Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
1021 int ret;
1022
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
1040 return -ENODEV;
1041
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
1044 getrawmonotonic(&before);
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
1085 io_schedule();
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
1095 getrawmonotonic(&now);
1096 trace_i915_gem_request_wait_end(ring, seqno);
1097
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
1390
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
1399 /* Now bind it into the GTT if needed */
1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1401 if (ret)
1402 goto unlock;
1403
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
1407
1408 ret = i915_gem_object_get_fence(obj);
1409 if (ret)
1410 goto unpin;
1411
1412 obj->fault_mappable = true;
1413
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 i915_gem_object_unpin(obj);
1422 unlock:
1423 mutex_unlock(&dev->struct_mutex);
1424 out:
1425 switch (ret) {
1426 case -EIO:
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 return VM_FAULT_SIGBUS;
1432 case -EAGAIN:
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
1437 */
1438 case 0:
1439 case -ERESTARTSYS:
1440 case -EINTR:
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
1446 return VM_FAULT_NOPAGE;
1447 case -ENOMEM:
1448 return VM_FAULT_OOM;
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
1451 default:
1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 return VM_FAULT_SIGBUS;
1454 }
1455 }
1456
1457 /**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
1461 * Preserve the reservation of the mmapping with the DRM core code, but
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 if (!obj->fault_mappable)
1475 return;
1476
1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 uint32_t gtt_size;
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
1492 gtt_size = 1024*1024;
1493 else
1494 gtt_size = 512*1024;
1495
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
1498
1499 return gtt_size;
1500 }
1501
1502 /**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
1507 * potential fence register mapping.
1508 */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
1512 {
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 tiling_mode == I915_TILING_NONE)
1519 return 4096;
1520
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 return 0;
1535
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
1540 goto out;
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
1552 goto out;
1553
1554 i915_gem_shrink_all(dev_priv);
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
1572 {
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 struct drm_i915_gem_object *obj;
1575 int ret;
1576
1577 ret = i915_mutex_lock_interruptible(dev);
1578 if (ret)
1579 return ret;
1580
1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 if (&obj->base == NULL) {
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
1586
1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 ret = -E2BIG;
1589 goto out;
1590 }
1591
1592 if (obj->madv != I915_MADV_WILLNEED) {
1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 ret = -EINVAL;
1595 goto out;
1596 }
1597
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
1601
1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605 drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 mutex_unlock(&dev->struct_mutex);
1608 return ret;
1609 }
1610
1611 /**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629 {
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 struct inode *inode;
1640
1641 i915_gem_object_free_mmap_offset(obj);
1642
1643 if (obj->base.filp == NULL)
1644 return;
1645
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
1651 inode = file_inode(obj->base.filp);
1652 shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654 obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 struct sg_page_iter sg_iter;
1667 int ret;
1668
1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
1677 i915_gem_clflush_object(obj, true);
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
1681 if (i915_gem_object_needs_bit17_swizzle(obj))
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
1686
1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690 if (obj->dirty)
1691 set_page_dirty(page);
1692
1693 if (obj->madv == I915_MADV_WILLNEED)
1694 mark_page_accessed(page);
1695
1696 page_cache_release(page);
1697 }
1698 obj->dirty = 0;
1699
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709 if (obj->pages == NULL)
1710 return 0;
1711
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
1715 BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
1720 list_del(&obj->global_list);
1721
1722 ops->put_pages(obj);
1723 obj->pages = NULL;
1724
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729 }
1730
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
1734 {
1735 struct list_head still_bound_list;
1736 struct drm_i915_gem_object *obj, *next;
1737 unsigned long count = 0;
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
1741 global_list) {
1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 i915_gem_object_put_pages(obj) == 0) {
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 struct i915_vma *vma, *v;
1759
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
1792
1793 if (i915_gem_object_put_pages(obj) == 0)
1794 count += obj->base.size >> PAGE_SHIFT;
1795
1796 drm_gem_object_unreference(&obj->base);
1797 }
1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800 return count;
1801 }
1802
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 struct drm_i915_gem_object *obj, *next;
1813 long freed = 0;
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 global_list) {
1819 if (i915_gem_object_put_pages(obj) == 0)
1820 freed += obj->base.size >> PAGE_SHIFT;
1821 }
1822 return freed;
1823 }
1824
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 int page_count, i;
1830 struct address_space *mapping;
1831 struct sg_table *st;
1832 struct scatterlist *sg;
1833 struct sg_page_iter sg_iter;
1834 struct page *page;
1835 unsigned long last_pfn = 0; /* suppress gcc warning */
1836 gfp_t gfp;
1837
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
1849 page_count = obj->base.size / PAGE_SIZE;
1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 kfree(st);
1852 return -ENOMEM;
1853 }
1854
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
1860 mapping = file_inode(obj->base.filp)->i_mapping;
1861 gfp = mapping_gfp_mask(mapping);
1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
1888 #ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895 #endif
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 }
1909 #ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911 #endif
1912 sg_mark_end(sg);
1913 obj->pages = st;
1914
1915 if (i915_gem_object_needs_bit17_swizzle(obj))
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920 err_pages:
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 page_cache_release(sg_page_iter_page(&sg_iter));
1924 sg_free_table(st);
1925 kfree(st);
1926 return PTR_ERR(page);
1927 }
1928
1929 /* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
1943 if (obj->pages)
1944 return 0;
1945
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
1951 BUG_ON(obj->pages_pin_count);
1952
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 return 0;
1959 }
1960
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 struct intel_ring_buffer *ring)
1964 {
1965 struct drm_device *dev = obj->base.dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 u32 seqno = intel_ring_get_seqno(ring);
1968
1969 BUG_ON(ring == NULL);
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
1974 obj->ring = ring;
1975
1976 /* Add a reference if we're newly entering the active list. */
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
1980 }
1981
1982 list_move_tail(&obj->ring_list, &ring->active_list);
1983
1984 obj->last_read_seqno = seqno;
1985
1986 if (obj->fenced_gpu_access) {
1987 obj->last_fenced_seqno = seqno;
1988
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
1997 }
1998 }
1999
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002 {
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2013
2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 BUG_ON(!obj->active);
2016
2017 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2018
2019 list_del_init(&obj->ring_list);
2020 obj->ring = NULL;
2021
2022 obj->last_read_seqno = 0;
2023 obj->last_write_seqno = 0;
2024 obj->base.write_domain = 0;
2025
2026 obj->last_fenced_seqno = 0;
2027 obj->fenced_gpu_access = false;
2028
2029 obj->active = 0;
2030 drm_gem_object_unreference(&obj->base);
2031
2032 WARN_ON(i915_verify_lists(dev));
2033 }
2034
2035 static int
2036 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2037 {
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 struct intel_ring_buffer *ring;
2040 int ret, i, j;
2041
2042 /* Carefully retire all requests without writing to the rings */
2043 for_each_ring(ring, dev_priv, i) {
2044 ret = intel_ring_idle(ring);
2045 if (ret)
2046 return ret;
2047 }
2048 i915_gem_retire_requests(dev);
2049
2050 /* Finally reset hw state */
2051 for_each_ring(ring, dev_priv, i) {
2052 intel_ring_init_seqno(ring, seqno);
2053
2054 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 ring->sync_seqno[j] = 0;
2056 }
2057
2058 return 0;
2059 }
2060
2061 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062 {
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 int ret;
2065
2066 if (seqno == 0)
2067 return -EINVAL;
2068
2069 /* HWS page needs to be set less than what we
2070 * will inject to ring
2071 */
2072 ret = i915_gem_init_seqno(dev, seqno - 1);
2073 if (ret)
2074 return ret;
2075
2076 /* Carefully set the last_seqno value so that wrap
2077 * detection still works
2078 */
2079 dev_priv->next_seqno = seqno;
2080 dev_priv->last_seqno = seqno - 1;
2081 if (dev_priv->last_seqno == 0)
2082 dev_priv->last_seqno--;
2083
2084 return 0;
2085 }
2086
2087 int
2088 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 /* reserve 0 for non-seqno */
2093 if (dev_priv->next_seqno == 0) {
2094 int ret = i915_gem_init_seqno(dev, 0);
2095 if (ret)
2096 return ret;
2097
2098 dev_priv->next_seqno = 1;
2099 }
2100
2101 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2102 return 0;
2103 }
2104
2105 int __i915_add_request(struct intel_ring_buffer *ring,
2106 struct drm_file *file,
2107 struct drm_i915_gem_object *obj,
2108 u32 *out_seqno)
2109 {
2110 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2111 struct drm_i915_gem_request *request;
2112 u32 request_ring_position, request_start;
2113 int was_empty;
2114 int ret;
2115
2116 request_start = intel_ring_get_tail(ring);
2117 /*
2118 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 * after having emitted the batchbuffer command. Hence we need to fix
2120 * things up similar to emitting the lazy request. The difference here
2121 * is that the flush _must_ happen before the next request, no matter
2122 * what.
2123 */
2124 ret = intel_ring_flush_all_caches(ring);
2125 if (ret)
2126 return ret;
2127
2128 request = ring->preallocated_lazy_request;
2129 if (WARN_ON(request == NULL))
2130 return -ENOMEM;
2131
2132 /* Record the position of the start of the request so that
2133 * should we detect the updated seqno part-way through the
2134 * GPU processing the request, we never over-estimate the
2135 * position of the head.
2136 */
2137 request_ring_position = intel_ring_get_tail(ring);
2138
2139 ret = ring->add_request(ring);
2140 if (ret)
2141 return ret;
2142
2143 request->seqno = intel_ring_get_seqno(ring);
2144 request->ring = ring;
2145 request->head = request_start;
2146 request->tail = request_ring_position;
2147
2148 /* Whilst this request exists, batch_obj will be on the
2149 * active_list, and so will hold the active reference. Only when this
2150 * request is retired will the the batch_obj be moved onto the
2151 * inactive_list and lose its active reference. Hence we do not need
2152 * to explicitly hold another reference here.
2153 */
2154 request->batch_obj = obj;
2155
2156 /* Hold a reference to the current context so that we can inspect
2157 * it later in case a hangcheck error event fires.
2158 */
2159 request->ctx = ring->last_context;
2160 if (request->ctx)
2161 i915_gem_context_reference(request->ctx);
2162
2163 request->emitted_jiffies = jiffies;
2164 was_empty = list_empty(&ring->request_list);
2165 list_add_tail(&request->list, &ring->request_list);
2166 request->file_priv = NULL;
2167
2168 if (file) {
2169 struct drm_i915_file_private *file_priv = file->driver_priv;
2170
2171 spin_lock(&file_priv->mm.lock);
2172 request->file_priv = file_priv;
2173 list_add_tail(&request->client_list,
2174 &file_priv->mm.request_list);
2175 spin_unlock(&file_priv->mm.lock);
2176 }
2177
2178 trace_i915_gem_request_add(ring, request->seqno);
2179 ring->outstanding_lazy_seqno = 0;
2180 ring->preallocated_lazy_request = NULL;
2181
2182 if (!dev_priv->ums.mm_suspended) {
2183 i915_queue_hangcheck(ring->dev);
2184
2185 if (was_empty) {
2186 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2187 queue_delayed_work(dev_priv->wq,
2188 &dev_priv->mm.retire_work,
2189 round_jiffies_up_relative(HZ));
2190 intel_mark_busy(dev_priv->dev);
2191 }
2192 }
2193
2194 if (out_seqno)
2195 *out_seqno = request->seqno;
2196 return 0;
2197 }
2198
2199 static inline void
2200 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2201 {
2202 struct drm_i915_file_private *file_priv = request->file_priv;
2203
2204 if (!file_priv)
2205 return;
2206
2207 spin_lock(&file_priv->mm.lock);
2208 list_del(&request->client_list);
2209 request->file_priv = NULL;
2210 spin_unlock(&file_priv->mm.lock);
2211 }
2212
2213 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 struct i915_address_space *vm)
2215 {
2216 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2218 return true;
2219
2220 return false;
2221 }
2222
2223 static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 const u32 request_start,
2225 const u32 request_end)
2226 {
2227 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228
2229 if (request_start < request_end) {
2230 if (acthd >= request_start && acthd < request_end)
2231 return true;
2232 } else if (request_start > request_end) {
2233 if (acthd >= request_start || acthd < request_end)
2234 return true;
2235 }
2236
2237 return false;
2238 }
2239
2240 static struct i915_address_space *
2241 request_to_vm(struct drm_i915_gem_request *request)
2242 {
2243 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 struct i915_address_space *vm;
2245
2246 vm = &dev_priv->gtt.base;
2247
2248 return vm;
2249 }
2250
2251 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 const u32 acthd, bool *inside)
2253 {
2254 /* There is a possibility that unmasked head address
2255 * pointing inside the ring, matches the batch_obj address range.
