drm/i915: Reserve ring buffer space for i915_add_request() commands
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530 }
531
532 /* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535 static int
536 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539 {
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556 }
557
558 static void
559 shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561 {
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578 }
579
580 /* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582 static int
583 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586 {
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607 }
608
609 static int
610 i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614 {
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682 next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688 out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692 }
693
694 /**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699 int
700 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702 {
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744 out:
745 drm_gem_object_unreference(&obj->base);
746 unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749 }
750
751 /* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755 static inline int
756 fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760 {
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772 }
773
774 /**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778 static int
779 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837 out_flush:
838 intel_fb_obj_flush(obj, false);
839 out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841 out:
842 return ret;
843 }
844
845 /* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849 static int
850 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855 {
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874 }
875
876 /* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878 static int
879 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884 {
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908 }
909
910 static int
911 i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915 {
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006 next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012 out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033 }
1034
1035 /**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040 int
1041 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043 {
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116 out:
1117 drm_gem_object_unreference(&obj->base);
1118 unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120 put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124 }
1125
1126 int
1127 i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129 {
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155 int
1156 i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 {
1158 int ret;
1159
1160 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161
1162 ret = 0;
1163 if (req == req->ring->outstanding_lazy_request)
1164 ret = i915_add_request(req->ring);
1165
1166 return ret;
1167 }
1168
1169 static void fake_irq(unsigned long data)
1170 {
1171 wake_up_process((struct task_struct *)data);
1172 }
1173
1174 static bool missed_irq(struct drm_i915_private *dev_priv,
1175 struct intel_engine_cs *ring)
1176 {
1177 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1178 }
1179
1180 static int __i915_spin_request(struct drm_i915_gem_request *req)
1181 {
1182 unsigned long timeout;
1183
1184 if (i915_gem_request_get_ring(req)->irq_refcount)
1185 return -EBUSY;
1186
1187 timeout = jiffies + 1;
1188 while (!need_resched()) {
1189 if (i915_gem_request_completed(req, true))
1190 return 0;
1191
1192 if (time_after_eq(jiffies, timeout))
1193 break;
1194
1195 cpu_relax_lowlatency();
1196 }
1197 if (i915_gem_request_completed(req, false))
1198 return 0;
1199
1200 return -EAGAIN;
1201 }
1202
1203 /**
1204 * __i915_wait_request - wait until execution of request has finished
1205 * @req: duh!
1206 * @reset_counter: reset sequence associated with the given request
1207 * @interruptible: do an interruptible wait (normally yes)
1208 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1209 *
1210 * Note: It is of utmost importance that the passed in seqno and reset_counter
1211 * values have been read by the caller in an smp safe manner. Where read-side
1212 * locks are involved, it is sufficient to read the reset_counter before
1213 * unlocking the lock that protects the seqno. For lockless tricks, the
1214 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1215 * inserted.
1216 *
1217 * Returns 0 if the request was found within the alloted time. Else returns the
1218 * errno with remaining time filled in timeout argument.
1219 */
1220 int __i915_wait_request(struct drm_i915_gem_request *req,
1221 unsigned reset_counter,
1222 bool interruptible,
1223 s64 *timeout,
1224 struct intel_rps_client *rps)
1225 {
1226 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227 struct drm_device *dev = ring->dev;
1228 struct drm_i915_private *dev_priv = dev->dev_private;
1229 const bool irq_test_in_progress =
1230 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231 DEFINE_WAIT(wait);
1232 unsigned long timeout_expire;
1233 s64 before, now;
1234 int ret;
1235
1236 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237
1238 if (list_empty(&req->list))
1239 return 0;
1240
1241 if (i915_gem_request_completed(req, true))
1242 return 0;
1243
1244 timeout_expire = timeout ?
1245 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246
1247 if (INTEL_INFO(dev_priv)->gen >= 6)
1248 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249
1250 /* Record current time in case interrupted by signal, or wedged */
1251 trace_i915_gem_request_wait_begin(req);
1252 before = ktime_get_raw_ns();
1253
1254 /* Optimistic spin for the next jiffie before touching IRQs */
1255 ret = __i915_spin_request(req);
1256 if (ret == 0)
1257 goto out;
1258
1259 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1260 ret = -ENODEV;
1261 goto out;
1262 }
1263
1264 for (;;) {
1265 struct timer_list timer;
1266
1267 prepare_to_wait(&ring->irq_queue, &wait,
1268 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269
1270 /* We need to check whether any gpu reset happened in between
1271 * the caller grabbing the seqno and now ... */
1272 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1273 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1274 * is truely gone. */
1275 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1276 if (ret == 0)
1277 ret = -EAGAIN;
1278 break;
1279 }
1280
1281 if (i915_gem_request_completed(req, false)) {
1282 ret = 0;
1283 break;
1284 }
1285
1286 if (interruptible && signal_pending(current)) {
1287 ret = -ERESTARTSYS;
1288 break;
1289 }
1290
1291 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 ret = -ETIME;
1293 break;
1294 }
1295
1296 timer.function = NULL;
1297 if (timeout || missed_irq(dev_priv, ring)) {
1298 unsigned long expire;
1299
1300 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 mod_timer(&timer, expire);
1303 }
1304
1305 io_schedule();
1306
1307 if (timer.function) {
1308 del_singleshot_timer_sync(&timer);
1309 destroy_timer_on_stack(&timer);
1310 }
1311 }
1312 if (!irq_test_in_progress)
1313 ring->irq_put(ring);
1314
1315 finish_wait(&ring->irq_queue, &wait);
1316
1317 out:
1318 now = ktime_get_raw_ns();
1319 trace_i915_gem_request_wait_end(req);
1320
1321 if (timeout) {
1322 s64 tres = *timeout - (now - before);
1323
1324 *timeout = tres < 0 ? 0 : tres;
1325
1326 /*
1327 * Apparently ktime isn't accurate enough and occasionally has a
1328 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1329 * things up to make the test happy. We allow up to 1 jiffy.
1330 *
1331 * This is a regrssion from the timespec->ktime conversion.
1332 */
1333 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1334 *timeout = 0;
1335 }
1336
1337 return ret;
1338 }
1339
1340 static inline void
1341 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1342 {
1343 struct drm_i915_file_private *file_priv = request->file_priv;
1344
1345 if (!file_priv)
1346 return;
1347
1348 spin_lock(&file_priv->mm.lock);
1349 list_del(&request->client_list);
1350 request->file_priv = NULL;
1351 spin_unlock(&file_priv->mm.lock);
1352 }
1353
1354 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1355 {
1356 trace_i915_gem_request_retire(request);
1357
1358 /* We know the GPU must have read the request to have
1359 * sent us the seqno + interrupt, so use the position
1360 * of tail of the request to update the last known position
1361 * of the GPU head.
1362 *
1363 * Note this requires that we are always called in request
1364 * completion order.
1365 */
1366 request->ringbuf->last_retired_head = request->postfix;
1367
1368 list_del_init(&request->list);
1369 i915_gem_request_remove_from_client(request);
1370
1371 put_pid(request->pid);
1372
1373 i915_gem_request_unreference(request);
1374 }
1375
1376 static void
1377 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1378 {
1379 struct intel_engine_cs *engine = req->ring;
1380 struct drm_i915_gem_request *tmp;
1381
1382 lockdep_assert_held(&engine->dev->struct_mutex);
1383
1384 if (list_empty(&req->list))
1385 return;
1386
1387 do {
1388 tmp = list_first_entry(&engine->request_list,
1389 typeof(*tmp), list);
1390
1391 i915_gem_request_retire(tmp);
1392 } while (tmp != req);
1393
1394 WARN_ON(i915_verify_lists(engine->dev));
1395 }
1396
1397 /**
1398 * Waits for a request to be signaled, and cleans up the
1399 * request and object lists appropriately for that event.
