drm/i915: Clear the pending_gpu_fenced_access flag at the start of execbuffer
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59
60 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61 {
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
68 obj->fence_dirty = false;
69 obj->fence_reg = I915_FENCE_REG_NONE;
70 }
71
72 /* some bookkeeping */
73 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78 }
79
80 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82 {
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85 }
86
87 static int
88 i915_gem_wait_for_error(struct drm_device *dev)
89 {
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
108 return ret;
109 }
110
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 int ret;
127
128 ret = i915_gem_wait_for_error(dev);
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
136 WARN_ON(i915_verify_lists(dev));
137 return 0;
138 }
139
140 static inline bool
141 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
142 {
143 return !obj->active;
144 }
145
146 int
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_gem_init *args = data;
151
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
158
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
163 mutex_lock(&dev->struct_mutex);
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
166 mutex_unlock(&dev->struct_mutex);
167
168 return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 struct drm_file *file)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_i915_gem_get_aperture *args = data;
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->mm.gtt_total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 static int
194 i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
198 {
199 struct drm_i915_gem_object *obj;
200 int ret;
201 u32 handle;
202
203 size = roundup(size, PAGE_SIZE);
204 if (size == 0)
205 return -EINVAL;
206
207 /* Allocate the new object */
208 obj = i915_gem_alloc_object(dev, size);
209 if (obj == NULL)
210 return -ENOMEM;
211
212 ret = drm_gem_handle_create(file, &obj->base, &handle);
213 if (ret) {
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
216 kfree(obj);
217 return ret;
218 }
219
220 /* drop reference from allocate - handle holds it now */
221 drm_gem_object_unreference(&obj->base);
222 trace_i915_gem_object_create(obj);
223
224 *handle_p = handle;
225 return 0;
226 }
227
228 int
229 i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232 {
233 /* have to work out size/pitch and return them */
234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238 }
239
240 int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243 {
244 return drm_gem_handle_delete(file, handle);
245 }
246
247 /**
248 * Creates a new mm object and returns a handle to it.
249 */
250 int
251 i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253 {
254 struct drm_i915_gem_create *args = data;
255
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258 }
259
260 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
261 {
262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
265 obj->tiling_mode != I915_TILING_NONE;
266 }
267
268 static inline int
269 __copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272 {
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292 }
293
294 static inline int
295 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
297 int length)
298 {
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318 }
319
320 /* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
323 static int
324 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327 {
328 char *vaddr;
329 int ret;
330
331 if (unlikely(page_do_bit17_swizzling))
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344 }
345
346 static void
347 shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349 {
350 if (unlikely(swizzled)) {
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366 }
367
368 /* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370 static int
371 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374 {
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395 }
396
397 static int
398 i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
402 {
403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int hit_slowpath = 0;
410 int prefaulted = 0;
411 int needs_clflush = 0;
412 int release_page;
413
414 user_data = (char __user *) (uintptr_t) args->data_ptr;
415 remain = args->size;
416
417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
418
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430
431 offset = args->offset;
432
433 while (remain > 0) {
434 struct page *page;
435
436 /* Operation in this page
437 *
438 * shmem_page_offset = offset within page in shmem file
439 * page_length = bytes to copy for this page
440 */
441 shmem_page_offset = offset_in_page(offset);
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
445
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
456 }
457
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
466
467 hit_slowpath = 1;
468 page_cache_get(page);
469 mutex_unlock(&dev->struct_mutex);
470
471 if (!prefaulted) {
472 ret = fault_in_multipages_writeable(user_data, remain);
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
480
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
484
485 mutex_lock(&dev->struct_mutex);
486 page_cache_release(page);
487 next_page:
488 mark_page_accessed(page);
489 if (release_page)
490 page_cache_release(page);
491
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
622
623 offset = obj->gtt_offset + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
732 ssize_t remain;
733 loff_t offset;
734 char __user *user_data;
735 int shmem_page_offset, page_length, ret = 0;
736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
737 int hit_slowpath = 0;
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
740 int release_page;
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
744
745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
746
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
764 offset = args->offset;
765 obj->dirty = 1;
766
767 while (remain > 0) {
768 struct page *page;
769 int partial_cacheline_write;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
799 }
800
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
810
811 hit_slowpath = 1;
812 page_cache_get(page);
813 mutex_unlock(&dev->struct_mutex);
814
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819
820 mutex_lock(&dev->struct_mutex);
821 page_cache_release(page);
822 next_page:
823 set_page_dirty(page);
824 mark_page_accessed(page);
825 if (release_page)
826 page_cache_release(page);
827
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
836 }
837
838 out:
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
849 }
850
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
854 return ret;
855 }
856
857 /**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862 int
863 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
864 struct drm_file *file)
865 {
866 struct drm_i915_gem_pwrite *args = data;
867 struct drm_i915_gem_object *obj;
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
880 if (ret)
881 return -EFAULT;
882
883 ret = i915_mutex_lock_interruptible(dev);
884 if (ret)
885 return ret;
886
887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888 if (&obj->base == NULL) {
889 ret = -ENOENT;
890 goto unlock;
891 }
892
893 /* Bounds check destination. */
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
910 ret = -EFAULT;
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
917 if (obj->phys_obj) {
918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
919 goto out;
920 }
921
922 if (obj->gtt_space &&
923 obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->map_and_fenceable &&
926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
931 }
932
933 if (ret == -EFAULT)
934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937 drm_gem_object_unreference(&obj->base);
938 unlock:
939 mutex_unlock(&dev->struct_mutex);
940 return ret;
941 }
942
943 /**
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
946 */
947 int
948 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
949 struct drm_file *file)
950 {
951 struct drm_i915_gem_set_domain *args = data;
952 struct drm_i915_gem_object *obj;
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
955 int ret;
956
957 /* Only handle setting domains to types used by the CPU. */
958 if (write_domain & I915_GEM_GPU_DOMAINS)
959 return -EINVAL;
960
961 if (read_domains & I915_GEM_GPU_DOMAINS)
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
970 ret = i915_mutex_lock_interruptible(dev);
971 if (ret)
972 return ret;
973
974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
975 if (&obj->base == NULL) {
976 ret = -ENOENT;
977 goto unlock;
978 }
979
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
989 } else {
990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
991 }
992
993 drm_gem_object_unreference(&obj->base);
994 unlock:
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997 }
998
999 /**
1000 * Called when user space has done writes to this buffer
1001 */
1002 int
1003 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1004 struct drm_file *file)
1005 {
1006 struct drm_i915_gem_sw_finish *args = data;
1007 struct drm_i915_gem_object *obj;
1008 int ret = 0;
1009
1010 ret = i915_mutex_lock_interruptible(dev);
1011 if (ret)
1012 return ret;
1013
1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1015 if (&obj->base == NULL) {
1016 ret = -ENOENT;
1017 goto unlock;
1018 }
1019
1020 /* Pinned buffers may be scanout, so flush the cache */
1021 if (obj->pin_count)
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
1024 drm_gem_object_unreference(&obj->base);
1025 unlock:
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028 }
1029
1030 /**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037 int
1038 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1039 struct drm_file *file)
1040 {
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
1043 unsigned long addr;
1044
1045 obj = drm_gem_object_lookup(dev, file, args->handle);
1046 if (obj == NULL)
1047 return -ENOENT;
1048
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
1057 addr = vm_mmap(obj->filp, 0, args->size,
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
1060 drm_gem_object_unreference_unlocked(obj);
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067 }
1068
1069 /**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086 {
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
1089 drm_i915_private_t *dev_priv = dev->dev_private;
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
1102
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
1105 /* Now bind it into the GTT if needed */
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
1110 }
1111 if (!obj->gtt_space) {
1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1113 if (ret)
1114 goto unlock;
1115
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
1120
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
1124 ret = i915_gem_object_get_fence(obj);
1125 if (ret)
1126 goto unlock;
1127
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1130
1131 obj->fault_mappable = true;
1132
1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1138 unlock:
1139 mutex_unlock(&dev->struct_mutex);
1140 out:
1141 switch (ret) {
1142 case -EIO:
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
1148 case -EAGAIN:
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
1156 set_need_resched();
1157 case 0:
1158 case -ERESTARTSYS:
1159 case -EINTR:
1160 return VM_FAULT_NOPAGE;
1161 case -ENOMEM:
1162 return VM_FAULT_OOM;
1163 default:
1164 return VM_FAULT_SIGBUS;
1165 }
1166 }
1167
1168 /**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
1172 * Preserve the reservation of the mmapping with the DRM core code, but
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
1182 void
1183 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1184 {
1185 if (!obj->fault_mappable)
1186 return;
1187
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
1192
1193 obj->fault_mappable = false;
1194 }
1195
1196 static uint32_t
1197 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1198 {
1199 uint32_t gtt_size;
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
1207 gtt_size = 1024*1024;
1208 else
1209 gtt_size = 512*1024;
1210
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
1213
1214 return gtt_size;
1215 }
1216
1217 /**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
1222 * potential fence register mapping.
1223 */
1224 static uint32_t
1225 i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
1228 {
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
1233 if (INTEL_INFO(dev)->gen >= 4 ||
1234 tiling_mode == I915_TILING_NONE)
1235 return 4096;
1236
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1242 }
1243
1244 /**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
1254 uint32_t
1255 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
1258 {
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1263 tiling_mode == I915_TILING_NONE)
1264 return 4096;
1265
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
1269 */
1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1271 }
1272
1273 int
1274 i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
1278 {
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 struct drm_i915_gem_object *obj;
1281 int ret;
1282
1283 ret = i915_mutex_lock_interruptible(dev);
1284 if (ret)
1285 return ret;
1286
1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1288 if (&obj->base == NULL) {
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
1292
1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1294 ret = -E2BIG;
1295 goto out;
1296 }
1297
1298 if (obj->madv != I915_MADV_WILLNEED) {
1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1300 ret = -EINVAL;
1301 goto out;
1302 }
1303
1304 if (!obj->base.map_list.map) {
1305 ret = drm_gem_create_mmap_offset(&obj->base);
1306 if (ret)
1307 goto out;
1308 }
1309
1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1311
1312 out:
1313 drm_gem_object_unreference(&obj->base);
1314 unlock:
1315 mutex_unlock(&dev->struct_mutex);
1316 return ret;
1317 }
1318
1319 /**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334 int
1335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337 {
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341 }
1342
1343 int
1344 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1345 gfp_t gfpmask)
1346 {
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
1362 return -ENOMEM;
1363
1364 inode = obj->base.filp->f_path.dentry->d_inode;
1365 mapping = inode->i_mapping;
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
1368 for (i = 0; i < page_count; i++) {
1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
1373 obj->pages[i] = page;
1374 }
1375
1376 if (i915_gem_object_needs_bit17_swizzle(obj))
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381 err_pages:
1382 while (i--)
1383 page_cache_release(obj->pages[i]);
1384
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
1387 return PTR_ERR(page);
1388 }
1389
1390 static void
1391 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1392 {
1393 int page_count = obj->base.size / PAGE_SIZE;
1394 int i;
1395
1396 if (!obj->pages)
1397 return;
1398
1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
1400
1401 if (i915_gem_object_needs_bit17_swizzle(obj))
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
1406
1407 for (i = 0; i < page_count; i++) {
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
1410
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
1413
1414 page_cache_release(obj->pages[i]);
1415 }
1416 obj->dirty = 0;
1417
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
1420 }
1421
1422 void
1423 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
1426 {
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429
1430 BUG_ON(ring == NULL);
1431 obj->ring = ring;
1432
1433 /* Add a reference if we're newly entering the active list. */
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
1437 }
1438
1439 /* Move from whatever list we were on to the tail of execution. */
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
1442
1443 obj->last_read_seqno = seqno;
1444
1445 if (obj->fenced_gpu_access) {
1446 obj->last_fenced_seqno = seqno;
1447
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
1456 }
1457 }
1458
1459 static void
1460 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1461 {
1462 struct drm_device *dev = obj->base.dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464
1465 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1466
1467 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1468 BUG_ON(!obj->active);
1469
1470 list_del_init(&obj->ring_list);
1471 obj->ring = NULL;
1472
1473 obj->last_read_seqno = 0;
1474 obj->last_write_seqno = 0;
1475 obj->base.write_domain = 0;
1476
1477 obj->last_fenced_seqno = 0;
1478 obj->fenced_gpu_access = false;
1479
1480 obj->active = 0;
1481 drm_gem_object_unreference(&obj->base);
1482
1483 WARN_ON(i915_verify_lists(dev));
1484 }
1485
1486 /* Immediately discard the backing storage */
1487 static void
1488 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1489 {
1490 struct inode *inode;
1491
1492 /* Our goal here is to return as much of the memory as
1493 * is possible back to the system as we are called from OOM.
