drm/i915: Store the reset counter when constructing a request
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static void
44 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50 {
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
57 return true;
58
59 return obj->pin_display;
60 }
61
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
65 {
66 spin_lock(&dev_priv->mm.object_stat_lock);
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 spin_unlock(&dev_priv->mm.object_stat_lock);
70 }
71
72 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74 {
75 spin_lock(&dev_priv->mm.object_stat_lock);
76 dev_priv->mm.object_count--;
77 dev_priv->mm.object_memory -= size;
78 spin_unlock(&dev_priv->mm.object_stat_lock);
79 }
80
81 static int
82 i915_gem_wait_for_error(struct i915_gpu_error *error)
83 {
84 int ret;
85
86 if (!i915_reset_in_progress(error))
87 return 0;
88
89 /*
90 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
91 * userspace. If it takes that long something really bad is going on and
92 * we should simply try to bail out and fail as gracefully as possible.
93 */
94 ret = wait_event_interruptible_timeout(error->reset_queue,
95 !i915_reset_in_progress(error),
96 10*HZ);
97 if (ret == 0) {
98 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
99 return -EIO;
100 } else if (ret < 0) {
101 return ret;
102 } else {
103 return 0;
104 }
105 }
106
107 int i915_mutex_lock_interruptible(struct drm_device *dev)
108 {
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 int ret;
111
112 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
113 if (ret)
114 return ret;
115
116 ret = mutex_lock_interruptible(&dev->struct_mutex);
117 if (ret)
118 return ret;
119
120 WARN_ON(i915_verify_lists(dev));
121 return 0;
122 }
123
124 int
125 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
126 struct drm_file *file)
127 {
128 struct drm_i915_private *dev_priv = to_i915(dev);
129 struct i915_ggtt *ggtt = &dev_priv->ggtt;
130 struct drm_i915_gem_get_aperture *args = data;
131 struct i915_vma *vma;
132 size_t pinned;
133
134 pinned = 0;
135 mutex_lock(&dev->struct_mutex);
136 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
137 if (vma->pin_count)
138 pinned += vma->node.size;
139 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
140 if (vma->pin_count)
141 pinned += vma->node.size;
142 mutex_unlock(&dev->struct_mutex);
143
144 args->aper_size = ggtt->base.total;
145 args->aper_available_size = args->aper_size - pinned;
146
147 return 0;
148 }
149
150 static int
151 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
152 {
153 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
154 char *vaddr = obj->phys_handle->vaddr;
155 struct sg_table *st;
156 struct scatterlist *sg;
157 int i;
158
159 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
160 return -EINVAL;
161
162 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
163 struct page *page;
164 char *src;
165
166 page = shmem_read_mapping_page(mapping, i);
167 if (IS_ERR(page))
168 return PTR_ERR(page);
169
170 src = kmap_atomic(page);
171 memcpy(vaddr, src, PAGE_SIZE);
172 drm_clflush_virt_range(vaddr, PAGE_SIZE);
173 kunmap_atomic(src);
174
175 put_page(page);
176 vaddr += PAGE_SIZE;
177 }
178
179 i915_gem_chipset_flush(obj->base.dev);
180
181 st = kmalloc(sizeof(*st), GFP_KERNEL);
182 if (st == NULL)
183 return -ENOMEM;
184
185 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
186 kfree(st);
187 return -ENOMEM;
188 }
189
190 sg = st->sgl;
191 sg->offset = 0;
192 sg->length = obj->base.size;
193
194 sg_dma_address(sg) = obj->phys_handle->busaddr;
195 sg_dma_len(sg) = obj->base.size;
196
197 obj->pages = st;
198 return 0;
199 }
200
201 static void
202 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
203 {
204 int ret;
205
206 BUG_ON(obj->madv == __I915_MADV_PURGED);
207
208 ret = i915_gem_object_set_to_cpu_domain(obj, true);
209 if (ret) {
210 /* In the event of a disaster, abandon all caches and
211 * hope for the best.
212 */
213 WARN_ON(ret != -EIO);
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 char *vaddr = obj->phys_handle->vaddr;
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
240 mark_page_accessed(page);
241 put_page(page);
242 vaddr += PAGE_SIZE;
243 }
244 obj->dirty = 0;
245 }
246
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283 {
284 drm_dma_handle_t *phys;
285 int ret;
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
309 obj->phys_handle = phys;
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
323 int ret = 0;
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
331
332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
347 }
348
349 drm_clflush_virt_range(vaddr, args->size);
350 i915_gem_chipset_flush(dev);
351
352 out:
353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354 return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366 kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
374 {
375 struct drm_i915_gem_object *obj;
376 int ret;
377 u32 handle;
378
379 size = roundup(size, PAGE_SIZE);
380 if (size == 0)
381 return -EINVAL;
382
383 /* Allocate the new object */
384 obj = i915_gem_alloc_object(dev, size);
385 if (obj == NULL)
386 return -ENOMEM;
387
388 ret = drm_gem_handle_create(file, &obj->base, &handle);
389 /* drop reference from allocate - handle holds it now */
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
393
394 *handle_p = handle;
395 return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402 {
403 /* have to work out size/pitch and return them */
404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
407 args->size, &args->handle);
408 }
409
410 /**
411 * Creates a new mm object and returns a handle to it.
412 */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416 {
417 struct drm_i915_gem_create *args = data;
418
419 return i915_gem_create(file, dev,
420 args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427 {
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482 {
483 int ret;
484
485 *needs_clflush = 0;
486
487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519 char *vaddr;
520 int ret;
521
522 if (unlikely(page_do_bit17_swizzling))
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
534 return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540 {
541 if (unlikely(swizzled)) {
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
585 return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
593 {
594 char __user *user_data;
595 ssize_t remain;
596 loff_t offset;
597 int shmem_page_offset, page_length, ret = 0;
598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599 int prefaulted = 0;
600 int needs_clflush = 0;
601 struct sg_page_iter sg_iter;
602
603 user_data = to_user_ptr(args->data_ptr);
604 remain = args->size;
605
606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 if (ret)
610 return ret;
611
612 offset = args->offset;
613
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
616 struct page *page = sg_page_iter_page(&sg_iter);
617
618 if (remain <= 0)
619 break;
620
621 /* Operation in this page
622 *
623 * shmem_page_offset = offset within page in shmem file
624 * page_length = bytes to copy for this page
625 */
626 shmem_page_offset = offset_in_page(offset);
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
630
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
639
640 mutex_unlock(&dev->struct_mutex);
641
642 if (likely(!i915.prefault_disable) && !prefaulted) {
643 ret = fault_in_multipages_writeable(user_data, remain);
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
651
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655
656 mutex_lock(&dev->struct_mutex);
657
658 if (ret)
659 goto out;
660
661 next_page:
662 remain -= page_length;
663 user_data += page_length;
664 offset += page_length;
665 }
666
667 out:
668 i915_gem_object_unpin_pages(obj);
669
670 return ret;
671 }
672
673 /**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file)
681 {
682 struct drm_i915_gem_pread *args = data;
683 struct drm_i915_gem_object *obj;
684 int ret = 0;
685
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
690 to_user_ptr(args->data_ptr),
691 args->size))
692 return -EFAULT;
693
694 ret = i915_mutex_lock_interruptible(dev);
695 if (ret)
696 return ret;
697
698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699 if (&obj->base == NULL) {
700 ret = -ENOENT;
701 goto unlock;
702 }
703
704 /* Bounds check source. */
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
707 ret = -EINVAL;
708 goto out;
709 }
710
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721 ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724 drm_gem_object_unreference(&obj->base);
725 unlock:
726 mutex_unlock(&dev->struct_mutex);
727 return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731 * page faults in the source data
732 */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
739 {
740 void __iomem *vaddr_atomic;
741 void *vaddr;
742 unsigned long unwritten;
743
744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
748 user_data, length);
749 io_mapping_unmap_atomic(vaddr_atomic);
750 return unwritten;
751 }
752
753 /**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file)
762 {
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
765 ssize_t remain;
766 loff_t offset, page_base;
767 char __user *user_data;
768 int page_offset, page_length, ret;
769
770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
781
782 user_data = to_user_ptr(args->data_ptr);
783 remain = args->size;
784
785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
802 /* If we get a fault while copying data, then (presumably) our
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
805 */
806 if (fast_user_write(ggtt->mappable, page_base,
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
809 goto out_flush;
810 }
811
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
815 }
816
817 out_flush:
818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820 i915_gem_object_ggtt_unpin(obj);
821 out:
822 return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
835 {
836 char *vaddr;
837 int ret;
838
839 if (unlikely(page_do_bit17_swizzling))
840 return -EINVAL;
841
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
852
853 return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
864 {
865 char *vaddr;
866 int ret;
867
868 vaddr = kmap(page);
869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 user_data,
876 page_length);
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
885 kunmap(page);
886
887 return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
895 {
896 ssize_t remain;
897 loff_t offset;
898 char __user *user_data;
899 int shmem_page_offset, page_length, ret = 0;
900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901 int hit_slowpath = 0;
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
904 struct sg_page_iter sg_iter;
905
906 user_data = to_user_ptr(args->data_ptr);
907 remain = args->size;
908
909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
916 needs_clflush_after = cpu_write_needs_clflush(obj);
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
920 }
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
926
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933 i915_gem_object_pin_pages(obj);
934
935 offset = args->offset;
936 obj->dirty = 1;
937
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
940 struct page *page = sg_page_iter_page(&sg_iter);
941 int partial_cacheline_write;
942
943 if (remain <= 0)
944 break;
945
946 /* Operation in this page
947 *
948 * shmem_page_offset = offset within page in shmem file
949 * page_length = bytes to copy for this page
950 */
951 shmem_page_offset = offset_in_page(offset);
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
956
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
973
974 hit_slowpath = 1;
975 mutex_unlock(&dev->struct_mutex);
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980
981 mutex_lock(&dev->struct_mutex);
982
983 if (ret)
984 goto out;
985
986 next_page:
987 remain -= page_length;
988 user_data += page_length;
989 offset += page_length;
990 }
991
992 out:
993 i915_gem_object_unpin_pages(obj);
994
995 if (hit_slowpath) {
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 if (i915_gem_clflush_object(obj, obj->pin_display))
1004 needs_clflush_after = true;
1005 }
1006 }
1007
1008 if (needs_clflush_after)
1009 i915_gem_chipset_flush(dev);
1010 else
1011 obj->cache_dirty = true;
1012
1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct drm_i915_gem_pwrite *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
1035 to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 if (likely(!i915.prefault_disable)) {
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
1045
1046 intel_runtime_pm_get(dev_priv);
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 goto put_rpm;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Bounds check destination. */
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075 ret = -EFAULT;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
1089 }
1090
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
1097
1098 out:
1099 drm_gem_object_unreference(&obj->base);
1100 unlock:
1101 mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
1105 return ret;
1106 }
1107
1108 int
1109 i915_gem_check_wedge(struct i915_gpu_error *error,
1110 bool interruptible)
1111 {
1112 if (i915_reset_in_progress_or_wedged(error)) {
1113 /* Recovery complete, but the reset failed ... */
1114 if (i915_terminally_wedged(error))
1115 return -EIO;
1116
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 return -EAGAIN;
1123 }
1124
1125 return 0;
1126 }
1127
1128 static void fake_irq(unsigned long data)
1129 {
1130 wake_up_process((struct task_struct *)data);
1131 }
1132
1133 static bool missed_irq(struct drm_i915_private *dev_priv,
1134 struct intel_engine_cs *engine)
1135 {
1136 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1137 }
1138
1139 static unsigned long local_clock_us(unsigned *cpu)
1140 {
1141 unsigned long t;
1142
1143 /* Cheaply and approximately convert from nanoseconds to microseconds.
1144 * The result and subsequent calculations are also defined in the same
1145 * approximate microseconds units. The principal source of timing
1146 * error here is from the simple truncation.
1147 *
1148 * Note that local_clock() is only defined wrt to the current CPU;
1149 * the comparisons are no longer valid if we switch CPUs. Instead of
1150 * blocking preemption for the entire busywait, we can detect the CPU
1151 * switch and use that as indicator of system load and a reason to
1152 * stop busywaiting, see busywait_stop().
1153 */
1154 *cpu = get_cpu();
1155 t = local_clock() >> 10;
1156 put_cpu();
1157
1158 return t;
1159 }
1160
1161 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1162 {
1163 unsigned this_cpu;
1164
1165 if (time_after(local_clock_us(&this_cpu), timeout))
1166 return true;
1167
1168 return this_cpu != cpu;
1169 }
1170
1171 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1172 {
1173 unsigned long timeout;
1174 unsigned cpu;
1175
1176 /* When waiting for high frequency requests, e.g. during synchronous
1177 * rendering split between the CPU and GPU, the finite amount of time
1178 * required to set up the irq and wait upon it limits the response
1179 * rate. By busywaiting on the request completion for a short while we
1180 * can service the high frequency waits as quick as possible. However,
1181 * if it is a slow request, we want to sleep as quickly as possible.
1182 * The tradeoff between waiting and sleeping is roughly the time it
1183 * takes to sleep on a request, on the order of a microsecond.
1184 */
1185
1186 if (req->engine->irq_refcount)
1187 return -EBUSY;
1188
1189 /* Only spin if we know the GPU is processing this request */
1190 if (!i915_gem_request_started(req, true))
1191 return -EAGAIN;
1192
1193 timeout = local_clock_us(&cpu) + 5;
1194 while (!need_resched()) {
1195 if (i915_gem_request_completed(req, true))
1196 return 0;
1197
1198 if (signal_pending_state(state, current))
1199 break;
1200
1201 if (busywait_stop(timeout, cpu))
1202 break;
1203
1204 cpu_relax_lowlatency();
1205 }
1206
1207 if (i915_gem_request_completed(req, false))
1208 return 0;
1209
1210 return -EAGAIN;
1211 }
1212
1213 /**
1214 * __i915_wait_request - wait until execution of request has finished
1215 * @req: duh!
1216 * @interruptible: do an interruptible wait (normally yes)
1217 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1218 *
1219 * Note: It is of utmost importance that the passed in seqno and reset_counter
1220 * values have been read by the caller in an smp safe manner. Where read-side
1221 * locks are involved, it is sufficient to read the reset_counter before
1222 * unlocking the lock that protects the seqno. For lockless tricks, the
1223 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1224 * inserted.
1225 *
1226 * Returns 0 if the request was found within the alloted time. Else returns the
1227 * errno with remaining time filled in timeout argument.
1228 */
1229 int __i915_wait_request(struct drm_i915_gem_request *req,
1230 bool interruptible,
1231 s64 *timeout,
1232 struct intel_rps_client *rps)
1233 {
1234 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1235 struct drm_device *dev = engine->dev;
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 const bool irq_test_in_progress =
1238 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1239 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1240 DEFINE_WAIT(wait);
1241 unsigned long timeout_expire;
1242 s64 before = 0; /* Only to silence a compiler warning. */
1243 int ret;
1244
1245 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1246
1247 if (list_empty(&req->list))
1248 return 0;
1249
1250 if (i915_gem_request_completed(req, true))
1251 return 0;
1252
1253 timeout_expire = 0;
1254 if (timeout) {
1255 if (WARN_ON(*timeout < 0))
1256 return -EINVAL;
1257
1258 if (*timeout == 0)
1259 return -ETIME;
1260
1261 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1262
1263 /*
1264 * Record current time in case interrupted by signal, or wedged.
1265 */
1266 before = ktime_get_raw_ns();
1267 }
1268
1269 if (INTEL_INFO(dev_priv)->gen >= 6)
1270 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1271
1272 trace_i915_gem_request_wait_begin(req);
1273
1274 /* Optimistic spin for the next jiffie before touching IRQs */
1275 ret = __i915_spin_request(req, state);
1276 if (ret == 0)
1277 goto out;
1278
1279 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1280 ret = -ENODEV;
1281 goto out;
1282 }
1283
1284 for (;;) {
1285 struct timer_list timer;
1286
1287 prepare_to_wait(&engine->irq_queue, &wait, state);
1288
1289 /* We need to check whether any gpu reset happened in between
1290 * the caller grabbing the seqno and now ... */
1291 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1292 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1293 * is truely gone. */
1294 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1295 if (ret == 0)
1296 ret = -EAGAIN;
1297 break;
1298 }
1299
1300 if (i915_gem_request_completed(req, false)) {
1301 ret = 0;
1302 break;
1303 }
1304
1305 if (signal_pending_state(state, current)) {
1306 ret = -ERESTARTSYS;
1307 break;
1308 }
1309
1310 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1311 ret = -ETIME;
1312 break;
1313 }
1314
1315 timer.function = NULL;
1316 if (timeout || missed_irq(dev_priv, engine)) {
1317 unsigned long expire;
1318
1319 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1320 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1321 mod_timer(&timer, expire);
1322 }
1323
1324 io_schedule();
1325
1326 if (timer.function) {
1327 del_singleshot_timer_sync(&timer);
1328 destroy_timer_on_stack(&timer);
1329 }
1330 }
1331 if (!irq_test_in_progress)
1332 engine->irq_put(engine);
1333
1334 finish_wait(&engine->irq_queue, &wait);
1335
1336 out:
1337 trace_i915_gem_request_wait_end(req);
1338
1339 if (timeout) {
1340 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1341
1342 *timeout = tres < 0 ? 0 : tres;
1343
1344 /*
1345 * Apparently ktime isn't accurate enough and occasionally has a
1346 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1347 * things up to make the test happy. We allow up to 1 jiffy.