2256 * However this is extremely unlikely.
2257 */
2258 if (request->batch_obj) {
2259 if (i915_head_inside_object(acthd, request->batch_obj,
2260 request_to_vm(request))) {
2261 *inside = true;
2262 return true;
2263 }
2264 }
2265
2266 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 *inside = false;
2268 return true;
2269 }
2270
2271 return false;
2272 }
2273
2274 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275 {
2276 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277
2278 if (hs->banned)
2279 return true;
2280
2281 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 return true;
2284 }
2285
2286 return false;
2287 }
2288
2289 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 struct drm_i915_gem_request *request,
2291 u32 acthd)
2292 {
2293 struct i915_ctx_hang_stats *hs = NULL;
2294 bool inside, guilty;
2295 unsigned long offset = 0;
2296
2297 /* Innocent until proven guilty */
2298 guilty = false;
2299
2300 if (request->batch_obj)
2301 offset = i915_gem_obj_offset(request->batch_obj,
2302 request_to_vm(request));
2303
2304 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2305 i915_request_guilty(request, acthd, &inside)) {
2306 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2307 ring->name,
2308 inside ? "inside" : "flushing",
2309 offset,
2310 request->ctx ? request->ctx->id : 0,
2311 acthd);
2312
2313 guilty = true;
2314 }
2315
2316 /* If contexts are disabled or this is the default context, use
2317 * file_priv->reset_state
2318 */
2319 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 hs = &request->ctx->hang_stats;
2321 else if (request->file_priv)
2322 hs = &request->file_priv->hang_stats;
2323
2324 if (hs) {
2325 if (guilty) {
2326 hs->banned = i915_context_is_banned(hs);
2327 hs->batch_active++;
2328 hs->guilty_ts = get_seconds();
2329 } else {
2330 hs->batch_pending++;
2331 }
2332 }
2333 }
2334
2335 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336 {
2337 list_del(&request->list);
2338 i915_gem_request_remove_from_client(request);
2339
2340 if (request->ctx)
2341 i915_gem_context_unreference(request->ctx);
2342
2343 kfree(request);
2344 }
2345
2346 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2347 struct intel_ring_buffer *ring)
2348 {
2349 u32 completed_seqno = ring->get_seqno(ring, false);
2350 u32 acthd = intel_ring_get_active_head(ring);
2351 struct drm_i915_gem_request *request;
2352
2353 list_for_each_entry(request, &ring->request_list, list) {
2354 if (i915_seqno_passed(completed_seqno, request->seqno))
2355 continue;
2356
2357 i915_set_reset_status(ring, request, acthd);
2358 }
2359 }
2360
2361 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2362 struct intel_ring_buffer *ring)
2363 {
2364 while (!list_empty(&ring->request_list)) {
2365 struct drm_i915_gem_request *request;
2366
2367 request = list_first_entry(&ring->request_list,
2368 struct drm_i915_gem_request,
2369 list);
2370
2371 i915_gem_free_request(request);
2372 }
2373
2374 while (!list_empty(&ring->active_list)) {
2375 struct drm_i915_gem_object *obj;
2376
2377 obj = list_first_entry(&ring->active_list,
2378 struct drm_i915_gem_object,
2379 ring_list);
2380
2381 i915_gem_object_move_to_inactive(obj);
2382 }
2383 }
2384
2385 void i915_gem_restore_fences(struct drm_device *dev)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 int i;
2389
2390 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2391 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2392
2393 /*
2394 * Commit delayed tiling changes if we have an object still
2395 * attached to the fence, otherwise just clear the fence.
2396 */
2397 if (reg->obj) {
2398 i915_gem_object_update_fence(reg->obj, reg,
2399 reg->obj->tiling_mode);
2400 } else {
2401 i915_gem_write_fence(dev, i, NULL);
2402 }
2403 }
2404 }
2405
2406 void i915_gem_reset(struct drm_device *dev)
2407 {
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409 struct intel_ring_buffer *ring;
2410 int i;
2411
2412 /*
2413 * Before we free the objects from the requests, we need to inspect
2414 * them for finding the guilty party. As the requests only borrow
2415 * their reference to the objects, the inspection must be done first.
2416 */
2417 for_each_ring(ring, dev_priv, i)
2418 i915_gem_reset_ring_status(dev_priv, ring);
2419
2420 for_each_ring(ring, dev_priv, i)
2421 i915_gem_reset_ring_cleanup(dev_priv, ring);
2422
2423 i915_gem_cleanup_ringbuffer(dev);
2424
2425 i915_gem_restore_fences(dev);
2426 }
2427
2428 /**
2429 * This function clears the request list as sequence numbers are passed.
2430 */
2431 void
2432 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2433 {
2434 uint32_t seqno;
2435
2436 if (list_empty(&ring->request_list))
2437 return;
2438
2439 WARN_ON(i915_verify_lists(ring->dev));
2440
2441 seqno = ring->get_seqno(ring, true);
2442
2443 while (!list_empty(&ring->request_list)) {
2444 struct drm_i915_gem_request *request;
2445
2446 request = list_first_entry(&ring->request_list,
2447 struct drm_i915_gem_request,
2448 list);
2449
2450 if (!i915_seqno_passed(seqno, request->seqno))
2451 break;
2452
2453 trace_i915_gem_request_retire(ring, request->seqno);
2454 /* We know the GPU must have read the request to have
2455 * sent us the seqno + interrupt, so use the position
2456 * of tail of the request to update the last known position
2457 * of the GPU head.
2458 */
2459 ring->last_retired_head = request->tail;
2460
2461 i915_gem_free_request(request);
2462 }
2463
2464 /* Move any buffers on the active list that are no longer referenced
2465 * by the ringbuffer to the flushing/inactive lists as appropriate.
2466 */
2467 while (!list_empty(&ring->active_list)) {
2468 struct drm_i915_gem_object *obj;
2469
2470 obj = list_first_entry(&ring->active_list,
2471 struct drm_i915_gem_object,
2472 ring_list);
2473
2474 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2475 break;
2476
2477 i915_gem_object_move_to_inactive(obj);
2478 }
2479
2480 if (unlikely(ring->trace_irq_seqno &&
2481 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2482 ring->irq_put(ring);
2483 ring->trace_irq_seqno = 0;
2484 }
2485
2486 WARN_ON(i915_verify_lists(ring->dev));
2487 }
2488
2489 bool
2490 i915_gem_retire_requests(struct drm_device *dev)
2491 {
2492 drm_i915_private_t *dev_priv = dev->dev_private;
2493 struct intel_ring_buffer *ring;
2494 bool idle = true;
2495 int i;
2496
2497 for_each_ring(ring, dev_priv, i) {
2498 i915_gem_retire_requests_ring(ring);
2499 idle &= list_empty(&ring->request_list);
2500 }
2501
2502 if (idle)
2503 mod_delayed_work(dev_priv->wq,
2504 &dev_priv->mm.idle_work,
2505 msecs_to_jiffies(100));
2506
2507 return idle;
2508 }
2509
2510 static void
2511 i915_gem_retire_work_handler(struct work_struct *work)
2512 {
2513 struct drm_i915_private *dev_priv =
2514 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2515 struct drm_device *dev = dev_priv->dev;
2516 bool idle;
2517
2518 /* Come back later if the device is busy... */
2519 idle = false;
2520 if (mutex_trylock(&dev->struct_mutex)) {
2521 idle = i915_gem_retire_requests(dev);
2522 mutex_unlock(&dev->struct_mutex);
2523 }
2524 if (!idle)
2525 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2526 round_jiffies_up_relative(HZ));
2527 }
2528
2529 static void
2530 i915_gem_idle_work_handler(struct work_struct *work)
2531 {
2532 struct drm_i915_private *dev_priv =
2533 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2534
2535 intel_mark_idle(dev_priv->dev);
2536 }
2537
2538 /**
2539 * Ensures that an object will eventually get non-busy by flushing any required
2540 * write domains, emitting any outstanding lazy request and retiring and
2541 * completed requests.
2542 */
2543 static int
2544 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2545 {
2546 int ret;
2547
2548 if (obj->active) {
2549 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2550 if (ret)
2551 return ret;
2552
2553 i915_gem_retire_requests_ring(obj->ring);
2554 }
2555
2556 return 0;
2557 }
2558
2559 /**
2560 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2561 * @DRM_IOCTL_ARGS: standard ioctl arguments
2562 *
2563 * Returns 0 if successful, else an error is returned with the remaining time in
2564 * the timeout parameter.
2565 * -ETIME: object is still busy after timeout
2566 * -ERESTARTSYS: signal interrupted the wait
2567 * -ENONENT: object doesn't exist
2568 * Also possible, but rare:
2569 * -EAGAIN: GPU wedged
2570 * -ENOMEM: damn
2571 * -ENODEV: Internal IRQ fail
2572 * -E?: The add request failed
2573 *
2574 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2575 * non-zero timeout parameter the wait ioctl will wait for the given number of
2576 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2577 * without holding struct_mutex the object may become re-busied before this
2578 * function completes. A similar but shorter * race condition exists in the busy
2579 * ioctl
2580 */
2581 int
2582 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2583 {
2584 drm_i915_private_t *dev_priv = dev->dev_private;
2585 struct drm_i915_gem_wait *args = data;
2586 struct drm_i915_gem_object *obj;
2587 struct intel_ring_buffer *ring = NULL;
2588 struct timespec timeout_stack, *timeout = NULL;
2589 unsigned reset_counter;
2590 u32 seqno = 0;
2591 int ret = 0;
2592
2593 if (args->timeout_ns >= 0) {
2594 timeout_stack = ns_to_timespec(args->timeout_ns);
2595 timeout = &timeout_stack;
2596 }
2597
2598 ret = i915_mutex_lock_interruptible(dev);
2599 if (ret)
2600 return ret;
2601
2602 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2603 if (&obj->base == NULL) {
2604 mutex_unlock(&dev->struct_mutex);
2605 return -ENOENT;
2606 }
2607
2608 /* Need to make sure the object gets inactive eventually. */
2609 ret = i915_gem_object_flush_active(obj);
2610 if (ret)
2611 goto out;
2612
2613 if (obj->active) {
2614 seqno = obj->last_read_seqno;
2615 ring = obj->ring;
2616 }
2617
2618 if (seqno == 0)
2619 goto out;
2620
2621 /* Do this after OLR check to make sure we make forward progress polling
2622 * on this IOCTL with a 0 timeout (like busy ioctl)
2623 */
2624 if (!args->timeout_ns) {
2625 ret = -ETIME;
2626 goto out;
2627 }
2628
2629 drm_gem_object_unreference(&obj->base);
2630 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2631 mutex_unlock(&dev->struct_mutex);
2632
2633 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2634 if (timeout)
2635 args->timeout_ns = timespec_to_ns(timeout);
2636 return ret;
2637
2638 out:
2639 drm_gem_object_unreference(&obj->base);
2640 mutex_unlock(&dev->struct_mutex);
2641 return ret;
2642 }
2643
2644 /**
2645 * i915_gem_object_sync - sync an object to a ring.