1400 */
1401 int
1402 i915_wait_request(struct drm_i915_gem_request *req)
1403 {
1404 struct drm_device *dev;
1405 struct drm_i915_private *dev_priv;
1406 bool interruptible;
1407 int ret;
1408
1409 BUG_ON(req == NULL);
1410
1411 dev = req->ring->dev;
1412 dev_priv = dev->dev_private;
1413 interruptible = dev_priv->mm.interruptible;
1414
1415 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1416
1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 if (ret)
1419 return ret;
1420
1421 ret = i915_gem_check_olr(req);
1422 if (ret)
1423 return ret;
1424
1425 ret = __i915_wait_request(req,
1426 atomic_read(&dev_priv->gpu_error.reset_counter),
1427 interruptible, NULL, NULL);
1428 if (ret)
1429 return ret;
1430
1431 __i915_gem_request_retire__upto(req);
1432 return 0;
1433 }
1434
1435 /**
1436 * Ensures that all rendering to the object has completed and the object is
1437 * safe to unbind from the GTT or access from the CPU.
1438 */
1439 int
1440 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1441 bool readonly)
1442 {
1443 int ret, i;
1444
1445 if (!obj->active)
1446 return 0;
1447
1448 if (readonly) {
1449 if (obj->last_write_req != NULL) {
1450 ret = i915_wait_request(obj->last_write_req);
1451 if (ret)
1452 return ret;
1453
1454 i = obj->last_write_req->ring->id;
1455 if (obj->last_read_req[i] == obj->last_write_req)
1456 i915_gem_object_retire__read(obj, i);
1457 else
1458 i915_gem_object_retire__write(obj);
1459 }
1460 } else {
1461 for (i = 0; i < I915_NUM_RINGS; i++) {
1462 if (obj->last_read_req[i] == NULL)
1463 continue;
1464
1465 ret = i915_wait_request(obj->last_read_req[i]);
1466 if (ret)
1467 return ret;
1468
1469 i915_gem_object_retire__read(obj, i);
1470 }
1471 RQ_BUG_ON(obj->active);
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void
1478 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1479 struct drm_i915_gem_request *req)
1480 {
1481 int ring = req->ring->id;
1482
1483 if (obj->last_read_req[ring] == req)
1484 i915_gem_object_retire__read(obj, ring);
1485 else if (obj->last_write_req == req)
1486 i915_gem_object_retire__write(obj);
1487
1488 __i915_gem_request_retire__upto(req);
1489 }
1490
1491 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1492 * as the object state may change during this call.
1493 */
1494 static __must_check int
1495 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496 struct intel_rps_client *rps,
1497 bool readonly)
1498 {
1499 struct drm_device *dev = obj->base.dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502 unsigned reset_counter;
1503 int ret, i, n = 0;
1504
1505 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1506 BUG_ON(!dev_priv->mm.interruptible);
1507
1508 if (!obj->active)
1509 return 0;
1510
1511 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 if (ret)
1513 return ret;
1514
1515 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516
1517 if (readonly) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_write_req;
1521 if (req == NULL)
1522 return 0;
1523
1524 ret = i915_gem_check_olr(req);
1525 if (ret)
1526 goto err;
1527
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
1537 ret = i915_gem_check_olr(req);
1538 if (ret)
1539 goto err;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
1545 mutex_unlock(&dev->struct_mutex);
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
1548 NULL, rps);
1549 mutex_lock(&dev->struct_mutex);
1550
1551 err:
1552 for (i = 0; i < n; i++) {
1553 if (ret == 0)
1554 i915_gem_object_retire_request(obj, requests[i]);
1555 i915_gem_request_unreference(requests[i]);
1556 }
1557
1558 return ret;
1559 }
1560
1561 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1562 {
1563 struct drm_i915_file_private *fpriv = file->driver_priv;
1564 return &fpriv->rps;
1565 }
1566
1567 /**
1568 * Called when user space prepares to use an object with the CPU, either
1569 * through the mmap ioctl's mapping or a GTT mapping.
1570 */
1571 int
1572 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573 struct drm_file *file)
1574 {
1575 struct drm_i915_gem_set_domain *args = data;
1576 struct drm_i915_gem_object *obj;
1577 uint32_t read_domains = args->read_domains;
1578 uint32_t write_domain = args->write_domain;
1579 int ret;
1580
1581 /* Only handle setting domains to types used by the CPU. */
1582 if (write_domain & I915_GEM_GPU_DOMAINS)
1583 return -EINVAL;
1584
1585 if (read_domains & I915_GEM_GPU_DOMAINS)
1586 return -EINVAL;
1587
1588 /* Having something in the write domain implies it's in the read
1589 * domain, and only that read domain. Enforce that in the request.
1590 */
1591 if (write_domain != 0 && read_domains != write_domain)
1592 return -EINVAL;
1593
1594 ret = i915_mutex_lock_interruptible(dev);
1595 if (ret)
1596 return ret;
1597
1598 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599 if (&obj->base == NULL) {
1600 ret = -ENOENT;
1601 goto unlock;
1602 }
1603
1604 /* Try to flush the object off the GPU without holding the lock.
1605 * We will repeat the flush holding the lock in the normal manner
1606 * to catch cases where we are gazumped.
1607 */
1608 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609 to_rps_client(file),
1610 !write_domain);
1611 if (ret)
1612 goto unref;
1613
1614 if (read_domains & I915_GEM_DOMAIN_GTT)
1615 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616 else
1617 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618
1619 unref:
1620 drm_gem_object_unreference(&obj->base);
1621 unlock:
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624 }
1625
1626 /**
1627 * Called when user space has done writes to this buffer
1628 */
1629 int
1630 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631 struct drm_file *file)
1632 {
1633 struct drm_i915_gem_sw_finish *args = data;
1634 struct drm_i915_gem_object *obj;
1635 int ret = 0;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Pinned buffers may be scanout, so flush the cache */
1648 if (obj->pin_display)
1649 i915_gem_object_flush_cpu_write_domain(obj);
1650
1651 drm_gem_object_unreference(&obj->base);
1652 unlock:
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655 }
1656
1657 /**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
1673 */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676 struct drm_file *file)
1677 {
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
1680 unsigned long addr;
1681
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
1688 obj = drm_gem_object_lookup(dev, file, args->handle);
1689 if (obj == NULL)
1690 return -ENOENT;
1691
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
1700 addr = vm_mmap(obj->filp, 0, args->size,
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
1716 drm_gem_object_unreference_unlocked(obj);
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * i915_gem_fault - fault a page into the GTT
1727 * vma: VMA in question
1728 * vmf: fault info
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 {
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751
1752 intel_runtime_pm_get(dev_priv);
1753
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
1761
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775 ret = -EFAULT;
1776 goto unlock;
1777 }
1778
1779 /* Use a partial view if the object is bigger than the aperture. */
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
1782 static const unsigned int chunk_size = 256; // 1 MiB
1783
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 if (ret)
1797 goto unlock;
1798
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
1802
1803 ret = i915_gem_object_get_fence(obj);
1804 if (ret)
1805 goto unpin;
1806
1807 /* Finally, remap it using the new GTT offset */
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
1810 pfn >>= PAGE_SHIFT;
1811
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
1821
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
1850 unpin:
1851 i915_gem_object_ggtt_unpin_view(obj, &view);
1852 unlock:
1853 mutex_unlock(&dev->struct_mutex);
1854 out:
1855 switch (ret) {
1856 case -EIO:
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
1867 case -EAGAIN:
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
1872 */
1873 case 0:
1874 case -ERESTARTSYS:
1875 case -EINTR:
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
1881 ret = VM_FAULT_NOPAGE;
1882 break;
1883 case -ENOMEM:
1884 ret = VM_FAULT_OOM;
1885 break;
1886 case -ENOSPC:
1887 case -EFAULT:
1888 ret = VM_FAULT_SIGBUS;
1889 break;
1890 default:
1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
1898 }
1899
1900 /**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
1904 * Preserve the reservation of the mmapping with the DRM core code, but
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
1914 void
1915 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916 {
1917 if (!obj->fault_mappable)
1918 return;
1919
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
1922 obj->fault_mappable = false;
1923 }
1924
1925 void
1926 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927 {
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932 }
1933
1934 uint32_t
1935 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936 {
1937 uint32_t gtt_size;
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
1945 gtt_size = 1024*1024;
1946 else
1947 gtt_size = 512*1024;
1948
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
1951
1952 return gtt_size;
1953 }
1954
1955 /**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
1960 * potential fence register mapping.