1348 *
1349 * This is a regrssion from the timespec->ktime conversion.
1350 */
1351 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1352 *timeout = 0;
1353 }
1354
1355 return ret;
1356 }
1357
1358 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1359 struct drm_file *file)
1360 {
1361 struct drm_i915_file_private *file_priv;
1362
1363 WARN_ON(!req || !file || req->file_priv);
1364
1365 if (!req || !file)
1366 return -EINVAL;
1367
1368 if (req->file_priv)
1369 return -EINVAL;
1370
1371 file_priv = file->driver_priv;
1372
1373 spin_lock(&file_priv->mm.lock);
1374 req->file_priv = file_priv;
1375 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1376 spin_unlock(&file_priv->mm.lock);
1377
1378 req->pid = get_pid(task_pid(current));
1379
1380 return 0;
1381 }
1382
1383 static inline void
1384 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1385 {
1386 struct drm_i915_file_private *file_priv = request->file_priv;
1387
1388 if (!file_priv)
1389 return;
1390
1391 spin_lock(&file_priv->mm.lock);
1392 list_del(&request->client_list);
1393 request->file_priv = NULL;
1394 spin_unlock(&file_priv->mm.lock);
1395
1396 put_pid(request->pid);
1397 request->pid = NULL;
1398 }
1399
1400 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1401 {
1402 trace_i915_gem_request_retire(request);
1403
1404 /* We know the GPU must have read the request to have
1405 * sent us the seqno + interrupt, so use the position
1406 * of tail of the request to update the last known position
1407 * of the GPU head.
1408 *
1409 * Note this requires that we are always called in request
1410 * completion order.
1411 */
1412 request->ringbuf->last_retired_head = request->postfix;
1413
1414 list_del_init(&request->list);
1415 i915_gem_request_remove_from_client(request);
1416
1417 i915_gem_request_unreference(request);
1418 }
1419
1420 static void
1421 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1422 {
1423 struct intel_engine_cs *engine = req->engine;
1424 struct drm_i915_gem_request *tmp;
1425
1426 lockdep_assert_held(&engine->dev->struct_mutex);
1427
1428 if (list_empty(&req->list))
1429 return;
1430
1431 do {
1432 tmp = list_first_entry(&engine->request_list,
1433 typeof(*tmp), list);
1434
1435 i915_gem_request_retire(tmp);
1436 } while (tmp != req);
1437
1438 WARN_ON(i915_verify_lists(engine->dev));
1439 }
1440
1441 /**
1442 * Waits for a request to be signaled, and cleans up the
1443 * request and object lists appropriately for that event.
1444 */
1445 int
1446 i915_wait_request(struct drm_i915_gem_request *req)
1447 {
1448 struct drm_device *dev;
1449 struct drm_i915_private *dev_priv;
1450 bool interruptible;
1451 int ret;
1452
1453 BUG_ON(req == NULL);
1454
1455 dev = req->engine->dev;
1456 dev_priv = dev->dev_private;
1457 interruptible = dev_priv->mm.interruptible;
1458
1459 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1460
1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 if (ret)
1463 return ret;
1464
1465 __i915_gem_request_retire__upto(req);
1466 return 0;
1467 }
1468
1469 /**
1470 * Ensures that all rendering to the object has completed and the object is
1471 * safe to unbind from the GTT or access from the CPU.
1472 */
1473 int
1474 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1475 bool readonly)
1476 {
1477 int ret, i;
1478
1479 if (!obj->active)
1480 return 0;
1481
1482 if (readonly) {
1483 if (obj->last_write_req != NULL) {
1484 ret = i915_wait_request(obj->last_write_req);
1485 if (ret)
1486 return ret;
1487
1488 i = obj->last_write_req->engine->id;
1489 if (obj->last_read_req[i] == obj->last_write_req)
1490 i915_gem_object_retire__read(obj, i);
1491 else
1492 i915_gem_object_retire__write(obj);
1493 }
1494 } else {
1495 for (i = 0; i < I915_NUM_ENGINES; i++) {
1496 if (obj->last_read_req[i] == NULL)
1497 continue;
1498
1499 ret = i915_wait_request(obj->last_read_req[i]);
1500 if (ret)
1501 return ret;
1502
1503 i915_gem_object_retire__read(obj, i);
1504 }
1505 GEM_BUG_ON(obj->active);
1506 }
1507
1508 return 0;
1509 }
1510
1511 static void
1512 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1513 struct drm_i915_gem_request *req)
1514 {
1515 int ring = req->engine->id;
1516
1517 if (obj->last_read_req[ring] == req)
1518 i915_gem_object_retire__read(obj, ring);
1519 else if (obj->last_write_req == req)
1520 i915_gem_object_retire__write(obj);
1521
1522 __i915_gem_request_retire__upto(req);
1523 }
1524
1525 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1526 * as the object state may change during this call.
1527 */
1528 static __must_check int
1529 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1530 struct intel_rps_client *rps,
1531 bool readonly)
1532 {
1533 struct drm_device *dev = obj->base.dev;
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1536 int ret, i, n = 0;
1537
1538 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1539 BUG_ON(!dev_priv->mm.interruptible);
1540
1541 if (!obj->active)
1542 return 0;
1543
1544 if (readonly) {
1545 struct drm_i915_gem_request *req;
1546
1547 req = obj->last_write_req;
1548 if (req == NULL)
1549 return 0;
1550
1551 requests[n++] = i915_gem_request_reference(req);
1552 } else {
1553 for (i = 0; i < I915_NUM_ENGINES; i++) {
1554 struct drm_i915_gem_request *req;
1555
1556 req = obj->last_read_req[i];
1557 if (req == NULL)
1558 continue;
1559
1560 requests[n++] = i915_gem_request_reference(req);
1561 }
1562 }
1563
1564 mutex_unlock(&dev->struct_mutex);
1565 ret = 0;
1566 for (i = 0; ret == 0 && i < n; i++)
1567 ret = __i915_wait_request(requests[i], true, NULL, rps);
1568 mutex_lock(&dev->struct_mutex);
1569
1570 for (i = 0; i < n; i++) {
1571 if (ret == 0)
1572 i915_gem_object_retire_request(obj, requests[i]);
1573 i915_gem_request_unreference(requests[i]);
1574 }
1575
1576 return ret;
1577 }
1578
1579 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1580 {
1581 struct drm_i915_file_private *fpriv = file->driver_priv;
1582 return &fpriv->rps;
1583 }
1584
1585 /**
1586 * Called when user space prepares to use an object with the CPU, either
1587 * through the mmap ioctl's mapping or a GTT mapping.
1588 */
1589 int
1590 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1591 struct drm_file *file)
1592 {
1593 struct drm_i915_gem_set_domain *args = data;
1594 struct drm_i915_gem_object *obj;
1595 uint32_t read_domains = args->read_domains;
1596 uint32_t write_domain = args->write_domain;
1597 int ret;
1598
1599 /* Only handle setting domains to types used by the CPU. */
1600 if (write_domain & I915_GEM_GPU_DOMAINS)
1601 return -EINVAL;
1602
1603 if (read_domains & I915_GEM_GPU_DOMAINS)
1604 return -EINVAL;
1605
1606 /* Having something in the write domain implies it's in the read
1607 * domain, and only that read domain. Enforce that in the request.
1608 */
1609 if (write_domain != 0 && read_domains != write_domain)
1610 return -EINVAL;
1611
1612 ret = i915_mutex_lock_interruptible(dev);
1613 if (ret)
1614 return ret;
1615
1616 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1617 if (&obj->base == NULL) {
1618 ret = -ENOENT;
1619 goto unlock;
1620 }
1621
1622 /* Try to flush the object off the GPU without holding the lock.
1623 * We will repeat the flush holding the lock in the normal manner
1624 * to catch cases where we are gazumped.
1625 */
1626 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1627 to_rps_client(file),
1628 !write_domain);
1629 if (ret)
1630 goto unref;
1631
1632 if (read_domains & I915_GEM_DOMAIN_GTT)
1633 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1634 else
1635 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1636
1637 if (write_domain != 0)
1638 intel_fb_obj_invalidate(obj,
1639 write_domain == I915_GEM_DOMAIN_GTT ?
1640 ORIGIN_GTT : ORIGIN_CPU);
1641
1642 unref:
1643 drm_gem_object_unreference(&obj->base);
1644 unlock:
1645 mutex_unlock(&dev->struct_mutex);
1646 return ret;
1647 }
1648
1649 /**
1650 * Called when user space has done writes to this buffer
1651 */
1652 int
1653 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1654 struct drm_file *file)
1655 {
1656 struct drm_i915_gem_sw_finish *args = data;
1657 struct drm_i915_gem_object *obj;
1658 int ret = 0;
1659
1660 ret = i915_mutex_lock_interruptible(dev);
1661 if (ret)
1662 return ret;
1663
1664 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1665 if (&obj->base == NULL) {
1666 ret = -ENOENT;
1667 goto unlock;
1668 }
1669
1670 /* Pinned buffers may be scanout, so flush the cache */
1671 if (obj->pin_display)
1672 i915_gem_object_flush_cpu_write_domain(obj);
1673
1674 drm_gem_object_unreference(&obj->base);
1675 unlock:
1676 mutex_unlock(&dev->struct_mutex);
1677 return ret;
1678 }
1679
1680 /**
1681 * Maps the contents of an object, returning the address it is mapped
1682 * into.
1683 *
1684 * While the mapping holds a reference on the contents of the object, it doesn't
1685 * imply a ref on the object itself.
1686 *
1687 * IMPORTANT:
1688 *
1689 * DRM driver writers who look a this function as an example for how to do GEM
1690 * mmap support, please don't implement mmap support like here. The modern way
1691 * to implement DRM mmap support is with an mmap offset ioctl (like
1692 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1693 * That way debug tooling like valgrind will understand what's going on, hiding
1694 * the mmap call in a driver private ioctl will break that. The i915 driver only
1695 * does cpu mmaps this way because we didn't know better.
1696 */
1697 int
1698 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1699 struct drm_file *file)
1700 {
1701 struct drm_i915_gem_mmap *args = data;
1702 struct drm_gem_object *obj;
1703 unsigned long addr;
1704
1705 if (args->flags & ~(I915_MMAP_WC))
1706 return -EINVAL;
1707
1708 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1709 return -ENODEV;
1710
1711 obj = drm_gem_object_lookup(dev, file, args->handle);
1712 if (obj == NULL)
1713 return -ENOENT;
1714
1715 /* prime objects have no backing filp to GEM mmap
1716 * pages from.
1717 */
1718 if (!obj->filp) {
1719 drm_gem_object_unreference_unlocked(obj);
1720 return -EINVAL;
1721 }
1722
1723 addr = vm_mmap(obj->filp, 0, args->size,
1724 PROT_READ | PROT_WRITE, MAP_SHARED,
1725 args->offset);
1726 if (args->flags & I915_MMAP_WC) {
1727 struct mm_struct *mm = current->mm;
1728 struct vm_area_struct *vma;
1729
1730 down_write(&mm->mmap_sem);
1731 vma = find_vma(mm, addr);
1732 if (vma)
1733 vma->vm_page_prot =
1734 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1735 else
1736 addr = -ENOMEM;
1737 up_write(&mm->mmap_sem);
1738 }
1739 drm_gem_object_unreference_unlocked(obj);
1740 if (IS_ERR((void *)addr))
1741 return addr;
1742
1743 args->addr_ptr = (uint64_t) addr;
1744
1745 return 0;
1746 }
1747
1748 /**
1749 * i915_gem_fault - fault a page into the GTT
1750 * @vma: VMA in question
1751 * @vmf: fault info
1752 *
1753 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1754 * from userspace. The fault handler takes care of binding the object to
1755 * the GTT (if needed), allocating and programming a fence register (again,
1756 * only if needed based on whether the old reg is still valid or the object
1757 * is tiled) and inserting a new PTE into the faulting process.
1758 *
1759 * Note that the faulting process may involve evicting existing objects
1760 * from the GTT and/or fence registers to make room. So performance may
1761 * suffer if the GTT working set is large or there are few fence registers
1762 * left.
1763 */
1764 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1765 {
1766 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1767 struct drm_device *dev = obj->base.dev;
1768 struct drm_i915_private *dev_priv = to_i915(dev);
1769 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1770 struct i915_ggtt_view view = i915_ggtt_view_normal;
1771 pgoff_t page_offset;
1772 unsigned long pfn;
1773 int ret = 0;
1774 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1775
1776 intel_runtime_pm_get(dev_priv);
1777
1778 /* We don't use vmf->pgoff since that has the fake offset */
1779 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1780 PAGE_SHIFT;
1781
1782 ret = i915_mutex_lock_interruptible(dev);
1783 if (ret)
1784 goto out;
1785
1786 trace_i915_gem_object_fault(obj, page_offset, true, write);
1787
1788 /* Try to flush the object off the GPU first without holding the lock.
1789 * Upon reacquiring the lock, we will perform our sanity checks and then
1790 * repeat the flush holding the lock in the normal manner to catch cases
1791 * where we are gazumped.
1792 */
1793 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1794 if (ret)
1795 goto unlock;
1796
1797 /* Access to snoopable pages through the GTT is incoherent. */
1798 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1799 ret = -EFAULT;
1800 goto unlock;
1801 }
1802
1803 /* Use a partial view if the object is bigger than the aperture. */
1804 if (obj->base.size >= ggtt->mappable_end &&
1805 obj->tiling_mode == I915_TILING_NONE) {
1806 static const unsigned int chunk_size = 256; // 1 MiB
1807
1808 memset(&view, 0, sizeof(view));
1809 view.type = I915_GGTT_VIEW_PARTIAL;
1810 view.params.partial.offset = rounddown(page_offset, chunk_size);
1811 view.params.partial.size =
1812 min_t(unsigned int,
1813 chunk_size,
1814 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1815 view.params.partial.offset);
1816 }
1817
1818 /* Now pin it into the GTT if needed */
1819 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1820 if (ret)
1821 goto unlock;
1822
1823 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1824 if (ret)
1825 goto unpin;
1826
1827 ret = i915_gem_object_get_fence(obj);
1828 if (ret)
1829 goto unpin;
1830
1831 /* Finally, remap it using the new GTT offset */
1832 pfn = ggtt->mappable_base +
1833 i915_gem_obj_ggtt_offset_view(obj, &view);
1834 pfn >>= PAGE_SHIFT;
1835
1836 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1837 /* Overriding existing pages in partial view does not cause
1838 * us any trouble as TLBs are still valid because the fault
1839 * is due to userspace losing part of the mapping or never
1840 * having accessed it before (at this partials' range).
1841 */
1842 unsigned long base = vma->vm_start +
1843 (view.params.partial.offset << PAGE_SHIFT);
1844 unsigned int i;
1845
1846 for (i = 0; i < view.params.partial.size; i++) {
1847 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1848 if (ret)
1849 break;
1850 }
1851
1852 obj->fault_mappable = true;
1853 } else {
1854 if (!obj->fault_mappable) {
1855 unsigned long size = min_t(unsigned long,
1856 vma->vm_end - vma->vm_start,
1857 obj->base.size);
1858 int i;
1859
1860 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1861 ret = vm_insert_pfn(vma,
1862 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1863 pfn + i);
1864 if (ret)
1865 break;
1866 }
1867
1868 obj->fault_mappable = true;
1869 } else
1870 ret = vm_insert_pfn(vma,
1871 (unsigned long)vmf->virtual_address,
1872 pfn + page_offset);
1873 }
1874 unpin:
1875 i915_gem_object_ggtt_unpin_view(obj, &view);
1876 unlock:
1877 mutex_unlock(&dev->struct_mutex);
1878 out:
1879 switch (ret) {
1880 case -EIO:
1881 /*
1882 * We eat errors when the gpu is terminally wedged to avoid
1883 * userspace unduly crashing (gl has no provisions for mmaps to
1884 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1885 * and so needs to be reported.
1886 */
1887 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1888 ret = VM_FAULT_SIGBUS;
1889 break;
1890 }
1891 case -EAGAIN:
1892 /*
1893 * EAGAIN means the gpu is hung and we'll wait for the error
1894 * handler to reset everything when re-faulting in
1895 * i915_mutex_lock_interruptible.
1896 */
1897 case 0:
1898 case -ERESTARTSYS:
1899 case -EINTR:
1900 case -EBUSY:
1901 /*
1902 * EBUSY is ok: this just means that another thread
1903 * already did the job.