1494 * To do this we must instruct the shmfs to drop all of its
1495 * backing pages, *now*.
1496 */
1497 inode = obj->base.filp->f_path.dentry->d_inode;
1498 shmem_truncate_range(inode, 0, (loff_t)-1);
1499
1500 if (obj->base.map_list.map)
1501 drm_gem_free_mmap_offset(&obj->base);
1502
1503 obj->madv = __I915_MADV_PURGED;
1504 }
1505
1506 static inline int
1507 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1508 {
1509 return obj->madv == I915_MADV_DONTNEED;
1510 }
1511
1512 static u32
1513 i915_gem_get_seqno(struct drm_device *dev)
1514 {
1515 drm_i915_private_t *dev_priv = dev->dev_private;
1516 u32 seqno = dev_priv->next_seqno;
1517
1518 /* reserve 0 for non-seqno */
1519 if (++dev_priv->next_seqno == 0)
1520 dev_priv->next_seqno = 1;
1521
1522 return seqno;
1523 }
1524
1525 u32
1526 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1527 {
1528 if (ring->outstanding_lazy_request == 0)
1529 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1530
1531 return ring->outstanding_lazy_request;
1532 }
1533
1534 int
1535 i915_add_request(struct intel_ring_buffer *ring,
1536 struct drm_file *file,
1537 struct drm_i915_gem_request *request)
1538 {
1539 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1540 uint32_t seqno;
1541 u32 request_ring_position;
1542 int was_empty;
1543 int ret;
1544
1545 /*
1546 * Emit any outstanding flushes - execbuf can fail to emit the flush
1547 * after having emitted the batchbuffer command. Hence we need to fix
1548 * things up similar to emitting the lazy request. The difference here
1549 * is that the flush _must_ happen before the next request, no matter
1550 * what.
1551 */
1552 if (ring->gpu_caches_dirty) {
1553 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1554 if (ret)
1555 return ret;
1556
1557 ring->gpu_caches_dirty = false;
1558 }
1559
1560 if (request == NULL) {
1561 request = kmalloc(sizeof(*request), GFP_KERNEL);
1562 if (request == NULL)
1563 return -ENOMEM;
1564 }
1565
1566 seqno = i915_gem_next_request_seqno(ring);
1567
1568 /* Record the position of the start of the request so that
1569 * should we detect the updated seqno part-way through the
1570 * GPU processing the request, we never over-estimate the
1571 * position of the head.
1572 */
1573 request_ring_position = intel_ring_get_tail(ring);
1574
1575 ret = ring->add_request(ring, &seqno);
1576 if (ret) {
1577 kfree(request);
1578 return ret;
1579 }
1580
1581 trace_i915_gem_request_add(ring, seqno);
1582
1583 request->seqno = seqno;
1584 request->ring = ring;
1585 request->tail = request_ring_position;
1586 request->emitted_jiffies = jiffies;
1587 was_empty = list_empty(&ring->request_list);
1588 list_add_tail(&request->list, &ring->request_list);
1589 request->file_priv = NULL;
1590
1591 if (file) {
1592 struct drm_i915_file_private *file_priv = file->driver_priv;
1593
1594 spin_lock(&file_priv->mm.lock);
1595 request->file_priv = file_priv;
1596 list_add_tail(&request->client_list,
1597 &file_priv->mm.request_list);
1598 spin_unlock(&file_priv->mm.lock);
1599 }
1600
1601 ring->outstanding_lazy_request = 0;
1602
1603 if (!dev_priv->mm.suspended) {
1604 if (i915_enable_hangcheck) {
1605 mod_timer(&dev_priv->hangcheck_timer,
1606 jiffies +
1607 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1608 }
1609 if (was_empty)
1610 queue_delayed_work(dev_priv->wq,
1611 &dev_priv->mm.retire_work, HZ);
1612 }
1613
1614 return 0;
1615 }
1616
1617 static inline void
1618 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1619 {
1620 struct drm_i915_file_private *file_priv = request->file_priv;
1621
1622 if (!file_priv)
1623 return;
1624
1625 spin_lock(&file_priv->mm.lock);
1626 if (request->file_priv) {
1627 list_del(&request->client_list);
1628 request->file_priv = NULL;
1629 }
1630 spin_unlock(&file_priv->mm.lock);
1631 }
1632
1633 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1634 struct intel_ring_buffer *ring)
1635 {
1636 while (!list_empty(&ring->request_list)) {
1637 struct drm_i915_gem_request *request;
1638
1639 request = list_first_entry(&ring->request_list,
1640 struct drm_i915_gem_request,
1641 list);
1642
1643 list_del(&request->list);
1644 i915_gem_request_remove_from_client(request);
1645 kfree(request);
1646 }
1647
1648 while (!list_empty(&ring->active_list)) {
1649 struct drm_i915_gem_object *obj;
1650
1651 obj = list_first_entry(&ring->active_list,
1652 struct drm_i915_gem_object,
1653 ring_list);
1654
1655 i915_gem_object_move_to_inactive(obj);
1656 }
1657 }
1658
1659 static void i915_gem_reset_fences(struct drm_device *dev)
1660 {
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 int i;
1663
1664 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1665 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1666
1667 i915_gem_write_fence(dev, i, NULL);
1668
1669 if (reg->obj)
1670 i915_gem_object_fence_lost(reg->obj);
1671
1672 reg->pin_count = 0;
1673 reg->obj = NULL;
1674 INIT_LIST_HEAD(&reg->lru_list);
1675 }
1676
1677 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1678 }
1679
1680 void i915_gem_reset(struct drm_device *dev)
1681 {
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683 struct drm_i915_gem_object *obj;
1684 struct intel_ring_buffer *ring;
1685 int i;
1686
1687 for_each_ring(ring, dev_priv, i)
1688 i915_gem_reset_ring_lists(dev_priv, ring);
1689
1690 /* Move everything out of the GPU domains to ensure we do any
1691 * necessary invalidation upon reuse.
1692 */
1693 list_for_each_entry(obj,
1694 &dev_priv->mm.inactive_list,
1695 mm_list)
1696 {
1697 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1698 }
1699
1700 /* The fence registers are invalidated so clear them out */
1701 i915_gem_reset_fences(dev);
1702 }
1703
1704 /**
1705 * This function clears the request list as sequence numbers are passed.
1706 */
1707 void
1708 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1709 {
1710 uint32_t seqno;
1711 int i;
1712
1713 if (list_empty(&ring->request_list))
1714 return;
1715
1716 WARN_ON(i915_verify_lists(ring->dev));
1717
1718 seqno = ring->get_seqno(ring);
1719
1720 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1721 if (seqno >= ring->sync_seqno[i])
1722 ring->sync_seqno[i] = 0;
1723
1724 while (!list_empty(&ring->request_list)) {
1725 struct drm_i915_gem_request *request;
1726
1727 request = list_first_entry(&ring->request_list,
1728 struct drm_i915_gem_request,
1729 list);
1730
1731 if (!i915_seqno_passed(seqno, request->seqno))
1732 break;
1733
1734 trace_i915_gem_request_retire(ring, request->seqno);
1735 /* We know the GPU must have read the request to have
1736 * sent us the seqno + interrupt, so use the position
1737 * of tail of the request to update the last known position
1738 * of the GPU head.
1739 */
1740 ring->last_retired_head = request->tail;
1741
1742 list_del(&request->list);
1743 i915_gem_request_remove_from_client(request);
1744 kfree(request);
1745 }
1746
1747 /* Move any buffers on the active list that are no longer referenced
1748 * by the ringbuffer to the flushing/inactive lists as appropriate.
1749 */
1750 while (!list_empty(&ring->active_list)) {
1751 struct drm_i915_gem_object *obj;
1752
1753 obj = list_first_entry(&ring->active_list,
1754 struct drm_i915_gem_object,
1755 ring_list);
1756
1757 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1758 break;
1759
1760 i915_gem_object_move_to_inactive(obj);
1761 }
1762
1763 if (unlikely(ring->trace_irq_seqno &&
1764 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1765 ring->irq_put(ring);
1766 ring->trace_irq_seqno = 0;
1767 }
1768
1769 WARN_ON(i915_verify_lists(ring->dev));
1770 }
1771
1772 void
1773 i915_gem_retire_requests(struct drm_device *dev)
1774 {
1775 drm_i915_private_t *dev_priv = dev->dev_private;
1776 struct intel_ring_buffer *ring;
1777 int i;
1778
1779 for_each_ring(ring, dev_priv, i)
1780 i915_gem_retire_requests_ring(ring);
1781 }
1782
1783 static void
1784 i915_gem_retire_work_handler(struct work_struct *work)
1785 {
1786 drm_i915_private_t *dev_priv;
1787 struct drm_device *dev;
1788 struct intel_ring_buffer *ring;
1789 bool idle;
1790 int i;
1791
1792 dev_priv = container_of(work, drm_i915_private_t,
1793 mm.retire_work.work);
1794 dev = dev_priv->dev;
1795
1796 /* Come back later if the device is busy... */
1797 if (!mutex_trylock(&dev->struct_mutex)) {
1798 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1799 return;
1800 }
1801
1802 i915_gem_retire_requests(dev);
1803
1804 /* Send a periodic flush down the ring so we don't hold onto GEM
1805 * objects indefinitely.
