obj) {
3870 if (obj->phys_obj->id == id)
3871 return 0;
3872 i915_gem_detach_phys_object(dev, obj);
3873 }
3874
3875 /* create a new object */
3876 if (!dev_priv->mm.phys_objs[id - 1]) {
3877 ret = i915_gem_init_phys_object(dev, id,
3878 obj->base.size, align);
3879 if (ret) {
3880 DRM_ERROR("failed to init phys object %d size: %zu\n",
3881 id, obj->base.size);
3882 return ret;
3883 }
3884 }
3885
3886 /* bind to the object */
3887 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3888 obj->phys_obj->cur_obj = obj;
3889
3890 page_count = obj->base.size / PAGE_SIZE;
3891
3892 for (i = 0; i < page_count; i++) {
3893 struct page *page;
3894 char *dst, *src;
3895
3896 page = read_cache_page_gfp(mapping, i,
3897 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3898 if (IS_ERR(page))
3899 return PTR_ERR(page);
3900
3901 src = kmap_atomic(page);
3902 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3903 memcpy(dst, src, PAGE_SIZE);
3904 kunmap_atomic(src);
3905
3906 mark_page_accessed(page);
3907 page_cache_release(page);
3908 }
3909
3910 return 0;
3911 }
3912
3913 static int
3914 i915_gem_phys_pwrite(struct drm_device *dev,
3915 struct drm_i915_gem_object *obj,
3916 struct drm_i915_gem_pwrite *args,
3917 struct drm_file *file_priv)
3918 {
3919 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3920 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3921
3922 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3923 unsigned long unwritten;
3924
3925 /* The physical object once assigned is fixed for the lifetime
3926 * of the obj, so we can safely drop the lock and continue
3927 * to access vaddr.
3928 */
3929 mutex_unlock(&dev->struct_mutex);
3930 unwritten = copy_from_user(vaddr, user_data, args->size);
3931 mutex_lock(&dev->struct_mutex);
3932 if (unwritten)
3933 return -EFAULT;
3934 }
3935
3936 intel_gtt_chipset_flush();
3937 return 0;
3938 }
3939
3940 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3941 {
3942 struct drm_i915_file_private *file_priv = file->driver_priv;
3943
3944 /* Clean up our request list when the client is going away, so that
3945 * later retire_requests won't dereference our soon-to-be-gone
3946 * file_priv.
3947 */
3948 spin_lock(&file_priv->mm.lock);
3949 while (!list_empty(&file_priv->mm.request_list)) {
3950 struct drm_i915_gem_request *request;
3951
3952 request = list_first_entry(&file_priv->mm.request_list,
3953 struct drm_i915_gem_request,
3954 client_list);
3955 list_del(&request->client_list);
3956 request->file_priv = NULL;
3957 }
3958 spin_unlock(&file_priv->mm.lock);
3959 }
3960
3961 static int
3962 i915_gpu_is_active(struct drm_device *dev)
3963 {
3964 drm_i915_private_t *dev_priv = dev->dev_private;
3965 int lists_empty;
3966
3967 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3968 list_empty(&dev_priv->mm.active_list);
3969
3970 return !lists_empty;
3971 }
3972
3973 static int
3974 i915_gem_inactive_shrink(struct shrinker *shrinker,
3975 int nr_to_scan,
3976 gfp_t gfp_mask)
3977 {
3978 struct drm_i915_private *dev_priv =
3979 container_of(shrinker,
3980 struct drm_i915_private,
3981 mm.inactive_shrinker);
3982 struct drm_device *dev = dev_priv->dev;
3983 struct drm_i915_gem_object *obj, *next;
3984 int cnt;
3985
3986 if (!mutex_trylock(&dev->struct_mutex))
3987 return 0;
3988
3989 /* "fast-path" to count number of available objects */
3990 if (nr_to_scan == 0) {
3991 cnt = 0;
3992 list_for_each_entry(obj,
3993 &dev_priv->mm.inactive_list,
3994 mm_list)
3995 cnt++;
3996 mutex_unlock(&dev->struct_mutex);
3997 return cnt / 100 * sysctl_vfs_cache_pressure;
3998 }
3999
4000 rescan:
4001 /* first scan for clean buffers */
4002 i915_gem_retire_requests(dev);
4003
4004 list_for_each_entry_safe(obj, next,
4005 &dev_priv->mm.inactive_list,
4006 mm_list) {
4007 if (i915_gem_object_is_purgeable(obj)) {
4008 if (i915_gem_object_unbind(obj) == 0 &&
4009 --nr_to_scan == 0)
4010 break;
4011 }
4012 }
4013
4014 /* second pass, evict/count anything still on the inactive list */
4015 cnt = 0;
4016 list_for_each_entry_safe(obj, next,
4017 &dev_priv->mm.inactive_list,
4018 mm_list) {
4019 if (nr_to_scan &&
4020 i915_gem_object_unbind(obj) == 0)
4021 nr_to_scan--;
4022 else
4023 cnt++;
4024 }
4025
4026 if (nr_to_scan && i915_gpu_is_active(dev)) {
4027 /*
4028 * We are desperate for pages, so as a last resort, wait
4029 * for the GPU to finish and discard whatever we can.
4030 * This has a dramatic impact to reduce the number of
4031 * OOM-killer events whilst running the GPU aggressively.
4032 */
4033 if (i915_gpu_idle(dev) == 0)
4034 goto rescan;
4035 }
4036 mutex_unlock(&dev->struct_mutex);
4037 return cnt / 100 * sysctl_vfs_cache_pressure;
4038 }
This page took 0.116222 seconds and 5 git commands to generate.