1904 */
1905 ret = VM_FAULT_NOPAGE;
1906 break;
1907 case -ENOMEM:
1908 ret = VM_FAULT_OOM;
1909 break;
1910 case -ENOSPC:
1911 case -EFAULT:
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 default:
1915 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1916 ret = VM_FAULT_SIGBUS;
1917 break;
1918 }
1919
1920 intel_runtime_pm_put(dev_priv);
1921 return ret;
1922 }
1923
1924 /**
1925 * i915_gem_release_mmap - remove physical page mappings
1926 * @obj: obj in question
1927 *
1928 * Preserve the reservation of the mmapping with the DRM core code, but
1929 * relinquish ownership of the pages back to the system.
1930 *
1931 * It is vital that we remove the page mapping if we have mapped a tiled
1932 * object through the GTT and then lose the fence register due to
1933 * resource pressure. Similarly if the object has been moved out of the
1934 * aperture, than pages mapped into userspace must be revoked. Removing the
1935 * mapping will then trigger a page fault on the next user access, allowing
1936 * fixup by i915_gem_fault().
1937 */
1938 void
1939 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1940 {
1941 if (!obj->fault_mappable)
1942 return;
1943
1944 drm_vma_node_unmap(&obj->base.vma_node,
1945 obj->base.dev->anon_inode->i_mapping);
1946 obj->fault_mappable = false;
1947 }
1948
1949 void
1950 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1951 {
1952 struct drm_i915_gem_object *obj;
1953
1954 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1955 i915_gem_release_mmap(obj);
1956 }
1957
1958 uint32_t
1959 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1960 {
1961 uint32_t gtt_size;
1962
1963 if (INTEL_INFO(dev)->gen >= 4 ||
1964 tiling_mode == I915_TILING_NONE)
1965 return size;
1966
1967 /* Previous chips need a power-of-two fence region when tiling */
1968 if (INTEL_INFO(dev)->gen == 3)
1969 gtt_size = 1024*1024;
1970 else
1971 gtt_size = 512*1024;
1972
1973 while (gtt_size < size)
1974 gtt_size <<= 1;
1975
1976 return gtt_size;
1977 }
1978
1979 /**
1980 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1981 * @obj: object to check
1982 *
1983 * Return the required GTT alignment for an object, taking into account
1984 * potential fence register mapping.
1985 */
1986 uint32_t
1987 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1988 int tiling_mode, bool fenced)
1989 {
1990 /*
1991 * Minimum alignment is 4k (GTT page size), but might be greater
1992 * if a fence register is needed for the object.
1993 */
1994 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1995 tiling_mode == I915_TILING_NONE)
1996 return 4096;
1997
1998 /*
1999 * Previous chips need to be aligned to the size of the smallest
2000 * fence register that can contain the object.
2001 */
2002 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2003 }
2004
2005 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2006 {
2007 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2008 int ret;
2009
2010 if (drm_vma_node_has_offset(&obj->base.vma_node))
2011 return 0;
2012
2013 dev_priv->mm.shrinker_no_lock_stealing = true;
2014
2015 ret = drm_gem_create_mmap_offset(&obj->base);
2016 if (ret != -ENOSPC)
2017 goto out;
2018
2019 /* Badly fragmented mmap space? The only way we can recover
2020 * space is by destroying unwanted objects. We can't randomly release
2021 * mmap_offsets as userspace expects them to be persistent for the
2022 * lifetime of the objects. The closest we can is to release the
2023 * offsets on purgeable objects by truncating it and marking it purged,
2024 * which prevents userspace from ever using that object again.
2025 */
2026 i915_gem_shrink(dev_priv,
2027 obj->base.size >> PAGE_SHIFT,
2028 I915_SHRINK_BOUND |
2029 I915_SHRINK_UNBOUND |
2030 I915_SHRINK_PURGEABLE);
2031 ret = drm_gem_create_mmap_offset(&obj->base);
2032 if (ret != -ENOSPC)
2033 goto out;
2034
2035 i915_gem_shrink_all(dev_priv);
2036 ret = drm_gem_create_mmap_offset(&obj->base);
2037 out:
2038 dev_priv->mm.shrinker_no_lock_stealing = false;
2039
2040 return ret;
2041 }
2042
2043 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2044 {
2045 drm_gem_free_mmap_offset(&obj->base);
2046 }
2047
2048 int
2049 i915_gem_mmap_gtt(struct drm_file *file,
2050 struct drm_device *dev,
2051 uint32_t handle,
2052 uint64_t *offset)
2053 {
2054 struct drm_i915_gem_object *obj;
2055 int ret;
2056
2057 ret = i915_mutex_lock_interruptible(dev);
2058 if (ret)
2059 return ret;
2060
2061 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2062 if (&obj->base == NULL) {
2063 ret = -ENOENT;
2064 goto unlock;
2065 }
2066
2067 if (obj->madv != I915_MADV_WILLNEED) {
2068 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2069 ret = -EFAULT;
2070 goto out;
2071 }
2072
2073 ret = i915_gem_object_create_mmap_offset(obj);
2074 if (ret)
2075 goto out;
2076
2077 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2078
2079 out:
2080 drm_gem_object_unreference(&obj->base);
2081 unlock:
2082 mutex_unlock(&dev->struct_mutex);
2083 return ret;
2084 }
2085
2086 /**
2087 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2088 * @dev: DRM device
2089 * @data: GTT mapping ioctl data
2090 * @file: GEM object info
2091 *
2092 * Simply returns the fake offset to userspace so it can mmap it.
2093 * The mmap call will end up in drm_gem_mmap(), which will set things
2094 * up so we can get faults in the handler above.
2095 *
2096 * The fault handler will take care of binding the object into the GTT
2097 * (since it may have been evicted to make room for something), allocating
2098 * a fence register, and mapping the appropriate aperture address into
2099 * userspace.
2100 */
2101 int
2102 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2103 struct drm_file *file)
2104 {
2105 struct drm_i915_gem_mmap_gtt *args = data;
2106
2107 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2108 }
2109
2110 /* Immediately discard the backing storage */
2111 static void
2112 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2113 {
2114 i915_gem_object_free_mmap_offset(obj);
2115
2116 if (obj->base.filp == NULL)
2117 return;
2118
2119 /* Our goal here is to return as much of the memory as
2120 * is possible back to the system as we are called from OOM.
2121 * To do this we must instruct the shmfs to drop all of its
2122 * backing pages, *now*.
2123 */
2124 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2125 obj->madv = __I915_MADV_PURGED;
2126 }
2127
2128 /* Try to discard unwanted pages */
2129 static void
2130 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2131 {
2132 struct address_space *mapping;
2133
2134 switch (obj->madv) {
2135 case I915_MADV_DONTNEED:
2136 i915_gem_object_truncate(obj);
2137 case __I915_MADV_PURGED:
2138 return;
2139 }
2140
2141 if (obj->base.filp == NULL)
2142 return;
2143
2144 mapping = file_inode(obj->base.filp)->i_mapping,
2145 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2146 }
2147
2148 static void
2149 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2150 {
2151 struct sg_page_iter sg_iter;
2152 int ret;
2153
2154 BUG_ON(obj->madv == __I915_MADV_PURGED);
2155
2156 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2157 if (ret) {
2158 /* In the event of a disaster, abandon all caches and
2159 * hope for the best.
2160 */
2161 WARN_ON(ret != -EIO);
2162 i915_gem_clflush_object(obj, true);
2163 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2164 }
2165
2166 i915_gem_gtt_finish_object(obj);
2167
2168 if (i915_gem_object_needs_bit17_swizzle(obj))
2169 i915_gem_object_save_bit_17_swizzle(obj);
2170
2171 if (obj->madv == I915_MADV_DONTNEED)
2172 obj->dirty = 0;
2173
2174 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2175 struct page *page = sg_page_iter_page(&sg_iter);
2176
2177 if (obj->dirty)
2178 set_page_dirty(page);
2179
2180 if (obj->madv == I915_MADV_WILLNEED)
2181 mark_page_accessed(page);
2182
2183 put_page(page);
2184 }
2185 obj->dirty = 0;
2186
2187 sg_free_table(obj->pages);
2188 kfree(obj->pages);
2189 }
2190
2191 int
2192 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2193 {
2194 const struct drm_i915_gem_object_ops *ops = obj->ops;
2195
2196 if (obj->pages == NULL)
2197 return 0;
2198
2199 if (obj->pages_pin_count)
2200 return -EBUSY;
2201
2202 BUG_ON(i915_gem_obj_bound_any(obj));
2203
2204 /* ->put_pages might need to allocate memory for the bit17 swizzle
2205 * array, hence protect them from being reaped by removing them from gtt
2206 * lists early. */
2207 list_del(&obj->global_list);
2208
2209 if (obj->mapping) {
2210 if (is_vmalloc_addr(obj->mapping))
2211 vunmap(obj->mapping);
2212 else
2213 kunmap(kmap_to_page(obj->mapping));
2214 obj->mapping = NULL;
2215 }
2216
2217 ops->put_pages(obj);
2218 obj->pages = NULL;
2219
2220 i915_gem_object_invalidate(obj);
2221
2222 return 0;
2223 }
2224
2225 static int
2226 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2227 {
2228 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2229 int page_count, i;
2230 struct address_space *mapping;
2231 struct sg_table *st;
2232 struct scatterlist *sg;
2233 struct sg_page_iter sg_iter;
2234 struct page *page;
2235 unsigned long last_pfn = 0; /* suppress gcc warning */
2236 int ret;
2237 gfp_t gfp;
2238
2239 /* Assert that the object is not currently in any GPU domain. As it
2240 * wasn't in the GTT, there shouldn't be any way it could have been in
2241 * a GPU cache
2242 */
2243 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2244 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2245
2246 st = kmalloc(sizeof(*st), GFP_KERNEL);
2247 if (st == NULL)
2248 return -ENOMEM;
2249
2250 page_count = obj->base.size / PAGE_SIZE;
2251 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2252 kfree(st);
2253 return -ENOMEM;
2254 }
2255
2256 /* Get the list of pages out of our struct file. They'll be pinned
2257 * at this point until we release them.
2258 *
2259 * Fail silently without starting the shrinker
2260 */
2261 mapping = file_inode(obj->base.filp)->i_mapping;
2262 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2263 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2264 sg = st->sgl;
2265 st->nents = 0;
2266 for (i = 0; i < page_count; i++) {
2267 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2268 if (IS_ERR(page)) {
2269 i915_gem_shrink(dev_priv,
2270 page_count,
2271 I915_SHRINK_BOUND |
2272 I915_SHRINK_UNBOUND |
2273 I915_SHRINK_PURGEABLE);
2274 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2275 }
2276 if (IS_ERR(page)) {
2277 /* We've tried hard to allocate the memory by reaping
2278 * our own buffer, now let the real VM do its job and
2279 * go down in flames if truly OOM.
2280 */
2281 i915_gem_shrink_all(dev_priv);
2282 page = shmem_read_mapping_page(mapping, i);
2283 if (IS_ERR(page)) {
2284 ret = PTR_ERR(page);
2285 goto err_pages;
2286 }
2287 }
2288 #ifdef CONFIG_SWIOTLB
2289 if (swiotlb_nr_tbl()) {
2290 st->nents++;
2291 sg_set_page(sg, page, PAGE_SIZE, 0);
2292 sg = sg_next(sg);
2293 continue;
2294 }
2295 #endif
2296 if (!i || page_to_pfn(page) != last_pfn + 1) {
2297 if (i)
2298 sg = sg_next(sg);
2299 st->nents++;
2300 sg_set_page(sg, page, PAGE_SIZE, 0);
2301 } else {
2302 sg->length += PAGE_SIZE;
2303 }
2304 last_pfn = page_to_pfn(page);
2305
2306 /* Check that the i965g/gm workaround works. */
2307 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2308 }
2309 #ifdef CONFIG_SWIOTLB
2310 if (!swiotlb_nr_tbl())
2311 #endif
2312 sg_mark_end(sg);
2313 obj->pages = st;
2314
2315 ret = i915_gem_gtt_prepare_object(obj);
2316 if (ret)
2317 goto err_pages;
2318
2319 if (i915_gem_object_needs_bit17_swizzle(obj))
2320 i915_gem_object_do_bit_17_swizzle(obj);
2321
2322 if (obj->tiling_mode != I915_TILING_NONE &&
2323 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2324 i915_gem_object_pin_pages(obj);
2325
2326 return 0;
2327
2328 err_pages:
2329 sg_mark_end(sg);
2330 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2331 put_page(sg_page_iter_page(&sg_iter));
2332 sg_free_table(st);
2333 kfree(st);
2334
2335 /* shmemfs first checks if there is enough memory to allocate the page
2336 * and reports ENOSPC should there be insufficient, along with the usual
2337 * ENOMEM for a genuine allocation failure.
2338 *
2339 * We use ENOSPC in our driver to mean that we have run out of aperture
2340 * space and so want to translate the error from shmemfs back to our
2341 * usual understanding of ENOMEM.
2342 */
2343 if (ret == -ENOSPC)
2344 ret = -ENOMEM;
2345
2346 return ret;
2347 }
2348
2349 /* Ensure that the associated pages are gathered from the backing storage
2350 * and pinned into our object. i915_gem_object_get_pages() may be called
2351 * multiple times before they are released by a single call to
2352 * i915_gem_object_put_pages() - once the pages are no longer referenced
2353 * either as a result of memory pressure (reaping pages under the shrinker)
2354 * or as the object is itself released.
2355 */
2356 int
2357 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2358 {
2359 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2360 const struct drm_i915_gem_object_ops *ops = obj->ops;
2361 int ret;
2362
2363 if (obj->pages)
2364 return 0;
2365
2366 if (obj->madv != I915_MADV_WILLNEED) {
2367 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2368 return -EFAULT;
2369 }
2370
2371 BUG_ON(obj->pages_pin_count);
2372
2373 ret = ops->get_pages(obj);
2374 if (ret)
2375 return ret;
2376
2377 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2378
2379 obj->get_page.sg = obj->pages->sgl;
2380 obj->get_page.last = 0;
2381
2382 return 0;
2383 }
2384
2385 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2386 {
2387 int ret;
2388
2389 lockdep_assert_held(&obj->base.dev->struct_mutex);
2390
2391 ret = i915_gem_object_get_pages(obj);
2392 if (ret)
2393 return ERR_PTR(ret);
2394
2395 i915_gem_object_pin_pages(obj);
2396
2397 if (obj->mapping == NULL) {
2398 struct page **pages;
2399
2400 pages = NULL;
2401 if (obj->base.size == PAGE_SIZE)
2402 obj->mapping = kmap(sg_page(obj->pages->sgl));
2403 else
2404 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2405 sizeof(*pages),
2406 GFP_TEMPORARY);
2407 if (pages != NULL) {
2408 struct sg_page_iter sg_iter;
2409 int n;
2410
2411 n = 0;
2412 for_each_sg_page(obj->pages->sgl, &sg_iter,
2413 obj->pages->nents, 0)
2414 pages[n++] = sg_page_iter_page(&sg_iter);
2415
2416 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2417 drm_free_large(pages);
2418 }
2419 if (obj->mapping == NULL) {
2420 i915_gem_object_unpin_pages(obj);
2421 return ERR_PTR(-ENOMEM);
2422 }
2423 }
2424
2425 return obj->mapping;
2426 }
2427
2428 void i915_vma_move_to_active(struct i915_vma *vma,
2429 struct drm_i915_gem_request *req)
2430 {
2431 struct drm_i915_gem_object *obj = vma->obj;
2432 struct intel_engine_cs *engine;
2433
2434 engine = i915_gem_request_get_engine(req);
2435
2436 /* Add a reference if we're newly entering the active list. */
2437 if (obj->active == 0)
2438 drm_gem_object_reference(&obj->base);
2439 obj->active |= intel_engine_flag(engine);
2440
2441 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2442 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2443
2444 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2445 }
2446
2447 static void
2448 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2449 {
2450 GEM_BUG_ON(obj->last_write_req == NULL);
2451 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2452
2453 i915_gem_request_assign(&obj->last_write_req, NULL);
2454 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2455 }
2456
2457 static void
2458 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2459 {
2460 struct i915_vma *vma;
2461
2462 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2463 GEM_BUG_ON(!(obj->active & (1 << ring)));
2464
2465 list_del_init(&obj->engine_list[ring]);
2466 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2467
2468 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2469 i915_gem_object_retire__write(obj);
2470
2471 obj->active &= ~(1 << ring);
2472 if (obj->active)
2473 return;
2474
2475 /* Bump our place on the bound list to keep it roughly in LRU order
2476 * so that we don't steal from recently used but inactive objects
2477 * (unless we are forced to ofc!)