1806 */
1807 idle = true;
1808 for_each_ring(ring, dev_priv, i) {
1809 if (ring->gpu_caches_dirty)
1810 i915_add_request(ring, NULL, NULL);
1811
1812 idle &= list_empty(&ring->request_list);
1813 }
1814
1815 if (!dev_priv->mm.suspended && !idle)
1816 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817
1818 mutex_unlock(&dev->struct_mutex);
1819 }
1820
1821 int
1822 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1823 bool interruptible)
1824 {
1825 if (atomic_read(&dev_priv->mm.wedged)) {
1826 struct completion *x = &dev_priv->error_completion;
1827 bool recovery_complete;
1828 unsigned long flags;
1829
1830 /* Give the error handler a chance to run. */
1831 spin_lock_irqsave(&x->wait.lock, flags);
1832 recovery_complete = x->done > 0;
1833 spin_unlock_irqrestore(&x->wait.lock, flags);
1834
1835 /* Non-interruptible callers can't handle -EAGAIN, hence return
1836 * -EIO unconditionally for these. */
1837 if (!interruptible)
1838 return -EIO;
1839
1840 /* Recovery complete, but still wedged means reset failure. */
1841 if (recovery_complete)
1842 return -EIO;
1843
1844 return -EAGAIN;
1845 }
1846
1847 return 0;
1848 }
1849
1850 /*
1851 * Compare seqno against outstanding lazy request. Emit a request if they are
1852 * equal.
1853 */
1854 static int
1855 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1856 {
1857 int ret;
1858
1859 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1860
1861 ret = 0;
1862 if (seqno == ring->outstanding_lazy_request)
1863 ret = i915_add_request(ring, NULL, NULL);
1864
1865 return ret;
1866 }
1867
1868 /**
1869 * __wait_seqno - wait until execution of seqno has finished
1870 * @ring: the ring expected to report seqno
1871 * @seqno: duh!
1872 * @interruptible: do an interruptible wait (normally yes)
1873 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1874 *
1875 * Returns 0 if the seqno was found within the alloted time. Else returns the
1876 * errno with remaining time filled in timeout argument.
1877 */
1878 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1879 bool interruptible, struct timespec *timeout)
1880 {
1881 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1882 struct timespec before, now, wait_time={1,0};
1883 unsigned long timeout_jiffies;
1884 long end;
1885 bool wait_forever = true;
1886 int ret;
1887
1888 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1889 return 0;
1890
1891 trace_i915_gem_request_wait_begin(ring, seqno);
1892
1893 if (timeout != NULL) {
1894 wait_time = *timeout;
1895 wait_forever = false;
1896 }
1897
1898 timeout_jiffies = timespec_to_jiffies(&wait_time);
1899
1900 if (WARN_ON(!ring->irq_get(ring)))
1901 return -ENODEV;
1902
1903 /* Record current time in case interrupted by signal, or wedged * */
1904 getrawmonotonic(&before);
1905
1906 #define EXIT_COND \
1907 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1908 atomic_read(&dev_priv->mm.wedged))
1909 do {
1910 if (interruptible)
1911 end = wait_event_interruptible_timeout(ring->irq_queue,
1912 EXIT_COND,
1913 timeout_jiffies);
1914 else
1915 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1916 timeout_jiffies);
1917
1918 ret = i915_gem_check_wedge(dev_priv, interruptible);
1919 if (ret)
1920 end = ret;
1921 } while (end == 0 && wait_forever);
1922
1923 getrawmonotonic(&now);
1924
1925 ring->irq_put(ring);
1926 trace_i915_gem_request_wait_end(ring, seqno);
1927 #undef EXIT_COND
1928
1929 if (timeout) {
1930 struct timespec sleep_time = timespec_sub(now, before);
1931 *timeout = timespec_sub(*timeout, sleep_time);
1932 }
1933
1934 switch (end) {
1935 case -EIO:
1936 case -EAGAIN: /* Wedged */
1937 case -ERESTARTSYS: /* Signal */
1938 return (int)end;
1939 case 0: /* Timeout */
1940 if (timeout)
1941 set_normalized_timespec(timeout, 0, 0);
1942 return -ETIME;
1943 default: /* Completed */
1944 WARN_ON(end < 0); /* We're not aware of other errors */
1945 return 0;
1946 }
1947 }
1948
1949 /**
1950 * Waits for a sequence number to be signaled, and cleans up the
1951 * request and object lists appropriately for that event.
1952 */
1953 int
1954 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1955 {
1956 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1957 int ret = 0;
1958
1959 BUG_ON(seqno == 0);
1960
1961 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1962 if (ret)
1963 return ret;
1964
1965 ret = i915_gem_check_olr(ring, seqno);
1966 if (ret)
1967 return ret;
1968
1969 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
1970
1971 return ret;
1972 }
1973
1974 /**
1975 * Ensures that all rendering to the object has completed and the object is
1976 * safe to unbind from the GTT or access from the CPU.
1977 */
1978 static __must_check int
1979 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1980 bool readonly)
1981 {
1982 u32 seqno;
1983 int ret;
1984
1985 /* If there is rendering queued on the buffer being evicted, wait for
1986 * it.
1987 */
1988 if (readonly)
1989 seqno = obj->last_write_seqno;
1990 else
1991 seqno = obj->last_read_seqno;
1992 if (seqno == 0)
1993 return 0;
1994
1995 ret = i915_wait_seqno(obj->ring, seqno);
1996 if (ret)
1997 return ret;
1998
1999 /* Manually manage the write flush as we may have not yet retired
2000 * the buffer.
2001 */
2002 if (obj->last_write_seqno &&
2003 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2004 obj->last_write_seqno = 0;
2005 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
2006 }
2007
2008 i915_gem_retire_requests_ring(obj->ring);
2009 return 0;
2010 }
2011
2012 /**
2013 * Ensures that an object will eventually get non-busy by flushing any required
2014 * write domains, emitting any outstanding lazy request and retiring and
2015 * completed requests.
2016 */
2017 static int
2018 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2019 {
2020 int ret;
2021
2022 if (obj->active) {
2023 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2024 if (ret)
2025 return ret;
2026
2027 i915_gem_retire_requests_ring(obj->ring);
2028 }
2029
2030 return 0;
2031 }
2032
2033 /**
2034 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2035 * @DRM_IOCTL_ARGS: standard ioctl arguments
2036 *
2037 * Returns 0 if successful, else an error is returned with the remaining time in
2038 * the timeout parameter.
2039 * -ETIME: object is still busy after timeout
2040 * -ERESTARTSYS: signal interrupted the wait
2041 * -ENONENT: object doesn't exist
2042 * Also possible, but rare:
2043 * -EAGAIN: GPU wedged
2044 * -ENOMEM: damn
2045 * -ENODEV: Internal IRQ fail
2046 * -E?: The add request failed
2047 *
2048 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2049 * non-zero timeout parameter the wait ioctl will wait for the given number of
2050 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2051 * without holding struct_mutex the object may become re-busied before this
2052 * function completes. A similar but shorter * race condition exists in the busy
2053 * ioctl
2054 */
2055 int
2056 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2057 {
2058 struct drm_i915_gem_wait *args = data;
2059 struct drm_i915_gem_object *obj;
2060 struct intel_ring_buffer *ring = NULL;
2061 struct timespec timeout_stack, *timeout = NULL;
2062 u32 seqno = 0;
2063 int ret = 0;
2064
2065 if (args->timeout_ns >= 0) {
2066 timeout_stack = ns_to_timespec(args->timeout_ns);
2067 timeout = &timeout_stack;
2068 }
2069
2070 ret = i915_mutex_lock_interruptible(dev);
2071 if (ret)
2072 return ret;
2073
2074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2075 if (&obj->base == NULL) {
2076 mutex_unlock(&dev->struct_mutex);
2077 return -ENOENT;
2078 }
2079
2080 /* Need to make sure the object gets inactive eventually. */
2081 ret = i915_gem_object_flush_active(obj);
2082 if (ret)
2083 goto out;
2084
2085 if (obj->active) {
2086 seqno = obj->last_read_seqno;
2087 ring = obj->ring;
2088 }
2089
2090 if (seqno == 0)
2091 goto out;
2092
2093 /* Do this after OLR check to make sure we make forward progress polling
2094 * on this IOCTL with a 0 timeout (like busy ioctl)
2095 */
2096 if (!args->timeout_ns) {
2097 ret = -ETIME;
2098 goto out;
2099 }
2100
2101 drm_gem_object_unreference(&obj->base);
2102 mutex_unlock(&dev->struct_mutex);
2103
2104 ret = __wait_seqno(ring, seqno, true, timeout);
2105 if (timeout) {
2106 WARN_ON(!timespec_valid(timeout));
2107 args->timeout_ns = timespec_to_ns(timeout);
2108 }
2109 return ret;
2110
2111 out:
2112 drm_gem_object_unreference(&obj->base);
2113 mutex_unlock(&dev->struct_mutex);
2114 return ret;
2115 }
2116
2117 /**
2118 * i915_gem_object_sync - sync an object to a ring.
2119 *
2120 * @obj: object which may be in use on another ring.
2121 * @to: ring we wish to use the object on. May be NULL.
2122 *
2123 * This code is meant to abstract object synchronization with the GPU.
2124 * Calling with NULL implies synchronizing the object with the CPU
2125 * rather than a particular GPU ring.
2126 *
2127 * Returns 0 if successful, else propagates up the lower layer error.
2128 */
2129 int
2130 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2131 struct intel_ring_buffer *to)
2132 {
2133 struct intel_ring_buffer *from = obj->ring;
2134 u32 seqno;
2135 int ret, idx;
2136
2137 if (from == NULL || to == from)
2138 return 0;
2139
2140 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2141 return i915_gem_object_wait_rendering(obj, false);
2142
2143 idx = intel_ring_sync_index(from, to);
2144
2145 seqno = obj->last_read_seqno;
2146 if (seqno <= from->sync_seqno[idx])
2147 return 0;
2148
2149 ret = i915_gem_check_olr(obj->ring, seqno);
2150 if (ret)
2151 return ret;
2152
2153 ret = to->sync_to(to, from, seqno);
2154 if (!ret)
2155 from->sync_seqno[idx] = seqno;
2156
2157 return ret;
2158 }
2159
2160 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2161 {
2162 u32 old_write_domain, old_read_domains;
2163
2164 /* Act a barrier for all accesses through the GTT */
2165 mb();
2166
2167 /* Force a pagefault for domain tracking on next user access */
2168 i915_gem_release_mmap(obj);
2169
2170 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2171 return;
2172
2173 old_read_domains = obj->base.read_domains;
2174 old_write_domain = obj->base.write_domain;
2175
2176 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2177 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2178
2179 trace_i915_gem_object_change_domain(obj,
2180 old_read_domains,
2181 old_write_domain);
2182 }
2183
2184 /**
2185 * Unbinds an object from the GTT aperture.
2186 */
2187 int
2188 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2189 {
2190 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2191 int ret = 0;
2192
2193 if (obj->gtt_space == NULL)
2194 return 0;
2195
2196 if (obj->pin_count)
2197 return -EBUSY;
2198
2199 ret = i915_gem_object_finish_gpu(obj);
2200 if (ret)
2201 return ret;
2202 /* Continue on if we fail due to EIO, the GPU is hung so we
2203 * should be safe and we need to cleanup or else we might
2204 * cause memory corruption through use-after-free.