2646 *
2647 * @obj: object which may be in use on another ring.
2648 * @to: ring we wish to use the object on. May be NULL.
2649 *
2650 * This code is meant to abstract object synchronization with the GPU.
2651 * Calling with NULL implies synchronizing the object with the CPU
2652 * rather than a particular GPU ring.
2653 *
2654 * Returns 0 if successful, else propagates up the lower layer error.
2655 */
2656 int
2657 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2658 struct intel_ring_buffer *to)
2659 {
2660 struct intel_ring_buffer *from = obj->ring;
2661 u32 seqno;
2662 int ret, idx;
2663
2664 if (from == NULL || to == from)
2665 return 0;
2666
2667 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2668 return i915_gem_object_wait_rendering(obj, false);
2669
2670 idx = intel_ring_sync_index(from, to);
2671
2672 seqno = obj->last_read_seqno;
2673 if (seqno <= from->sync_seqno[idx])
2674 return 0;
2675
2676 ret = i915_gem_check_olr(obj->ring, seqno);
2677 if (ret)
2678 return ret;
2679
2680 trace_i915_gem_ring_sync_to(from, to, seqno);
2681 ret = to->sync_to(to, from, seqno);
2682 if (!ret)
2683 /* We use last_read_seqno because sync_to()
2684 * might have just caused seqno wrap under
2685 * the radar.
2686 */
2687 from->sync_seqno[idx] = obj->last_read_seqno;
2688
2689 return ret;
2690 }
2691
2692 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2693 {
2694 u32 old_write_domain, old_read_domains;
2695
2696 /* Force a pagefault for domain tracking on next user access */
2697 i915_gem_release_mmap(obj);
2698
2699 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2700 return;
2701
2702 /* Wait for any direct GTT access to complete */
2703 mb();
2704
2705 old_read_domains = obj->base.read_domains;
2706 old_write_domain = obj->base.write_domain;
2707
2708 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2709 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2710
2711 trace_i915_gem_object_change_domain(obj,
2712 old_read_domains,
2713 old_write_domain);
2714 }
2715
2716 int i915_vma_unbind(struct i915_vma *vma)
2717 {
2718 struct drm_i915_gem_object *obj = vma->obj;
2719 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2720 int ret;
2721
2722 /* For now we only ever use 1 vma per object */
2723 WARN_ON(!list_is_singular(&obj->vma_list));
2724
2725 if (list_empty(&vma->vma_link))
2726 return 0;
2727
2728 if (!drm_mm_node_allocated(&vma->node)) {
2729 i915_gem_vma_destroy(vma);
2730
2731 return 0;
2732 }
2733
2734 if (obj->pin_count)
2735 return -EBUSY;
2736
2737 BUG_ON(obj->pages == NULL);
2738
2739 ret = i915_gem_object_finish_gpu(obj);
2740 if (ret)
2741 return ret;
2742 /* Continue on if we fail due to EIO, the GPU is hung so we
2743 * should be safe and we need to cleanup or else we might
2744 * cause memory corruption through use-after-free.
2745 */
2746
2747 i915_gem_object_finish_gtt(obj);
2748
2749 /* release the fence reg _after_ flushing */
2750 ret = i915_gem_object_put_fence(obj);
2751 if (ret)
2752 return ret;
2753
2754 trace_i915_vma_unbind(vma);
2755
2756 if (obj->has_global_gtt_mapping)
2757 i915_gem_gtt_unbind_object(obj);
2758 if (obj->has_aliasing_ppgtt_mapping) {
2759 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2760 obj->has_aliasing_ppgtt_mapping = 0;
2761 }
2762 i915_gem_gtt_finish_object(obj);
2763 i915_gem_object_unpin_pages(obj);
2764
2765 list_del(&vma->mm_list);
2766 /* Avoid an unnecessary call to unbind on rebind. */
2767 if (i915_is_ggtt(vma->vm))
2768 obj->map_and_fenceable = true;
2769
2770 drm_mm_remove_node(&vma->node);
2771
2772 i915_gem_vma_destroy(vma);
2773
2774 /* Since the unbound list is global, only move to that list if
2775 * no more VMAs exist. */
2776 if (list_empty(&obj->vma_list))
2777 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2778
2779 return 0;
2780 }
2781
2782 /**
2783 * Unbinds an object from the global GTT aperture.
2784 */
2785 int
2786 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2787 {
2788 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2789 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2790
2791 if (!i915_gem_obj_ggtt_bound(obj))
2792 return 0;
2793
2794 if (obj->pin_count)
2795 return -EBUSY;
2796
2797 BUG_ON(obj->pages == NULL);
2798
2799 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2800 }
2801
2802 int i915_gpu_idle(struct drm_device *dev)
2803 {
2804 drm_i915_private_t *dev_priv = dev->dev_private;
2805 struct intel_ring_buffer *ring;
2806 int ret, i;
2807
2808 /* Flush everything onto the inactive list. */
2809 for_each_ring(ring, dev_priv, i) {
2810 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2811 if (ret)
2812 return ret;
2813
2814 ret = intel_ring_idle(ring);
2815 if (ret)
2816 return ret;
2817 }
2818
2819 return 0;
2820 }
2821
2822 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2823 struct drm_i915_gem_object *obj)
2824 {
2825 drm_i915_private_t *dev_priv = dev->dev_private;
2826 int fence_reg;
2827 int fence_pitch_shift;
2828
2829 if (INTEL_INFO(dev)->gen >= 6) {
2830 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2831 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2832 } else {
2833 fence_reg = FENCE_REG_965_0;
2834 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2835 }
2836
2837 fence_reg += reg * 8;
2838
2839 /* To w/a incoherency with non-atomic 64-bit register updates,
2840 * we split the 64-bit update into two 32-bit writes. In order
2841 * for a partial fence not to be evaluated between writes, we
2842 * precede the update with write to turn off the fence register,
2843 * and only enable the fence as the last step.
2844 *
2845 * For extra levels of paranoia, we make sure each step lands
2846 * before applying the next step.
2847 */
2848 I915_WRITE(fence_reg, 0);
2849 POSTING_READ(fence_reg);
2850
2851 if (obj) {
2852 u32 size = i915_gem_obj_ggtt_size(obj);
2853 uint64_t val;
2854
2855 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2856 0xfffff000) << 32;
2857 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2858 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2859 if (obj->tiling_mode == I915_TILING_Y)
2860 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2861 val |= I965_FENCE_REG_VALID;
2862
2863 I915_WRITE(fence_reg + 4, val >> 32);
2864 POSTING_READ(fence_reg + 4);
2865
2866 I915_WRITE(fence_reg + 0, val);
2867 POSTING_READ(fence_reg);
2868 } else {
2869 I915_WRITE(fence_reg + 4, 0);
2870 POSTING_READ(fence_reg + 4);
2871 }
2872 }
2873
2874 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2875 struct drm_i915_gem_object *obj)
2876 {
2877 drm_i915_private_t *dev_priv = dev->dev_private;
2878 u32 val;
2879
2880 if (obj) {
2881 u32 size = i915_gem_obj_ggtt_size(obj);
2882 int pitch_val;
2883 int tile_width;
2884
2885 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2886 (size & -size) != size ||
2887 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2888 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2889 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2890
2891 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2892 tile_width = 128;
2893 else
2894 tile_width = 512;
2895
2896 /* Note: pitch better be a power of two tile widths */
2897 pitch_val = obj->stride / tile_width;
2898 pitch_val = ffs(pitch_val) - 1;
2899
2900 val = i915_gem_obj_ggtt_offset(obj);
2901 if (obj->tiling_mode == I915_TILING_Y)
2902 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2903 val |= I915_FENCE_SIZE_BITS(size);
2904 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2905 val |= I830_FENCE_REG_VALID;
2906 } else
2907 val = 0;
2908
2909 if (reg < 8)
2910 reg = FENCE_REG_830_0 + reg * 4;
2911 else
2912 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2913
2914 I915_WRITE(reg, val);
2915 POSTING_READ(reg);
2916 }
2917
2918 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2919 struct drm_i915_gem_object *obj)
2920 {
2921 drm_i915_private_t *dev_priv = dev->dev_private;
2922 uint32_t val;
2923
2924 if (obj) {
2925 u32 size = i915_gem_obj_ggtt_size(obj);
2926 uint32_t pitch_val;
2927
2928 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2929 (size & -size) != size ||
2930 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2931 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2932 i915_gem_obj_ggtt_offset(obj), size);
2933
2934 pitch_val = obj->stride / 128;
2935 pitch_val = ffs(pitch_val) - 1;
2936
2937 val = i915_gem_obj_ggtt_offset(obj);
2938 if (obj->tiling_mode == I915_TILING_Y)
2939 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2940 val |= I830_FENCE_SIZE_BITS(size);
2941 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2942 val |= I830_FENCE_REG_VALID;
2943 } else
2944 val = 0;
2945
2946 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2947 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2948 }
2949
2950 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2951 {
2952 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2953 }
2954
2955 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2956 struct drm_i915_gem_object *obj)
2957 {
2958 struct drm_i915_private *dev_priv = dev->dev_private;
2959
2960 /* Ensure that all CPU reads are completed before installing a fence
2961 * and all writes before removing the fence.
2962 */
2963 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2964 mb();
2965
2966 WARN(obj && (!obj->stride || !obj->tiling_mode),
2967 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2968 obj->stride, obj->tiling_mode);
2969
2970 switch (INTEL_INFO(dev)->gen) {
2971 case 8:
2972 case 7:
2973 case 6:
2974 case 5:
2975 case 4: i965_write_fence_reg(dev, reg, obj); break;
2976 case 3: i915_write_fence_reg(dev, reg, obj); break;
2977 case 2: i830_write_fence_reg(dev, reg, obj); break;
2978 default: BUG();
2979 }
2980
2981 /* And similarly be paranoid that no direct access to this region
2982 * is reordered to before the fence is installed.