2478 */
2479 list_move_tail(&obj->global_list,
2480 &to_i915(obj->base.dev)->mm.bound_list);
2481
2482 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2483 if (!list_empty(&vma->vm_link))
2484 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2485 }
2486
2487 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2488 drm_gem_object_unreference(&obj->base);
2489 }
2490
2491 static int
2492 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2493 {
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 struct intel_engine_cs *engine;
2496 int ret;
2497
2498 /* Carefully retire all requests without writing to the rings */
2499 for_each_engine(engine, dev_priv) {
2500 ret = intel_engine_idle(engine);
2501 if (ret)
2502 return ret;
2503 }
2504 i915_gem_retire_requests(dev);
2505
2506 /* Finally reset hw state */
2507 for_each_engine(engine, dev_priv)
2508 intel_ring_init_seqno(engine, seqno);
2509
2510 return 0;
2511 }
2512
2513 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2514 {
2515 struct drm_i915_private *dev_priv = dev->dev_private;
2516 int ret;
2517
2518 if (seqno == 0)
2519 return -EINVAL;
2520
2521 /* HWS page needs to be set less than what we
2522 * will inject to ring
2523 */
2524 ret = i915_gem_init_seqno(dev, seqno - 1);
2525 if (ret)
2526 return ret;
2527
2528 /* Carefully set the last_seqno value so that wrap
2529 * detection still works
2530 */
2531 dev_priv->next_seqno = seqno;
2532 dev_priv->last_seqno = seqno - 1;
2533 if (dev_priv->last_seqno == 0)
2534 dev_priv->last_seqno--;
2535
2536 return 0;
2537 }
2538
2539 int
2540 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2541 {
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543
2544 /* reserve 0 for non-seqno */
2545 if (dev_priv->next_seqno == 0) {
2546 int ret = i915_gem_init_seqno(dev, 0);
2547 if (ret)
2548 return ret;
2549
2550 dev_priv->next_seqno = 1;
2551 }
2552
2553 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2554 return 0;
2555 }
2556
2557 /*
2558 * NB: This function is not allowed to fail. Doing so would mean the the
2559 * request is not being tracked for completion but the work itself is
2560 * going to happen on the hardware. This would be a Bad Thing(tm).
2561 */
2562 void __i915_add_request(struct drm_i915_gem_request *request,
2563 struct drm_i915_gem_object *obj,
2564 bool flush_caches)
2565 {
2566 struct intel_engine_cs *engine;
2567 struct drm_i915_private *dev_priv;
2568 struct intel_ringbuffer *ringbuf;
2569 u32 request_start;
2570 int ret;
2571
2572 if (WARN_ON(request == NULL))
2573 return;
2574
2575 engine = request->engine;
2576 dev_priv = request->i915;
2577 ringbuf = request->ringbuf;
2578
2579 /*
2580 * To ensure that this call will not fail, space for its emissions
2581 * should already have been reserved in the ring buffer. Let the ring
2582 * know that it is time to use that space up.
2583 */
2584 intel_ring_reserved_space_use(ringbuf);
2585
2586 request_start = intel_ring_get_tail(ringbuf);
2587 /*
2588 * Emit any outstanding flushes - execbuf can fail to emit the flush
2589 * after having emitted the batchbuffer command. Hence we need to fix
2590 * things up similar to emitting the lazy request. The difference here
2591 * is that the flush _must_ happen before the next request, no matter
2592 * what.
2593 */
2594 if (flush_caches) {
2595 if (i915.enable_execlists)
2596 ret = logical_ring_flush_all_caches(request);
2597 else
2598 ret = intel_ring_flush_all_caches(request);
2599 /* Not allowed to fail! */
2600 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2601 }
2602
2603 trace_i915_gem_request_add(request);
2604
2605 request->head = request_start;
2606
2607 /* Whilst this request exists, batch_obj will be on the
2608 * active_list, and so will hold the active reference. Only when this
2609 * request is retired will the the batch_obj be moved onto the
2610 * inactive_list and lose its active reference. Hence we do not need
2611 * to explicitly hold another reference here.
2612 */
2613 request->batch_obj = obj;
2614
2615 /* Seal the request and mark it as pending execution. Note that
2616 * we may inspect this state, without holding any locks, during
2617 * hangcheck. Hence we apply the barrier to ensure that we do not
2618 * see a more recent value in the hws than we are tracking.
2619 */
2620 request->emitted_jiffies = jiffies;
2621 request->previous_seqno = engine->last_submitted_seqno;
2622 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2623 list_add_tail(&request->list, &engine->request_list);
2624
2625 /* Record the position of the start of the request so that
2626 * should we detect the updated seqno part-way through the
2627 * GPU processing the request, we never over-estimate the
2628 * position of the head.
2629 */
2630 request->postfix = intel_ring_get_tail(ringbuf);
2631
2632 if (i915.enable_execlists)
2633 ret = engine->emit_request(request);
2634 else {
2635 ret = engine->add_request(request);
2636
2637 request->tail = intel_ring_get_tail(ringbuf);
2638 }
2639 /* Not allowed to fail! */
2640 WARN(ret, "emit|add_request failed: %d!\n", ret);
2641
2642 i915_queue_hangcheck(engine->dev);
2643
2644 queue_delayed_work(dev_priv->wq,
2645 &dev_priv->mm.retire_work,
2646 round_jiffies_up_relative(HZ));
2647 intel_mark_busy(dev_priv->dev);
2648
2649 /* Sanity check that the reserved size was large enough. */
2650 intel_ring_reserved_space_end(ringbuf);
2651 }
2652
2653 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2654 const struct intel_context *ctx)
2655 {
2656 unsigned long elapsed;
2657
2658 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2659
2660 if (ctx->hang_stats.banned)
2661 return true;
2662
2663 if (ctx->hang_stats.ban_period_seconds &&
2664 elapsed <= ctx->hang_stats.ban_period_seconds) {
2665 if (!i915_gem_context_is_default(ctx)) {
2666 DRM_DEBUG("context hanging too fast, banning!\n");
2667 return true;
2668 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2669 if (i915_stop_ring_allow_warn(dev_priv))
2670 DRM_ERROR("gpu hanging too fast, banning!\n");
2671 return true;
2672 }
2673 }
2674
2675 return false;
2676 }
2677
2678 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2679 struct intel_context *ctx,
2680 const bool guilty)
2681 {
2682 struct i915_ctx_hang_stats *hs;
2683
2684 if (WARN_ON(!ctx))
2685 return;
2686
2687 hs = &ctx->hang_stats;
2688
2689 if (guilty) {
2690 hs->banned = i915_context_is_banned(dev_priv, ctx);
2691 hs->batch_active++;
2692 hs->guilty_ts = get_seconds();
2693 } else {
2694 hs->batch_pending++;
2695 }
2696 }
2697
2698 void i915_gem_request_free(struct kref *req_ref)
2699 {
2700 struct drm_i915_gem_request *req = container_of(req_ref,
2701 typeof(*req), ref);
2702 struct intel_context *ctx = req->ctx;
2703
2704 if (req->file_priv)
2705 i915_gem_request_remove_from_client(req);
2706
2707 if (ctx) {
2708 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2709 intel_lr_context_unpin(ctx, req->engine);
2710
2711 i915_gem_context_unreference(ctx);
2712 }
2713
2714 kmem_cache_free(req->i915->requests, req);
2715 }
2716
2717 static inline int
2718 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2719 struct intel_context *ctx,
2720 struct drm_i915_gem_request **req_out)
2721 {
2722 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2723 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2724 struct drm_i915_gem_request *req;
2725 int ret;
2726
2727 if (!req_out)
2728 return -EINVAL;
2729
2730 *req_out = NULL;
2731
2732 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2733 dev_priv->mm.interruptible);
2734 if (ret)
2735 return ret;
2736
2737 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2738 if (req == NULL)
2739 return -ENOMEM;
2740
2741 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2742 if (ret)
2743 goto err;
2744
2745 kref_init(&req->ref);
2746 req->i915 = dev_priv;
2747 req->engine = engine;
2748 req->reset_counter = reset_counter;
2749 req->ctx = ctx;
2750 i915_gem_context_reference(req->ctx);
2751
2752 if (i915.enable_execlists)
2753 ret = intel_logical_ring_alloc_request_extras(req);
2754 else
2755 ret = intel_ring_alloc_request_extras(req);
2756 if (ret) {
2757 i915_gem_context_unreference(req->ctx);
2758 goto err;
2759 }
2760
2761 /*
2762 * Reserve space in the ring buffer for all the commands required to
2763 * eventually emit this request. This is to guarantee that the
2764 * i915_add_request() call can't fail. Note that the reserve may need
2765 * to be redone if the request is not actually submitted straight
2766 * away, e.g. because a GPU scheduler has deferred it.
2767 */
2768 if (i915.enable_execlists)
2769 ret = intel_logical_ring_reserve_space(req);
2770 else
2771 ret = intel_ring_reserve_space(req);
2772 if (ret) {
2773 /*
2774 * At this point, the request is fully allocated even if not
2775 * fully prepared. Thus it can be cleaned up using the proper
2776 * free code.
2777 */
2778 i915_gem_request_cancel(req);
2779 return ret;
2780 }
2781
2782 *req_out = req;
2783 return 0;
2784
2785 err:
2786 kmem_cache_free(dev_priv->requests, req);
2787 return ret;
2788 }
2789
2790 /**
2791 * i915_gem_request_alloc - allocate a request structure
2792 *
2793 * @engine: engine that we wish to issue the request on.
2794 * @ctx: context that the request will be associated with.
2795 * This can be NULL if the request is not directly related to
2796 * any specific user context, in which case this function will
2797 * choose an appropriate context to use.
2798 *
2799 * Returns a pointer to the allocated request if successful,
2800 * or an error code if not.
2801 */
2802 struct drm_i915_gem_request *
2803 i915_gem_request_alloc(struct intel_engine_cs *engine,
2804 struct intel_context *ctx)
2805 {
2806 struct drm_i915_gem_request *req;
2807 int err;
2808
2809 if (ctx == NULL)
2810 ctx = to_i915(engine->dev)->kernel_context;
2811 err = __i915_gem_request_alloc(engine, ctx, &req);
2812 return err ? ERR_PTR(err) : req;
2813 }
2814
2815 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2816 {
2817 intel_ring_reserved_space_cancel(req->ringbuf);
2818
2819 i915_gem_request_unreference(req);
2820 }
2821
2822 struct drm_i915_gem_request *
2823 i915_gem_find_active_request(struct intel_engine_cs *engine)
2824 {
2825 struct drm_i915_gem_request *request;
2826
2827 list_for_each_entry(request, &engine->request_list, list) {
2828 if (i915_gem_request_completed(request, false))
2829 continue;
2830
2831 return request;
2832 }
2833
2834 return NULL;
2835 }
2836
2837 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2838 struct intel_engine_cs *engine)
2839 {
2840 struct drm_i915_gem_request *request;
2841 bool ring_hung;
2842
2843 request = i915_gem_find_active_request(engine);
2844
2845 if (request == NULL)
2846 return;
2847
2848 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2849
2850 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2851
2852 list_for_each_entry_continue(request, &engine->request_list, list)
2853 i915_set_reset_status(dev_priv, request->ctx, false);
2854 }
2855
2856 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2857 struct intel_engine_cs *engine)
2858 {
2859 struct intel_ringbuffer *buffer;
2860
2861 while (!list_empty(&engine->active_list)) {
2862 struct drm_i915_gem_object *obj;
2863
2864 obj = list_first_entry(&engine->active_list,
2865 struct drm_i915_gem_object,
2866 engine_list[engine->id]);
2867
2868 i915_gem_object_retire__read(obj, engine->id);
2869 }
2870
2871 /*
2872 * Clear the execlists queue up before freeing the requests, as those
2873 * are the ones that keep the context and ringbuffer backing objects
2874 * pinned in place.
2875 */
2876
2877 if (i915.enable_execlists) {
2878 /* Ensure irq handler finishes or is cancelled. */
2879 tasklet_kill(&engine->irq_tasklet);
2880
2881 spin_lock_bh(&engine->execlist_lock);
2882 /* list_splice_tail_init checks for empty lists */
2883 list_splice_tail_init(&engine->execlist_queue,
2884 &engine->execlist_retired_req_list);
2885 spin_unlock_bh(&engine->execlist_lock);
2886
2887 intel_execlists_retire_requests(engine);
2888 }
2889
2890 /*
2891 * We must free the requests after all the corresponding objects have
2892 * been moved off active lists. Which is the same order as the normal
2893 * retire_requests function does. This is important if object hold
2894 * implicit references on things like e.g. ppgtt address spaces through
2895 * the request.
2896 */
2897 while (!list_empty(&engine->request_list)) {
2898 struct drm_i915_gem_request *request;
2899
2900 request = list_first_entry(&engine->request_list,
2901 struct drm_i915_gem_request,
2902 list);
2903
2904 i915_gem_request_retire(request);
2905 }
2906
2907 /* Having flushed all requests from all queues, we know that all
2908 * ringbuffers must now be empty. However, since we do not reclaim
2909 * all space when retiring the request (to prevent HEADs colliding
2910 * with rapid ringbuffer wraparound) the amount of available space
2911 * upon reset is less than when we start. Do one more pass over
2912 * all the ringbuffers to reset last_retired_head.
2913 */
2914 list_for_each_entry(buffer, &engine->buffers, link) {
2915 buffer->last_retired_head = buffer->tail;
2916 intel_ring_update_space(buffer);
2917 }
2918
2919 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2920 }
2921
2922 void i915_gem_reset(struct drm_device *dev)
2923 {
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 struct intel_engine_cs *engine;
2926
2927 /*
2928 * Before we free the objects from the requests, we need to inspect
2929 * them for finding the guilty party. As the requests only borrow
2930 * their reference to the objects, the inspection must be done first.
2931 */
2932 for_each_engine(engine, dev_priv)
2933 i915_gem_reset_engine_status(dev_priv, engine);
2934
2935 for_each_engine(engine, dev_priv)
2936 i915_gem_reset_engine_cleanup(dev_priv, engine);
2937
2938 i915_gem_context_reset(dev);
2939
2940 i915_gem_restore_fences(dev);
2941
2942 WARN_ON(i915_verify_lists(dev));
2943 }
2944
2945 /**
2946 * This function clears the request list as sequence numbers are passed.
2947 */
2948 void
2949 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2950 {
2951 WARN_ON(i915_verify_lists(engine->dev));
2952
2953 /* Retire requests first as we use it above for the early return.
2954 * If we retire requests last, we may use a later seqno and so clear
2955 * the requests lists without clearing the active list, leading to
2956 * confusion.
2957 */
2958 while (!list_empty(&engine->request_list)) {
2959 struct drm_i915_gem_request *request;
2960
2961 request = list_first_entry(&engine->request_list,
2962 struct drm_i915_gem_request,
2963 list);
2964
2965 if (!i915_gem_request_completed(request, true))
2966 break;
2967
2968 i915_gem_request_retire(request);
2969 }
2970
2971 /* Move any buffers on the active list that are no longer referenced
2972 * by the ringbuffer to the flushing/inactive lists as appropriate,
2973 * before we free the context associated with the requests.
2974 */
2975 while (!list_empty(&engine->active_list)) {
2976 struct drm_i915_gem_object *obj;
2977
2978 obj = list_first_entry(&engine->active_list,
2979 struct drm_i915_gem_object,
2980 engine_list[engine->id]);
2981
2982 if (!list_empty(&obj->last_read_req[engine->id]->list))
2983 break;
2984
2985 i915_gem_object_retire__read(obj, engine->id);
2986 }
2987
2988 if (unlikely(engine->trace_irq_req &&
2989 i915_gem_request_completed(engine->trace_irq_req, true))) {
2990 engine->irq_put(engine);
2991 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2992 }
2993
2994 WARN_ON(i915_verify_lists(engine->dev));
2995 }
2996
2997 bool
2998 i915_gem_retire_requests(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 struct intel_engine_cs *engine;
3002 bool idle = true;
3003
3004 for_each_engine(engine, dev_priv) {
3005 i915_gem_retire_requests_ring(engine);
3006 idle &= list_empty(&engine->request_list);
3007 if (i915.enable_execlists) {
3008 spin_lock_bh(&engine->execlist_lock);
3009 idle &= list_empty(&engine->execlist_queue);
3010 spin_unlock_bh(&engine->execlist_lock);
3011
3012 intel_execlists_retire_requests(engine);
3013 }
3014 }
3015
3016 if (idle)
3017 mod_delayed_work(dev_priv->wq,
3018 &dev_priv->mm.idle_work,
3019 msecs_to_jiffies(100));
3020
3021 return idle;
3022 }
3023
3024 static void
3025 i915_gem_retire_work_handler(struct work_struct *work)
3026 {
3027 struct drm_i915_private *dev_priv =
3028 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3029 struct drm_device *dev = dev_priv->dev;
3030 bool idle;
3031
3032 /* Come back later if the device is busy... */
3033 idle = false;
3034 if (mutex_trylock(&dev->struct_mutex)) {
3035 idle = i915_gem_retire_requests(dev);
3036 mutex_unlock(&dev->struct_mutex);
3037 }
3038 if (!idle)
3039 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3040 round_jiffies_up_relative(HZ));
3041 }
3042
3043 static void
3044 i915_gem_idle_work_handler(struct work_struct *work)
3045 {
3046 struct drm_i915_private *dev_priv =
3047 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3048 struct drm_device *dev = dev_priv->dev;
3049 struct intel_engine_cs *engine;
3050
3051 for_each_engine(engine, dev_priv)
3052 if (!list_empty(&engine->request_list))
3053 return;
3054
3055 /* we probably should sync with hangcheck here, using cancel_work_sync.