2205 */
2206
2207 i915_gem_object_finish_gtt(obj);
2208
2209 /* Move the object to the CPU domain to ensure that
2210 * any possible CPU writes while it's not in the GTT
2211 * are flushed when we go to remap it.
2212 */
2213 if (ret == 0)
2214 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2215 if (ret == -ERESTARTSYS)
2216 return ret;
2217 if (ret) {
2218 /* In the event of a disaster, abandon all caches and
2219 * hope for the best.
2220 */
2221 i915_gem_clflush_object(obj);
2222 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2223 }
2224
2225 /* release the fence reg _after_ flushing */
2226 ret = i915_gem_object_put_fence(obj);
2227 if (ret)
2228 return ret;
2229
2230 trace_i915_gem_object_unbind(obj);
2231
2232 if (obj->has_global_gtt_mapping)
2233 i915_gem_gtt_unbind_object(obj);
2234 if (obj->has_aliasing_ppgtt_mapping) {
2235 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2236 obj->has_aliasing_ppgtt_mapping = 0;
2237 }
2238 i915_gem_gtt_finish_object(obj);
2239
2240 i915_gem_object_put_pages_gtt(obj);
2241
2242 list_del_init(&obj->gtt_list);
2243 list_del_init(&obj->mm_list);
2244 /* Avoid an unnecessary call to unbind on rebind. */
2245 obj->map_and_fenceable = true;
2246
2247 drm_mm_put_block(obj->gtt_space);
2248 obj->gtt_space = NULL;
2249 obj->gtt_offset = 0;
2250
2251 if (i915_gem_object_is_purgeable(obj))
2252 i915_gem_object_truncate(obj);
2253
2254 return ret;
2255 }
2256
2257 int
2258 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2259 uint32_t invalidate_domains,
2260 uint32_t flush_domains)
2261 {
2262 int ret;
2263
2264 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2265 return 0;
2266
2267 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2268
2269 ret = ring->flush(ring, invalidate_domains, flush_domains);
2270 if (ret)
2271 return ret;
2272
2273 return 0;
2274 }
2275
2276 static int i915_ring_idle(struct intel_ring_buffer *ring)
2277 {
2278 if (list_empty(&ring->active_list))
2279 return 0;
2280
2281 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2282 }
2283
2284 int i915_gpu_idle(struct drm_device *dev)
2285 {
2286 drm_i915_private_t *dev_priv = dev->dev_private;
2287 struct intel_ring_buffer *ring;
2288 int ret, i;
2289
2290 /* Flush everything onto the inactive list. */
2291 for_each_ring(ring, dev_priv, i) {
2292 ret = i915_ring_idle(ring);
2293 if (ret)
2294 return ret;
2295
2296 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2297 if (ret)
2298 return ret;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2305 struct drm_i915_gem_object *obj)
2306 {
2307 drm_i915_private_t *dev_priv = dev->dev_private;
2308 uint64_t val;
2309
2310 if (obj) {
2311 u32 size = obj->gtt_space->size;
2312
2313 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2314 0xfffff000) << 32;
2315 val |= obj->gtt_offset & 0xfffff000;
2316 val |= (uint64_t)((obj->stride / 128) - 1) <<
2317 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2318
2319 if (obj->tiling_mode == I915_TILING_Y)
2320 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2321 val |= I965_FENCE_REG_VALID;
2322 } else
2323 val = 0;
2324
2325 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2326 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2327 }
2328
2329 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2330 struct drm_i915_gem_object *obj)
2331 {
2332 drm_i915_private_t *dev_priv = dev->dev_private;
2333 uint64_t val;
2334
2335 if (obj) {
2336 u32 size = obj->gtt_space->size;
2337
2338 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2339 0xfffff000) << 32;
2340 val |= obj->gtt_offset & 0xfffff000;
2341 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2342 if (obj->tiling_mode == I915_TILING_Y)
2343 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2344 val |= I965_FENCE_REG_VALID;
2345 } else
2346 val = 0;
2347
2348 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2349 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2350 }
2351
2352 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2353 struct drm_i915_gem_object *obj)
2354 {
2355 drm_i915_private_t *dev_priv = dev->dev_private;
2356 u32 val;
2357
2358 if (obj) {
2359 u32 size = obj->gtt_space->size;
2360 int pitch_val;
2361 int tile_width;
2362
2363 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2364 (size & -size) != size ||
2365 (obj->gtt_offset & (size - 1)),
2366 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2367 obj->gtt_offset, obj->map_and_fenceable, size);
2368
2369 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2370 tile_width = 128;
2371 else
2372 tile_width = 512;
2373
2374 /* Note: pitch better be a power of two tile widths */
2375 pitch_val = obj->stride / tile_width;
2376 pitch_val = ffs(pitch_val) - 1;
2377
2378 val = obj->gtt_offset;
2379 if (obj->tiling_mode == I915_TILING_Y)
2380 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2381 val |= I915_FENCE_SIZE_BITS(size);
2382 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2383 val |= I830_FENCE_REG_VALID;
2384 } else
2385 val = 0;
2386
2387 if (reg < 8)
2388 reg = FENCE_REG_830_0 + reg * 4;
2389 else
2390 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2391
2392 I915_WRITE(reg, val);
2393 POSTING_READ(reg);
2394 }
2395
2396 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2397 struct drm_i915_gem_object *obj)
2398 {
2399 drm_i915_private_t *dev_priv = dev->dev_private;
2400 uint32_t val;
2401
2402 if (obj) {
2403 u32 size = obj->gtt_space->size;
2404 uint32_t pitch_val;
2405
2406 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2407 (size & -size) != size ||
2408 (obj->gtt_offset & (size - 1)),
2409 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2410 obj->gtt_offset, size);
2411
2412 pitch_val = obj->stride / 128;
2413 pitch_val = ffs(pitch_val) - 1;
2414
2415 val = obj->gtt_offset;
2416 if (obj->tiling_mode == I915_TILING_Y)
2417 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2418 val |= I830_FENCE_SIZE_BITS(size);
2419 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2420 val |= I830_FENCE_REG_VALID;
2421 } else
2422 val = 0;
2423
2424 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2425 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2426 }
2427
2428 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2429 struct drm_i915_gem_object *obj)
2430 {
2431 switch (INTEL_INFO(dev)->gen) {
2432 case 7:
2433 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2434 case 5:
2435 case 4: i965_write_fence_reg(dev, reg, obj); break;
2436 case 3: i915_write_fence_reg(dev, reg, obj); break;
2437 case 2: i830_write_fence_reg(dev, reg, obj); break;
2438 default: break;
2439 }
2440 }
2441
2442 static inline int fence_number(struct drm_i915_private *dev_priv,
2443 struct drm_i915_fence_reg *fence)
2444 {
2445 return fence - dev_priv->fence_regs;
2446 }
2447
2448 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2449 struct drm_i915_fence_reg *fence,
2450 bool enable)
2451 {
2452 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2453 int reg = fence_number(dev_priv, fence);
2454
2455 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2456
2457 if (enable) {
2458 obj->fence_reg = reg;
2459 fence->obj = obj;
2460 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2461 } else {
2462 obj->fence_reg = I915_FENCE_REG_NONE;
2463 fence->obj = NULL;
2464 list_del_init(&fence->lru_list);
2465 }
2466 }
2467
2468 static int
2469 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2470 {
2471 if (obj->last_fenced_seqno) {
2472 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2473 if (ret)
2474 return ret;
2475
2476 obj->last_fenced_seqno = 0;
2477 }
2478
2479 /* Ensure that all CPU reads are completed before installing a fence
2480 * and all writes before removing the fence.
2481 */
2482 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2483 mb();
2484
2485 obj->fenced_gpu_access = false;
2486 return 0;
2487 }
2488
2489 int
2490 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2491 {
2492 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2493 int ret;
2494
2495 ret = i915_gem_object_flush_fence(obj);
2496 if (ret)
2497 return ret;
2498
2499 if (obj->fence_reg == I915_FENCE_REG_NONE)
2500 return 0;
2501
2502 i915_gem_object_update_fence(obj,
2503 &dev_priv->fence_regs[obj->fence_reg],
2504 false);
2505 i915_gem_object_fence_lost(obj);
2506
2507 return 0;
2508 }
2509
2510 static struct drm_i915_fence_reg *
2511 i915_find_fence_reg(struct drm_device *dev)
2512 {
2513 struct drm_i915_private *dev_priv = dev->dev_private;
2514 struct drm_i915_fence_reg *reg, *avail;
2515 int i;
2516
2517 /* First try to find a free reg */
2518 avail = NULL;
2519 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2520 reg = &dev_priv->fence_regs[i];
2521 if (!reg->obj)
2522 return reg;
2523
2524 if (!reg->pin_count)
2525 avail = reg;
2526 }
2527
2528 if (avail == NULL)
2529 return NULL;
2530
2531 /* None available, try to steal one or wait for a user to finish */
2532 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2533 if (reg->pin_count)
2534 continue;
2535
2536 return reg;
2537 }
2538
2539 return NULL;
2540 }
2541
2542 /**
2543 * i915_gem_object_get_fence - set up fencing for an object
2544 * @obj: object to map through a fence reg
2545 *
2546 * When mapping objects through the GTT, userspace wants to be able to write
2547 * to them without having to worry about swizzling if the object is tiled.
2548 * This function walks the fence regs looking for a free one for @obj,
2549 * stealing one if it can't find any.
2550 *
2551 * It then sets up the reg based on the object's properties: address, pitch
2552 * and tiling format.
2553 *
2554 * For an untiled surface, this removes any existing fence.
2555 */
2556 int
2557 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2558 {
2559 struct drm_device *dev = obj->base.dev;
2560 struct drm_i915_private *dev_priv = dev->dev_private;
2561 bool enable = obj->tiling_mode != I915_TILING_NONE;
2562 struct drm_i915_fence_reg *reg;
2563 int ret;
2564
2565 /* Have we updated the tiling parameters upon the object and so
2566 * will need to serialise the write to the associated fence register?
2567 */
2568 if (obj->fence_dirty) {
2569 ret = i915_gem_object_flush_fence(obj);
2570 if (ret)
2571 return ret;
2572 }
2573
2574 /* Just update our place in the LRU if our fence is getting reused. */
2575 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2576 reg = &dev_priv->fence_regs[obj->fence_reg];
2577 if (!obj->fence_dirty) {
2578 list_move_tail(&reg->lru_list,
2579 &dev_priv->mm.fence_list);
2580 return 0;
2581 }
2582 } else if (enable) {
2583 reg = i915_find_fence_reg(dev);
2584 if (reg == NULL)
2585 return -EDEADLK;
2586
2587 if (reg->obj) {
2588 struct drm_i915_gem_object *old = reg->obj;
2589
2590 ret = i915_gem_object_flush_fence(old);
2591 if (ret)
2592 return ret;
2593
2594 i915_gem_object_fence_lost(old);
2595 }
2596 } else
2597 return 0;
2598
2599 i915_gem_object_update_fence(obj, reg, enable);
2600 obj->fence_dirty = false;
2601
2602 return 0;
2603 }
2604
2605 /**
2606 * Finds free space in the GTT aperture and binds the object there.