2983 */
2984 if (i915_gem_object_needs_mb(obj))
2985 mb();
2986 }
2987
2988 static inline int fence_number(struct drm_i915_private *dev_priv,
2989 struct drm_i915_fence_reg *fence)
2990 {
2991 return fence - dev_priv->fence_regs;
2992 }
2993
2994 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2995 struct drm_i915_fence_reg *fence,
2996 bool enable)
2997 {
2998 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2999 int reg = fence_number(dev_priv, fence);
3000
3001 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3002
3003 if (enable) {
3004 obj->fence_reg = reg;
3005 fence->obj = obj;
3006 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3007 } else {
3008 obj->fence_reg = I915_FENCE_REG_NONE;
3009 fence->obj = NULL;
3010 list_del_init(&fence->lru_list);
3011 }
3012 obj->fence_dirty = false;
3013 }
3014
3015 static int
3016 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3017 {
3018 if (obj->last_fenced_seqno) {
3019 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3020 if (ret)
3021 return ret;
3022
3023 obj->last_fenced_seqno = 0;
3024 }
3025
3026 obj->fenced_gpu_access = false;
3027 return 0;
3028 }
3029
3030 int
3031 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3032 {
3033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3034 struct drm_i915_fence_reg *fence;
3035 int ret;
3036
3037 ret = i915_gem_object_wait_fence(obj);
3038 if (ret)
3039 return ret;
3040
3041 if (obj->fence_reg == I915_FENCE_REG_NONE)
3042 return 0;
3043
3044 fence = &dev_priv->fence_regs[obj->fence_reg];
3045
3046 i915_gem_object_fence_lost(obj);
3047 i915_gem_object_update_fence(obj, fence, false);
3048
3049 return 0;
3050 }
3051
3052 static struct drm_i915_fence_reg *
3053 i915_find_fence_reg(struct drm_device *dev)
3054 {
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct drm_i915_fence_reg *reg, *avail;
3057 int i;
3058
3059 /* First try to find a free reg */
3060 avail = NULL;
3061 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3062 reg = &dev_priv->fence_regs[i];
3063 if (!reg->obj)
3064 return reg;
3065
3066 if (!reg->pin_count)
3067 avail = reg;
3068 }
3069
3070 if (avail == NULL)
3071 return NULL;
3072
3073 /* None available, try to steal one or wait for a user to finish */
3074 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3075 if (reg->pin_count)
3076 continue;
3077
3078 return reg;
3079 }
3080
3081 return NULL;
3082 }
3083
3084 /**
3085 * i915_gem_object_get_fence - set up fencing for an object
3086 * @obj: object to map through a fence reg
3087 *
3088 * When mapping objects through the GTT, userspace wants to be able to write
3089 * to them without having to worry about swizzling if the object is tiled.
3090 * This function walks the fence regs looking for a free one for @obj,
3091 * stealing one if it can't find any.
3092 *
3093 * It then sets up the reg based on the object's properties: address, pitch
3094 * and tiling format.
3095 *
3096 * For an untiled surface, this removes any existing fence.
3097 */
3098 int
3099 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3100 {
3101 struct drm_device *dev = obj->base.dev;
3102 struct drm_i915_private *dev_priv = dev->dev_private;
3103 bool enable = obj->tiling_mode != I915_TILING_NONE;
3104 struct drm_i915_fence_reg *reg;
3105 int ret;
3106
3107 /* Have we updated the tiling parameters upon the object and so
3108 * will need to serialise the write to the associated fence register?
3109 */
3110 if (obj->fence_dirty) {
3111 ret = i915_gem_object_wait_fence(obj);
3112 if (ret)
3113 return ret;
3114 }
3115
3116 /* Just update our place in the LRU if our fence is getting reused. */
3117 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3118 reg = &dev_priv->fence_regs[obj->fence_reg];
3119 if (!obj->fence_dirty) {
3120 list_move_tail(&reg->lru_list,
3121 &dev_priv->mm.fence_list);
3122 return 0;
3123 }
3124 } else if (enable) {
3125 reg = i915_find_fence_reg(dev);
3126 if (reg == NULL)
3127 return -EDEADLK;
3128
3129 if (reg->obj) {
3130 struct drm_i915_gem_object *old = reg->obj;
3131
3132 ret = i915_gem_object_wait_fence(old);
3133 if (ret)
3134 return ret;
3135
3136 i915_gem_object_fence_lost(old);
3137 }
3138 } else
3139 return 0;
3140
3141 i915_gem_object_update_fence(obj, reg, enable);
3142
3143 return 0;
3144 }
3145
3146 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3147 struct drm_mm_node *gtt_space,
3148 unsigned long cache_level)
3149 {
3150 struct drm_mm_node *other;
3151
3152 /* On non-LLC machines we have to be careful when putting differing
3153 * types of snoopable memory together to avoid the prefetcher
3154 * crossing memory domains and dying.
3155 */
3156 if (HAS_LLC(dev))
3157 return true;
3158
3159 if (!drm_mm_node_allocated(gtt_space))
3160 return true;
3161
3162 if (list_empty(&gtt_space->node_list))
3163 return true;
3164
3165 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3166 if (other->allocated && !other->hole_follows && other->color != cache_level)
3167 return false;
3168
3169 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3170 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3171 return false;
3172
3173 return true;
3174 }
3175
3176 static void i915_gem_verify_gtt(struct drm_device *dev)
3177 {
3178 #if WATCH_GTT
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 struct drm_i915_gem_object *obj;
3181 int err = 0;
3182
3183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3184 if (obj->gtt_space == NULL) {
3185 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3186 err++;
3187 continue;
3188 }
3189
3190 if (obj->cache_level != obj->gtt_space->color) {
3191 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3192 i915_gem_obj_ggtt_offset(obj),
3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3194 obj->cache_level,
3195 obj->gtt_space->color);
3196 err++;
3197 continue;
3198 }
3199
3200 if (!i915_gem_valid_gtt_space(dev,
3201 obj->gtt_space,
3202 obj->cache_level)) {
3203 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3204 i915_gem_obj_ggtt_offset(obj),
3205 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3206 obj->cache_level);
3207 err++;
3208 continue;
3209 }
3210 }
3211
3212 WARN_ON(err);
3213 #endif
3214 }
3215
3216 /**
3217 * Finds free space in the GTT aperture and binds the object there.
3218 */
3219 static int
3220 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3221 struct i915_address_space *vm,
3222 unsigned alignment,
3223 bool map_and_fenceable,
3224 bool nonblocking)
3225 {
3226 struct drm_device *dev = obj->base.dev;
3227 drm_i915_private_t *dev_priv = dev->dev_private;
3228 u32 size, fence_size, fence_alignment, unfenced_alignment;
3229 size_t gtt_max =
3230 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3231 struct i915_vma *vma;
3232 int ret;
3233
3234 fence_size = i915_gem_get_gtt_size(dev,
3235 obj->base.size,
3236 obj->tiling_mode);
3237 fence_alignment = i915_gem_get_gtt_alignment(dev,
3238 obj->base.size,
3239 obj->tiling_mode, true);
3240 unfenced_alignment =
3241 i915_gem_get_gtt_alignment(dev,
3242 obj->base.size,
3243 obj->tiling_mode, false);
3244
3245 if (alignment == 0)
3246 alignment = map_and_fenceable ? fence_alignment :
3247 unfenced_alignment;
3248 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3249 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3250 return -EINVAL;
3251 }
3252
3253 size = map_and_fenceable ? fence_size : obj->base.size;
3254
3255 /* If the object is bigger than the entire aperture, reject it early
3256 * before evicting everything in a vain attempt to find space.
3257 */
3258 if (obj->base.size > gtt_max) {
3259 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3260 obj->base.size,
3261 map_and_fenceable ? "mappable" : "total",
3262 gtt_max);
3263 return -E2BIG;
3264 }
3265
3266 ret = i915_gem_object_get_pages(obj);
3267 if (ret)
3268 return ret;
3269
3270 i915_gem_object_pin_pages(obj);
3271
3272 BUG_ON(!i915_is_ggtt(vm));
3273
3274 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3275 if (IS_ERR(vma)) {
3276 ret = PTR_ERR(vma);
3277 goto err_unpin;
3278 }
3279
3280 /* For now we only ever use 1 vma per object */
3281 WARN_ON(!list_is_singular(&obj->vma_list));
3282
3283 search_free:
3284 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3285 size, alignment,
3286 obj->cache_level, 0, gtt_max,
3287 DRM_MM_SEARCH_DEFAULT);
3288 if (ret) {
3289 ret = i915_gem_evict_something(dev, vm, size, alignment,
3290 obj->cache_level,
3291 map_and_fenceable,
3292 nonblocking);
3293 if (ret == 0)
3294 goto search_free;
3295
3296 goto err_free_vma;
3297 }
3298 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3299 obj->cache_level))) {
3300 ret = -EINVAL;
3301 goto err_remove_node;
3302 }
3303
3304 ret = i915_gem_gtt_prepare_object(obj);
3305 if (ret)
3306 goto err_remove_node;
3307
3308 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3309 list_add_tail(&vma->mm_list, &vm->inactive_list);
3310
3311 if (i915_is_ggtt(vm)) {
3312 bool mappable, fenceable;
3313
3314 fenceable = (vma->node.size == fence_size &&
3315 (vma->node.start & (fence_alignment - 1)) == 0);
3316
3317 mappable = (vma->node.start + obj->base.size <=
3318 dev_priv->gtt.mappable_end);
3319
3320 obj->map_and_fenceable = mappable && fenceable;
3321 }
3322
3323 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3324
3325 trace_i915_vma_bind(vma, map_and_fenceable);
3326 i915_gem_verify_gtt(dev);
3327 return 0;
3328
3329 err_remove_node:
3330 drm_mm_remove_node(&vma->node);
3331 err_free_vma:
3332 i915_gem_vma_destroy(vma);
3333 err_unpin:
3334 i915_gem_object_unpin_pages(obj);
3335 return ret;
3336 }
3337
3338 bool
3339 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3340 bool force)
3341 {
3342 /* If we don't have a page list set up, then we're not pinned
3343 * to GPU, and we can ignore the cache flush because it'll happen
3344 * again at bind time.
3345 */
3346 if (obj->pages == NULL)
3347 return false;
3348
3349 /*
3350 * Stolen memory is always coherent with the GPU as it is explicitly
3351 * marked as wc by the system, or the system is cache-coherent.
3352 */
3353 if (obj->stolen)
3354 return false;
3355
3356 /* If the GPU is snooping the contents of the CPU cache,
3357 * we do not need to manually clear the CPU cache lines. However,
3358 * the caches are only snooped when the render cache is
3359 * flushed/invalidated. As we always have to emit invalidations
3360 * and flushes when moving into and out of the RENDER domain, correct
3361 * snooping behaviour occurs naturally as the result of our domain
3362 * tracking.
3363 */
3364 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3365 return false;
3366
3367 trace_i915_gem_object_clflush(obj);
3368 drm_clflush_sg(obj->pages);
3369
3370 return true;
3371 }
3372
3373 /** Flushes the GTT write domain for the object if it's dirty. */
3374 static void
3375 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3376 {
3377 uint32_t old_write_domain;
3378
3379 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3380 return;
3381
3382 /* No actual flushing is required for the GTT write domain. Writes
3383 * to it immediately go to main memory as far as we know, so there's
3384 * no chipset flush. It also doesn't land in render cache.
3385 *
3386 * However, we do have to enforce the order so that all writes through
3387 * the GTT land before any writes to the device, such as updates to
3388 * the GATT itself.
3389 */
3390 wmb();
3391
3392 old_write_domain = obj->base.write_domain;
3393 obj->base.write_domain = 0;
3394
3395 trace_i915_gem_object_change_domain(obj,
3396 obj->base.read_domains,
3397 old_write_domain);
3398 }
3399
3400 /** Flushes the CPU write domain for the object if it's dirty. */
3401 static void
3402 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3403 bool force)
3404 {
3405 uint32_t old_write_domain;
3406
3407 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3408 return;
3409
3410 if (i915_gem_clflush_object(obj, force))
3411 i915_gem_chipset_flush(obj->base.dev);
3412
3413 old_write_domain = obj->base.write_domain;
3414 obj->base.write_domain = 0;
3415
3416 trace_i915_gem_object_change_domain(obj,
3417 obj->base.read_domains,
3418 old_write_domain);
3419 }
3420
3421 /**
3422 * Moves a single object to the GTT read, and possibly write domain.