3056 * Also locking seems to be fubar here, engine->request_list is protected
3057 * by dev->struct_mutex. */
3058
3059 intel_mark_idle(dev);
3060
3061 if (mutex_trylock(&dev->struct_mutex)) {
3062 for_each_engine(engine, dev_priv)
3063 i915_gem_batch_pool_fini(&engine->batch_pool);
3064
3065 mutex_unlock(&dev->struct_mutex);
3066 }
3067 }
3068
3069 /**
3070 * Ensures that an object will eventually get non-busy by flushing any required
3071 * write domains, emitting any outstanding lazy request and retiring and
3072 * completed requests.
3073 */
3074 static int
3075 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3076 {
3077 int i;
3078
3079 if (!obj->active)
3080 return 0;
3081
3082 for (i = 0; i < I915_NUM_ENGINES; i++) {
3083 struct drm_i915_gem_request *req;
3084
3085 req = obj->last_read_req[i];
3086 if (req == NULL)
3087 continue;
3088
3089 if (list_empty(&req->list))
3090 goto retire;
3091
3092 if (i915_gem_request_completed(req, true)) {
3093 __i915_gem_request_retire__upto(req);
3094 retire:
3095 i915_gem_object_retire__read(obj, i);
3096 }
3097 }
3098
3099 return 0;
3100 }
3101
3102 /**
3103 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3104 * @DRM_IOCTL_ARGS: standard ioctl arguments
3105 *
3106 * Returns 0 if successful, else an error is returned with the remaining time in
3107 * the timeout parameter.
3108 * -ETIME: object is still busy after timeout
3109 * -ERESTARTSYS: signal interrupted the wait
3110 * -ENONENT: object doesn't exist
3111 * Also possible, but rare:
3112 * -EAGAIN: GPU wedged
3113 * -ENOMEM: damn
3114 * -ENODEV: Internal IRQ fail
3115 * -E?: The add request failed
3116 *
3117 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3118 * non-zero timeout parameter the wait ioctl will wait for the given number of
3119 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3120 * without holding struct_mutex the object may become re-busied before this
3121 * function completes. A similar but shorter * race condition exists in the busy
3122 * ioctl
3123 */
3124 int
3125 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3126 {
3127 struct drm_i915_gem_wait *args = data;
3128 struct drm_i915_gem_object *obj;
3129 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3130 int i, n = 0;
3131 int ret;
3132
3133 if (args->flags != 0)
3134 return -EINVAL;
3135
3136 ret = i915_mutex_lock_interruptible(dev);
3137 if (ret)
3138 return ret;
3139
3140 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3141 if (&obj->base == NULL) {
3142 mutex_unlock(&dev->struct_mutex);
3143 return -ENOENT;
3144 }
3145
3146 /* Need to make sure the object gets inactive eventually. */
3147 ret = i915_gem_object_flush_active(obj);
3148 if (ret)
3149 goto out;
3150
3151 if (!obj->active)
3152 goto out;
3153
3154 /* Do this after OLR check to make sure we make forward progress polling
3155 * on this IOCTL with a timeout == 0 (like busy ioctl)
3156 */
3157 if (args->timeout_ns == 0) {
3158 ret = -ETIME;
3159 goto out;
3160 }
3161
3162 drm_gem_object_unreference(&obj->base);
3163
3164 for (i = 0; i < I915_NUM_ENGINES; i++) {
3165 if (obj->last_read_req[i] == NULL)
3166 continue;
3167
3168 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3169 }
3170
3171 mutex_unlock(&dev->struct_mutex);
3172
3173 for (i = 0; i < n; i++) {
3174 if (ret == 0)
3175 ret = __i915_wait_request(req[i], true,
3176 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3177 to_rps_client(file));
3178 i915_gem_request_unreference__unlocked(req[i]);
3179 }
3180 return ret;
3181
3182 out:
3183 drm_gem_object_unreference(&obj->base);
3184 mutex_unlock(&dev->struct_mutex);
3185 return ret;
3186 }
3187
3188 static int
3189 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3190 struct intel_engine_cs *to,
3191 struct drm_i915_gem_request *from_req,
3192 struct drm_i915_gem_request **to_req)
3193 {
3194 struct intel_engine_cs *from;
3195 int ret;
3196
3197 from = i915_gem_request_get_engine(from_req);
3198 if (to == from)
3199 return 0;
3200
3201 if (i915_gem_request_completed(from_req, true))
3202 return 0;
3203
3204 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3205 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3206 ret = __i915_wait_request(from_req,
3207 i915->mm.interruptible,
3208 NULL,
3209 &i915->rps.semaphores);
3210 if (ret)
3211 return ret;
3212
3213 i915_gem_object_retire_request(obj, from_req);
3214 } else {
3215 int idx = intel_ring_sync_index(from, to);
3216 u32 seqno = i915_gem_request_get_seqno(from_req);
3217
3218 WARN_ON(!to_req);
3219
3220 if (seqno <= from->semaphore.sync_seqno[idx])
3221 return 0;
3222
3223 if (*to_req == NULL) {
3224 struct drm_i915_gem_request *req;
3225
3226 req = i915_gem_request_alloc(to, NULL);
3227 if (IS_ERR(req))
3228 return PTR_ERR(req);
3229
3230 *to_req = req;
3231 }
3232
3233 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3234 ret = to->semaphore.sync_to(*to_req, from, seqno);
3235 if (ret)
3236 return ret;
3237
3238 /* We use last_read_req because sync_to()
3239 * might have just caused seqno wrap under
3240 * the radar.
3241 */
3242 from->semaphore.sync_seqno[idx] =
3243 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3244 }
3245
3246 return 0;
3247 }
3248
3249 /**
3250 * i915_gem_object_sync - sync an object to a ring.
3251 *
3252 * @obj: object which may be in use on another ring.
3253 * @to: ring we wish to use the object on. May be NULL.
3254 * @to_req: request we wish to use the object for. See below.
3255 * This will be allocated and returned if a request is
3256 * required but not passed in.
3257 *
3258 * This code is meant to abstract object synchronization with the GPU.
3259 * Calling with NULL implies synchronizing the object with the CPU
3260 * rather than a particular GPU ring. Conceptually we serialise writes
3261 * between engines inside the GPU. We only allow one engine to write
3262 * into a buffer at any time, but multiple readers. To ensure each has
3263 * a coherent view of memory, we must:
3264 *
3265 * - If there is an outstanding write request to the object, the new
3266 * request must wait for it to complete (either CPU or in hw, requests
3267 * on the same ring will be naturally ordered).
3268 *
3269 * - If we are a write request (pending_write_domain is set), the new
3270 * request must wait for outstanding read requests to complete.
3271 *
3272 * For CPU synchronisation (NULL to) no request is required. For syncing with
3273 * rings to_req must be non-NULL. However, a request does not have to be
3274 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3275 * request will be allocated automatically and returned through *to_req. Note
3276 * that it is not guaranteed that commands will be emitted (because the system
3277 * might already be idle). Hence there is no need to create a request that
3278 * might never have any work submitted. Note further that if a request is
3279 * returned in *to_req, it is the responsibility of the caller to submit
3280 * that request (after potentially adding more work to it).
3281 *
3282 * Returns 0 if successful, else propagates up the lower layer error.
3283 */
3284 int
3285 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3286 struct intel_engine_cs *to,
3287 struct drm_i915_gem_request **to_req)
3288 {
3289 const bool readonly = obj->base.pending_write_domain == 0;
3290 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3291 int ret, i, n;
3292
3293 if (!obj->active)
3294 return 0;
3295
3296 if (to == NULL)
3297 return i915_gem_object_wait_rendering(obj, readonly);
3298
3299 n = 0;
3300 if (readonly) {
3301 if (obj->last_write_req)
3302 req[n++] = obj->last_write_req;
3303 } else {
3304 for (i = 0; i < I915_NUM_ENGINES; i++)
3305 if (obj->last_read_req[i])
3306 req[n++] = obj->last_read_req[i];
3307 }
3308 for (i = 0; i < n; i++) {
3309 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3310 if (ret)
3311 return ret;
3312 }
3313
3314 return 0;
3315 }
3316
3317 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3318 {
3319 u32 old_write_domain, old_read_domains;
3320
3321 /* Force a pagefault for domain tracking on next user access */
3322 i915_gem_release_mmap(obj);
3323
3324 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3325 return;
3326
3327 /* Wait for any direct GTT access to complete */
3328 mb();
3329
3330 old_read_domains = obj->base.read_domains;
3331 old_write_domain = obj->base.write_domain;
3332
3333 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3334 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3335
3336 trace_i915_gem_object_change_domain(obj,
3337 old_read_domains,
3338 old_write_domain);
3339 }
3340
3341 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3342 {
3343 struct drm_i915_gem_object *obj = vma->obj;
3344 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3345 int ret;
3346
3347 if (list_empty(&vma->obj_link))
3348 return 0;
3349
3350 if (!drm_mm_node_allocated(&vma->node)) {
3351 i915_gem_vma_destroy(vma);
3352 return 0;
3353 }
3354
3355 if (vma->pin_count)
3356 return -EBUSY;
3357
3358 BUG_ON(obj->pages == NULL);
3359
3360 if (wait) {
3361 ret = i915_gem_object_wait_rendering(obj, false);
3362 if (ret)
3363 return ret;
3364 }
3365
3366 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3367 i915_gem_object_finish_gtt(obj);
3368
3369 /* release the fence reg _after_ flushing */
3370 ret = i915_gem_object_put_fence(obj);
3371 if (ret)
3372 return ret;
3373 }
3374
3375 trace_i915_vma_unbind(vma);
3376
3377 vma->vm->unbind_vma(vma);
3378 vma->bound = 0;
3379
3380 list_del_init(&vma->vm_link);
3381 if (vma->is_ggtt) {
3382 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3383 obj->map_and_fenceable = false;
3384 } else if (vma->ggtt_view.pages) {
3385 sg_free_table(vma->ggtt_view.pages);
3386 kfree(vma->ggtt_view.pages);
3387 }
3388 vma->ggtt_view.pages = NULL;
3389 }
3390
3391 drm_mm_remove_node(&vma->node);
3392 i915_gem_vma_destroy(vma);
3393
3394 /* Since the unbound list is global, only move to that list if
3395 * no more VMAs exist. */
3396 if (list_empty(&obj->vma_list))
3397 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3398
3399 /* And finally now the object is completely decoupled from this vma,
3400 * we can drop its hold on the backing storage and allow it to be
3401 * reaped by the shrinker.
3402 */
3403 i915_gem_object_unpin_pages(obj);
3404
3405 return 0;
3406 }
3407
3408 int i915_vma_unbind(struct i915_vma *vma)
3409 {
3410 return __i915_vma_unbind(vma, true);
3411 }
3412
3413 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3414 {
3415 return __i915_vma_unbind(vma, false);
3416 }
3417
3418 int i915_gpu_idle(struct drm_device *dev)
3419 {
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 struct intel_engine_cs *engine;
3422 int ret;
3423
3424 /* Flush everything onto the inactive list. */
3425 for_each_engine(engine, dev_priv) {
3426 if (!i915.enable_execlists) {
3427 struct drm_i915_gem_request *req;
3428
3429 req = i915_gem_request_alloc(engine, NULL);
3430 if (IS_ERR(req))
3431 return PTR_ERR(req);
3432
3433 ret = i915_switch_context(req);
3434 if (ret) {
3435 i915_gem_request_cancel(req);
3436 return ret;
3437 }
3438
3439 i915_add_request_no_flush(req);
3440 }
3441
3442 ret = intel_engine_idle(engine);
3443 if (ret)
3444 return ret;
3445 }
3446
3447 WARN_ON(i915_verify_lists(dev));
3448 return 0;
3449 }
3450
3451 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3452 unsigned long cache_level)
3453 {
3454 struct drm_mm_node *gtt_space = &vma->node;
3455 struct drm_mm_node *other;
3456
3457 /*
3458 * On some machines we have to be careful when putting differing types
3459 * of snoopable memory together to avoid the prefetcher crossing memory
3460 * domains and dying. During vm initialisation, we decide whether or not
3461 * these constraints apply and set the drm_mm.color_adjust
3462 * appropriately.
3463 */
3464 if (vma->vm->mm.color_adjust == NULL)
3465 return true;
3466
3467 if (!drm_mm_node_allocated(gtt_space))
3468 return true;
3469
3470 if (list_empty(&gtt_space->node_list))
3471 return true;
3472
3473 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3474 if (other->allocated && !other->hole_follows && other->color != cache_level)
3475 return false;
3476
3477 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3478 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3479 return false;
3480
3481 return true;
3482 }
3483
3484 /**
3485 * Finds free space in the GTT aperture and binds the object or a view of it
3486 * there.
3487 */
3488 static struct i915_vma *
3489 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3490 struct i915_address_space *vm,
3491 const struct i915_ggtt_view *ggtt_view,
3492 unsigned alignment,
3493 uint64_t flags)
3494 {
3495 struct drm_device *dev = obj->base.dev;
3496 struct drm_i915_private *dev_priv = to_i915(dev);
3497 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3498 u32 fence_alignment, unfenced_alignment;
3499 u32 search_flag, alloc_flag;
3500 u64 start, end;
3501 u64 size, fence_size;
3502 struct i915_vma *vma;
3503 int ret;
3504
3505 if (i915_is_ggtt(vm)) {
3506 u32 view_size;
3507
3508 if (WARN_ON(!ggtt_view))
3509 return ERR_PTR(-EINVAL);
3510
3511 view_size = i915_ggtt_view_size(obj, ggtt_view);
3512
3513 fence_size = i915_gem_get_gtt_size(dev,
3514 view_size,
3515 obj->tiling_mode);
3516 fence_alignment = i915_gem_get_gtt_alignment(dev,
3517 view_size,
3518 obj->tiling_mode,
3519 true);
3520 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3521 view_size,
3522 obj->tiling_mode,
3523 false);
3524 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3525 } else {
3526 fence_size = i915_gem_get_gtt_size(dev,
3527 obj->base.size,
3528 obj->tiling_mode);
3529 fence_alignment = i915_gem_get_gtt_alignment(dev,
3530 obj->base.size,
3531 obj->tiling_mode,
3532 true);
3533 unfenced_alignment =
3534 i915_gem_get_gtt_alignment(dev,
3535 obj->base.size,
3536 obj->tiling_mode,
3537 false);
3538 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3539 }
3540
3541 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3542 end = vm->total;
3543 if (flags & PIN_MAPPABLE)
3544 end = min_t(u64, end, ggtt->mappable_end);
3545 if (flags & PIN_ZONE_4G)
3546 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3547
3548 if (alignment == 0)
3549 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3550 unfenced_alignment;
3551 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3552 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3553 ggtt_view ? ggtt_view->type : 0,
3554 alignment);
3555 return ERR_PTR(-EINVAL);
3556 }
3557
3558 /* If binding the object/GGTT view requires more space than the entire
3559 * aperture has, reject it early before evicting everything in a vain
3560 * attempt to find space.
3561 */
3562 if (size > end) {
3563 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3564 ggtt_view ? ggtt_view->type : 0,
3565 size,
3566 flags & PIN_MAPPABLE ? "mappable" : "total",
3567 end);
3568 return ERR_PTR(-E2BIG);
3569 }
3570
3571 ret = i915_gem_object_get_pages(obj);
3572 if (ret)
3573 return ERR_PTR(ret);
3574
3575 i915_gem_object_pin_pages(obj);
3576
3577 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3578 i915_gem_obj_lookup_or_create_vma(obj, vm);
3579
3580 if (IS_ERR(vma))
3581 goto err_unpin;
3582
3583 if (flags & PIN_OFFSET_FIXED) {
3584 uint64_t offset = flags & PIN_OFFSET_MASK;
3585
3586 if (offset & (alignment - 1) || offset + size > end) {
3587 ret = -EINVAL;
3588 goto err_free_vma;
3589 }
3590 vma->node.start = offset;
3591 vma->node.size = size;
3592 vma->node.color = obj->cache_level;
3593 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3594 if (ret) {
3595 ret = i915_gem_evict_for_vma(vma);
3596 if (ret == 0)
3597 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3598 }
3599 if (ret)
3600 goto err_free_vma;
3601 } else {
3602 if (flags & PIN_HIGH) {
3603 search_flag = DRM_MM_SEARCH_BELOW;
3604 alloc_flag = DRM_MM_CREATE_TOP;
3605 } else {
3606 search_flag = DRM_MM_SEARCH_DEFAULT;
3607 alloc_flag = DRM_MM_CREATE_DEFAULT;
3608 }
3609
3610 search_free:
3611 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3612 size, alignment,
3613 obj->cache_level,
3614 start, end,
3615 search_flag,
3616 alloc_flag);
3617 if (ret) {
3618 ret = i915_gem_evict_something(dev, vm, size, alignment,
3619 obj->cache_level,
3620 start, end,
3621 flags);
3622 if (ret == 0)
3623 goto search_free;
3624
3625 goto err_free_vma;
3626 }
3627 }
3628 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3629 ret = -EINVAL;
3630 goto err_remove_node;
3631 }
3632
3633 trace_i915_vma_bind(vma, flags);
3634 ret = i915_vma_bind(vma, obj->cache_level, flags);
3635 if (ret)
3636 goto err_remove_node;
3637
3638 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3639 list_add_tail(&vma->vm_link, &vm->inactive_list);
3640
3641 return vma;
3642
3643 err_remove_node:
3644 drm_mm_remove_node(&vma->node);
3645 err_free_vma:
3646 i915_gem_vma_destroy(vma);
3647 vma = ERR_PTR(ret);
3648 err_unpin:
3649 i915_gem_object_unpin_pages(obj);
3650 return vma;
3651 }
3652
3653 bool
3654 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3655 bool force)
3656 {
3657 /* If we don't have a page list set up, then we're not pinned
3658 * to GPU, and we can ignore the cache flush because it'll happen
3659 * again at bind time.