1961 */
1962 uint32_t
1963 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
1965 {
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971 tiling_mode == I915_TILING_NONE)
1972 return 4096;
1973
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 }
1980
1981 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982 {
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 return 0;
1988
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
1993 goto out;
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
2009 goto out;
2010
2011 i915_gem_shrink_all(dev_priv);
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013 out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
2017 }
2018
2019 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020 {
2021 drm_gem_free_mmap_offset(&obj->base);
2022 }
2023
2024 int
2025 i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
2027 uint32_t handle,
2028 uint64_t *offset)
2029 {
2030 struct drm_i915_gem_object *obj;
2031 int ret;
2032
2033 ret = i915_mutex_lock_interruptible(dev);
2034 if (ret)
2035 return ret;
2036
2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038 if (&obj->base == NULL) {
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
2042
2043 if (obj->madv != I915_MADV_WILLNEED) {
2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045 ret = -EFAULT;
2046 goto out;
2047 }
2048
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
2052
2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054
2055 out:
2056 drm_gem_object_unreference(&obj->base);
2057 unlock:
2058 mutex_unlock(&dev->struct_mutex);
2059 return ret;
2060 }
2061
2062 /**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077 int
2078 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080 {
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 }
2085
2086 /* Immediately discard the backing storage */
2087 static void
2088 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089 {
2090 i915_gem_object_free_mmap_offset(obj);
2091
2092 if (obj->base.filp == NULL)
2093 return;
2094
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2101 obj->madv = __I915_MADV_PURGED;
2102 }
2103
2104 /* Try to discard unwanted pages */
2105 static void
2106 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2107 {
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 }
2123
2124 static void
2125 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126 {
2127 struct sg_page_iter sg_iter;
2128 int ret;
2129
2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
2131
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2138 i915_gem_clflush_object(obj, true);
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
2142 if (i915_gem_object_needs_bit17_swizzle(obj))
2143 i915_gem_object_save_bit_17_swizzle(obj);
2144
2145 if (obj->madv == I915_MADV_DONTNEED)
2146 obj->dirty = 0;
2147
2148 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149 struct page *page = sg_page_iter_page(&sg_iter);
2150
2151 if (obj->dirty)
2152 set_page_dirty(page);
2153
2154 if (obj->madv == I915_MADV_WILLNEED)
2155 mark_page_accessed(page);
2156
2157 page_cache_release(page);
2158 }
2159 obj->dirty = 0;
2160
2161 sg_free_table(obj->pages);
2162 kfree(obj->pages);
2163 }
2164
2165 int
2166 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2167 {
2168 const struct drm_i915_gem_object_ops *ops = obj->ops;
2169
2170 if (obj->pages == NULL)
2171 return 0;
2172
2173 if (obj->pages_pin_count)
2174 return -EBUSY;
2175
2176 BUG_ON(i915_gem_obj_bound_any(obj));
2177
2178 /* ->put_pages might need to allocate memory for the bit17 swizzle
2179 * array, hence protect them from being reaped by removing them from gtt
2180 * lists early. */
2181 list_del(&obj->global_list);
2182
2183 ops->put_pages(obj);
2184 obj->pages = NULL;
2185
2186 i915_gem_object_invalidate(obj);
2187
2188 return 0;
2189 }
2190
2191 static int
2192 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 int page_count, i;
2196 struct address_space *mapping;
2197 struct sg_table *st;
2198 struct scatterlist *sg;
2199 struct sg_page_iter sg_iter;
2200 struct page *page;
2201 unsigned long last_pfn = 0; /* suppress gcc warning */
2202 gfp_t gfp;
2203
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
2215 page_count = obj->base.size / PAGE_SIZE;
2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217 kfree(st);
2218 return -ENOMEM;
2219 }
2220
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
2226 mapping = file_inode(obj->base.filp)->i_mapping;
2227 gfp = mapping_gfp_mask(mapping);
2228 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2229 gfp &= ~(__GFP_IO | __GFP_WAIT);
2230 sg = st->sgl;
2231 st->nents = 0;
2232 for (i = 0; i < page_count; i++) {
2233 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2234 if (IS_ERR(page)) {
2235 i915_gem_shrink(dev_priv,
2236 page_count,
2237 I915_SHRINK_BOUND |
2238 I915_SHRINK_UNBOUND |
2239 I915_SHRINK_PURGEABLE);
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 }
2242 if (IS_ERR(page)) {
2243 /* We've tried hard to allocate the memory by reaping
2244 * our own buffer, now let the real VM do its job and
2245 * go down in flames if truly OOM.
2246 */
2247 i915_gem_shrink_all(dev_priv);
2248 page = shmem_read_mapping_page(mapping, i);
2249 if (IS_ERR(page))
2250 goto err_pages;
2251 }
2252 #ifdef CONFIG_SWIOTLB
2253 if (swiotlb_nr_tbl()) {
2254 st->nents++;
2255 sg_set_page(sg, page, PAGE_SIZE, 0);
2256 sg = sg_next(sg);
2257 continue;
2258 }
2259 #endif
2260 if (!i || page_to_pfn(page) != last_pfn + 1) {
2261 if (i)
2262 sg = sg_next(sg);
2263 st->nents++;
2264 sg_set_page(sg, page, PAGE_SIZE, 0);
2265 } else {
2266 sg->length += PAGE_SIZE;
2267 }
2268 last_pfn = page_to_pfn(page);
2269
2270 /* Check that the i965g/gm workaround works. */
2271 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272 }
2273 #ifdef CONFIG_SWIOTLB
2274 if (!swiotlb_nr_tbl())
2275 #endif
2276 sg_mark_end(sg);
2277 obj->pages = st;
2278
2279 if (i915_gem_object_needs_bit17_swizzle(obj))
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
2282 if (obj->tiling_mode != I915_TILING_NONE &&
2283 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2284 i915_gem_object_pin_pages(obj);
2285
2286 return 0;
2287
2288 err_pages:
2289 sg_mark_end(sg);
2290 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291 page_cache_release(sg_page_iter_page(&sg_iter));
2292 sg_free_table(st);
2293 kfree(st);
2294
2295 /* shmemfs first checks if there is enough memory to allocate the page
2296 * and reports ENOSPC should there be insufficient, along with the usual
2297 * ENOMEM for a genuine allocation failure.
2298 *
2299 * We use ENOSPC in our driver to mean that we have run out of aperture
2300 * space and so want to translate the error from shmemfs back to our
2301 * usual understanding of ENOMEM.
2302 */
2303 if (PTR_ERR(page) == -ENOSPC)
2304 return -ENOMEM;
2305 else
2306 return PTR_ERR(page);
2307 }
2308
2309 /* Ensure that the associated pages are gathered from the backing storage
2310 * and pinned into our object. i915_gem_object_get_pages() may be called
2311 * multiple times before they are released by a single call to
2312 * i915_gem_object_put_pages() - once the pages are no longer referenced
2313 * either as a result of memory pressure (reaping pages under the shrinker)
2314 * or as the object is itself released.