2607 */
2608 static int
2609 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2610 unsigned alignment,
2611 bool map_and_fenceable)
2612 {
2613 struct drm_device *dev = obj->base.dev;
2614 drm_i915_private_t *dev_priv = dev->dev_private;
2615 struct drm_mm_node *free_space;
2616 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2617 u32 size, fence_size, fence_alignment, unfenced_alignment;
2618 bool mappable, fenceable;
2619 int ret;
2620
2621 if (obj->madv != I915_MADV_WILLNEED) {
2622 DRM_ERROR("Attempting to bind a purgeable object\n");
2623 return -EINVAL;
2624 }
2625
2626 fence_size = i915_gem_get_gtt_size(dev,
2627 obj->base.size,
2628 obj->tiling_mode);
2629 fence_alignment = i915_gem_get_gtt_alignment(dev,
2630 obj->base.size,
2631 obj->tiling_mode);
2632 unfenced_alignment =
2633 i915_gem_get_unfenced_gtt_alignment(dev,
2634 obj->base.size,
2635 obj->tiling_mode);
2636
2637 if (alignment == 0)
2638 alignment = map_and_fenceable ? fence_alignment :
2639 unfenced_alignment;
2640 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2641 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2642 return -EINVAL;
2643 }
2644
2645 size = map_and_fenceable ? fence_size : obj->base.size;
2646
2647 /* If the object is bigger than the entire aperture, reject it early
2648 * before evicting everything in a vain attempt to find space.
2649 */
2650 if (obj->base.size >
2651 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2652 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2653 return -E2BIG;
2654 }
2655
2656 search_free:
2657 if (map_and_fenceable)
2658 free_space =
2659 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2660 size, alignment,
2661 0, dev_priv->mm.gtt_mappable_end,
2662 0);
2663 else
2664 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2665 size, alignment, 0);
2666
2667 if (free_space != NULL) {
2668 if (map_and_fenceable)
2669 obj->gtt_space =
2670 drm_mm_get_block_range_generic(free_space,
2671 size, alignment, 0,
2672 0, dev_priv->mm.gtt_mappable_end,
2673 0);
2674 else
2675 obj->gtt_space =
2676 drm_mm_get_block(free_space, size, alignment);
2677 }
2678 if (obj->gtt_space == NULL) {
2679 /* If the gtt is empty and we're still having trouble
2680 * fitting our object in, we're out of memory.
2681 */
2682 ret = i915_gem_evict_something(dev, size, alignment,
2683 map_and_fenceable);
2684 if (ret)
2685 return ret;
2686
2687 goto search_free;
2688 }
2689
2690 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2691 if (ret) {
2692 drm_mm_put_block(obj->gtt_space);
2693 obj->gtt_space = NULL;
2694
2695 if (ret == -ENOMEM) {
2696 /* first try to reclaim some memory by clearing the GTT */
2697 ret = i915_gem_evict_everything(dev, false);
2698 if (ret) {
2699 /* now try to shrink everyone else */
2700 if (gfpmask) {
2701 gfpmask = 0;
2702 goto search_free;
2703 }
2704
2705 return -ENOMEM;
2706 }
2707
2708 goto search_free;
2709 }
2710
2711 return ret;
2712 }
2713
2714 ret = i915_gem_gtt_prepare_object(obj);
2715 if (ret) {
2716 i915_gem_object_put_pages_gtt(obj);
2717 drm_mm_put_block(obj->gtt_space);
2718 obj->gtt_space = NULL;
2719
2720 if (i915_gem_evict_everything(dev, false))
2721 return ret;
2722
2723 goto search_free;
2724 }
2725
2726 if (!dev_priv->mm.aliasing_ppgtt)
2727 i915_gem_gtt_bind_object(obj, obj->cache_level);
2728
2729 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2730 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2731
2732 /* Assert that the object is not currently in any GPU domain. As it
2733 * wasn't in the GTT, there shouldn't be any way it could have been in
2734 * a GPU cache
2735 */
2736 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2737 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2738
2739 obj->gtt_offset = obj->gtt_space->start;
2740
2741 fenceable =
2742 obj->gtt_space->size == fence_size &&
2743 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2744
2745 mappable =
2746 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2747
2748 obj->map_and_fenceable = mappable && fenceable;
2749
2750 trace_i915_gem_object_bind(obj, map_and_fenceable);
2751 return 0;
2752 }
2753
2754 void
2755 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2756 {
2757 /* If we don't have a page list set up, then we're not pinned
2758 * to GPU, and we can ignore the cache flush because it'll happen
2759 * again at bind time.
2760 */
2761 if (obj->pages == NULL)
2762 return;
2763
2764 /* If the GPU is snooping the contents of the CPU cache,
2765 * we do not need to manually clear the CPU cache lines. However,
2766 * the caches are only snooped when the render cache is
2767 * flushed/invalidated. As we always have to emit invalidations
2768 * and flushes when moving into and out of the RENDER domain, correct
2769 * snooping behaviour occurs naturally as the result of our domain
2770 * tracking.
2771 */
2772 if (obj->cache_level != I915_CACHE_NONE)
2773 return;
2774
2775 trace_i915_gem_object_clflush(obj);
2776
2777 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2778 }
2779
2780 /** Flushes the GTT write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2783 {
2784 uint32_t old_write_domain;
2785
2786 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2787 return;
2788
2789 /* No actual flushing is required for the GTT write domain. Writes
2790 * to it immediately go to main memory as far as we know, so there's
2791 * no chipset flush. It also doesn't land in render cache.
2792 *
2793 * However, we do have to enforce the order so that all writes through
2794 * the GTT land before any writes to the device, such as updates to
2795 * the GATT itself.
2796 */
2797 wmb();
2798
2799 old_write_domain = obj->base.write_domain;
2800 obj->base.write_domain = 0;
2801
2802 trace_i915_gem_object_change_domain(obj,
2803 obj->base.read_domains,
2804 old_write_domain);
2805 }
2806
2807 /** Flushes the CPU write domain for the object if it's dirty. */
2808 static void
2809 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2810 {
2811 uint32_t old_write_domain;
2812
2813 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2814 return;
2815
2816 i915_gem_clflush_object(obj);
2817 intel_gtt_chipset_flush();
2818 old_write_domain = obj->base.write_domain;
2819 obj->base.write_domain = 0;
2820
2821 trace_i915_gem_object_change_domain(obj,
2822 obj->base.read_domains,
2823 old_write_domain);
2824 }
2825
2826 /**
2827 * Moves a single object to the GTT read, and possibly write domain.
2828 *
2829 * This function returns when the move is complete, including waiting on
2830 * flushes to occur.
2831 */
2832 int
2833 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2834 {
2835 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2836 uint32_t old_write_domain, old_read_domains;
2837 int ret;
2838
2839 /* Not valid to be called on unbound objects. */
2840 if (obj->gtt_space == NULL)
2841 return -EINVAL;
2842
2843 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2844 return 0;
2845
2846 ret = i915_gem_object_wait_rendering(obj, !write);
2847 if (ret)
2848 return ret;
2849
2850 i915_gem_object_flush_cpu_write_domain(obj);
2851
2852 old_write_domain = obj->base.write_domain;
2853 old_read_domains = obj->base.read_domains;
2854
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2857 */
2858 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2859 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2860 if (write) {
2861 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2862 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2863 obj->dirty = 1;
2864 }
2865
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
2868 old_write_domain);
2869
2870 /* And bump the LRU for this access */
2871 if (i915_gem_object_is_inactive(obj))
2872 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2873
2874 return 0;
2875 }
2876
2877 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2878 enum i915_cache_level cache_level)
2879 {
2880 struct drm_device *dev = obj->base.dev;
2881 drm_i915_private_t *dev_priv = dev->dev_private;
2882 int ret;
2883
2884 if (obj->cache_level == cache_level)
2885 return 0;
2886
2887 if (obj->pin_count) {
2888 DRM_DEBUG("can not change the cache level of pinned objects\n");
2889 return -EBUSY;
2890 }
2891
2892 if (obj->gtt_space) {
2893 ret = i915_gem_object_finish_gpu(obj);
2894 if (ret)
2895 return ret;
2896
2897 i915_gem_object_finish_gtt(obj);
2898
2899 /* Before SandyBridge, you could not use tiling or fence
2900 * registers with snooped memory, so relinquish any fences
2901 * currently pointing to our region in the aperture.
2902 */
2903 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2904 ret = i915_gem_object_put_fence(obj);
2905 if (ret)
2906 return ret;
2907 }
2908
2909 if (obj->has_global_gtt_mapping)
2910 i915_gem_gtt_bind_object(obj, cache_level);
2911 if (obj->has_aliasing_ppgtt_mapping)
2912 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2913 obj, cache_level);
2914 }
2915
2916 if (cache_level == I915_CACHE_NONE) {
2917 u32 old_read_domains, old_write_domain;
2918
2919 /* If we're coming from LLC cached, then we haven't
2920 * actually been tracking whether the data is in the
2921 * CPU cache or not, since we only allow one bit set
2922 * in obj->write_domain and have been skipping the clflushes.
2923 * Just set it to the CPU cache for now.
2924 */
2925 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2926 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2927
2928 old_read_domains = obj->base.read_domains;
2929 old_write_domain = obj->base.write_domain;
2930
2931 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2932 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2933
2934 trace_i915_gem_object_change_domain(obj,
2935 old_read_domains,
2936 old_write_domain);
2937 }
2938
2939 obj->cache_level = cache_level;
2940 return 0;
2941 }
2942
2943 /*
2944 * Prepare buffer for display plane (scanout, cursors, etc).
2945 * Can be called from an uninterruptible phase (modesetting) and allows
2946 * any flushes to be pipelined (for pageflips).
2947 */
2948 int
2949 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2950 u32 alignment,
2951 struct intel_ring_buffer *pipelined)
2952 {
2953 u32 old_read_domains, old_write_domain;
2954 int ret;
2955
2956 if (pipelined != obj->ring) {
2957 ret = i915_gem_object_sync(obj, pipelined);
2958 if (ret)
2959 return ret;
2960 }
2961
2962 /* The display engine is not coherent with the LLC cache on gen6. As
2963 * a result, we make sure that the pinning that is about to occur is
2964 * done with uncached PTEs. This is lowest common denominator for all
2965 * chipsets.
2966 *
2967 * However for gen6+, we could do better by using the GFDT bit instead
2968 * of uncaching, which would allow us to flush all the LLC-cached data
2969 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2970 */
2971 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2972 if (ret)
2973 return ret;
2974
2975 /* As the user may map the buffer once pinned in the display plane
2976 * (e.g. libkms for the bootup splash), we have to ensure that we
2977 * always use map_and_fenceable for all scanout buffers.
2978 */
2979 ret = i915_gem_object_pin(obj, alignment, true);
2980 if (ret)
2981 return ret;
2982
2983 i915_gem_object_flush_cpu_write_domain(obj);
2984
2985 old_write_domain = obj->base.write_domain;
2986 old_read_domains = obj->base.read_domains;
2987
2988 /* It should now be out of any other write domains, and we can update
2989 * the domain values for our changes.