3660 */
3661 if (obj->pages == NULL)
3662 return false;
3663
3664 /*
3665 * Stolen memory is always coherent with the GPU as it is explicitly
3666 * marked as wc by the system, or the system is cache-coherent.
3667 */
3668 if (obj->stolen || obj->phys_handle)
3669 return false;
3670
3671 /* If the GPU is snooping the contents of the CPU cache,
3672 * we do not need to manually clear the CPU cache lines. However,
3673 * the caches are only snooped when the render cache is
3674 * flushed/invalidated. As we always have to emit invalidations
3675 * and flushes when moving into and out of the RENDER domain, correct
3676 * snooping behaviour occurs naturally as the result of our domain
3677 * tracking.
3678 */
3679 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3680 obj->cache_dirty = true;
3681 return false;
3682 }
3683
3684 trace_i915_gem_object_clflush(obj);
3685 drm_clflush_sg(obj->pages);
3686 obj->cache_dirty = false;
3687
3688 return true;
3689 }
3690
3691 /** Flushes the GTT write domain for the object if it's dirty. */
3692 static void
3693 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3694 {
3695 uint32_t old_write_domain;
3696
3697 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3698 return;
3699
3700 /* No actual flushing is required for the GTT write domain. Writes
3701 * to it immediately go to main memory as far as we know, so there's
3702 * no chipset flush. It also doesn't land in render cache.
3703 *
3704 * However, we do have to enforce the order so that all writes through
3705 * the GTT land before any writes to the device, such as updates to
3706 * the GATT itself.
3707 */
3708 wmb();
3709
3710 old_write_domain = obj->base.write_domain;
3711 obj->base.write_domain = 0;
3712
3713 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3714
3715 trace_i915_gem_object_change_domain(obj,
3716 obj->base.read_domains,
3717 old_write_domain);
3718 }
3719
3720 /** Flushes the CPU write domain for the object if it's dirty. */
3721 static void
3722 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3723 {
3724 uint32_t old_write_domain;
3725
3726 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3727 return;
3728
3729 if (i915_gem_clflush_object(obj, obj->pin_display))
3730 i915_gem_chipset_flush(obj->base.dev);
3731
3732 old_write_domain = obj->base.write_domain;
3733 obj->base.write_domain = 0;
3734
3735 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3736
3737 trace_i915_gem_object_change_domain(obj,
3738 obj->base.read_domains,
3739 old_write_domain);
3740 }
3741
3742 /**
3743 * Moves a single object to the GTT read, and possibly write domain.
3744 *
3745 * This function returns when the move is complete, including waiting on
3746 * flushes to occur.
3747 */
3748 int
3749 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3750 {
3751 struct drm_device *dev = obj->base.dev;
3752 struct drm_i915_private *dev_priv = to_i915(dev);
3753 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3754 uint32_t old_write_domain, old_read_domains;
3755 struct i915_vma *vma;
3756 int ret;
3757
3758 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3759 return 0;
3760
3761 ret = i915_gem_object_wait_rendering(obj, !write);
3762 if (ret)
3763 return ret;
3764
3765 /* Flush and acquire obj->pages so that we are coherent through
3766 * direct access in memory with previous cached writes through
3767 * shmemfs and that our cache domain tracking remains valid.
3768 * For example, if the obj->filp was moved to swap without us
3769 * being notified and releasing the pages, we would mistakenly
3770 * continue to assume that the obj remained out of the CPU cached
3771 * domain.
3772 */
3773 ret = i915_gem_object_get_pages(obj);
3774 if (ret)
3775 return ret;
3776
3777 i915_gem_object_flush_cpu_write_domain(obj);
3778
3779 /* Serialise direct access to this object with the barriers for
3780 * coherent writes from the GPU, by effectively invalidating the
3781 * GTT domain upon first access.
3782 */
3783 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3784 mb();
3785
3786 old_write_domain = obj->base.write_domain;
3787 old_read_domains = obj->base.read_domains;
3788
3789 /* It should now be out of any other write domains, and we can update
3790 * the domain values for our changes.
3791 */
3792 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3793 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3794 if (write) {
3795 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3796 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3797 obj->dirty = 1;
3798 }
3799
3800 trace_i915_gem_object_change_domain(obj,
3801 old_read_domains,
3802 old_write_domain);
3803
3804 /* And bump the LRU for this access */
3805 vma = i915_gem_obj_to_ggtt(obj);
3806 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3807 list_move_tail(&vma->vm_link,
3808 &ggtt->base.inactive_list);
3809
3810 return 0;
3811 }
3812
3813 /**
3814 * Changes the cache-level of an object across all VMA.
3815 *
3816 * After this function returns, the object will be in the new cache-level
3817 * across all GTT and the contents of the backing storage will be coherent,
3818 * with respect to the new cache-level. In order to keep the backing storage
3819 * coherent for all users, we only allow a single cache level to be set
3820 * globally on the object and prevent it from being changed whilst the
3821 * hardware is reading from the object. That is if the object is currently
3822 * on the scanout it will be set to uncached (or equivalent display
3823 * cache coherency) and all non-MOCS GPU access will also be uncached so
3824 * that all direct access to the scanout remains coherent.
3825 */
3826 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3827 enum i915_cache_level cache_level)
3828 {
3829 struct drm_device *dev = obj->base.dev;
3830 struct i915_vma *vma, *next;
3831 bool bound = false;
3832 int ret = 0;
3833
3834 if (obj->cache_level == cache_level)
3835 goto out;
3836
3837 /* Inspect the list of currently bound VMA and unbind any that would
3838 * be invalid given the new cache-level. This is principally to
3839 * catch the issue of the CS prefetch crossing page boundaries and
3840 * reading an invalid PTE on older architectures.
3841 */
3842 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3843 if (!drm_mm_node_allocated(&vma->node))
3844 continue;
3845
3846 if (vma->pin_count) {
3847 DRM_DEBUG("can not change the cache level of pinned objects\n");
3848 return -EBUSY;
3849 }
3850
3851 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3852 ret = i915_vma_unbind(vma);
3853 if (ret)
3854 return ret;
3855 } else
3856 bound = true;
3857 }
3858
3859 /* We can reuse the existing drm_mm nodes but need to change the
3860 * cache-level on the PTE. We could simply unbind them all and
3861 * rebind with the correct cache-level on next use. However since
3862 * we already have a valid slot, dma mapping, pages etc, we may as
3863 * rewrite the PTE in the belief that doing so tramples upon less
3864 * state and so involves less work.
3865 */
3866 if (bound) {
3867 /* Before we change the PTE, the GPU must not be accessing it.
3868 * If we wait upon the object, we know that all the bound
3869 * VMA are no longer active.
3870 */
3871 ret = i915_gem_object_wait_rendering(obj, false);
3872 if (ret)
3873 return ret;
3874
3875 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3876 /* Access to snoopable pages through the GTT is
3877 * incoherent and on some machines causes a hard
3878 * lockup. Relinquish the CPU mmaping to force
3879 * userspace to refault in the pages and we can
3880 * then double check if the GTT mapping is still
3881 * valid for that pointer access.
3882 */
3883 i915_gem_release_mmap(obj);
3884
3885 /* As we no longer need a fence for GTT access,
3886 * we can relinquish it now (and so prevent having
3887 * to steal a fence from someone else on the next
3888 * fence request). Note GPU activity would have
3889 * dropped the fence as all snoopable access is
3890 * supposed to be linear.
3891 */
3892 ret = i915_gem_object_put_fence(obj);
3893 if (ret)
3894 return ret;
3895 } else {
3896 /* We either have incoherent backing store and
3897 * so no GTT access or the architecture is fully
3898 * coherent. In such cases, existing GTT mmaps
3899 * ignore the cache bit in the PTE and we can
3900 * rewrite it without confusing the GPU or having
3901 * to force userspace to fault back in its mmaps.
3902 */
3903 }
3904
3905 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3906 if (!drm_mm_node_allocated(&vma->node))
3907 continue;
3908
3909 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3910 if (ret)
3911 return ret;
3912 }
3913 }
3914
3915 list_for_each_entry(vma, &obj->vma_list, obj_link)
3916 vma->node.color = cache_level;
3917 obj->cache_level = cache_level;
3918
3919 out:
3920 /* Flush the dirty CPU caches to the backing storage so that the
3921 * object is now coherent at its new cache level (with respect
3922 * to the access domain).
3923 */
3924 if (obj->cache_dirty &&
3925 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3926 cpu_write_needs_clflush(obj)) {
3927 if (i915_gem_clflush_object(obj, true))
3928 i915_gem_chipset_flush(obj->base.dev);
3929 }
3930
3931 return 0;
3932 }
3933
3934 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3935 struct drm_file *file)
3936 {
3937 struct drm_i915_gem_caching *args = data;
3938 struct drm_i915_gem_object *obj;
3939
3940 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3941 if (&obj->base == NULL)
3942 return -ENOENT;
3943
3944 switch (obj->cache_level) {
3945 case I915_CACHE_LLC:
3946 case I915_CACHE_L3_LLC:
3947 args->caching = I915_CACHING_CACHED;
3948 break;
3949
3950 case I915_CACHE_WT:
3951 args->caching = I915_CACHING_DISPLAY;
3952 break;
3953
3954 default:
3955 args->caching = I915_CACHING_NONE;
3956 break;
3957 }
3958
3959 drm_gem_object_unreference_unlocked(&obj->base);
3960 return 0;
3961 }
3962
3963 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3964 struct drm_file *file)
3965 {
3966 struct drm_i915_private *dev_priv = dev->dev_private;
3967 struct drm_i915_gem_caching *args = data;
3968 struct drm_i915_gem_object *obj;
3969 enum i915_cache_level level;
3970 int ret;
3971
3972 switch (args->caching) {
3973 case I915_CACHING_NONE:
3974 level = I915_CACHE_NONE;
3975 break;
3976 case I915_CACHING_CACHED:
3977 /*
3978 * Due to a HW issue on BXT A stepping, GPU stores via a
3979 * snooped mapping may leave stale data in a corresponding CPU
3980 * cacheline, whereas normally such cachelines would get
3981 * invalidated.
3982 */
3983 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3984 return -ENODEV;
3985
3986 level = I915_CACHE_LLC;
3987 break;
3988 case I915_CACHING_DISPLAY:
3989 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3990 break;
3991 default:
3992 return -EINVAL;
3993 }
3994
3995 intel_runtime_pm_get(dev_priv);
3996
3997 ret = i915_mutex_lock_interruptible(dev);
3998 if (ret)
3999 goto rpm_put;
4000
4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002 if (&obj->base == NULL) {
4003 ret = -ENOENT;
4004 goto unlock;
4005 }
4006
4007 ret = i915_gem_object_set_cache_level(obj, level);
4008
4009 drm_gem_object_unreference(&obj->base);
4010 unlock:
4011 mutex_unlock(&dev->struct_mutex);
4012 rpm_put:
4013 intel_runtime_pm_put(dev_priv);
4014
4015 return ret;
4016 }
4017
4018 /*
4019 * Prepare buffer for display plane (scanout, cursors, etc).
4020 * Can be called from an uninterruptible phase (modesetting) and allows
4021 * any flushes to be pipelined (for pageflips).
4022 */
4023 int
4024 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4025 u32 alignment,
4026 const struct i915_ggtt_view *view)
4027 {
4028 u32 old_read_domains, old_write_domain;
4029 int ret;
4030
4031 /* Mark the pin_display early so that we account for the
4032 * display coherency whilst setting up the cache domains.
4033 */
4034 obj->pin_display++;
4035
4036 /* The display engine is not coherent with the LLC cache on gen6. As
4037 * a result, we make sure that the pinning that is about to occur is
4038 * done with uncached PTEs. This is lowest common denominator for all
4039 * chipsets.
4040 *
4041 * However for gen6+, we could do better by using the GFDT bit instead
4042 * of uncaching, which would allow us to flush all the LLC-cached data
4043 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4044 */
4045 ret = i915_gem_object_set_cache_level(obj,
4046 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4047 if (ret)
4048 goto err_unpin_display;
4049
4050 /* As the user may map the buffer once pinned in the display plane
4051 * (e.g. libkms for the bootup splash), we have to ensure that we
4052 * always use map_and_fenceable for all scanout buffers.
4053 */
4054 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4055 view->type == I915_GGTT_VIEW_NORMAL ?
4056 PIN_MAPPABLE : 0);
4057 if (ret)
4058 goto err_unpin_display;
4059
4060 i915_gem_object_flush_cpu_write_domain(obj);
4061
4062 old_write_domain = obj->base.write_domain;
4063 old_read_domains = obj->base.read_domains;
4064
4065 /* It should now be out of any other write domains, and we can update
4066 * the domain values for our changes.
4067 */
4068 obj->base.write_domain = 0;
4069 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4070
4071 trace_i915_gem_object_change_domain(obj,
4072 old_read_domains,
4073 old_write_domain);
4074
4075 return 0;
4076
4077 err_unpin_display:
4078 obj->pin_display--;
4079 return ret;
4080 }
4081
4082 void
4083 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4084 const struct i915_ggtt_view *view)
4085 {
4086 if (WARN_ON(obj->pin_display == 0))
4087 return;
4088
4089 i915_gem_object_ggtt_unpin_view(obj, view);
4090
4091 obj->pin_display--;
4092 }
4093
4094 /**
4095 * Moves a single object to the CPU read, and possibly write domain.
4096 *
4097 * This function returns when the move is complete, including waiting on
4098 * flushes to occur.
4099 */
4100 int
4101 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4102 {
4103 uint32_t old_write_domain, old_read_domains;
4104 int ret;
4105
4106 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4107 return 0;
4108
4109 ret = i915_gem_object_wait_rendering(obj, !write);
4110 if (ret)
4111 return ret;
4112
4113 i915_gem_object_flush_gtt_write_domain(obj);
4114
4115 old_write_domain = obj->base.write_domain;
4116 old_read_domains = obj->base.read_domains;
4117
4118 /* Flush the CPU cache if it's still invalid. */
4119 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4120 i915_gem_clflush_object(obj, false);
4121
4122 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4123 }
4124
4125 /* It should now be out of any other write domains, and we can update
4126 * the domain values for our changes.
4127 */
4128 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4129
4130 /* If we're writing through the CPU, then the GPU read domains will
4131 * need to be invalidated at next use.
4132 */
4133 if (write) {
4134 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4135 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4136 }
4137
4138 trace_i915_gem_object_change_domain(obj,
4139 old_read_domains,
4140 old_write_domain);
4141
4142 return 0;
4143 }
4144
4145 /* Throttle our rendering by waiting until the ring has completed our requests
4146 * emitted over 20 msec ago.
4147 *
4148 * Note that if we were to use the current jiffies each time around the loop,
4149 * we wouldn't escape the function with any frames outstanding if the time to
4150 * render a frame was over 20ms.
4151 *
4152 * This should get us reasonable parallelism between CPU and GPU but also
4153 * relatively low latency when blocking on a particular request to finish.
4154 */
4155 static int
4156 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4157 {
4158 struct drm_i915_private *dev_priv = dev->dev_private;
4159 struct drm_i915_file_private *file_priv = file->driver_priv;
4160 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4161 struct drm_i915_gem_request *request, *target = NULL;
4162 int ret;
4163
4164 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4165 if (ret)
4166 return ret;
4167
4168 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4169 if (ret)
4170 return ret;
4171
4172 spin_lock(&file_priv->mm.lock);
4173 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174 if (time_after_eq(request->emitted_jiffies, recent_enough))
4175 break;
4176
4177 /*
4178 * Note that the request might not have been submitted yet.
4179 * In which case emitted_jiffies will be zero.