2315 */
2316 int
2317 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2318 {
2319 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2320 const struct drm_i915_gem_object_ops *ops = obj->ops;
2321 int ret;
2322
2323 if (obj->pages)
2324 return 0;
2325
2326 if (obj->madv != I915_MADV_WILLNEED) {
2327 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328 return -EFAULT;
2329 }
2330
2331 BUG_ON(obj->pages_pin_count);
2332
2333 ret = ops->get_pages(obj);
2334 if (ret)
2335 return ret;
2336
2337 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338
2339 obj->get_page.sg = obj->pages->sgl;
2340 obj->get_page.last = 0;
2341
2342 return 0;
2343 }
2344
2345 void i915_vma_move_to_active(struct i915_vma *vma,
2346 struct intel_engine_cs *ring)
2347 {
2348 struct drm_i915_gem_object *obj = vma->obj;
2349
2350 /* Add a reference if we're newly entering the active list. */
2351 if (obj->active == 0)
2352 drm_gem_object_reference(&obj->base);
2353 obj->active |= intel_ring_flag(ring);
2354
2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 i915_gem_request_assign(&obj->last_read_req[ring->id],
2357 intel_ring_get_request(ring));
2358
2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 }
2361
2362 static void
2363 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2364 {
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
2369 intel_fb_obj_flush(obj, true);
2370 }
2371
2372 static void
2373 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374 {
2375 struct i915_vma *vma;
2376
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
2389
2390 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2391 if (!list_empty(&vma->mm_list))
2392 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393 }
2394
2395 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396 drm_gem_object_unreference(&obj->base);
2397 }
2398
2399 static int
2400 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401 {
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 struct intel_engine_cs *ring;
2404 int ret, i, j;
2405
2406 /* Carefully retire all requests without writing to the rings */
2407 for_each_ring(ring, dev_priv, i) {
2408 ret = intel_ring_idle(ring);
2409 if (ret)
2410 return ret;
2411 }
2412 i915_gem_retire_requests(dev);
2413
2414 /* Finally reset hw state */
2415 for_each_ring(ring, dev_priv, i) {
2416 intel_ring_init_seqno(ring, seqno);
2417
2418 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2419 ring->semaphore.sync_seqno[j] = 0;
2420 }
2421
2422 return 0;
2423 }
2424
2425 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2426 {
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 int ret;
2429
2430 if (seqno == 0)
2431 return -EINVAL;
2432
2433 /* HWS page needs to be set less than what we
2434 * will inject to ring
2435 */
2436 ret = i915_gem_init_seqno(dev, seqno - 1);
2437 if (ret)
2438 return ret;
2439
2440 /* Carefully set the last_seqno value so that wrap
2441 * detection still works
2442 */
2443 dev_priv->next_seqno = seqno;
2444 dev_priv->last_seqno = seqno - 1;
2445 if (dev_priv->last_seqno == 0)
2446 dev_priv->last_seqno--;
2447
2448 return 0;
2449 }
2450
2451 int
2452 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453 {
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455
2456 /* reserve 0 for non-seqno */
2457 if (dev_priv->next_seqno == 0) {
2458 int ret = i915_gem_init_seqno(dev, 0);
2459 if (ret)
2460 return ret;
2461
2462 dev_priv->next_seqno = 1;
2463 }
2464
2465 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466 return 0;
2467 }
2468
2469 int __i915_add_request(struct intel_engine_cs *ring,
2470 struct drm_file *file,
2471 struct drm_i915_gem_object *obj)
2472 {
2473 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474 struct drm_i915_gem_request *request;
2475 struct intel_ringbuffer *ringbuf;
2476 u32 request_start;
2477 int ret;
2478
2479 request = ring->outstanding_lazy_request;
2480 if (WARN_ON(request == NULL))
2481 return -ENOMEM;
2482
2483 if (i915.enable_execlists) {
2484 ringbuf = request->ctx->engine[ring->id].ringbuf;
2485 } else
2486 ringbuf = ring->buffer;
2487
2488 /*
2489 * To ensure that this call will not fail, space for its emissions
2490 * should already have been reserved in the ring buffer. Let the ring
2491 * know that it is time to use that space up.
2492 */
2493 intel_ring_reserved_space_use(ringbuf);
2494
2495 request_start = intel_ring_get_tail(ringbuf);
2496 /*
2497 * Emit any outstanding flushes - execbuf can fail to emit the flush
2498 * after having emitted the batchbuffer command. Hence we need to fix
2499 * things up similar to emitting the lazy request. The difference here
2500 * is that the flush _must_ happen before the next request, no matter
2501 * what.
2502 */
2503 if (i915.enable_execlists) {
2504 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2505 if (ret)
2506 return ret;
2507 } else {
2508 ret = intel_ring_flush_all_caches(ring);
2509 if (ret)
2510 return ret;
2511 }
2512
2513 /* Record the position of the start of the request so that
2514 * should we detect the updated seqno part-way through the
2515 * GPU processing the request, we never over-estimate the
2516 * position of the head.
2517 */
2518 request->postfix = intel_ring_get_tail(ringbuf);
2519
2520 if (i915.enable_execlists) {
2521 ret = ring->emit_request(ringbuf, request);
2522 if (ret)
2523 return ret;
2524 } else {
2525 ret = ring->add_request(ring);
2526 if (ret)
2527 return ret;
2528
2529 request->tail = intel_ring_get_tail(ringbuf);
2530 }
2531
2532 request->head = request_start;
2533
2534 /* Whilst this request exists, batch_obj will be on the
2535 * active_list, and so will hold the active reference. Only when this
2536 * request is retired will the the batch_obj be moved onto the
2537 * inactive_list and lose its active reference. Hence we do not need
2538 * to explicitly hold another reference here.
2539 */
2540 request->batch_obj = obj;
2541
2542 if (!i915.enable_execlists) {
2543 /* Hold a reference to the current context so that we can inspect
2544 * it later in case a hangcheck error event fires.
2545 */
2546 request->ctx = ring->last_context;
2547 if (request->ctx)
2548 i915_gem_context_reference(request->ctx);
2549 }
2550
2551 request->emitted_jiffies = jiffies;
2552 list_add_tail(&request->list, &ring->request_list);
2553 request->file_priv = NULL;
2554
2555 if (file) {
2556 struct drm_i915_file_private *file_priv = file->driver_priv;
2557
2558 spin_lock(&file_priv->mm.lock);
2559 request->file_priv = file_priv;
2560 list_add_tail(&request->client_list,
2561 &file_priv->mm.request_list);
2562 spin_unlock(&file_priv->mm.lock);
2563
2564 request->pid = get_pid(task_pid(current));
2565 }
2566
2567 trace_i915_gem_request_add(request);
2568 ring->outstanding_lazy_request = NULL;
2569
2570 i915_queue_hangcheck(ring->dev);
2571
2572 queue_delayed_work(dev_priv->wq,
2573 &dev_priv->mm.retire_work,
2574 round_jiffies_up_relative(HZ));
2575 intel_mark_busy(dev_priv->dev);
2576
2577 /* Sanity check that the reserved size was large enough. */
2578 intel_ring_reserved_space_end(ringbuf);
2579
2580 return 0;
2581 }
2582
2583 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2584 const struct intel_context *ctx)
2585 {
2586 unsigned long elapsed;
2587
2588 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2589
2590 if (ctx->hang_stats.banned)
2591 return true;
2592
2593 if (ctx->hang_stats.ban_period_seconds &&
2594 elapsed <= ctx->hang_stats.ban_period_seconds) {
2595 if (!i915_gem_context_is_default(ctx)) {
2596 DRM_DEBUG("context hanging too fast, banning!\n");
2597 return true;
2598 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2599 if (i915_stop_ring_allow_warn(dev_priv))
2600 DRM_ERROR("gpu hanging too fast, banning!\n");
2601 return true;
2602 }
2603 }
2604
2605 return false;
2606 }
2607
2608 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2609 struct intel_context *ctx,
2610 const bool guilty)
2611 {
2612 struct i915_ctx_hang_stats *hs;
2613
2614 if (WARN_ON(!ctx))
2615 return;
2616
2617 hs = &ctx->hang_stats;
2618
2619 if (guilty) {
2620 hs->banned = i915_context_is_banned(dev_priv, ctx);
2621 hs->batch_active++;
2622 hs->guilty_ts = get_seconds();
2623 } else {
2624 hs->batch_pending++;
2625 }
2626 }
2627
2628 void i915_gem_request_free(struct kref *req_ref)
2629 {
2630 struct drm_i915_gem_request *req = container_of(req_ref,
2631 typeof(*req), ref);
2632 struct intel_context *ctx = req->ctx;
2633
2634 if (ctx) {
2635 if (i915.enable_execlists) {
2636 struct intel_engine_cs *ring = req->ring;
2637
2638 if (ctx != ring->default_context)
2639 intel_lr_context_unpin(ring, ctx);
2640 }
2641
2642 i915_gem_context_unreference(ctx);
2643 }
2644
2645 kmem_cache_free(req->i915->requests, req);
2646 }
2647
2648 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2649 struct intel_context *ctx)
2650 {
2651 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2652 struct drm_i915_gem_request *req;
2653 int ret;
2654
2655 if (ring->outstanding_lazy_request)
2656 return 0;
2657
2658 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2659 if (req == NULL)
2660 return -ENOMEM;
2661
2662 kref_init(&req->ref);
2663 req->i915 = dev_priv;
2664
2665 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2666 if (ret)
2667 goto err;
2668
2669 req->ring = ring;
2670
2671 if (i915.enable_execlists)
2672 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2673 else
2674 ret = intel_ring_alloc_request_extras(req);
2675 if (ret)
2676 goto err;
2677
2678 /*
2679 * Reserve space in the ring buffer for all the commands required to
2680 * eventually emit this request. This is to guarantee that the
2681 * i915_add_request() call can't fail. Note that the reserve may need
2682 * to be redone if the request is not actually submitted straight
2683 * away, e.g. because a GPU scheduler has deferred it.