3423 *
3424 * This function returns when the move is complete, including waiting on
3425 * flushes to occur.
3426 */
3427 int
3428 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3429 {
3430 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3431 uint32_t old_write_domain, old_read_domains;
3432 int ret;
3433
3434 /* Not valid to be called on unbound objects. */
3435 if (!i915_gem_obj_bound_any(obj))
3436 return -EINVAL;
3437
3438 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3439 return 0;
3440
3441 ret = i915_gem_object_wait_rendering(obj, !write);
3442 if (ret)
3443 return ret;
3444
3445 i915_gem_object_flush_cpu_write_domain(obj, false);
3446
3447 /* Serialise direct access to this object with the barriers for
3448 * coherent writes from the GPU, by effectively invalidating the
3449 * GTT domain upon first access.
3450 */
3451 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3452 mb();
3453
3454 old_write_domain = obj->base.write_domain;
3455 old_read_domains = obj->base.read_domains;
3456
3457 /* It should now be out of any other write domains, and we can update
3458 * the domain values for our changes.
3459 */
3460 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3461 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3462 if (write) {
3463 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3464 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3465 obj->dirty = 1;
3466 }
3467
3468 trace_i915_gem_object_change_domain(obj,
3469 old_read_domains,
3470 old_write_domain);
3471
3472 /* And bump the LRU for this access */
3473 if (i915_gem_object_is_inactive(obj)) {
3474 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3475 if (vma)
3476 list_move_tail(&vma->mm_list,
3477 &dev_priv->gtt.base.inactive_list);
3478
3479 }
3480
3481 return 0;
3482 }
3483
3484 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3485 enum i915_cache_level cache_level)
3486 {
3487 struct drm_device *dev = obj->base.dev;
3488 drm_i915_private_t *dev_priv = dev->dev_private;
3489 struct i915_vma *vma;
3490 int ret;
3491
3492 if (obj->cache_level == cache_level)
3493 return 0;
3494
3495 if (obj->pin_count) {
3496 DRM_DEBUG("can not change the cache level of pinned objects\n");
3497 return -EBUSY;
3498 }
3499
3500 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3501 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3502 ret = i915_vma_unbind(vma);
3503 if (ret)
3504 return ret;
3505
3506 break;
3507 }
3508 }
3509
3510 if (i915_gem_obj_bound_any(obj)) {
3511 ret = i915_gem_object_finish_gpu(obj);
3512 if (ret)
3513 return ret;
3514
3515 i915_gem_object_finish_gtt(obj);
3516
3517 /* Before SandyBridge, you could not use tiling or fence
3518 * registers with snooped memory, so relinquish any fences
3519 * currently pointing to our region in the aperture.
3520 */
3521 if (INTEL_INFO(dev)->gen < 6) {
3522 ret = i915_gem_object_put_fence(obj);
3523 if (ret)
3524 return ret;
3525 }
3526
3527 if (obj->has_global_gtt_mapping)
3528 i915_gem_gtt_bind_object(obj, cache_level);
3529 if (obj->has_aliasing_ppgtt_mapping)
3530 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3531 obj, cache_level);
3532 }
3533
3534 list_for_each_entry(vma, &obj->vma_list, vma_link)
3535 vma->node.color = cache_level;
3536 obj->cache_level = cache_level;
3537
3538 if (cpu_write_needs_clflush(obj)) {
3539 u32 old_read_domains, old_write_domain;
3540
3541 /* If we're coming from LLC cached, then we haven't
3542 * actually been tracking whether the data is in the
3543 * CPU cache or not, since we only allow one bit set
3544 * in obj->write_domain and have been skipping the clflushes.
3545 * Just set it to the CPU cache for now.
3546 */
3547 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3548
3549 old_read_domains = obj->base.read_domains;
3550 old_write_domain = obj->base.write_domain;
3551
3552 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3553 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3554
3555 trace_i915_gem_object_change_domain(obj,
3556 old_read_domains,
3557 old_write_domain);
3558 }
3559
3560 i915_gem_verify_gtt(dev);
3561 return 0;
3562 }
3563
3564 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file)
3566 {
3567 struct drm_i915_gem_caching *args = data;
3568 struct drm_i915_gem_object *obj;
3569 int ret;
3570
3571 ret = i915_mutex_lock_interruptible(dev);
3572 if (ret)
3573 return ret;
3574
3575 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3576 if (&obj->base == NULL) {
3577 ret = -ENOENT;
3578 goto unlock;
3579 }
3580
3581 switch (obj->cache_level) {
3582 case I915_CACHE_LLC:
3583 case I915_CACHE_L3_LLC:
3584 args->caching = I915_CACHING_CACHED;
3585 break;
3586
3587 case I915_CACHE_WT:
3588 args->caching = I915_CACHING_DISPLAY;
3589 break;
3590
3591 default:
3592 args->caching = I915_CACHING_NONE;
3593 break;
3594 }
3595
3596 drm_gem_object_unreference(&obj->base);
3597 unlock:
3598 mutex_unlock(&dev->struct_mutex);
3599 return ret;
3600 }
3601
3602 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3603 struct drm_file *file)
3604 {
3605 struct drm_i915_gem_caching *args = data;
3606 struct drm_i915_gem_object *obj;
3607 enum i915_cache_level level;
3608 int ret;
3609
3610 switch (args->caching) {
3611 case I915_CACHING_NONE:
3612 level = I915_CACHE_NONE;
3613 break;
3614 case I915_CACHING_CACHED:
3615 level = I915_CACHE_LLC;
3616 break;
3617 case I915_CACHING_DISPLAY:
3618 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3619 break;
3620 default:
3621 return -EINVAL;
3622 }
3623
3624 ret = i915_mutex_lock_interruptible(dev);
3625 if (ret)
3626 return ret;
3627
3628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3629 if (&obj->base == NULL) {
3630 ret = -ENOENT;
3631 goto unlock;
3632 }
3633
3634 ret = i915_gem_object_set_cache_level(obj, level);
3635
3636 drm_gem_object_unreference(&obj->base);
3637 unlock:
3638 mutex_unlock(&dev->struct_mutex);
3639 return ret;
3640 }
3641
3642 static bool is_pin_display(struct drm_i915_gem_object *obj)
3643 {
3644 /* There are 3 sources that pin objects:
3645 * 1. The display engine (scanouts, sprites, cursors);
3646 * 2. Reservations for execbuffer;
3647 * 3. The user.
3648 *
3649 * We can ignore reservations as we hold the struct_mutex and
3650 * are only called outside of the reservation path. The user
3651 * can only increment pin_count once, and so if after
3652 * subtracting the potential reference by the user, any pin_count
3653 * remains, it must be due to another use by the display engine.
3654 */
3655 return obj->pin_count - !!obj->user_pin_count;
3656 }
3657
3658 /*
3659 * Prepare buffer for display plane (scanout, cursors, etc).
3660 * Can be called from an uninterruptible phase (modesetting) and allows
3661 * any flushes to be pipelined (for pageflips).
3662 */
3663 int
3664 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3665 u32 alignment,
3666 struct intel_ring_buffer *pipelined)
3667 {
3668 u32 old_read_domains, old_write_domain;
3669 int ret;
3670
3671 if (pipelined != obj->ring) {
3672 ret = i915_gem_object_sync(obj, pipelined);
3673 if (ret)
3674 return ret;
3675 }
3676
3677 /* Mark the pin_display early so that we account for the
3678 * display coherency whilst setting up the cache domains.
3679 */
3680 obj->pin_display = true;
3681
3682 /* The display engine is not coherent with the LLC cache on gen6. As
3683 * a result, we make sure that the pinning that is about to occur is
3684 * done with uncached PTEs. This is lowest common denominator for all
3685 * chipsets.
3686 *
3687 * However for gen6+, we could do better by using the GFDT bit instead
3688 * of uncaching, which would allow us to flush all the LLC-cached data
3689 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3690 */
3691 ret = i915_gem_object_set_cache_level(obj,
3692 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3693 if (ret)
3694 goto err_unpin_display;
3695
3696 /* As the user may map the buffer once pinned in the display plane
3697 * (e.g. libkms for the bootup splash), we have to ensure that we
3698 * always use map_and_fenceable for all scanout buffers.
3699 */
3700 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3701 if (ret)
3702 goto err_unpin_display;
3703
3704 i915_gem_object_flush_cpu_write_domain(obj, true);
3705
3706 old_write_domain = obj->base.write_domain;
3707 old_read_domains = obj->base.read_domains;
3708
3709 /* It should now be out of any other write domains, and we can update
3710 * the domain values for our changes.
3711 */
3712 obj->base.write_domain = 0;
3713 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3714
3715 trace_i915_gem_object_change_domain(obj,
3716 old_read_domains,
3717 old_write_domain);
3718
3719 return 0;
3720
3721 err_unpin_display:
3722 obj->pin_display = is_pin_display(obj);
3723 return ret;
3724 }
3725
3726 void
3727 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3728 {
3729 i915_gem_object_unpin(obj);
3730 obj->pin_display = is_pin_display(obj);
3731 }
3732
3733 int
3734 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3735 {
3736 int ret;
3737
3738 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3739 return 0;
3740
3741 ret = i915_gem_object_wait_rendering(obj, false);
3742 if (ret)
3743 return ret;
3744
3745 /* Ensure that we invalidate the GPU's caches and TLBs. */
3746 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3747 return 0;
3748 }
3749
3750 /**
3751 * Moves a single object to the CPU read, and possibly write domain.
3752 *
3753 * This function returns when the move is complete, including waiting on
3754 * flushes to occur.
3755 */
3756 int
3757 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3758 {
3759 uint32_t old_write_domain, old_read_domains;
3760 int ret;
3761
3762 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3763 return 0;
3764
3765 ret = i915_gem_object_wait_rendering(obj, !write);
3766 if (ret)
3767 return ret;
3768
3769 i915_gem_object_flush_gtt_write_domain(obj);
3770
3771 old_write_domain = obj->base.write_domain;
3772 old_read_domains = obj->base.read_domains;
3773
3774 /* Flush the CPU cache if it's still invalid. */
3775 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3776 i915_gem_clflush_object(obj, false);
3777
3778 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3779 }
3780
3781 /* It should now be out of any other write domains, and we can update
3782 * the domain values for our changes.
3783 */
3784 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3785
3786 /* If we're writing through the CPU, then the GPU read domains will
3787 * need to be invalidated at next use.
3788 */
3789 if (write) {
3790 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3791 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3792 }
3793
3794 trace_i915_gem_object_change_domain(obj,
3795 old_read_domains,
3796 old_write_domain);
3797
3798 return 0;
3799 }
3800
3801 /* Throttle our rendering by waiting until the ring has completed our requests
3802 * emitted over 20 msec ago.
3803 *
3804 * Note that if we were to use the current jiffies each time around the loop,
3805 * we wouldn't escape the function with any frames outstanding if the time to
3806 * render a frame was over 20ms.
3807 *
3808 * This should get us reasonable parallelism between CPU and GPU but also
3809 * relatively low latency when blocking on a particular request to finish.