2990 */
2991 obj->base.write_domain = 0;
2992 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2993
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
2996 old_write_domain);
2997
2998 return 0;
2999 }
3000
3001 int
3002 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3003 {
3004 int ret;
3005
3006 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3007 return 0;
3008
3009 ret = i915_gem_object_wait_rendering(obj, false);
3010 if (ret)
3011 return ret;
3012
3013 /* Ensure that we invalidate the GPU's caches and TLBs. */
3014 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3015 return 0;
3016 }
3017
3018 /**
3019 * Moves a single object to the CPU read, and possibly write domain.
3020 *
3021 * This function returns when the move is complete, including waiting on
3022 * flushes to occur.
3023 */
3024 int
3025 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3026 {
3027 uint32_t old_write_domain, old_read_domains;
3028 int ret;
3029
3030 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3031 return 0;
3032
3033 ret = i915_gem_object_wait_rendering(obj, !write);
3034 if (ret)
3035 return ret;
3036
3037 i915_gem_object_flush_gtt_write_domain(obj);
3038
3039 old_write_domain = obj->base.write_domain;
3040 old_read_domains = obj->base.read_domains;
3041
3042 /* Flush the CPU cache if it's still invalid. */
3043 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3044 i915_gem_clflush_object(obj);
3045
3046 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3047 }
3048
3049 /* It should now be out of any other write domains, and we can update
3050 * the domain values for our changes.
3051 */
3052 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3053
3054 /* If we're writing through the CPU, then the GPU read domains will
3055 * need to be invalidated at next use.
3056 */
3057 if (write) {
3058 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3059 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3060 }
3061
3062 trace_i915_gem_object_change_domain(obj,
3063 old_read_domains,
3064 old_write_domain);
3065
3066 return 0;
3067 }
3068
3069 /* Throttle our rendering by waiting until the ring has completed our requests
3070 * emitted over 20 msec ago.
3071 *
3072 * Note that if we were to use the current jiffies each time around the loop,
3073 * we wouldn't escape the function with any frames outstanding if the time to
3074 * render a frame was over 20ms.
3075 *
3076 * This should get us reasonable parallelism between CPU and GPU but also
3077 * relatively low latency when blocking on a particular request to finish.
3078 */
3079 static int
3080 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3081 {
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 struct drm_i915_file_private *file_priv = file->driver_priv;
3084 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3085 struct drm_i915_gem_request *request;
3086 struct intel_ring_buffer *ring = NULL;
3087 u32 seqno = 0;
3088 int ret;
3089
3090 if (atomic_read(&dev_priv->mm.wedged))
3091 return -EIO;
3092
3093 spin_lock(&file_priv->mm.lock);
3094 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3095 if (time_after_eq(request->emitted_jiffies, recent_enough))
3096 break;
3097
3098 ring = request->ring;
3099 seqno = request->seqno;
3100 }
3101 spin_unlock(&file_priv->mm.lock);
3102
3103 if (seqno == 0)
3104 return 0;
3105
3106 ret = __wait_seqno(ring, seqno, true, NULL);
3107 if (ret == 0)
3108 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3109
3110 return ret;
3111 }
3112
3113 int
3114 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3115 uint32_t alignment,
3116 bool map_and_fenceable)
3117 {
3118 int ret;
3119
3120 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3121
3122 if (obj->gtt_space != NULL) {
3123 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3124 (map_and_fenceable && !obj->map_and_fenceable)) {
3125 WARN(obj->pin_count,
3126 "bo is already pinned with incorrect alignment:"
3127 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3128 " obj->map_and_fenceable=%d\n",
3129 obj->gtt_offset, alignment,
3130 map_and_fenceable,
3131 obj->map_and_fenceable);
3132 ret = i915_gem_object_unbind(obj);
3133 if (ret)
3134 return ret;
3135 }
3136 }
3137
3138 if (obj->gtt_space == NULL) {
3139 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3140 map_and_fenceable);
3141 if (ret)
3142 return ret;
3143 }
3144
3145 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3146 i915_gem_gtt_bind_object(obj, obj->cache_level);
3147
3148 obj->pin_count++;
3149 obj->pin_mappable |= map_and_fenceable;
3150
3151 return 0;
3152 }
3153
3154 void
3155 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3156 {
3157 BUG_ON(obj->pin_count == 0);
3158 BUG_ON(obj->gtt_space == NULL);
3159
3160 if (--obj->pin_count == 0)
3161 obj->pin_mappable = false;
3162 }
3163
3164 int
3165 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3166 struct drm_file *file)
3167 {
3168 struct drm_i915_gem_pin *args = data;
3169 struct drm_i915_gem_object *obj;
3170 int ret;
3171
3172 ret = i915_mutex_lock_interruptible(dev);
3173 if (ret)
3174 return ret;
3175
3176 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3177 if (&obj->base == NULL) {
3178 ret = -ENOENT;
3179 goto unlock;
3180 }
3181
3182 if (obj->madv != I915_MADV_WILLNEED) {
3183 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3184 ret = -EINVAL;
3185 goto out;
3186 }
3187
3188 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3189 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3190 args->handle);
3191 ret = -EINVAL;
3192 goto out;
3193 }
3194
3195 obj->user_pin_count++;
3196 obj->pin_filp = file;
3197 if (obj->user_pin_count == 1) {
3198 ret = i915_gem_object_pin(obj, args->alignment, true);
3199 if (ret)
3200 goto out;
3201 }
3202
3203 /* XXX - flush the CPU caches for pinned objects
3204 * as the X server doesn't manage domains yet
3205 */
3206 i915_gem_object_flush_cpu_write_domain(obj);
3207 args->offset = obj->gtt_offset;
3208 out:
3209 drm_gem_object_unreference(&obj->base);
3210 unlock:
3211 mutex_unlock(&dev->struct_mutex);
3212 return ret;
3213 }
3214
3215 int
3216 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3217 struct drm_file *file)
3218 {
3219 struct drm_i915_gem_pin *args = data;
3220 struct drm_i915_gem_object *obj;
3221 int ret;
3222
3223 ret = i915_mutex_lock_interruptible(dev);
3224 if (ret)
3225 return ret;
3226
3227 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3228 if (&obj->base == NULL) {
3229 ret = -ENOENT;
3230 goto unlock;
3231 }
3232
3233 if (obj->pin_filp != file) {
3234 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3235 args->handle);
3236 ret = -EINVAL;
3237 goto out;
3238 }
3239 obj->user_pin_count--;
3240 if (obj->user_pin_count == 0) {
3241 obj->pin_filp = NULL;
3242 i915_gem_object_unpin(obj);
3243 }
3244
3245 out:
3246 drm_gem_object_unreference(&obj->base);
3247 unlock:
3248 mutex_unlock(&dev->struct_mutex);
3249 return ret;
3250 }
3251
3252 int
3253 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file)
3255 {
3256 struct drm_i915_gem_busy *args = data;
3257 struct drm_i915_gem_object *obj;
3258 int ret;
3259
3260 ret = i915_mutex_lock_interruptible(dev);
3261 if (ret)
3262 return ret;
3263
3264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3265 if (&obj->base == NULL) {
3266 ret = -ENOENT;
3267 goto unlock;
3268 }
3269
3270 /* Count all active objects as busy, even if they are currently not used
3271 * by the gpu. Users of this interface expect objects to eventually
3272 * become non-busy without any further actions, therefore emit any
3273 * necessary flushes here.
3274 */
3275 ret = i915_gem_object_flush_active(obj);
3276
3277 args->busy = obj->active;
3278 if (obj->ring) {
3279 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3280 args->busy |= intel_ring_flag(obj->ring) << 16;
3281 }
3282
3283 drm_gem_object_unreference(&obj->base);
3284 unlock:
3285 mutex_unlock(&dev->struct_mutex);
3286 return ret;
3287 }
3288
3289 int
3290 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3291 struct drm_file *file_priv)
3292 {
3293 return i915_gem_ring_throttle(dev, file_priv);
3294 }
3295
3296 int
3297 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3298 struct drm_file *file_priv)
3299 {
3300 struct drm_i915_gem_madvise *args = data;
3301 struct drm_i915_gem_object *obj;
3302 int ret;
3303
3304 switch (args->madv) {
3305 case I915_MADV_DONTNEED:
3306 case I915_MADV_WILLNEED:
3307 break;
3308 default:
3309 return -EINVAL;
3310 }
3311
3312 ret = i915_mutex_lock_interruptible(dev);
3313 if (ret)
3314 return ret;
3315
3316 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3317 if (&obj->base == NULL) {
3318 ret = -ENOENT;
3319 goto unlock;
3320 }
3321
3322 if (obj->pin_count) {
3323 ret = -EINVAL;
3324 goto out;
3325 }
3326
3327 if (obj->madv != __I915_MADV_PURGED)
3328 obj->madv = args->madv;
3329
3330 /* if the object is no longer bound, discard its backing storage */
3331 if (i915_gem_object_is_purgeable(obj) &&
3332 obj->gtt_space == NULL)
3333 i915_gem_object_truncate(obj);
3334
3335 args->retained = obj->madv != __I915_MADV_PURGED;
3336
3337 out:
3338 drm_gem_object_unreference(&obj->base);
3339 unlock:
3340 mutex_unlock(&dev->struct_mutex);
3341 return ret;
3342 }
3343
3344 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3345 size_t size)
3346 {
3347 struct drm_i915_private *dev_priv = dev->dev_private;
3348 struct drm_i915_gem_object *obj;
3349 struct address_space *mapping;
3350 u32 mask;
3351
3352 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3353 if (obj == NULL)
3354 return NULL;
3355
3356 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3357 kfree(obj);
3358 return NULL;
3359 }
3360
3361 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3362 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3363 /* 965gm cannot relocate objects above 4GiB. */
3364 mask &= ~__GFP_HIGHMEM;
3365 mask |= __GFP_DMA32;
3366 }
3367
3368 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3369 mapping_set_gfp_mask(mapping, mask);
3370
3371 i915_gem_info_add_obj(dev_priv, size);
3372
3373 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375
3376 if (HAS_LLC(dev)) {
3377 /* On some devices, we can have the GPU use the LLC (the CPU
3378 * cache) for about a 10% performance improvement
3379 * compared to uncached. Graphics requests other than
3380 * display scanout are coherent with the CPU in
3381 * accessing this cache. This means in this mode we
3382 * don't need to clflush on the CPU side, and on the
3383 * GPU side we only need to flush internal caches to
3384 * get data visible to the CPU.
3385 *
3386 * However, we maintain the display planes as UC, and so
3387 * need to rebind when first used as such.