2684 *
2685 * Note further that this call merely notes the reserve request. A
2686 * subsequent call to *_ring_begin() is required to actually ensure
2687 * that the reservation is available. Without the begin, if the
2688 * request creator immediately submitted the request without adding
2689 * any commands to it then there might not actually be sufficient
2690 * room for the submission commands. Unfortunately, the current
2691 * *_ring_begin() implementations potentially call back here to
2692 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
2693 * infinite recursion! Until that back call path is removed, it is
2694 * necessary to do a manual _begin() outside.
2695 */
2696 intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2697
2698 ring->outstanding_lazy_request = req;
2699 return 0;
2700
2701 err:
2702 kmem_cache_free(dev_priv->requests, req);
2703 return ret;
2704 }
2705
2706 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2707 {
2708 intel_ring_reserved_space_cancel(req->ringbuf);
2709
2710 i915_gem_request_unreference(req);
2711 }
2712
2713 struct drm_i915_gem_request *
2714 i915_gem_find_active_request(struct intel_engine_cs *ring)
2715 {
2716 struct drm_i915_gem_request *request;
2717
2718 list_for_each_entry(request, &ring->request_list, list) {
2719 if (i915_gem_request_completed(request, false))
2720 continue;
2721
2722 return request;
2723 }
2724
2725 return NULL;
2726 }
2727
2728 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2729 struct intel_engine_cs *ring)
2730 {
2731 struct drm_i915_gem_request *request;
2732 bool ring_hung;
2733
2734 request = i915_gem_find_active_request(ring);
2735
2736 if (request == NULL)
2737 return;
2738
2739 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2740
2741 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2742
2743 list_for_each_entry_continue(request, &ring->request_list, list)
2744 i915_set_reset_status(dev_priv, request->ctx, false);
2745 }
2746
2747 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2748 struct intel_engine_cs *ring)
2749 {
2750 while (!list_empty(&ring->active_list)) {
2751 struct drm_i915_gem_object *obj;
2752
2753 obj = list_first_entry(&ring->active_list,
2754 struct drm_i915_gem_object,
2755 ring_list[ring->id]);
2756
2757 i915_gem_object_retire__read(obj, ring->id);
2758 }
2759
2760 /*
2761 * Clear the execlists queue up before freeing the requests, as those
2762 * are the ones that keep the context and ringbuffer backing objects
2763 * pinned in place.
2764 */
2765 while (!list_empty(&ring->execlist_queue)) {
2766 struct drm_i915_gem_request *submit_req;
2767
2768 submit_req = list_first_entry(&ring->execlist_queue,
2769 struct drm_i915_gem_request,
2770 execlist_link);
2771 list_del(&submit_req->execlist_link);
2772
2773 if (submit_req->ctx != ring->default_context)
2774 intel_lr_context_unpin(ring, submit_req->ctx);
2775
2776 i915_gem_request_unreference(submit_req);
2777 }
2778
2779 /*
2780 * We must free the requests after all the corresponding objects have
2781 * been moved off active lists. Which is the same order as the normal
2782 * retire_requests function does. This is important if object hold
2783 * implicit references on things like e.g. ppgtt address spaces through
2784 * the request.
2785 */
2786 while (!list_empty(&ring->request_list)) {
2787 struct drm_i915_gem_request *request;
2788
2789 request = list_first_entry(&ring->request_list,
2790 struct drm_i915_gem_request,
2791 list);
2792
2793 i915_gem_request_retire(request);
2794 }
2795
2796 /* This may not have been flushed before the reset, so clean it now */
2797 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2798 }
2799
2800 void i915_gem_restore_fences(struct drm_device *dev)
2801 {
2802 struct drm_i915_private *dev_priv = dev->dev_private;
2803 int i;
2804
2805 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2806 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2807
2808 /*
2809 * Commit delayed tiling changes if we have an object still
2810 * attached to the fence, otherwise just clear the fence.
2811 */
2812 if (reg->obj) {
2813 i915_gem_object_update_fence(reg->obj, reg,
2814 reg->obj->tiling_mode);
2815 } else {
2816 i915_gem_write_fence(dev, i, NULL);
2817 }
2818 }
2819 }
2820
2821 void i915_gem_reset(struct drm_device *dev)
2822 {
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824 struct intel_engine_cs *ring;
2825 int i;
2826
2827 /*
2828 * Before we free the objects from the requests, we need to inspect
2829 * them for finding the guilty party. As the requests only borrow
2830 * their reference to the objects, the inspection must be done first.
2831 */
2832 for_each_ring(ring, dev_priv, i)
2833 i915_gem_reset_ring_status(dev_priv, ring);
2834
2835 for_each_ring(ring, dev_priv, i)
2836 i915_gem_reset_ring_cleanup(dev_priv, ring);
2837
2838 i915_gem_context_reset(dev);
2839
2840 i915_gem_restore_fences(dev);
2841
2842 WARN_ON(i915_verify_lists(dev));
2843 }
2844
2845 /**
2846 * This function clears the request list as sequence numbers are passed.
2847 */
2848 void
2849 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2850 {
2851 WARN_ON(i915_verify_lists(ring->dev));
2852
2853 /* Retire requests first as we use it above for the early return.
2854 * If we retire requests last, we may use a later seqno and so clear
2855 * the requests lists without clearing the active list, leading to
2856 * confusion.
2857 */
2858 while (!list_empty(&ring->request_list)) {
2859 struct drm_i915_gem_request *request;
2860
2861 request = list_first_entry(&ring->request_list,
2862 struct drm_i915_gem_request,
2863 list);
2864
2865 if (!i915_gem_request_completed(request, true))
2866 break;
2867
2868 i915_gem_request_retire(request);
2869 }
2870
2871 /* Move any buffers on the active list that are no longer referenced
2872 * by the ringbuffer to the flushing/inactive lists as appropriate,
2873 * before we free the context associated with the requests.