4180 */
4181 if (!request->emitted_jiffies)
4182 continue;
4183
4184 target = request;
4185 }
4186 if (target)
4187 i915_gem_request_reference(target);
4188 spin_unlock(&file_priv->mm.lock);
4189
4190 if (target == NULL)
4191 return 0;
4192
4193 ret = __i915_wait_request(target, true, NULL, NULL);
4194 if (ret == 0)
4195 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4196
4197 i915_gem_request_unreference__unlocked(target);
4198
4199 return ret;
4200 }
4201
4202 static bool
4203 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4204 {
4205 struct drm_i915_gem_object *obj = vma->obj;
4206
4207 if (alignment &&
4208 vma->node.start & (alignment - 1))
4209 return true;
4210
4211 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4212 return true;
4213
4214 if (flags & PIN_OFFSET_BIAS &&
4215 vma->node.start < (flags & PIN_OFFSET_MASK))
4216 return true;
4217
4218 if (flags & PIN_OFFSET_FIXED &&
4219 vma->node.start != (flags & PIN_OFFSET_MASK))
4220 return true;
4221
4222 return false;
4223 }
4224
4225 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4226 {
4227 struct drm_i915_gem_object *obj = vma->obj;
4228 bool mappable, fenceable;
4229 u32 fence_size, fence_alignment;
4230
4231 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4232 obj->base.size,
4233 obj->tiling_mode);
4234 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4235 obj->base.size,
4236 obj->tiling_mode,
4237 true);
4238
4239 fenceable = (vma->node.size == fence_size &&
4240 (vma->node.start & (fence_alignment - 1)) == 0);
4241
4242 mappable = (vma->node.start + fence_size <=
4243 to_i915(obj->base.dev)->ggtt.mappable_end);
4244
4245 obj->map_and_fenceable = mappable && fenceable;
4246 }
4247
4248 static int
4249 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4250 struct i915_address_space *vm,
4251 const struct i915_ggtt_view *ggtt_view,
4252 uint32_t alignment,
4253 uint64_t flags)
4254 {
4255 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256 struct i915_vma *vma;
4257 unsigned bound;
4258 int ret;
4259
4260 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4261 return -ENODEV;
4262
4263 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4264 return -EINVAL;
4265
4266 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4267 return -EINVAL;
4268
4269 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4270 return -EINVAL;
4271
4272 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4273 i915_gem_obj_to_vma(obj, vm);
4274
4275 if (vma) {
4276 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4277 return -EBUSY;
4278
4279 if (i915_vma_misplaced(vma, alignment, flags)) {
4280 WARN(vma->pin_count,
4281 "bo is already pinned in %s with incorrect alignment:"
4282 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283 " obj->map_and_fenceable=%d\n",
4284 ggtt_view ? "ggtt" : "ppgtt",
4285 upper_32_bits(vma->node.start),
4286 lower_32_bits(vma->node.start),
4287 alignment,
4288 !!(flags & PIN_MAPPABLE),
4289 obj->map_and_fenceable);
4290 ret = i915_vma_unbind(vma);
4291 if (ret)
4292 return ret;
4293
4294 vma = NULL;
4295 }
4296 }
4297
4298 bound = vma ? vma->bound : 0;
4299 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4301 flags);
4302 if (IS_ERR(vma))
4303 return PTR_ERR(vma);
4304 } else {
4305 ret = i915_vma_bind(vma, obj->cache_level, flags);
4306 if (ret)
4307 return ret;
4308 }
4309
4310 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4311 (bound ^ vma->bound) & GLOBAL_BIND) {
4312 __i915_vma_set_map_and_fenceable(vma);
4313 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4314 }
4315
4316 vma->pin_count++;
4317 return 0;
4318 }
4319
4320 int
4321 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4322 struct i915_address_space *vm,
4323 uint32_t alignment,
4324 uint64_t flags)
4325 {
4326 return i915_gem_object_do_pin(obj, vm,
4327 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4328 alignment, flags);
4329 }
4330
4331 int
4332 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4333 const struct i915_ggtt_view *view,
4334 uint32_t alignment,
4335 uint64_t flags)
4336 {
4337 struct drm_device *dev = obj->base.dev;
4338 struct drm_i915_private *dev_priv = to_i915(dev);
4339 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4340
4341 BUG_ON(!view);
4342
4343 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4344 alignment, flags | PIN_GLOBAL);
4345 }
4346
4347 void
4348 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4349 const struct i915_ggtt_view *view)
4350 {
4351 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4352
4353 BUG_ON(!vma);
4354 WARN_ON(vma->pin_count == 0);
4355 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4356
4357 --vma->pin_count;
4358 }
4359
4360 int
4361 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4362 struct drm_file *file)
4363 {
4364 struct drm_i915_gem_busy *args = data;
4365 struct drm_i915_gem_object *obj;
4366 int ret;
4367
4368 ret = i915_mutex_lock_interruptible(dev);
4369 if (ret)
4370 return ret;
4371
4372 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4373 if (&obj->base == NULL) {
4374 ret = -ENOENT;
4375 goto unlock;
4376 }
4377
4378 /* Count all active objects as busy, even if they are currently not used
4379 * by the gpu. Users of this interface expect objects to eventually
4380 * become non-busy without any further actions, therefore emit any
4381 * necessary flushes here.
4382 */
4383 ret = i915_gem_object_flush_active(obj);
4384 if (ret)
4385 goto unref;
4386
4387 args->busy = 0;
4388 if (obj->active) {
4389 int i;
4390
4391 for (i = 0; i < I915_NUM_ENGINES; i++) {
4392 struct drm_i915_gem_request *req;
4393
4394 req = obj->last_read_req[i];
4395 if (req)
4396 args->busy |= 1 << (16 + req->engine->exec_id);
4397 }
4398 if (obj->last_write_req)
4399 args->busy |= obj->last_write_req->engine->exec_id;
4400 }
4401
4402 unref:
4403 drm_gem_object_unreference(&obj->base);
4404 unlock:
4405 mutex_unlock(&dev->struct_mutex);
4406 return ret;
4407 }
4408
4409 int
4410 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4411 struct drm_file *file_priv)
4412 {
4413 return i915_gem_ring_throttle(dev, file_priv);
4414 }
4415
4416 int
4417 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4418 struct drm_file *file_priv)
4419 {
4420 struct drm_i915_private *dev_priv = dev->dev_private;
4421 struct drm_i915_gem_madvise *args = data;
4422 struct drm_i915_gem_object *obj;
4423 int ret;
4424
4425 switch (args->madv) {
4426 case I915_MADV_DONTNEED:
4427 case I915_MADV_WILLNEED:
4428 break;
4429 default:
4430 return -EINVAL;
4431 }
4432
4433 ret = i915_mutex_lock_interruptible(dev);
4434 if (ret)
4435 return ret;
4436
4437 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4438 if (&obj->base == NULL) {
4439 ret = -ENOENT;
4440 goto unlock;
4441 }
4442
4443 if (i915_gem_obj_is_pinned(obj)) {
4444 ret = -EINVAL;
4445 goto out;
4446 }
4447
4448 if (obj->pages &&
4449 obj->tiling_mode != I915_TILING_NONE &&
4450 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4451 if (obj->madv == I915_MADV_WILLNEED)
4452 i915_gem_object_unpin_pages(obj);
4453 if (args->madv == I915_MADV_WILLNEED)
4454 i915_gem_object_pin_pages(obj);
4455 }
4456
4457 if (obj->madv != __I915_MADV_PURGED)
4458 obj->madv = args->madv;
4459
4460 /* if the object is no longer attached, discard its backing storage */
4461 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4462 i915_gem_object_truncate(obj);
4463
4464 args->retained = obj->madv != __I915_MADV_PURGED;
4465
4466 out:
4467 drm_gem_object_unreference(&obj->base);
4468 unlock:
4469 mutex_unlock(&dev->struct_mutex);
4470 return ret;
4471 }
4472
4473 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4474 const struct drm_i915_gem_object_ops *ops)
4475 {
4476 int i;
4477
4478 INIT_LIST_HEAD(&obj->global_list);
4479 for (i = 0; i < I915_NUM_ENGINES; i++)
4480 INIT_LIST_HEAD(&obj->engine_list[i]);
4481 INIT_LIST_HEAD(&obj->obj_exec_link);
4482 INIT_LIST_HEAD(&obj->vma_list);
4483 INIT_LIST_HEAD(&obj->batch_pool_link);
4484
4485 obj->ops = ops;
4486
4487 obj->fence_reg = I915_FENCE_REG_NONE;
4488 obj->madv = I915_MADV_WILLNEED;
4489
4490 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4491 }
4492
4493 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4494 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4495 .get_pages = i915_gem_object_get_pages_gtt,
4496 .put_pages = i915_gem_object_put_pages_gtt,
4497 };
4498
4499 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4500 size_t size)
4501 {
4502 struct drm_i915_gem_object *obj;
4503 struct address_space *mapping;
4504 gfp_t mask;
4505
4506 obj = i915_gem_object_alloc(dev);
4507 if (obj == NULL)
4508 return NULL;
4509
4510 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4511 i915_gem_object_free(obj);
4512 return NULL;
4513 }
4514
4515 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4516 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4517 /* 965gm cannot relocate objects above 4GiB. */
4518 mask &= ~__GFP_HIGHMEM;
4519 mask |= __GFP_DMA32;
4520 }
4521
4522 mapping = file_inode(obj->base.filp)->i_mapping;
4523 mapping_set_gfp_mask(mapping, mask);
4524
4525 i915_gem_object_init(obj, &i915_gem_object_ops);
4526
4527 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4528 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4529
4530 if (HAS_LLC(dev)) {
4531 /* On some devices, we can have the GPU use the LLC (the CPU
4532 * cache) for about a 10% performance improvement
4533 * compared to uncached. Graphics requests other than
4534 * display scanout are coherent with the CPU in
4535 * accessing this cache. This means in this mode we
4536 * don't need to clflush on the CPU side, and on the
4537 * GPU side we only need to flush internal caches to
4538 * get data visible to the CPU.
4539 *
4540 * However, we maintain the display planes as UC, and so
4541 * need to rebind when first used as such.
4542 */
4543 obj->cache_level = I915_CACHE_LLC;
4544 } else
4545 obj->cache_level = I915_CACHE_NONE;
4546
4547 trace_i915_gem_object_create(obj);
4548
4549 return obj;
4550 }
4551
4552 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4553 {
4554 /* If we are the last user of the backing storage (be it shmemfs
4555 * pages or stolen etc), we know that the pages are going to be
4556 * immediately released. In this case, we can then skip copying
4557 * back the contents from the GPU.
4558 */
4559
4560 if (obj->madv != I915_MADV_WILLNEED)
4561 return false;
4562
4563 if (obj->base.filp == NULL)
4564 return true;
4565
4566 /* At first glance, this looks racy, but then again so would be
4567 * userspace racing mmap against close. However, the first external
4568 * reference to the filp can only be obtained through the
4569 * i915_gem_mmap_ioctl() which safeguards us against the user
4570 * acquiring such a reference whilst we are in the middle of
4571 * freeing the object.
4572 */
4573 return atomic_long_read(&obj->base.filp->f_count) == 1;
4574 }
4575
4576 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4577 {
4578 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4579 struct drm_device *dev = obj->base.dev;
4580 struct drm_i915_private *dev_priv = dev->dev_private;
4581 struct i915_vma *vma, *next;
4582
4583 intel_runtime_pm_get(dev_priv);
4584
4585 trace_i915_gem_object_destroy(obj);
4586
4587 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4588 int ret;
4589
4590 vma->pin_count = 0;
4591 ret = i915_vma_unbind(vma);
4592 if (WARN_ON(ret == -ERESTARTSYS)) {
4593 bool was_interruptible;
4594
4595 was_interruptible = dev_priv->mm.interruptible;
4596 dev_priv->mm.interruptible = false;
4597
4598 WARN_ON(i915_vma_unbind(vma));
4599
4600 dev_priv->mm.interruptible = was_interruptible;
4601 }
4602 }
4603
4604 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4605 * before progressing. */
4606 if (obj->stolen)
4607 i915_gem_object_unpin_pages(obj);
4608
4609 WARN_ON(obj->frontbuffer_bits);
4610
4611 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4612 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4613 obj->tiling_mode != I915_TILING_NONE)
4614 i915_gem_object_unpin_pages(obj);
4615
4616 if (WARN_ON(obj->pages_pin_count))
4617 obj->pages_pin_count = 0;
4618 if (discard_backing_storage(obj))
4619 obj->madv = I915_MADV_DONTNEED;
4620 i915_gem_object_put_pages(obj);
4621 i915_gem_object_free_mmap_offset(obj);
4622
4623 BUG_ON(obj->pages);
4624
4625 if (obj->base.import_attach)
4626 drm_prime_gem_destroy(&obj->base, NULL);
4627
4628 if (obj->ops->release)
4629 obj->ops->release(obj);
4630
4631 drm_gem_object_release(&obj->base);
4632 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4633
4634 kfree(obj->bit_17);
4635 i915_gem_object_free(obj);
4636
4637 intel_runtime_pm_put(dev_priv);
4638 }
4639
4640 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4641 struct i915_address_space *vm)
4642 {
4643 struct i915_vma *vma;
4644 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4645 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4646 vma->vm == vm)
4647 return vma;
4648 }
4649 return NULL;
4650 }
4651
4652 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4653 const struct i915_ggtt_view *view)
4654 {
4655 struct drm_device *dev = obj->base.dev;
4656 struct drm_i915_private *dev_priv = to_i915(dev);
4657 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4658 struct i915_vma *vma;
4659
4660 BUG_ON(!view);
4661
4662 list_for_each_entry(vma, &obj->vma_list, obj_link)
4663 if (vma->vm == &ggtt->base &&
4664 i915_ggtt_view_equal(&vma->ggtt_view, view))
4665 return vma;
4666 return NULL;
4667 }
4668
4669 void i915_gem_vma_destroy(struct i915_vma *vma)
4670 {
4671 WARN_ON(vma->node.allocated);
4672
4673 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4674 if (!list_empty(&vma->exec_list))
4675 return;
4676
4677 if (!vma->is_ggtt)
4678 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4679
4680 list_del(&vma->obj_link);
4681
4682 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4683 }
4684
4685 static void
4686 i915_gem_stop_engines(struct drm_device *dev)
4687 {
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689 struct intel_engine_cs *engine;
4690
4691 for_each_engine(engine, dev_priv)
4692 dev_priv->gt.stop_engine(engine);
4693 }
4694
4695 int
4696 i915_gem_suspend(struct drm_device *dev)
4697 {
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 int ret = 0;
4700
4701 mutex_lock(&dev->struct_mutex);
4702 ret = i915_gpu_idle(dev);
4703 if (ret)
4704 goto err;
4705
4706 i915_gem_retire_requests(dev);
4707
4708 i915_gem_stop_engines(dev);
4709 mutex_unlock(&dev->struct_mutex);
4710
4711 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4712 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4713 flush_delayed_work(&dev_priv->mm.idle_work);
4714
4715 /* Assert that we sucessfully flushed all the work and
4716 * reset the GPU back to its idle, low power state.
4717 */
4718 WARN_ON(dev_priv->mm.busy);
4719
4720 return 0;
4721
4722 err:
4723 mutex_unlock(&dev->struct_mutex);
4724 return ret;
4725 }
4726
4727 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4728 {
4729 struct intel_engine_cs *engine = req->engine;
4730 struct drm_device *dev = engine->dev;
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4733 int i, ret;
4734
4735 if (!HAS_L3_DPF(dev) || !remap_info)
4736 return 0;
4737
4738 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4739 if (ret)
4740 return ret;
4741
4742 /*
4743 * Note: We do not worry about the concurrent register cacheline hang
4744 * here because no other code should access these registers other than
4745 * at initialization time.