3810 */
3811 static int
3812 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3813 {
3814 struct drm_i915_private *dev_priv = dev->dev_private;
3815 struct drm_i915_file_private *file_priv = file->driver_priv;
3816 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3817 struct drm_i915_gem_request *request;
3818 struct intel_ring_buffer *ring = NULL;
3819 unsigned reset_counter;
3820 u32 seqno = 0;
3821 int ret;
3822
3823 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3824 if (ret)
3825 return ret;
3826
3827 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3828 if (ret)
3829 return ret;
3830
3831 spin_lock(&file_priv->mm.lock);
3832 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3833 if (time_after_eq(request->emitted_jiffies, recent_enough))
3834 break;
3835
3836 ring = request->ring;
3837 seqno = request->seqno;
3838 }
3839 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3840 spin_unlock(&file_priv->mm.lock);
3841
3842 if (seqno == 0)
3843 return 0;
3844
3845 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3846 if (ret == 0)
3847 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3848
3849 return ret;
3850 }
3851
3852 int
3853 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3854 struct i915_address_space *vm,
3855 uint32_t alignment,
3856 bool map_and_fenceable,
3857 bool nonblocking)
3858 {
3859 struct i915_vma *vma;
3860 int ret;
3861
3862 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3863 return -EBUSY;
3864
3865 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3866
3867 vma = i915_gem_obj_to_vma(obj, vm);
3868
3869 if (vma) {
3870 if ((alignment &&
3871 vma->node.start & (alignment - 1)) ||
3872 (map_and_fenceable && !obj->map_and_fenceable)) {
3873 WARN(obj->pin_count,
3874 "bo is already pinned with incorrect alignment:"
3875 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3876 " obj->map_and_fenceable=%d\n",
3877 i915_gem_obj_offset(obj, vm), alignment,
3878 map_and_fenceable,
3879 obj->map_and_fenceable);
3880 ret = i915_vma_unbind(vma);
3881 if (ret)
3882 return ret;
3883 }
3884 }
3885
3886 if (!i915_gem_obj_bound(obj, vm)) {
3887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3888
3889 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3890 map_and_fenceable,
3891 nonblocking);
3892 if (ret)
3893 return ret;
3894
3895 if (!dev_priv->mm.aliasing_ppgtt)
3896 i915_gem_gtt_bind_object(obj, obj->cache_level);
3897 }
3898
3899 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3900 i915_gem_gtt_bind_object(obj, obj->cache_level);
3901
3902 obj->pin_count++;
3903 obj->pin_mappable |= map_and_fenceable;
3904
3905 return 0;
3906 }
3907
3908 void
3909 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3910 {
3911 BUG_ON(obj->pin_count == 0);
3912 BUG_ON(!i915_gem_obj_bound_any(obj));
3913
3914 if (--obj->pin_count == 0)
3915 obj->pin_mappable = false;
3916 }
3917
3918 int
3919 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3920 struct drm_file *file)
3921 {
3922 struct drm_i915_gem_pin *args = data;
3923 struct drm_i915_gem_object *obj;
3924 int ret;
3925
3926 ret = i915_mutex_lock_interruptible(dev);
3927 if (ret)
3928 return ret;
3929
3930 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3931 if (&obj->base == NULL) {
3932 ret = -ENOENT;
3933 goto unlock;
3934 }
3935
3936 if (obj->madv != I915_MADV_WILLNEED) {
3937 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3938 ret = -EINVAL;
3939 goto out;
3940 }
3941
3942 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3943 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3944 args->handle);
3945 ret = -EINVAL;
3946 goto out;
3947 }
3948
3949 if (obj->user_pin_count == ULONG_MAX) {
3950 ret = -EBUSY;
3951 goto out;
3952 }
3953
3954 if (obj->user_pin_count == 0) {
3955 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3956 if (ret)
3957 goto out;
3958 }
3959
3960 obj->user_pin_count++;
3961 obj->pin_filp = file;
3962
3963 args->offset = i915_gem_obj_ggtt_offset(obj);
3964 out:
3965 drm_gem_object_unreference(&obj->base);
3966 unlock:
3967 mutex_unlock(&dev->struct_mutex);
3968 return ret;
3969 }
3970
3971 int
3972 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3973 struct drm_file *file)
3974 {
3975 struct drm_i915_gem_pin *args = data;
3976 struct drm_i915_gem_object *obj;
3977 int ret;
3978
3979 ret = i915_mutex_lock_interruptible(dev);
3980 if (ret)
3981 return ret;
3982
3983 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3984 if (&obj->base == NULL) {
3985 ret = -ENOENT;
3986 goto unlock;
3987 }
3988
3989 if (obj->pin_filp != file) {
3990 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3991 args->handle);
3992 ret = -EINVAL;
3993 goto out;
3994 }
3995 obj->user_pin_count--;
3996 if (obj->user_pin_count == 0) {
3997 obj->pin_filp = NULL;
3998 i915_gem_object_unpin(obj);
3999 }
4000
4001 out:
4002 drm_gem_object_unreference(&obj->base);
4003 unlock:
4004 mutex_unlock(&dev->struct_mutex);
4005 return ret;
4006 }
4007
4008 int
4009 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4010 struct drm_file *file)
4011 {
4012 struct drm_i915_gem_busy *args = data;
4013 struct drm_i915_gem_object *obj;
4014 int ret;
4015
4016 ret = i915_mutex_lock_interruptible(dev);
4017 if (ret)
4018 return ret;
4019
4020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4021 if (&obj->base == NULL) {
4022 ret = -ENOENT;
4023 goto unlock;
4024 }
4025
4026 /* Count all active objects as busy, even if they are currently not used
4027 * by the gpu. Users of this interface expect objects to eventually
4028 * become non-busy without any further actions, therefore emit any
4029 * necessary flushes here.
4030 */
4031 ret = i915_gem_object_flush_active(obj);
4032
4033 args->busy = obj->active;
4034 if (obj->ring) {
4035 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4036 args->busy |= intel_ring_flag(obj->ring) << 16;
4037 }
4038
4039 drm_gem_object_unreference(&obj->base);
4040 unlock:
4041 mutex_unlock(&dev->struct_mutex);
4042 return ret;
4043 }
4044
4045 int
4046 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4047 struct drm_file *file_priv)
4048 {
4049 return i915_gem_ring_throttle(dev, file_priv);
4050 }
4051
4052 int
4053 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4054 struct drm_file *file_priv)
4055 {
4056 struct drm_i915_gem_madvise *args = data;
4057 struct drm_i915_gem_object *obj;
4058 int ret;
4059
4060 switch (args->madv) {
4061 case I915_MADV_DONTNEED:
4062 case I915_MADV_WILLNEED:
4063 break;
4064 default:
4065 return -EINVAL;
4066 }
4067
4068 ret = i915_mutex_lock_interruptible(dev);
4069 if (ret)
4070 return ret;
4071
4072 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4073 if (&obj->base == NULL) {
4074 ret = -ENOENT;
4075 goto unlock;
4076 }
4077
4078 if (obj->pin_count) {
4079 ret = -EINVAL;
4080 goto out;
4081 }
4082
4083 if (obj->madv != __I915_MADV_PURGED)
4084 obj->madv = args->madv;
4085
4086 /* if the object is no longer attached, discard its backing storage */
4087 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4088 i915_gem_object_truncate(obj);
4089
4090 args->retained = obj->madv != __I915_MADV_PURGED;
4091
4092 out:
4093 drm_gem_object_unreference(&obj->base);
4094 unlock:
4095 mutex_unlock(&dev->struct_mutex);
4096 return ret;
4097 }
4098
4099 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4100 const struct drm_i915_gem_object_ops *ops)
4101 {
4102 INIT_LIST_HEAD(&obj->global_list);
4103 INIT_LIST_HEAD(&obj->ring_list);
4104 INIT_LIST_HEAD(&obj->obj_exec_link);
4105 INIT_LIST_HEAD(&obj->vma_list);
4106
4107 obj->ops = ops;
4108
4109 obj->fence_reg = I915_FENCE_REG_NONE;
4110 obj->madv = I915_MADV_WILLNEED;
4111 /* Avoid an unnecessary call to unbind on the first bind. */
4112 obj->map_and_fenceable = true;
4113
4114 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4115 }
4116
4117 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4118 .get_pages = i915_gem_object_get_pages_gtt,
4119 .put_pages = i915_gem_object_put_pages_gtt,
4120 };
4121
4122 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4123 size_t size)
4124 {
4125 struct drm_i915_gem_object *obj;
4126 struct address_space *mapping;
4127 gfp_t mask;
4128
4129 obj = i915_gem_object_alloc(dev);
4130 if (obj == NULL)
4131 return NULL;
4132
4133 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4134 i915_gem_object_free(obj);
4135 return NULL;
4136 }
4137
4138 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4139 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4140 /* 965gm cannot relocate objects above 4GiB. */
4141 mask &= ~__GFP_HIGHMEM;
4142 mask |= __GFP_DMA32;
4143 }
4144
4145 mapping = file_inode(obj->base.filp)->i_mapping;
4146 mapping_set_gfp_mask(mapping, mask);
4147
4148 i915_gem_object_init(obj, &i915_gem_object_ops);
4149
4150 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4151 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4152
4153 if (HAS_LLC(dev)) {
4154 /* On some devices, we can have the GPU use the LLC (the CPU
4155 * cache) for about a 10% performance improvement
4156 * compared to uncached. Graphics requests other than
4157 * display scanout are coherent with the CPU in
4158 * accessing this cache. This means in this mode we
4159 * don't need to clflush on the CPU side, and on the
4160 * GPU side we only need to flush internal caches to
4161 * get data visible to the CPU.
4162 *
4163 * However, we maintain the display planes as UC, and so
4164 * need to rebind when first used as such.
4165 */
4166 obj->cache_level = I915_CACHE_LLC;
4167 } else
4168 obj->cache_level = I915_CACHE_NONE;
4169
4170 trace_i915_gem_object_create(obj);
4171
4172 return obj;
4173 }
4174
4175 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4176 {
4177 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4178 struct drm_device *dev = obj->base.dev;
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 struct i915_vma *vma, *next;
4181
4182 trace_i915_gem_object_destroy(obj);
4183
4184 if (obj->phys_obj)
4185 i915_gem_detach_phys_object(dev, obj);
4186
4187 obj->pin_count = 0;
4188 /* NB: 0 or 1 elements */
4189 WARN_ON(!list_empty(&obj->vma_list) &&
4190 !list_is_singular(&obj->vma_list));
4191 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4192 int ret = i915_vma_unbind(vma);
4193 if (WARN_ON(ret == -ERESTARTSYS)) {
4194 bool was_interruptible;
4195
4196 was_interruptible = dev_priv->mm.interruptible;
4197 dev_priv->mm.interruptible = false;
4198
4199 WARN_ON(i915_vma_unbind(vma));
4200
4201 dev_priv->mm.interruptible = was_interruptible;
4202 }
4203 }
4204
4205 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4206 * before progressing. */
4207 if (obj->stolen)
4208 i915_gem_object_unpin_pages(obj);
4209
4210 if (WARN_ON(obj->pages_pin_count))
4211 obj->pages_pin_count = 0;
4212 i915_gem_object_put_pages(obj);
4213 i915_gem_object_free_mmap_offset(obj);
4214 i915_gem_object_release_stolen(obj);
4215
4216 BUG_ON(obj->pages);
4217
4218 if (obj->base.import_attach)
4219 drm_prime_gem_destroy(&obj->base, NULL);
4220
4221 drm_gem_object_release(&obj->base);
4222 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223
4224 kfree(obj->bit_17);
4225 i915_gem_object_free(obj);
4226 }
4227
4228 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4229 struct i915_address_space *vm)
4230 {
4231 struct i915_vma *vma;
4232 list_for_each_entry(vma, &obj->vma_list, vma_link)
4233 if (vma->vm == vm)
4234 return vma;
4235
4236 return NULL;
4237 }
4238
4239 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4240 struct i915_address_space *vm)
4241 {
4242 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4243 if (vma == NULL)
4244 return ERR_PTR(-ENOMEM);
4245
4246 INIT_LIST_HEAD(&vma->vma_link);
4247 INIT_LIST_HEAD(&vma->mm_list);
4248 INIT_LIST_HEAD(&vma->exec_list);
4249 vma->vm = vm;
4250 vma->obj = obj;
4251
4252 /* Keep GGTT vmas first to make debug easier */
4253 if (i915_is_ggtt(vm))
4254 list_add(&vma->vma_link, &obj->vma_list);
4255 else
4256 list_add_tail(&vma->vma_link, &obj->vma_list);
4257
4258 return vma;
4259 }
4260
4261 struct i915_vma *
4262 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4263 struct i915_address_space *vm)
4264 {
4265 struct i915_vma *vma;
4266
4267 vma = i915_gem_obj_to_vma(obj, vm);
4268 if (!vma)
4269 vma = __i915_gem_vma_create(obj, vm);
4270
4271 return vma;
4272 }
4273
4274 void i915_gem_vma_destroy(struct i915_vma *vma)
4275 {
4276 WARN_ON(vma->node.allocated);
4277
4278 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4279 if (!list_empty(&vma->exec_list))
4280 return;
4281
4282 list_del(&vma->vma_link);
4283
4284 kfree(vma);
4285 }
4286
4287 int
4288 i915_gem_suspend(struct drm_device *dev)
4289 {
4290 drm_i915_private_t *dev_priv = dev->dev_private;
4291 int ret = 0;
4292
4293 mutex_lock(&dev->struct_mutex);
4294 if (dev_priv->ums.mm_suspended)
4295 goto err;
4296
4297 ret = i915_gpu_idle(dev);
4298 if (ret)
4299 goto err;
4300
4301 i915_gem_retire_requests(dev);
4302
4303 /* Under UMS, be paranoid and evict. */
4304 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4305 i915_gem_evict_everything(dev);
4306
4307 i915_kernel_lost_context(dev);
4308 i915_gem_cleanup_ringbuffer(dev);
4309
4310 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4311 * We need to replace this with a semaphore, or something.