2874 */
2875 while (!list_empty(&ring->active_list)) {
2876 struct drm_i915_gem_object *obj;
2877
2878 obj = list_first_entry(&ring->active_list,
2879 struct drm_i915_gem_object,
2880 ring_list[ring->id]);
2881
2882 if (!list_empty(&obj->last_read_req[ring->id]->list))
2883 break;
2884
2885 i915_gem_object_retire__read(obj, ring->id);
2886 }
2887
2888 if (unlikely(ring->trace_irq_req &&
2889 i915_gem_request_completed(ring->trace_irq_req, true))) {
2890 ring->irq_put(ring);
2891 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2892 }
2893
2894 WARN_ON(i915_verify_lists(ring->dev));
2895 }
2896
2897 bool
2898 i915_gem_retire_requests(struct drm_device *dev)
2899 {
2900 struct drm_i915_private *dev_priv = dev->dev_private;
2901 struct intel_engine_cs *ring;
2902 bool idle = true;
2903 int i;
2904
2905 for_each_ring(ring, dev_priv, i) {
2906 i915_gem_retire_requests_ring(ring);
2907 idle &= list_empty(&ring->request_list);
2908 if (i915.enable_execlists) {
2909 unsigned long flags;
2910
2911 spin_lock_irqsave(&ring->execlist_lock, flags);
2912 idle &= list_empty(&ring->execlist_queue);
2913 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2914
2915 intel_execlists_retire_requests(ring);
2916 }
2917 }
2918
2919 if (idle)
2920 mod_delayed_work(dev_priv->wq,
2921 &dev_priv->mm.idle_work,
2922 msecs_to_jiffies(100));
2923
2924 return idle;
2925 }
2926
2927 static void
2928 i915_gem_retire_work_handler(struct work_struct *work)
2929 {
2930 struct drm_i915_private *dev_priv =
2931 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2932 struct drm_device *dev = dev_priv->dev;
2933 bool idle;
2934
2935 /* Come back later if the device is busy... */
2936 idle = false;
2937 if (mutex_trylock(&dev->struct_mutex)) {
2938 idle = i915_gem_retire_requests(dev);
2939 mutex_unlock(&dev->struct_mutex);
2940 }
2941 if (!idle)
2942 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2943 round_jiffies_up_relative(HZ));
2944 }
2945
2946 static void
2947 i915_gem_idle_work_handler(struct work_struct *work)
2948 {
2949 struct drm_i915_private *dev_priv =
2950 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2951 struct drm_device *dev = dev_priv->dev;
2952 struct intel_engine_cs *ring;
2953 int i;
2954
2955 for_each_ring(ring, dev_priv, i)
2956 if (!list_empty(&ring->request_list))
2957 return;
2958
2959 intel_mark_idle(dev);
2960
2961 if (mutex_trylock(&dev->struct_mutex)) {
2962 struct intel_engine_cs *ring;
2963 int i;
2964
2965 for_each_ring(ring, dev_priv, i)
2966 i915_gem_batch_pool_fini(&ring->batch_pool);
2967
2968 mutex_unlock(&dev->struct_mutex);
2969 }
2970 }
2971
2972 /**
2973 * Ensures that an object will eventually get non-busy by flushing any required
2974 * write domains, emitting any outstanding lazy request and retiring and
2975 * completed requests.
2976 */
2977 static int
2978 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2979 {
2980 int ret, i;
2981
2982 if (!obj->active)
2983 return 0;
2984
2985 for (i = 0; i < I915_NUM_RINGS; i++) {
2986 struct drm_i915_gem_request *req;
2987
2988 req = obj->last_read_req[i];
2989 if (req == NULL)
2990 continue;
2991
2992 if (list_empty(&req->list))
2993 goto retire;
2994
2995 ret = i915_gem_check_olr(req);
2996 if (ret)
2997 return ret;
2998
2999 if (i915_gem_request_completed(req, true)) {
3000 __i915_gem_request_retire__upto(req);
3001 retire:
3002 i915_gem_object_retire__read(obj, i);
3003 }
3004 }
3005
3006 return 0;
3007 }
3008
3009 /**
3010 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3011 * @DRM_IOCTL_ARGS: standard ioctl arguments
3012 *
3013 * Returns 0 if successful, else an error is returned with the remaining time in
3014 * the timeout parameter.
3015 * -ETIME: object is still busy after timeout
3016 * -ERESTARTSYS: signal interrupted the wait
3017 * -ENONENT: object doesn't exist
3018 * Also possible, but rare:
3019 * -EAGAIN: GPU wedged
3020 * -ENOMEM: damn
3021 * -ENODEV: Internal IRQ fail
3022 * -E?: The add request failed
3023 *
3024 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3025 * non-zero timeout parameter the wait ioctl will wait for the given number of
3026 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3027 * without holding struct_mutex the object may become re-busied before this
3028 * function completes. A similar but shorter * race condition exists in the busy
3029 * ioctl
3030 */
3031 int
3032 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3033 {
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct drm_i915_gem_wait *args = data;
3036 struct drm_i915_gem_object *obj;
3037 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3038 unsigned reset_counter;
3039 int i, n = 0;
3040 int ret;
3041
3042 if (args->flags != 0)
3043 return -EINVAL;
3044
3045 ret = i915_mutex_lock_interruptible(dev);
3046 if (ret)
3047 return ret;
3048
3049 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3050 if (&obj->base == NULL) {
3051 mutex_unlock(&dev->struct_mutex);
3052 return -ENOENT;
3053 }
3054
3055 /* Need to make sure the object gets inactive eventually. */
3056 ret = i915_gem_object_flush_active(obj);
3057 if (ret)
3058 goto out;
3059
3060 if (!obj->active)
3061 goto out;
3062
3063 /* Do this after OLR check to make sure we make forward progress polling
3064 * on this IOCTL with a timeout == 0 (like busy ioctl)
3065 */
3066 if (args->timeout_ns == 0) {
3067 ret = -ETIME;
3068 goto out;
3069 }
3070
3071 drm_gem_object_unreference(&obj->base);
3072 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3073
3074 for (i = 0; i < I915_NUM_RINGS; i++) {
3075 if (obj->last_read_req[i] == NULL)
3076 continue;
3077
3078 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3079 }
3080
3081 mutex_unlock(&dev->struct_mutex);
3082
3083 for (i = 0; i < n; i++) {
3084 if (ret == 0)
3085 ret = __i915_wait_request(req[i], reset_counter, true,
3086 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3087 file->driver_priv);
3088 i915_gem_request_unreference__unlocked(req[i]);
3089 }
3090 return ret;
3091
3092 out:
3093 drm_gem_object_unreference(&obj->base);
3094 mutex_unlock(&dev->struct_mutex);
3095 return ret;
3096 }
3097
3098 static int
3099 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3100 struct intel_engine_cs *to,
3101 struct drm_i915_gem_request *req)
3102 {
3103 struct intel_engine_cs *from;
3104 int ret;
3105
3106 from = i915_gem_request_get_ring(req);
3107 if (to == from)
3108 return 0;
3109
3110 if (i915_gem_request_completed(req, true))
3111 return 0;
3112
3113 ret = i915_gem_check_olr(req);
3114 if (ret)
3115 return ret;
3116
3117 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3118 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3119 ret = __i915_wait_request(req,
3120 atomic_read(&i915->gpu_error.reset_counter),
3121 i915->mm.interruptible,
3122 NULL,
3123 &i915->rps.semaphores);
3124 if (ret)
3125 return ret;
3126
3127 i915_gem_object_retire_request(obj, req);
3128 } else {
3129 int idx = intel_ring_sync_index(from, to);
3130 u32 seqno = i915_gem_request_get_seqno(req);
3131
3132 if (seqno <= from->semaphore.sync_seqno[idx])
3133 return 0;
3134
3135 trace_i915_gem_ring_sync_to(from, to, req);
3136 ret = to->semaphore.sync_to(to, from, seqno);
3137 if (ret)
3138 return ret;
3139
3140 /* We use last_read_req because sync_to()
3141 * might have just caused seqno wrap under
3142 * the radar.
3143 */
3144 from->semaphore.sync_seqno[idx] =
3145 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3146 }
3147
3148 return 0;
3149 }
3150
3151 /**
3152 * i915_gem_object_sync - sync an object to a ring.
3153 *
3154 * @obj: object which may be in use on another ring.
3155 * @to: ring we wish to use the object on. May be NULL.
3156 *
3157 * This code is meant to abstract object synchronization with the GPU.
3158 * Calling with NULL implies synchronizing the object with the CPU
3159 * rather than a particular GPU ring. Conceptually we serialise writes
3160 * between engines inside the GPU. We only allow on engine to write
3161 * into a buffer at any time, but multiple readers. To ensure each has
3162 * a coherent view of memory, we must:
3163 *
3164 * - If there is an outstanding write request to the object, the new
3165 * request must wait for it to complete (either CPU or in hw, requests
3166 * on the same ring will be naturally ordered).
3167 *
3168 * - If we are a write request (pending_write_domain is set), the new
3169 * request must wait for outstanding read requests to complete.
3170 *
3171 * Returns 0 if successful, else propagates up the lower layer error.