4746 */
4747 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4748 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4749 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4750 intel_ring_emit(engine, remap_info[i]);
4751 }
4752
4753 intel_ring_advance(engine);
4754
4755 return ret;
4756 }
4757
4758 void i915_gem_init_swizzling(struct drm_device *dev)
4759 {
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761
4762 if (INTEL_INFO(dev)->gen < 5 ||
4763 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4764 return;
4765
4766 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4767 DISP_TILE_SURFACE_SWIZZLING);
4768
4769 if (IS_GEN5(dev))
4770 return;
4771
4772 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4773 if (IS_GEN6(dev))
4774 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4775 else if (IS_GEN7(dev))
4776 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4777 else if (IS_GEN8(dev))
4778 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4779 else
4780 BUG();
4781 }
4782
4783 static void init_unused_ring(struct drm_device *dev, u32 base)
4784 {
4785 struct drm_i915_private *dev_priv = dev->dev_private;
4786
4787 I915_WRITE(RING_CTL(base), 0);
4788 I915_WRITE(RING_HEAD(base), 0);
4789 I915_WRITE(RING_TAIL(base), 0);
4790 I915_WRITE(RING_START(base), 0);
4791 }
4792
4793 static void init_unused_rings(struct drm_device *dev)
4794 {
4795 if (IS_I830(dev)) {
4796 init_unused_ring(dev, PRB1_BASE);
4797 init_unused_ring(dev, SRB0_BASE);
4798 init_unused_ring(dev, SRB1_BASE);
4799 init_unused_ring(dev, SRB2_BASE);
4800 init_unused_ring(dev, SRB3_BASE);
4801 } else if (IS_GEN2(dev)) {
4802 init_unused_ring(dev, SRB0_BASE);
4803 init_unused_ring(dev, SRB1_BASE);
4804 } else if (IS_GEN3(dev)) {
4805 init_unused_ring(dev, PRB1_BASE);
4806 init_unused_ring(dev, PRB2_BASE);
4807 }
4808 }
4809
4810 int i915_gem_init_engines(struct drm_device *dev)
4811 {
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 int ret;
4814
4815 ret = intel_init_render_ring_buffer(dev);
4816 if (ret)
4817 return ret;
4818
4819 if (HAS_BSD(dev)) {
4820 ret = intel_init_bsd_ring_buffer(dev);
4821 if (ret)
4822 goto cleanup_render_ring;
4823 }
4824
4825 if (HAS_BLT(dev)) {
4826 ret = intel_init_blt_ring_buffer(dev);
4827 if (ret)
4828 goto cleanup_bsd_ring;
4829 }
4830
4831 if (HAS_VEBOX(dev)) {
4832 ret = intel_init_vebox_ring_buffer(dev);
4833 if (ret)
4834 goto cleanup_blt_ring;
4835 }
4836
4837 if (HAS_BSD2(dev)) {
4838 ret = intel_init_bsd2_ring_buffer(dev);
4839 if (ret)
4840 goto cleanup_vebox_ring;
4841 }
4842
4843 return 0;
4844
4845 cleanup_vebox_ring:
4846 intel_cleanup_engine(&dev_priv->engine[VECS]);
4847 cleanup_blt_ring:
4848 intel_cleanup_engine(&dev_priv->engine[BCS]);
4849 cleanup_bsd_ring:
4850 intel_cleanup_engine(&dev_priv->engine[VCS]);
4851 cleanup_render_ring:
4852 intel_cleanup_engine(&dev_priv->engine[RCS]);
4853
4854 return ret;
4855 }
4856
4857 int
4858 i915_gem_init_hw(struct drm_device *dev)
4859 {
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 struct intel_engine_cs *engine;
4862 int ret, j;
4863
4864 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4865 return -EIO;
4866
4867 /* Double layer security blanket, see i915_gem_init() */
4868 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872
4873 if (IS_HASWELL(dev))
4874 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4875 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876
4877 if (HAS_PCH_NOP(dev)) {
4878 if (IS_IVYBRIDGE(dev)) {
4879 u32 temp = I915_READ(GEN7_MSG_CTL);
4880 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4881 I915_WRITE(GEN7_MSG_CTL, temp);
4882 } else if (INTEL_INFO(dev)->gen >= 7) {
4883 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4884 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4885 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4886 }
4887 }
4888
4889 i915_gem_init_swizzling(dev);
4890
4891 /*
4892 * At least 830 can leave some of the unused rings
4893 * "active" (ie. head != tail) after resume which
4894 * will prevent c3 entry. Makes sure all unused rings
4895 * are totally idle.
4896 */
4897 init_unused_rings(dev);
4898
4899 BUG_ON(!dev_priv->kernel_context);
4900
4901 ret = i915_ppgtt_init_hw(dev);
4902 if (ret) {
4903 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4904 goto out;
4905 }
4906
4907 /* Need to do basic initialisation of all rings first: */
4908 for_each_engine(engine, dev_priv) {
4909 ret = engine->init_hw(engine);
4910 if (ret)
4911 goto out;
4912 }
4913
4914 /* We can't enable contexts until all firmware is loaded */
4915 if (HAS_GUC_UCODE(dev)) {
4916 ret = intel_guc_ucode_load(dev);
4917 if (ret) {
4918 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4919 ret = -EIO;
4920 goto out;
4921 }
4922 }
4923
4924 /*
4925 * Increment the next seqno by 0x100 so we have a visible break
4926 * on re-initialisation
4927 */
4928 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4929 if (ret)
4930 goto out;
4931
4932 /* Now it is safe to go back round and do everything else: */
4933 for_each_engine(engine, dev_priv) {
4934 struct drm_i915_gem_request *req;
4935
4936 req = i915_gem_request_alloc(engine, NULL);
4937 if (IS_ERR(req)) {
4938 ret = PTR_ERR(req);
4939 i915_gem_cleanup_engines(dev);
4940 goto out;
4941 }
4942
4943 if (engine->id == RCS) {
4944 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4945 i915_gem_l3_remap(req, j);
4946 }
4947
4948 ret = i915_ppgtt_init_ring(req);
4949 if (ret && ret != -EIO) {
4950 DRM_ERROR("PPGTT enable %s failed %d\n",
4951 engine->name, ret);
4952 i915_gem_request_cancel(req);
4953 i915_gem_cleanup_engines(dev);
4954 goto out;
4955 }
4956
4957 ret = i915_gem_context_enable(req);
4958 if (ret && ret != -EIO) {
4959 DRM_ERROR("Context enable %s failed %d\n",
4960 engine->name, ret);
4961 i915_gem_request_cancel(req);
4962 i915_gem_cleanup_engines(dev);
4963 goto out;
4964 }
4965
4966 i915_add_request_no_flush(req);
4967 }
4968
4969 out:
4970 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971 return ret;
4972 }
4973
4974 int i915_gem_init(struct drm_device *dev)
4975 {
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 int ret;
4978
4979 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4980 i915.enable_execlists);
4981
4982 mutex_lock(&dev->struct_mutex);
4983
4984 if (!i915.enable_execlists) {
4985 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4986 dev_priv->gt.init_engines = i915_gem_init_engines;
4987 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4988 dev_priv->gt.stop_engine = intel_stop_engine;
4989 } else {
4990 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4991 dev_priv->gt.init_engines = intel_logical_rings_init;
4992 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4993 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4994 }
4995
4996 /* This is just a security blanket to placate dragons.
4997 * On some systems, we very sporadically observe that the first TLBs
4998 * used by the CS may be stale, despite us poking the TLB reset. If
4999 * we hold the forcewake during initialisation these problems
5000 * just magically go away.
5001 */
5002 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5003
5004 ret = i915_gem_init_userptr(dev);
5005 if (ret)
5006 goto out_unlock;
5007
5008 i915_gem_init_ggtt(dev);
5009
5010 ret = i915_gem_context_init(dev);
5011 if (ret)
5012 goto out_unlock;
5013
5014 ret = dev_priv->gt.init_engines(dev);
5015 if (ret)
5016 goto out_unlock;
5017
5018 ret = i915_gem_init_hw(dev);
5019 if (ret == -EIO) {
5020 /* Allow ring initialisation to fail by marking the GPU as
5021 * wedged. But we only want to do this where the GPU is angry,
5022 * for all other failure, such as an allocation failure, bail.
5023 */
5024 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5025 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5026 ret = 0;
5027 }
5028
5029 out_unlock:
5030 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5031 mutex_unlock(&dev->struct_mutex);
5032
5033 return ret;
5034 }
5035
5036 void
5037 i915_gem_cleanup_engines(struct drm_device *dev)
5038 {
5039 struct drm_i915_private *dev_priv = dev->dev_private;
5040 struct intel_engine_cs *engine;
5041
5042 for_each_engine(engine, dev_priv)
5043 dev_priv->gt.cleanup_engine(engine);
5044
5045 if (i915.enable_execlists)
5046 /*
5047 * Neither the BIOS, ourselves or any other kernel
5048 * expects the system to be in execlists mode on startup,
5049 * so we need to reset the GPU back to legacy mode.
5050 */
5051 intel_gpu_reset(dev, ALL_ENGINES);
5052 }
5053
5054 static void
5055 init_engine_lists(struct intel_engine_cs *engine)
5056 {
5057 INIT_LIST_HEAD(&engine->active_list);
5058 INIT_LIST_HEAD(&engine->request_list);
5059 }
5060
5061 void
5062 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5063 {
5064 struct drm_device *dev = dev_priv->dev;
5065
5066 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5067 !IS_CHERRYVIEW(dev_priv))
5068 dev_priv->num_fence_regs = 32;
5069 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5070 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5071 dev_priv->num_fence_regs = 16;
5072 else
5073 dev_priv->num_fence_regs = 8;
5074
5075 if (intel_vgpu_active(dev))
5076 dev_priv->num_fence_regs =
5077 I915_READ(vgtif_reg(avail_rs.fence_num));
5078
5079 /* Initialize fence registers to zero */
5080 i915_gem_restore_fences(dev);
5081
5082 i915_gem_detect_bit_6_swizzle(dev);
5083 }
5084
5085 void
5086 i915_gem_load_init(struct drm_device *dev)
5087 {
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5089 int i;
5090
5091 dev_priv->objects =
5092 kmem_cache_create("i915_gem_object",
5093 sizeof(struct drm_i915_gem_object), 0,
5094 SLAB_HWCACHE_ALIGN,
5095 NULL);
5096 dev_priv->vmas =
5097 kmem_cache_create("i915_gem_vma",
5098 sizeof(struct i915_vma), 0,
5099 SLAB_HWCACHE_ALIGN,
5100 NULL);
5101 dev_priv->requests =
5102 kmem_cache_create("i915_gem_request",
5103 sizeof(struct drm_i915_gem_request), 0,
5104 SLAB_HWCACHE_ALIGN,
5105 NULL);
5106
5107 INIT_LIST_HEAD(&dev_priv->vm_list);
5108 INIT_LIST_HEAD(&dev_priv->context_list);
5109 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5110 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5111 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5112 for (i = 0; i < I915_NUM_ENGINES; i++)
5113 init_engine_lists(&dev_priv->engine[i]);
5114 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5115 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5116 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5117 i915_gem_retire_work_handler);
5118 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5119 i915_gem_idle_work_handler);
5120 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5121
5122 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5123
5124 /*
5125 * Set initial sequence number for requests.
5126 * Using this number allows the wraparound to happen early,
5127 * catching any obvious problems.
5128 */
5129 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5130 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5131
5132 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5133
5134 init_waitqueue_head(&dev_priv->pending_flip_queue);
5135
5136 dev_priv->mm.interruptible = true;
5137
5138 mutex_init(&dev_priv->fb_tracking.lock);
5139 }
5140
5141 void i915_gem_load_cleanup(struct drm_device *dev)
5142 {
5143 struct drm_i915_private *dev_priv = to_i915(dev);
5144
5145 kmem_cache_destroy(dev_priv->requests);
5146 kmem_cache_destroy(dev_priv->vmas);
5147 kmem_cache_destroy(dev_priv->objects);
5148 }
5149
5150 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5151 {
5152 struct drm_i915_file_private *file_priv = file->driver_priv;
5153
5154 /* Clean up our request list when the client is going away, so that
5155 * later retire_requests won't dereference our soon-to-be-gone
5156 * file_priv.
5157 */
5158 spin_lock(&file_priv->mm.lock);
5159 while (!list_empty(&file_priv->mm.request_list)) {
5160 struct drm_i915_gem_request *request;
5161
5162 request = list_first_entry(&file_priv->mm.request_list,
5163 struct drm_i915_gem_request,
5164 client_list);
5165 list_del(&request->client_list);
5166 request->file_priv = NULL;
5167 }
5168 spin_unlock(&file_priv->mm.lock);
5169
5170 if (!list_empty(&file_priv->rps.link)) {
5171 spin_lock(&to_i915(dev)->rps.client_lock);
5172 list_del(&file_priv->rps.link);
5173 spin_unlock(&to_i915(dev)->rps.client_lock);
5174 }
5175 }
5176
5177 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5178 {
5179 struct drm_i915_file_private *file_priv;
5180 int ret;
5181
5182 DRM_DEBUG_DRIVER("\n");
5183
5184 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5185 if (!file_priv)
5186 return -ENOMEM;
5187
5188 file->driver_priv = file_priv;
5189 file_priv->dev_priv = dev->dev_private;
5190 file_priv->file = file;
5191 INIT_LIST_HEAD(&file_priv->rps.link);
5192
5193 spin_lock_init(&file_priv->mm.lock);
5194 INIT_LIST_HEAD(&file_priv->mm.request_list);
5195
5196 file_priv->bsd_ring = -1;
5197
5198 ret = i915_gem_context_open(dev, file);
5199 if (ret)
5200 kfree(file_priv);
5201
5202 return ret;
5203 }
5204
5205 /**
5206 * i915_gem_track_fb - update frontbuffer tracking
5207 * @old: current GEM buffer for the frontbuffer slots
5208 * @new: new GEM buffer for the frontbuffer slots
5209 * @frontbuffer_bits: bitmask of frontbuffer slots
5210 *
5211 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5212 * from @old and setting them in @new. Both @old and @new can be NULL.
5213 */
5214 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5215 struct drm_i915_gem_object *new,
5216 unsigned frontbuffer_bits)
5217 {
5218 if (old) {
5219 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5220 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5221 old->frontbuffer_bits &= ~frontbuffer_bits;
5222 }
5223
5224 if (new) {
5225 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5226 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5227 new->frontbuffer_bits |= frontbuffer_bits;
5228 }
5229 }
5230
5231 /* All the new VM stuff */
5232 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5233 struct i915_address_space *vm)
5234 {
5235 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5236 struct i915_vma *vma;
5237
5238 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5239
5240 list_for_each_entry(vma, &o->vma_list, obj_link) {
5241 if (vma->is_ggtt &&
5242 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5243 continue;
5244 if (vma->vm == vm)
5245 return vma->node.start;
5246 }
5247
5248 WARN(1, "%s vma for this object not found.\n",
5249 i915_is_ggtt(vm) ? "global" : "ppgtt");
5250 return -1;
5251 }
5252
5253 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5254 const struct i915_ggtt_view *view)
5255 {
5256 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5257 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5258 struct i915_vma *vma;
5259
5260 list_for_each_entry(vma, &o->vma_list, obj_link)
5261 if (vma->vm == &ggtt->base &&
5262 i915_ggtt_view_equal(&vma->ggtt_view, view))
5263 return vma->node.start;
5264
5265 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5266 return -1;
5267 }
5268
5269 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5270 struct i915_address_space *vm)
5271 {
5272 struct i915_vma *vma;
5273
5274 list_for_each_entry(vma, &o->vma_list, obj_link) {
5275 if (vma->is_ggtt &&
5276 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5277 continue;
5278 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5279 return true;
5280 }
5281
5282 return false;
5283 }
5284
5285 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5286 const struct i915_ggtt_view *view)
5287 {
5288 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5289 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5290 struct i915_vma *vma;
5291
5292 list_for_each_entry(vma, &o->vma_list, obj_link)
5293 if (vma->vm == &ggtt->base &&
5294 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5295 drm_mm_node_allocated(&vma->node))
5296 return true;
5297
5298 return false;
5299 }
5300
5301 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5302 {
5303 struct i915_vma *vma;
5304
5305 list_for_each_entry(vma, &o->vma_list, obj_link)
5306 if (drm_mm_node_allocated(&vma->node))
5307 return true;
5308
5309 return false;
5310 }
5311
5312 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5313 struct i915_address_space *vm)
5314 {
5315 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5316 struct i915_vma *vma;
5317
5318 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5319
5320 BUG_ON(list_empty(&o->vma_list));
5321
5322 list_for_each_entry(vma, &o->vma_list, obj_link) {
5323 if (vma->is_ggtt &&
5324 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5325 continue;
5326 if (vma->vm == vm)
5327 return vma->node.size;
5328 }
5329 return 0;
5330 }
5331
5332 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5333 {
5334 struct i915_vma *vma;
5335 list_for_each_entry(vma, &obj->vma_list, obj_link)
5336 if (vma->pin_count > 0)
5337 return true;
5338
5339 return false;
5340 }
5341
5342 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5343 struct page *
5344 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5345 {
5346 struct page *page;
5347
5348 /* Only default objects have per-page dirty tracking */
5349 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5350 return NULL;
5351
5352 page = i915_gem_object_get_page(obj, n);
5353 set_page_dirty(page);
5354 return page;
5355 }
5356
5357 /* Allocate a new GEM object and fill it with the supplied data */
5358 struct drm_i915_gem_object *
5359 i915_gem_object_create_from_data(struct drm_device *dev,
5360 const void *data, size_t size)
5361 {
5362 struct drm_i915_gem_object *obj;
5363 struct sg_table *sg;
5364 size_t bytes;
5365 int ret;
5366
5367 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5368 if (IS_ERR_OR_NULL(obj))
5369 return obj;
5370
5371 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5372 if (ret)
5373 goto fail;
5374
5375 ret = i915_gem_object_get_pages(obj);
5376 if (ret)
5377 goto fail;
5378
5379 i915_gem_object_pin_pages(obj);
5380 sg = obj->pages;
5381 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5382 obj->dirty = 1; /* Backing store is now out of date */
5383 i915_gem_object_unpin_pages(obj);
5384
5385 if (WARN_ON(bytes != size)) {
5386 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5387 ret = -EFAULT;
5388 goto fail;
5389 }
5390
5391 return obj;
5392
5393 fail:
5394 drm_gem_object_unreference(&obj->base);
5395 return ERR_PTR(ret);
5396 }
This page took 0.164663 seconds and 6 git commands to generate.