4312 * And not confound ums.mm_suspended!
4313 */
4314 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4315 DRIVER_MODESET);
4316 mutex_unlock(&dev->struct_mutex);
4317
4318 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4319 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4320 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4321
4322 return 0;
4323
4324 err:
4325 mutex_unlock(&dev->struct_mutex);
4326 return ret;
4327 }
4328
4329 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4330 {
4331 struct drm_device *dev = ring->dev;
4332 drm_i915_private_t *dev_priv = dev->dev_private;
4333 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4334 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4335 int i, ret;
4336
4337 if (!HAS_L3_DPF(dev) || !remap_info)
4338 return 0;
4339
4340 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4341 if (ret)
4342 return ret;
4343
4344 /*
4345 * Note: We do not worry about the concurrent register cacheline hang
4346 * here because no other code should access these registers other than
4347 * at initialization time.
4348 */
4349 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4350 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4351 intel_ring_emit(ring, reg_base + i);
4352 intel_ring_emit(ring, remap_info[i/4]);
4353 }
4354
4355 intel_ring_advance(ring);
4356
4357 return ret;
4358 }
4359
4360 void i915_gem_init_swizzling(struct drm_device *dev)
4361 {
4362 drm_i915_private_t *dev_priv = dev->dev_private;
4363
4364 if (INTEL_INFO(dev)->gen < 5 ||
4365 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4366 return;
4367
4368 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4369 DISP_TILE_SURFACE_SWIZZLING);
4370
4371 if (IS_GEN5(dev))
4372 return;
4373
4374 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4375 if (IS_GEN6(dev))
4376 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4377 else if (IS_GEN7(dev))
4378 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4379 else if (IS_GEN8(dev))
4380 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4381 else
4382 BUG();
4383 }
4384
4385 static bool
4386 intel_enable_blt(struct drm_device *dev)
4387 {
4388 if (!HAS_BLT(dev))
4389 return false;
4390
4391 /* The blitter was dysfunctional on early prototypes */
4392 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4393 DRM_INFO("BLT not supported on this pre-production hardware;"
4394 " graphics performance will be degraded.\n");
4395 return false;
4396 }
4397
4398 return true;
4399 }
4400
4401 static int i915_gem_init_rings(struct drm_device *dev)
4402 {
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404 int ret;
4405
4406 ret = intel_init_render_ring_buffer(dev);
4407 if (ret)
4408 return ret;
4409
4410 if (HAS_BSD(dev)) {
4411 ret = intel_init_bsd_ring_buffer(dev);
4412 if (ret)
4413 goto cleanup_render_ring;
4414 }
4415
4416 if (intel_enable_blt(dev)) {
4417 ret = intel_init_blt_ring_buffer(dev);
4418 if (ret)
4419 goto cleanup_bsd_ring;
4420 }
4421
4422 if (HAS_VEBOX(dev)) {
4423 ret = intel_init_vebox_ring_buffer(dev);
4424 if (ret)
4425 goto cleanup_blt_ring;
4426 }
4427
4428
4429 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4430 if (ret)
4431 goto cleanup_vebox_ring;
4432
4433 return 0;
4434
4435 cleanup_vebox_ring:
4436 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4437 cleanup_blt_ring:
4438 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4439 cleanup_bsd_ring:
4440 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4441 cleanup_render_ring:
4442 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4443
4444 return ret;
4445 }
4446
4447 int
4448 i915_gem_init_hw(struct drm_device *dev)
4449 {
4450 drm_i915_private_t *dev_priv = dev->dev_private;
4451 int ret, i;
4452
4453 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4454 return -EIO;
4455
4456 if (dev_priv->ellc_size)
4457 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4458
4459 if (IS_HASWELL(dev))
4460 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4461 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4462
4463 if (HAS_PCH_NOP(dev)) {
4464 u32 temp = I915_READ(GEN7_MSG_CTL);
4465 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4466 I915_WRITE(GEN7_MSG_CTL, temp);
4467 }
4468
4469 i915_gem_init_swizzling(dev);
4470
4471 ret = i915_gem_init_rings(dev);
4472 if (ret)
4473 return ret;
4474
4475 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4476 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4477
4478 /*
4479 * XXX: There was some w/a described somewhere suggesting loading
4480 * contexts before PPGTT.
4481 */
4482 i915_gem_context_init(dev);
4483 if (dev_priv->mm.aliasing_ppgtt) {
4484 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4485 if (ret) {
4486 i915_gem_cleanup_aliasing_ppgtt(dev);
4487 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4488 }
4489 }
4490
4491 return 0;
4492 }
4493
4494 int i915_gem_init(struct drm_device *dev)
4495 {
4496 struct drm_i915_private *dev_priv = dev->dev_private;
4497 int ret;
4498
4499 mutex_lock(&dev->struct_mutex);
4500
4501 if (IS_VALLEYVIEW(dev)) {
4502 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4503 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4504 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4505 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4506 }
4507
4508 i915_gem_init_global_gtt(dev);
4509
4510 ret = i915_gem_init_hw(dev);
4511 mutex_unlock(&dev->struct_mutex);
4512 if (ret) {
4513 i915_gem_cleanup_aliasing_ppgtt(dev);
4514 return ret;
4515 }
4516
4517 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4518 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4519 dev_priv->dri1.allow_batchbuffer = 1;
4520 return 0;
4521 }
4522
4523 void
4524 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4525 {
4526 drm_i915_private_t *dev_priv = dev->dev_private;
4527 struct intel_ring_buffer *ring;
4528 int i;
4529
4530 for_each_ring(ring, dev_priv, i)
4531 intel_cleanup_ring_buffer(ring);
4532 }
4533
4534 int
4535 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4536 struct drm_file *file_priv)
4537 {
4538 struct drm_i915_private *dev_priv = dev->dev_private;
4539 int ret;
4540
4541 if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 return 0;
4543
4544 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4545 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4546 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4547 }
4548
4549 mutex_lock(&dev->struct_mutex);
4550 dev_priv->ums.mm_suspended = 0;
4551
4552 ret = i915_gem_init_hw(dev);
4553 if (ret != 0) {
4554 mutex_unlock(&dev->struct_mutex);
4555 return ret;
4556 }
4557
4558 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4559 mutex_unlock(&dev->struct_mutex);
4560
4561 ret = drm_irq_install(dev);
4562 if (ret)
4563 goto cleanup_ringbuffer;
4564
4565 return 0;
4566
4567 cleanup_ringbuffer:
4568 mutex_lock(&dev->struct_mutex);
4569 i915_gem_cleanup_ringbuffer(dev);
4570 dev_priv->ums.mm_suspended = 1;
4571 mutex_unlock(&dev->struct_mutex);
4572
4573 return ret;
4574 }
4575
4576 int
4577 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4578 struct drm_file *file_priv)
4579 {
4580 if (drm_core_check_feature(dev, DRIVER_MODESET))
4581 return 0;
4582
4583 drm_irq_uninstall(dev);
4584
4585 return i915_gem_suspend(dev);
4586 }
4587
4588 void
4589 i915_gem_lastclose(struct drm_device *dev)
4590 {
4591 int ret;
4592
4593 if (drm_core_check_feature(dev, DRIVER_MODESET))
4594 return;
4595
4596 ret = i915_gem_suspend(dev);
4597 if (ret)
4598 DRM_ERROR("failed to idle hardware: %d\n", ret);
4599 }
4600
4601 static void
4602 init_ring_lists(struct intel_ring_buffer *ring)
4603 {
4604 INIT_LIST_HEAD(&ring->active_list);
4605 INIT_LIST_HEAD(&ring->request_list);
4606 }
4607
4608 static void i915_init_vm(struct drm_i915_private *dev_priv,
4609 struct i915_address_space *vm)
4610 {
4611 vm->dev = dev_priv->dev;
4612 INIT_LIST_HEAD(&vm->active_list);
4613 INIT_LIST_HEAD(&vm->inactive_list);
4614 INIT_LIST_HEAD(&vm->global_link);
4615 list_add(&vm->global_link, &dev_priv->vm_list);
4616 }
4617
4618 void
4619 i915_gem_load(struct drm_device *dev)
4620 {
4621 drm_i915_private_t *dev_priv = dev->dev_private;
4622 int i;
4623
4624 dev_priv->slab =
4625 kmem_cache_create("i915_gem_object",
4626 sizeof(struct drm_i915_gem_object), 0,
4627 SLAB_HWCACHE_ALIGN,
4628 NULL);
4629
4630 INIT_LIST_HEAD(&dev_priv->vm_list);
4631 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4632
4633 INIT_LIST_HEAD(&dev_priv->context_list);
4634 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4635 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4636 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 for (i = 0; i < I915_NUM_RINGS; i++)
4638 init_ring_lists(&dev_priv->ring[i]);
4639 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4640 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4641 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4642 i915_gem_retire_work_handler);
4643 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4644 i915_gem_idle_work_handler);
4645 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4646
4647 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4648 if (IS_GEN3(dev)) {
4649 I915_WRITE(MI_ARB_STATE,
4650 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4651 }
4652
4653 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4654
4655 /* Old X drivers will take 0-2 for front, back, depth buffers */
4656 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4657 dev_priv->fence_reg_start = 3;
4658
4659 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4660 dev_priv->num_fence_regs = 32;
4661 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4662 dev_priv->num_fence_regs = 16;
4663 else
4664 dev_priv->num_fence_regs = 8;
4665
4666 /* Initialize fence registers to zero */
4667 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4668 i915_gem_restore_fences(dev);
4669
4670 i915_gem_detect_bit_6_swizzle(dev);
4671 init_waitqueue_head(&dev_priv->pending_flip_queue);
4672
4673 dev_priv->mm.interruptible = true;
4674
4675 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4676 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4677 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4678 register_shrinker(&dev_priv->mm.inactive_shrinker);
4679 }
4680
4681 /*
4682 * Create a physically contiguous memory object for this object
4683 * e.g. for cursor + overlay regs
4684 */