3172 */
3173 int
3174 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3175 struct intel_engine_cs *to)
3176 {
3177 const bool readonly = obj->base.pending_write_domain == 0;
3178 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3179 int ret, i, n;
3180
3181 if (!obj->active)
3182 return 0;
3183
3184 if (to == NULL)
3185 return i915_gem_object_wait_rendering(obj, readonly);
3186
3187 n = 0;
3188 if (readonly) {
3189 if (obj->last_write_req)
3190 req[n++] = obj->last_write_req;
3191 } else {
3192 for (i = 0; i < I915_NUM_RINGS; i++)
3193 if (obj->last_read_req[i])
3194 req[n++] = obj->last_read_req[i];
3195 }
3196 for (i = 0; i < n; i++) {
3197 ret = __i915_gem_object_sync(obj, to, req[i]);
3198 if (ret)
3199 return ret;
3200 }
3201
3202 return 0;
3203 }
3204
3205 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3206 {
3207 u32 old_write_domain, old_read_domains;
3208
3209 /* Force a pagefault for domain tracking on next user access */
3210 i915_gem_release_mmap(obj);
3211
3212 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3213 return;
3214
3215 /* Wait for any direct GTT access to complete */
3216 mb();
3217
3218 old_read_domains = obj->base.read_domains;
3219 old_write_domain = obj->base.write_domain;
3220
3221 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3222 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3223
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
3226 old_write_domain);
3227 }
3228
3229 int i915_vma_unbind(struct i915_vma *vma)
3230 {
3231 struct drm_i915_gem_object *obj = vma->obj;
3232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3233 int ret;
3234
3235 if (list_empty(&vma->vma_link))
3236 return 0;
3237
3238 if (!drm_mm_node_allocated(&vma->node)) {
3239 i915_gem_vma_destroy(vma);
3240 return 0;
3241 }
3242
3243 if (vma->pin_count)
3244 return -EBUSY;
3245
3246 BUG_ON(obj->pages == NULL);
3247
3248 ret = i915_gem_object_wait_rendering(obj, false);
3249 if (ret)
3250 return ret;
3251 /* Continue on if we fail due to EIO, the GPU is hung so we
3252 * should be safe and we need to cleanup or else we might
3253 * cause memory corruption through use-after-free.
3254 */
3255
3256 if (i915_is_ggtt(vma->vm) &&
3257 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3258 i915_gem_object_finish_gtt(obj);
3259
3260 /* release the fence reg _after_ flushing */
3261 ret = i915_gem_object_put_fence(obj);
3262 if (ret)
3263 return ret;
3264 }
3265
3266 trace_i915_vma_unbind(vma);
3267
3268 vma->vm->unbind_vma(vma);
3269 vma->bound = 0;
3270
3271 list_del_init(&vma->mm_list);
3272 if (i915_is_ggtt(vma->vm)) {
3273 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3274 obj->map_and_fenceable = false;
3275 } else if (vma->ggtt_view.pages) {
3276 sg_free_table(vma->ggtt_view.pages);
3277 kfree(vma->ggtt_view.pages);
3278 vma->ggtt_view.pages = NULL;
3279 }
3280 }
3281
3282 drm_mm_remove_node(&vma->node);
3283 i915_gem_vma_destroy(vma);
3284
3285 /* Since the unbound list is global, only move to that list if
3286 * no more VMAs exist. */
3287 if (list_empty(&obj->vma_list)) {
3288 i915_gem_gtt_finish_object(obj);
3289 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3290 }
3291
3292 /* And finally now the object is completely decoupled from this vma,
3293 * we can drop its hold on the backing storage and allow it to be
3294 * reaped by the shrinker.
3295 */
3296 i915_gem_object_unpin_pages(obj);
3297
3298 return 0;
3299 }
3300
3301 int i915_gpu_idle(struct drm_device *dev)
3302 {
3303 struct drm_i915_private *dev_priv = dev->dev_private;
3304 struct intel_engine_cs *ring;
3305 int ret, i;
3306
3307 /* Flush everything onto the inactive list. */
3308 for_each_ring(ring, dev_priv, i) {
3309 if (!i915.enable_execlists) {
3310 ret = i915_switch_context(ring, ring->default_context);
3311 if (ret)
3312 return ret;
3313 }
3314
3315 ret = intel_ring_idle(ring);
3316 if (ret)
3317 return ret;
3318 }
3319
3320 WARN_ON(i915_verify_lists(dev));
3321 return 0;
3322 }
3323
3324 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3325 struct drm_i915_gem_object *obj)
3326 {
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 int fence_reg;
3329 int fence_pitch_shift;
3330
3331 if (INTEL_INFO(dev)->gen >= 6) {
3332 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3333 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3334 } else {
3335 fence_reg = FENCE_REG_965_0;
3336 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3337 }
3338
3339 fence_reg += reg * 8;
3340
3341 /* To w/a incoherency with non-atomic 64-bit register updates,
3342 * we split the 64-bit update into two 32-bit writes. In order
3343 * for a partial fence not to be evaluated between writes, we
3344 * precede the update with write to turn off the fence register,
3345 * and only enable the fence as the last step.
3346 *
3347 * For extra levels of paranoia, we make sure each step lands
3348 * before applying the next step.
3349 */
3350 I915_WRITE(fence_reg, 0);
3351 POSTING_READ(fence_reg);
3352
3353 if (obj) {
3354 u32 size = i915_gem_obj_ggtt_size(obj);
3355 uint64_t val;
3356
3357 /* Adjust fence size to match tiled area */
3358 if (obj->tiling_mode != I915_TILING_NONE) {
3359 uint32_t row_size = obj->stride *
3360 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3361 size = (size / row_size) * row_size;
3362 }
3363
3364 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3365 0xfffff000) << 32;
3366 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3367 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3368 if (obj->tiling_mode == I915_TILING_Y)
3369 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3370 val |= I965_FENCE_REG_VALID;
3371
3372 I915_WRITE(fence_reg + 4, val >> 32);
3373 POSTING_READ(fence_reg + 4);
3374
3375 I915_WRITE(fence_reg + 0, val);
3376 POSTING_READ(fence_reg);
3377 } else {
3378 I915_WRITE(fence_reg + 4, 0);
3379 POSTING_READ(fence_reg + 4);
3380 }
3381 }
3382
3383 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3384 struct drm_i915_gem_object *obj)
3385 {
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 u32 val;
3388
3389 if (obj) {
3390 u32 size = i915_gem_obj_ggtt_size(obj);
3391 int pitch_val;
3392 int tile_width;
3393
3394 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3395 (size & -size) != size ||
3396 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3397 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3398 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3399
3400 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3401 tile_width = 128;
3402 else
3403 tile_width = 512;
3404
3405 /* Note: pitch better be a power of two tile widths */
3406 pitch_val = obj->stride / tile_width;
3407 pitch_val = ffs(pitch_val) - 1;
3408
3409 val = i915_gem_obj_ggtt_offset(obj);
3410 if (obj->tiling_mode == I915_TILING_Y)
3411 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3412 val |= I915_FENCE_SIZE_BITS(size);
3413 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3414 val |= I830_FENCE_REG_VALID;
3415 } else
3416 val = 0;
3417
3418 if (reg < 8)
3419 reg = FENCE_REG_830_0 + reg * 4;
3420 else
3421 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3422
3423 I915_WRITE(reg, val);
3424 POSTING_READ(reg);
3425 }
3426
3427 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3428 struct drm_i915_gem_object *obj)
3429 {
3430 struct drm_i915_private *dev_priv = dev->dev_private;
3431 uint32_t val;
3432
3433 if (obj) {
3434 u32 size = i915_gem_obj_ggtt_size(obj);
3435 uint32_t pitch_val;
3436
3437 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3438 (size & -size) != size ||
3439 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3440 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3441 i915_gem_obj_ggtt_offset(obj), size);
3442
3443 pitch_val = obj->stride / 128;
3444 pitch_val = ffs(pitch_val) - 1;
3445
3446 val = i915_gem_obj_ggtt_offset(obj);
3447 if (obj->tiling_mode == I915_TILING_Y)
3448 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3449 val |= I830_FENCE_SIZE_BITS(size);
3450 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3451 val |= I830_FENCE_REG_VALID;
3452 } else
3453 val = 0;
3454
3455 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3456 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3457 }
3458
3459 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3460 {
3461 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3462 }
3463
3464 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3465 struct drm_i915_gem_object *obj)
3466 {
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468
3469 /* Ensure that all CPU reads are completed before installing a fence
3470 * and all writes before removing the fence.