3388 */
3389 obj->cache_level = I915_CACHE_LLC;
3390 } else
3391 obj->cache_level = I915_CACHE_NONE;
3392
3393 obj->base.driver_private = NULL;
3394 obj->fence_reg = I915_FENCE_REG_NONE;
3395 INIT_LIST_HEAD(&obj->mm_list);
3396 INIT_LIST_HEAD(&obj->gtt_list);
3397 INIT_LIST_HEAD(&obj->ring_list);
3398 INIT_LIST_HEAD(&obj->exec_list);
3399 obj->madv = I915_MADV_WILLNEED;
3400 /* Avoid an unnecessary call to unbind on the first bind. */
3401 obj->map_and_fenceable = true;
3402
3403 return obj;
3404 }
3405
3406 int i915_gem_init_object(struct drm_gem_object *obj)
3407 {
3408 BUG();
3409
3410 return 0;
3411 }
3412
3413 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3414 {
3415 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3416 struct drm_device *dev = obj->base.dev;
3417 drm_i915_private_t *dev_priv = dev->dev_private;
3418
3419 trace_i915_gem_object_destroy(obj);
3420
3421 if (gem_obj->import_attach)
3422 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3423
3424 if (obj->phys_obj)
3425 i915_gem_detach_phys_object(dev, obj);
3426
3427 obj->pin_count = 0;
3428 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3429 bool was_interruptible;
3430
3431 was_interruptible = dev_priv->mm.interruptible;
3432 dev_priv->mm.interruptible = false;
3433
3434 WARN_ON(i915_gem_object_unbind(obj));
3435
3436 dev_priv->mm.interruptible = was_interruptible;
3437 }
3438
3439 if (obj->base.map_list.map)
3440 drm_gem_free_mmap_offset(&obj->base);
3441
3442 drm_gem_object_release(&obj->base);
3443 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3444
3445 kfree(obj->bit_17);
3446 kfree(obj);
3447 }
3448
3449 int
3450 i915_gem_idle(struct drm_device *dev)
3451 {
3452 drm_i915_private_t *dev_priv = dev->dev_private;
3453 int ret;
3454
3455 mutex_lock(&dev->struct_mutex);
3456
3457 if (dev_priv->mm.suspended) {
3458 mutex_unlock(&dev->struct_mutex);
3459 return 0;
3460 }
3461
3462 ret = i915_gpu_idle(dev);
3463 if (ret) {
3464 mutex_unlock(&dev->struct_mutex);
3465 return ret;
3466 }
3467 i915_gem_retire_requests(dev);
3468
3469 /* Under UMS, be paranoid and evict. */
3470 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3471 i915_gem_evict_everything(dev, false);
3472
3473 i915_gem_reset_fences(dev);
3474
3475 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3476 * We need to replace this with a semaphore, or something.
3477 * And not confound mm.suspended!
3478 */
3479 dev_priv->mm.suspended = 1;
3480 del_timer_sync(&dev_priv->hangcheck_timer);
3481
3482 i915_kernel_lost_context(dev);
3483 i915_gem_cleanup_ringbuffer(dev);
3484
3485 mutex_unlock(&dev->struct_mutex);
3486
3487 /* Cancel the retire work handler, which should be idle now. */
3488 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3489
3490 return 0;
3491 }
3492
3493 void i915_gem_l3_remap(struct drm_device *dev)
3494 {
3495 drm_i915_private_t *dev_priv = dev->dev_private;
3496 u32 misccpctl;
3497 int i;
3498
3499 if (!IS_IVYBRIDGE(dev))
3500 return;
3501
3502 if (!dev_priv->mm.l3_remap_info)
3503 return;
3504
3505 misccpctl = I915_READ(GEN7_MISCCPCTL);
3506 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3507 POSTING_READ(GEN7_MISCCPCTL);
3508
3509 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3510 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3511 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3512 DRM_DEBUG("0x%x was already programmed to %x\n",
3513 GEN7_L3LOG_BASE + i, remap);
3514 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3515 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3516 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3517 }
3518
3519 /* Make sure all the writes land before disabling dop clock gating */
3520 POSTING_READ(GEN7_L3LOG_BASE);
3521
3522 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3523 }
3524
3525 void i915_gem_init_swizzling(struct drm_device *dev)
3526 {
3527 drm_i915_private_t *dev_priv = dev->dev_private;
3528
3529 if (INTEL_INFO(dev)->gen < 5 ||
3530 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3531 return;
3532
3533 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3534 DISP_TILE_SURFACE_SWIZZLING);
3535
3536 if (IS_GEN5(dev))
3537 return;
3538
3539 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3540 if (IS_GEN6(dev))
3541 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3542 else
3543 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3544 }
3545
3546 void i915_gem_init_ppgtt(struct drm_device *dev)
3547 {
3548 drm_i915_private_t *dev_priv = dev->dev_private;
3549 uint32_t pd_offset;
3550 struct intel_ring_buffer *ring;
3551 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3552 uint32_t __iomem *pd_addr;
3553 uint32_t pd_entry;
3554 int i;
3555
3556 if (!dev_priv->mm.aliasing_ppgtt)
3557 return;
3558
3559
3560 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3561 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3562 dma_addr_t pt_addr;
3563
3564 if (dev_priv->mm.gtt->needs_dmar)
3565 pt_addr = ppgtt->pt_dma_addr[i];
3566 else
3567 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3568
3569 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3570 pd_entry |= GEN6_PDE_VALID;
3571
3572 writel(pd_entry, pd_addr + i);
3573 }
3574 readl(pd_addr);
3575
3576 pd_offset = ppgtt->pd_offset;
3577 pd_offset /= 64; /* in cachelines, */
3578 pd_offset <<= 16;
3579
3580 if (INTEL_INFO(dev)->gen == 6) {
3581 uint32_t ecochk, gab_ctl, ecobits;
3582
3583 ecobits = I915_READ(GAC_ECO_BITS);
3584 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3585
3586 gab_ctl = I915_READ(GAB_CTL);
3587 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3588
3589 ecochk = I915_READ(GAM_ECOCHK);
3590 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3591 ECOCHK_PPGTT_CACHE64B);
3592 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3593 } else if (INTEL_INFO(dev)->gen >= 7) {
3594 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3595 /* GFX_MODE is per-ring on gen7+ */
3596 }
3597
3598 for_each_ring(ring, dev_priv, i) {
3599 if (INTEL_INFO(dev)->gen >= 7)
3600 I915_WRITE(RING_MODE_GEN7(ring),
3601 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3602
3603 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3604 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3605 }
3606 }
3607
3608 static bool
3609 intel_enable_blt(struct drm_device *dev)
3610 {
3611 if (!HAS_BLT(dev))
3612 return false;
3613
3614 /* The blitter was dysfunctional on early prototypes */
3615 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3616 DRM_INFO("BLT not supported on this pre-production hardware;"
3617 " graphics performance will be degraded.\n");
3618 return false;
3619 }
3620
3621 return true;
3622 }
3623
3624 int
3625 i915_gem_init_hw(struct drm_device *dev)
3626 {
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 int ret;
3629
3630 if (!intel_enable_gtt())
3631 return -EIO;
3632
3633 i915_gem_l3_remap(dev);
3634
3635 i915_gem_init_swizzling(dev);
3636
3637 ret = intel_init_render_ring_buffer(dev);
3638 if (ret)
3639 return ret;
3640
3641 if (HAS_BSD(dev)) {
3642 ret = intel_init_bsd_ring_buffer(dev);
3643 if (ret)
3644 goto cleanup_render_ring;
3645 }
3646
3647 if (intel_enable_blt(dev)) {
3648 ret = intel_init_blt_ring_buffer(dev);
3649 if (ret)
3650 goto cleanup_bsd_ring;
3651 }
3652
3653 dev_priv->next_seqno = 1;
3654
3655 /*
3656 * XXX: There was some w/a described somewhere suggesting loading
3657 * contexts before PPGTT.
3658 */
3659 i915_gem_context_init(dev);
3660 i915_gem_init_ppgtt(dev);
3661
3662 return 0;
3663
3664 cleanup_bsd_ring:
3665 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3666 cleanup_render_ring:
3667 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3668 return ret;
3669 }
3670
3671 static bool
3672 intel_enable_ppgtt(struct drm_device *dev)
3673 {
3674 if (i915_enable_ppgtt >= 0)
3675 return i915_enable_ppgtt;
3676
3677 #ifdef CONFIG_INTEL_IOMMU
3678 /* Disable ppgtt on SNB if VT-d is on. */
3679 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3680 return false;
3681 #endif
3682
3683 return true;
3684 }
3685
3686 int i915_gem_init(struct drm_device *dev)
3687 {
3688 struct drm_i915_private *dev_priv = dev->dev_private;
3689 unsigned long gtt_size, mappable_size;
3690 int ret;
3691
3692 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3693 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3694
3695 mutex_lock(&dev->struct_mutex);
3696 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3697 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3698 * aperture accordingly when using aliasing ppgtt. */
3699 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3700
3701 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3702
3703 ret = i915_gem_init_aliasing_ppgtt(dev);
3704 if (ret) {
3705 mutex_unlock(&dev->struct_mutex);
3706 return ret;
3707 }
3708 } else {
3709 /* Let GEM Manage all of the aperture.
3710 *
3711 * However, leave one page at the end still bound to the scratch
3712 * page. There are a number of places where the hardware
3713 * apparently prefetches past the end of the object, and we've
3714 * seen multiple hangs with the GPU head pointer stuck in a
3715 * batchbuffer bound at the last page of the aperture. One page
3716 * should be enough to keep any prefetching inside of the
3717 * aperture.