4685 static int i915_gem_init_phys_object(struct drm_device *dev,
4686 int id, int size, int align)
4687 {
4688 drm_i915_private_t *dev_priv = dev->dev_private;
4689 struct drm_i915_gem_phys_object *phys_obj;
4690 int ret;
4691
4692 if (dev_priv->mm.phys_objs[id - 1] || !size)
4693 return 0;
4694
4695 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4696 if (!phys_obj)
4697 return -ENOMEM;
4698
4699 phys_obj->id = id;
4700
4701 phys_obj->handle = drm_pci_alloc(dev, size, align);
4702 if (!phys_obj->handle) {
4703 ret = -ENOMEM;
4704 goto kfree_obj;
4705 }
4706 #ifdef CONFIG_X86
4707 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4708 #endif
4709
4710 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4711
4712 return 0;
4713 kfree_obj:
4714 kfree(phys_obj);
4715 return ret;
4716 }
4717
4718 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4719 {
4720 drm_i915_private_t *dev_priv = dev->dev_private;
4721 struct drm_i915_gem_phys_object *phys_obj;
4722
4723 if (!dev_priv->mm.phys_objs[id - 1])
4724 return;
4725
4726 phys_obj = dev_priv->mm.phys_objs[id - 1];
4727 if (phys_obj->cur_obj) {
4728 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4729 }
4730
4731 #ifdef CONFIG_X86
4732 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4733 #endif
4734 drm_pci_free(dev, phys_obj->handle);
4735 kfree(phys_obj);
4736 dev_priv->mm.phys_objs[id - 1] = NULL;
4737 }
4738
4739 void i915_gem_free_all_phys_object(struct drm_device *dev)
4740 {
4741 int i;
4742
4743 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4744 i915_gem_free_phys_object(dev, i);
4745 }
4746
4747 void i915_gem_detach_phys_object(struct drm_device *dev,
4748 struct drm_i915_gem_object *obj)
4749 {
4750 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4751 char *vaddr;
4752 int i;
4753 int page_count;
4754
4755 if (!obj->phys_obj)
4756 return;
4757 vaddr = obj->phys_obj->handle->vaddr;
4758
4759 page_count = obj->base.size / PAGE_SIZE;
4760 for (i = 0; i < page_count; i++) {
4761 struct page *page = shmem_read_mapping_page(mapping, i);
4762 if (!IS_ERR(page)) {
4763 char *dst = kmap_atomic(page);
4764 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4765 kunmap_atomic(dst);
4766
4767 drm_clflush_pages(&page, 1);
4768
4769 set_page_dirty(page);
4770 mark_page_accessed(page);
4771 page_cache_release(page);
4772 }
4773 }
4774 i915_gem_chipset_flush(dev);
4775
4776 obj->phys_obj->cur_obj = NULL;
4777 obj->phys_obj = NULL;
4778 }
4779
4780 int
4781 i915_gem_attach_phys_object(struct drm_device *dev,
4782 struct drm_i915_gem_object *obj,
4783 int id,
4784 int align)
4785 {
4786 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4787 drm_i915_private_t *dev_priv = dev->dev_private;
4788 int ret = 0;
4789 int page_count;
4790 int i;
4791
4792 if (id > I915_MAX_PHYS_OBJECT)
4793 return -EINVAL;
4794
4795 if (obj->phys_obj) {
4796 if (obj->phys_obj->id == id)
4797 return 0;
4798 i915_gem_detach_phys_object(dev, obj);
4799 }
4800
4801 /* create a new object */
4802 if (!dev_priv->mm.phys_objs[id - 1]) {
4803 ret = i915_gem_init_phys_object(dev, id,
4804 obj->base.size, align);
4805 if (ret) {
4806 DRM_ERROR("failed to init phys object %d size: %zu\n",
4807 id, obj->base.size);
4808 return ret;
4809 }
4810 }
4811
4812 /* bind to the object */
4813 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4814 obj->phys_obj->cur_obj = obj;
4815
4816 page_count = obj->base.size / PAGE_SIZE;
4817
4818 for (i = 0; i < page_count; i++) {
4819 struct page *page;
4820 char *dst, *src;
4821
4822 page = shmem_read_mapping_page(mapping, i);
4823 if (IS_ERR(page))
4824 return PTR_ERR(page);
4825
4826 src = kmap_atomic(page);
4827 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4828 memcpy(dst, src, PAGE_SIZE);
4829 kunmap_atomic(src);
4830
4831 mark_page_accessed(page);
4832 page_cache_release(page);
4833 }
4834
4835 return 0;
4836 }
4837
4838 static int
4839 i915_gem_phys_pwrite(struct drm_device *dev,
4840 struct drm_i915_gem_object *obj,
4841 struct drm_i915_gem_pwrite *args,
4842 struct drm_file *file_priv)
4843 {
4844 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4845 char __user *user_data = to_user_ptr(args->data_ptr);
4846
4847 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4848 unsigned long unwritten;
4849
4850 /* The physical object once assigned is fixed for the lifetime
4851 * of the obj, so we can safely drop the lock and continue
4852 * to access vaddr.
4853 */
4854 mutex_unlock(&dev->struct_mutex);
4855 unwritten = copy_from_user(vaddr, user_data, args->size);
4856 mutex_lock(&dev->struct_mutex);
4857 if (unwritten)
4858 return -EFAULT;
4859 }
4860
4861 i915_gem_chipset_flush(dev);
4862 return 0;
4863 }
4864
4865 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4866 {
4867 struct drm_i915_file_private *file_priv = file->driver_priv;
4868
4869 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4870
4871 /* Clean up our request list when the client is going away, so that
4872 * later retire_requests won't dereference our soon-to-be-gone
4873 * file_priv.
4874 */
4875 spin_lock(&file_priv->mm.lock);
4876 while (!list_empty(&file_priv->mm.request_list)) {
4877 struct drm_i915_gem_request *request;
4878
4879 request = list_first_entry(&file_priv->mm.request_list,
4880 struct drm_i915_gem_request,
4881 client_list);
4882 list_del(&request->client_list);
4883 request->file_priv = NULL;
4884 }
4885 spin_unlock(&file_priv->mm.lock);
4886 }
4887
4888 static void
4889 i915_gem_file_idle_work_handler(struct work_struct *work)
4890 {
4891 struct drm_i915_file_private *file_priv =
4892 container_of(work, typeof(*file_priv), mm.idle_work.work);
4893
4894 atomic_set(&file_priv->rps_wait_boost, false);
4895 }
4896
4897 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4898 {
4899 struct drm_i915_file_private *file_priv;
4900
4901 DRM_DEBUG_DRIVER("\n");
4902
4903 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4904 if (!file_priv)
4905 return -ENOMEM;
4906
4907 file->driver_priv = file_priv;
4908 file_priv->dev_priv = dev->dev_private;
4909
4910 spin_lock_init(&file_priv->mm.lock);
4911 INIT_LIST_HEAD(&file_priv->mm.request_list);
4912 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4913 i915_gem_file_idle_work_handler);
4914
4915 idr_init(&file_priv->context_idr);
4916
4917 return 0;
4918 }
4919
4920 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4921 {
4922 if (!mutex_is_locked(mutex))
4923 return false;
4924
4925 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4926 return mutex->owner == task;
4927 #else
4928 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4929 return false;
4930 #endif
4931 }
4932
4933 static unsigned long
4934 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4935 {
4936 struct drm_i915_private *dev_priv =
4937 container_of(shrinker,
4938 struct drm_i915_private,
4939 mm.inactive_shrinker);
4940 struct drm_device *dev = dev_priv->dev;
4941 struct drm_i915_gem_object *obj;
4942 bool unlock = true;
4943 unsigned long count;
4944
4945 if (!mutex_trylock(&dev->struct_mutex)) {
4946 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4947 return 0;
4948
4949 if (dev_priv->mm.shrinker_no_lock_stealing)
4950 return 0;
4951
4952 unlock = false;
4953 }
4954
4955 count = 0;
4956 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4957 if (obj->pages_pin_count == 0)
4958 count += obj->base.size >> PAGE_SHIFT;
4959
4960 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4961 if (obj->active)
4962 continue;
4963
4964 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4965 count += obj->base.size >> PAGE_SHIFT;
4966 }
4967
4968 if (unlock)
4969 mutex_unlock(&dev->struct_mutex);
4970
4971 return count;
4972 }
4973
4974 /* All the new VM stuff */
4975 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4976 struct i915_address_space *vm)
4977 {
4978 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4979 struct i915_vma *vma;
4980
4981 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4982 vm = &dev_priv->gtt.base;
4983
4984 BUG_ON(list_empty(&o->vma_list));
4985 list_for_each_entry(vma, &o->vma_list, vma_link) {
4986 if (vma->vm == vm)
4987 return vma->node.start;
4988
4989 }
4990 return -1;
4991 }
4992
4993 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4994 struct i915_address_space *vm)
4995 {
4996 struct i915_vma *vma;
4997
4998 list_for_each_entry(vma, &o->vma_list, vma_link)
4999 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5000 return true;
5001
5002 return false;
5003 }
5004
5005 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5006 {
5007 struct i915_vma *vma;
5008
5009 list_for_each_entry(vma, &o->vma_list, vma_link)
5010 if (drm_mm_node_allocated(&vma->node))
5011 return true;
5012
5013 return false;
5014 }
5015
5016 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5017 struct i915_address_space *vm)
5018 {
5019 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5020 struct i915_vma *vma;
5021
5022 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5023 vm = &dev_priv->gtt.base;
5024
5025 BUG_ON(list_empty(&o->vma_list));
5026
5027 list_for_each_entry(vma, &o->vma_list, vma_link)
5028 if (vma->vm == vm)
5029 return vma->node.size;
5030
5031 return 0;
5032 }
5033
5034 static unsigned long
5035 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5036 {
5037 struct drm_i915_private *dev_priv =
5038 container_of(shrinker,
5039 struct drm_i915_private,
5040 mm.inactive_shrinker);
5041 struct drm_device *dev = dev_priv->dev;
5042 unsigned long freed;
5043 bool unlock = true;
5044
5045 if (!mutex_trylock(&dev->struct_mutex)) {
5046 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5047 return SHRINK_STOP;
5048
5049 if (dev_priv->mm.shrinker_no_lock_stealing)
5050 return SHRINK_STOP;
5051
5052 unlock = false;
5053 }
5054
5055 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5056 if (freed < sc->nr_to_scan)
5057 freed += __i915_gem_shrink(dev_priv,
5058 sc->nr_to_scan - freed,
5059 false);
5060 if (freed < sc->nr_to_scan)
5061 freed += i915_gem_shrink_all(dev_priv);
5062
5063 if (unlock)
5064 mutex_unlock(&dev->struct_mutex);
5065
5066 return freed;
5067 }
5068
5069 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5070 {
5071 struct i915_vma *vma;
5072
5073 if (WARN_ON(list_empty(&obj->vma_list)))
5074 return NULL;
5075
5076 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5077 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5078 return NULL;
5079
5080 return vma;
5081 }
This page took 0.16506 seconds and 6 git commands to generate.