3718 */
3719 i915_gem_init_global_gtt(dev, 0, mappable_size,
3720 gtt_size);
3721 }
3722
3723 ret = i915_gem_init_hw(dev);
3724 mutex_unlock(&dev->struct_mutex);
3725 if (ret) {
3726 i915_gem_cleanup_aliasing_ppgtt(dev);
3727 return ret;
3728 }
3729
3730 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3731 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3732 dev_priv->dri1.allow_batchbuffer = 1;
3733 return 0;
3734 }
3735
3736 void
3737 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3738 {
3739 drm_i915_private_t *dev_priv = dev->dev_private;
3740 struct intel_ring_buffer *ring;
3741 int i;
3742
3743 for_each_ring(ring, dev_priv, i)
3744 intel_cleanup_ring_buffer(ring);
3745 }
3746
3747 int
3748 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3749 struct drm_file *file_priv)
3750 {
3751 drm_i915_private_t *dev_priv = dev->dev_private;
3752 int ret;
3753
3754 if (drm_core_check_feature(dev, DRIVER_MODESET))
3755 return 0;
3756
3757 if (atomic_read(&dev_priv->mm.wedged)) {
3758 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3759 atomic_set(&dev_priv->mm.wedged, 0);
3760 }
3761
3762 mutex_lock(&dev->struct_mutex);
3763 dev_priv->mm.suspended = 0;
3764
3765 ret = i915_gem_init_hw(dev);
3766 if (ret != 0) {
3767 mutex_unlock(&dev->struct_mutex);
3768 return ret;
3769 }
3770
3771 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3772 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3773 mutex_unlock(&dev->struct_mutex);
3774
3775 ret = drm_irq_install(dev);
3776 if (ret)
3777 goto cleanup_ringbuffer;
3778
3779 return 0;
3780
3781 cleanup_ringbuffer:
3782 mutex_lock(&dev->struct_mutex);
3783 i915_gem_cleanup_ringbuffer(dev);
3784 dev_priv->mm.suspended = 1;
3785 mutex_unlock(&dev->struct_mutex);
3786
3787 return ret;
3788 }
3789
3790 int
3791 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3792 struct drm_file *file_priv)
3793 {
3794 if (drm_core_check_feature(dev, DRIVER_MODESET))
3795 return 0;
3796
3797 drm_irq_uninstall(dev);
3798 return i915_gem_idle(dev);
3799 }
3800
3801 void
3802 i915_gem_lastclose(struct drm_device *dev)
3803 {
3804 int ret;
3805
3806 if (drm_core_check_feature(dev, DRIVER_MODESET))
3807 return;
3808
3809 ret = i915_gem_idle(dev);
3810 if (ret)
3811 DRM_ERROR("failed to idle hardware: %d\n", ret);
3812 }
3813
3814 static void
3815 init_ring_lists(struct intel_ring_buffer *ring)
3816 {
3817 INIT_LIST_HEAD(&ring->active_list);
3818 INIT_LIST_HEAD(&ring->request_list);
3819 }
3820
3821 void
3822 i915_gem_load(struct drm_device *dev)
3823 {
3824 int i;
3825 drm_i915_private_t *dev_priv = dev->dev_private;
3826
3827 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3828 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3829 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3830 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3831 for (i = 0; i < I915_NUM_RINGS; i++)
3832 init_ring_lists(&dev_priv->ring[i]);
3833 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3834 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3835 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3836 i915_gem_retire_work_handler);
3837 init_completion(&dev_priv->error_completion);
3838
3839 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3840 if (IS_GEN3(dev)) {
3841 I915_WRITE(MI_ARB_STATE,
3842 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3843 }
3844
3845 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3846
3847 /* Old X drivers will take 0-2 for front, back, depth buffers */
3848 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3849 dev_priv->fence_reg_start = 3;
3850
3851 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3852 dev_priv->num_fence_regs = 16;
3853 else
3854 dev_priv->num_fence_regs = 8;
3855
3856 /* Initialize fence registers to zero */
3857 i915_gem_reset_fences(dev);
3858
3859 i915_gem_detect_bit_6_swizzle(dev);
3860 init_waitqueue_head(&dev_priv->pending_flip_queue);
3861
3862 dev_priv->mm.interruptible = true;
3863
3864 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3865 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3866 register_shrinker(&dev_priv->mm.inactive_shrinker);
3867 }
3868
3869 /*
3870 * Create a physically contiguous memory object for this object
3871 * e.g. for cursor + overlay regs
3872 */
3873 static int i915_gem_init_phys_object(struct drm_device *dev,
3874 int id, int size, int align)
3875 {
3876 drm_i915_private_t *dev_priv = dev->dev_private;
3877 struct drm_i915_gem_phys_object *phys_obj;
3878 int ret;
3879
3880 if (dev_priv->mm.phys_objs[id - 1] || !size)
3881 return 0;
3882
3883 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3884 if (!phys_obj)
3885 return -ENOMEM;
3886
3887 phys_obj->id = id;
3888
3889 phys_obj->handle = drm_pci_alloc(dev, size, align);
3890 if (!phys_obj->handle) {
3891 ret = -ENOMEM;
3892 goto kfree_obj;
3893 }
3894 #ifdef CONFIG_X86
3895 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3896 #endif
3897
3898 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3899
3900 return 0;
3901 kfree_obj:
3902 kfree(phys_obj);
3903 return ret;
3904 }
3905
3906 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3907 {
3908 drm_i915_private_t *dev_priv = dev->dev_private;
3909 struct drm_i915_gem_phys_object *phys_obj;
3910
3911 if (!dev_priv->mm.phys_objs[id - 1])
3912 return;
3913
3914 phys_obj = dev_priv->mm.phys_objs[id - 1];
3915 if (phys_obj->cur_obj) {
3916 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3917 }
3918
3919 #ifdef CONFIG_X86
3920 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3921 #endif
3922 drm_pci_free(dev, phys_obj->handle);
3923 kfree(phys_obj);
3924 dev_priv->mm.phys_objs[id - 1] = NULL;
3925 }
3926
3927 void i915_gem_free_all_phys_object(struct drm_device *dev)
3928 {
3929 int i;
3930
3931 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3932 i915_gem_free_phys_object(dev, i);
3933 }
3934
3935 void i915_gem_detach_phys_object(struct drm_device *dev,
3936 struct drm_i915_gem_object *obj)
3937 {
3938 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3939 char *vaddr;
3940 int i;
3941 int page_count;
3942
3943 if (!obj->phys_obj)
3944 return;
3945 vaddr = obj->phys_obj->handle->vaddr;
3946
3947 page_count = obj->base.size / PAGE_SIZE;
3948 for (i = 0; i < page_count; i++) {
3949 struct page *page = shmem_read_mapping_page(mapping, i);
3950 if (!IS_ERR(page)) {
3951 char *dst = kmap_atomic(page);
3952 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3953 kunmap_atomic(dst);
3954
3955 drm_clflush_pages(&page, 1);
3956
3957 set_page_dirty(page);
3958 mark_page_accessed(page);
3959 page_cache_release(page);
3960 }
3961 }
3962 intel_gtt_chipset_flush();
3963
3964 obj->phys_obj->cur_obj = NULL;
3965 obj->phys_obj = NULL;
3966 }
3967
3968 int
3969 i915_gem_attach_phys_object(struct drm_device *dev,
3970 struct drm_i915_gem_object *obj,
3971 int id,
3972 int align)
3973 {
3974 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3975 drm_i915_private_t *dev_priv = dev->dev_private;
3976 int ret = 0;
3977 int page_count;
3978 int i;
3979
3980 if (id > I915_MAX_PHYS_OBJECT)
3981 return -EINVAL;
3982
3983 if (obj->phys_obj) {
3984 if (obj->phys_obj->id == id)
3985 return 0;
3986 i915_gem_detach_phys_object(dev, obj);
3987 }
3988
3989 /* create a new object */
3990 if (!dev_priv->mm.phys_objs[id - 1]) {
3991 ret = i915_gem_init_phys_object(dev, id,
3992 obj->base.size, align);
3993 if (ret) {
3994 DRM_ERROR("failed to init phys object %d size: %zu\n",
3995 id, obj->base.size);
3996 return ret;
3997 }
3998 }
3999
4000 /* bind to the object */
4001 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4002 obj->phys_obj->cur_obj = obj;
4003
4004 page_count = obj->base.size / PAGE_SIZE;
4005
4006 for (i = 0; i < page_count; i++) {
4007 struct page *page;
4008 char *dst, *src;
4009
4010 page = shmem_read_mapping_page(mapping, i);
4011 if (IS_ERR(page))
4012 return PTR_ERR(page);
4013
4014 src = kmap_atomic(page);
4015 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4016 memcpy(dst, src, PAGE_SIZE);
4017 kunmap_atomic(src);
4018
4019 mark_page_accessed(page);
4020 page_cache_release(page);
4021 }
4022
4023 return 0;
4024 }
4025
4026 static int
4027 i915_gem_phys_pwrite(struct drm_device *dev,
4028 struct drm_i915_gem_object *obj,
4029 struct drm_i915_gem_pwrite *args,
4030 struct drm_file *file_priv)
4031 {
4032 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4033 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4034
4035 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4036 unsigned long unwritten;
4037
4038 /* The physical object once assigned is fixed for the lifetime
4039 * of the obj, so we can safely drop the lock and continue
4040 * to access vaddr.
4041 */
4042 mutex_unlock(&dev->struct_mutex);
4043 unwritten = copy_from_user(vaddr, user_data, args->size);
4044 mutex_lock(&dev->struct_mutex);
4045 if (unwritten)
4046 return -EFAULT;
4047 }
4048
4049 intel_gtt_chipset_flush();
4050 return 0;
4051 }
4052
4053 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4054 {
4055 struct drm_i915_file_private *file_priv = file->driver_priv;
4056
4057 /* Clean up our request list when the client is going away, so that
4058 * later retire_requests won't dereference our soon-to-be-gone
4059 * file_priv.
4060 */
4061 spin_lock(&file_priv->mm.lock);
4062 while (!list_empty(&file_priv->mm.request_list)) {
4063 struct drm_i915_gem_request *request;
4064
4065 request = list_first_entry(&file_priv->mm.request_list,
4066 struct drm_i915_gem_request,
4067 client_list);
4068 list_del(&request->client_list);
4069 request->file_priv = NULL;
4070 }
4071 spin_unlock(&file_priv->mm.lock);
4072 }
4073
4074 static int
4075 i915_gpu_is_active(struct drm_device *dev)
4076 {
4077 drm_i915_private_t *dev_priv = dev->dev_private;
4078 return !list_empty(&dev_priv->mm.active_list);
4079 }
4080
4081 static int
4082 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4083 {
4084 struct drm_i915_private *dev_priv =
4085 container_of(shrinker,
4086 struct drm_i915_private,
4087 mm.inactive_shrinker);
4088 struct drm_device *dev = dev_priv->dev;
4089 struct drm_i915_gem_object *obj, *next;
4090 int nr_to_scan = sc->nr_to_scan;
4091 int cnt;
4092
4093 if (!mutex_trylock(&dev->struct_mutex))
4094 return 0;
4095
4096 /* "fast-path" to count number of available objects */
4097 if (nr_to_scan == 0) {
4098 cnt = 0;
4099 list_for_each_entry(obj,
4100 &dev_priv->mm.inactive_list,
4101 mm_list)
4102 cnt++;
4103 mutex_unlock(&dev->struct_mutex);
4104 return cnt / 100 * sysctl_vfs_cache_pressure;
4105 }
4106
4107 rescan:
4108 /* first scan for clean buffers */
4109 i915_gem_retire_requests(dev);
4110
4111 list_for_each_entry_safe(obj, next,
4112 &dev_priv->mm.inactive_list,
4113 mm_list) {
4114 if (i915_gem_object_is_purgeable(obj)) {
4115 if (i915_gem_object_unbind(obj) == 0 &&
4116 --nr_to_scan == 0)
4117 break;
4118 }
4119 }
4120
4121 /* second pass, evict/count anything still on the inactive list */
4122 cnt = 0;
4123 list_for_each_entry_safe(obj, next,
4124 &dev_priv->mm.inactive_list,
4125 mm_list) {
4126 if (nr_to_scan &&
4127 i915_gem_object_unbind(obj) == 0)
4128 nr_to_scan--;
4129 else
4130 cnt++;
4131 }
4132
4133 if (nr_to_scan && i915_gpu_is_active(dev)) {
4134 /*
4135 * We are desperate for pages, so as a last resort, wait
4136 * for the GPU to finish and discard whatever we can.
4137 * This has a dramatic impact to reduce the number of
4138 * OOM-killer events whilst running the GPU aggressively.
4139 */
4140 if (i915_gpu_idle(dev) == 0)
4141 goto rescan;
4142 }
4143 mutex_unlock(&dev->struct_mutex);
4144 return cnt / 100 * sysctl_vfs_cache_pressure;
4145 }
This page took 0.120366 seconds and 6 git commands to generate.