3471 */
3472 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3473 mb();
3474
3475 WARN(obj && (!obj->stride || !obj->tiling_mode),
3476 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3477 obj->stride, obj->tiling_mode);
3478
3479 if (IS_GEN2(dev))
3480 i830_write_fence_reg(dev, reg, obj);
3481 else if (IS_GEN3(dev))
3482 i915_write_fence_reg(dev, reg, obj);
3483 else if (INTEL_INFO(dev)->gen >= 4)
3484 i965_write_fence_reg(dev, reg, obj);
3485
3486 /* And similarly be paranoid that no direct access to this region
3487 * is reordered to before the fence is installed.
3488 */
3489 if (i915_gem_object_needs_mb(obj))
3490 mb();
3491 }
3492
3493 static inline int fence_number(struct drm_i915_private *dev_priv,
3494 struct drm_i915_fence_reg *fence)
3495 {
3496 return fence - dev_priv->fence_regs;
3497 }
3498
3499 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3500 struct drm_i915_fence_reg *fence,
3501 bool enable)
3502 {
3503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3504 int reg = fence_number(dev_priv, fence);
3505
3506 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3507
3508 if (enable) {
3509 obj->fence_reg = reg;
3510 fence->obj = obj;
3511 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3512 } else {
3513 obj->fence_reg = I915_FENCE_REG_NONE;
3514 fence->obj = NULL;
3515 list_del_init(&fence->lru_list);
3516 }
3517 obj->fence_dirty = false;
3518 }
3519
3520 static int
3521 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3522 {
3523 if (obj->last_fenced_req) {
3524 int ret = i915_wait_request(obj->last_fenced_req);
3525 if (ret)
3526 return ret;
3527
3528 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3529 }
3530
3531 return 0;
3532 }
3533
3534 int
3535 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3536 {
3537 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3538 struct drm_i915_fence_reg *fence;
3539 int ret;
3540
3541 ret = i915_gem_object_wait_fence(obj);
3542 if (ret)
3543 return ret;
3544
3545 if (obj->fence_reg == I915_FENCE_REG_NONE)
3546 return 0;
3547
3548 fence = &dev_priv->fence_regs[obj->fence_reg];
3549
3550 if (WARN_ON(fence->pin_count))
3551 return -EBUSY;
3552
3553 i915_gem_object_fence_lost(obj);
3554 i915_gem_object_update_fence(obj, fence, false);
3555
3556 return 0;
3557 }
3558
3559 static struct drm_i915_fence_reg *
3560 i915_find_fence_reg(struct drm_device *dev)
3561 {
3562 struct drm_i915_private *dev_priv = dev->dev_private;
3563 struct drm_i915_fence_reg *reg, *avail;
3564 int i;
3565
3566 /* First try to find a free reg */
3567 avail = NULL;
3568 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3569 reg = &dev_priv->fence_regs[i];
3570 if (!reg->obj)
3571 return reg;
3572
3573 if (!reg->pin_count)
3574 avail = reg;
3575 }
3576
3577 if (avail == NULL)
3578 goto deadlock;
3579
3580 /* None available, try to steal one or wait for a user to finish */
3581 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3582 if (reg->pin_count)
3583 continue;
3584
3585 return reg;
3586 }
3587
3588 deadlock:
3589 /* Wait for completion of pending flips which consume fences */
3590 if (intel_has_pending_fb_unpin(dev))
3591 return ERR_PTR(-EAGAIN);
3592
3593 return ERR_PTR(-EDEADLK);
3594 }
3595
3596 /**
3597 * i915_gem_object_get_fence - set up fencing for an object
3598 * @obj: object to map through a fence reg
3599 *
3600 * When mapping objects through the GTT, userspace wants to be able to write
3601 * to them without having to worry about swizzling if the object is tiled.
3602 * This function walks the fence regs looking for a free one for @obj,
3603 * stealing one if it can't find any.
3604 *
3605 * It then sets up the reg based on the object's properties: address, pitch
3606 * and tiling format.
3607 *
3608 * For an untiled surface, this removes any existing fence.
3609 */
3610 int
3611 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3612 {
3613 struct drm_device *dev = obj->base.dev;
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615 bool enable = obj->tiling_mode != I915_TILING_NONE;
3616 struct drm_i915_fence_reg *reg;
3617 int ret;
3618
3619 /* Have we updated the tiling parameters upon the object and so
3620 * will need to serialise the write to the associated fence register?
3621 */
3622 if (obj->fence_dirty) {
3623 ret = i915_gem_object_wait_fence(obj);
3624 if (ret)
3625 return ret;
3626 }
3627
3628 /* Just update our place in the LRU if our fence is getting reused. */
3629 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3630 reg = &dev_priv->fence_regs[obj->fence_reg];
3631 if (!obj->fence_dirty) {
3632 list_move_tail(&reg->lru_list,
3633 &dev_priv->mm.fence_list);
3634 return 0;
3635 }
3636 } else if (enable) {
3637 if (WARN_ON(!obj->map_and_fenceable))
3638 return -EINVAL;
3639
3640 reg = i915_find_fence_reg(dev);
3641 if (IS_ERR(reg))
3642 return PTR_ERR(reg);
3643
3644 if (reg->obj) {
3645 struct drm_i915_gem_object *old = reg->obj;
3646
3647 ret = i915_gem_object_wait_fence(old);
3648 if (ret)
3649 return ret;
3650
3651 i915_gem_object_fence_lost(old);
3652 }
3653 } else
3654 return 0;
3655
3656 i915_gem_object_update_fence(obj, reg, enable);
3657
3658 return 0;
3659 }
3660
3661 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3662 unsigned long cache_level)
3663 {
3664 struct drm_mm_node *gtt_space = &vma->node;
3665 struct drm_mm_node *other;
3666
3667 /*
3668 * On some machines we have to be careful when putting differing types
3669 * of snoopable memory together to avoid the prefetcher crossing memory
3670 * domains and dying. During vm initialisation, we decide whether or not
3671 * these constraints apply and set the drm_mm.color_adjust
3672 * appropriately.
3673 */
3674 if (vma->vm->mm.color_adjust == NULL)
3675 return true;
3676
3677 if (!drm_mm_node_allocated(gtt_space))
3678 return true;
3679
3680 if (list_empty(&gtt_space->node_list))
3681 return true;
3682
3683 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3684 if (other->allocated && !other->hole_follows && other->color != cache_level)
3685 return false;
3686
3687 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3688 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3689 return false;
3690
3691 return true;
3692 }
3693
3694 /**
3695 * Finds free space in the GTT aperture and binds the object or a view of it
3696 * there.
3697 */
3698 static struct i915_vma *
3699 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3700 struct i915_address_space *vm,
3701 const struct i915_ggtt_view *ggtt_view,
3702 unsigned alignment,
3703 uint64_t flags)
3704 {
3705 struct drm_device *dev = obj->base.dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
3707 u32 size, fence_size, fence_alignment, unfenced_alignment;
3708 unsigned long start =
3709 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3710 unsigned long end =
3711 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3712 struct i915_vma *vma;
3713 int ret;
3714
3715 if (i915_is_ggtt(vm)) {
3716 u32 view_size;
3717
3718 if (WARN_ON(!ggtt_view))
3719 return ERR_PTR(-EINVAL);
3720
3721 view_size = i915_ggtt_view_size(obj, ggtt_view);
3722
3723 fence_size = i915_gem_get_gtt_size(dev,
3724 view_size,
3725 obj->tiling_mode);
3726 fence_alignment = i915_gem_get_gtt_alignment(dev,
3727 view_size,
3728 obj->tiling_mode,
3729 true);
3730 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3731 view_size,
3732 obj->tiling_mode,
3733 false);
3734 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3735 } else {
3736 fence_size = i915_gem_get_gtt_size(dev,
3737 obj->base.size,
3738 obj->tiling_mode);
3739 fence_alignment = i915_gem_get_gtt_alignment(dev,
3740 obj->base.size,
3741 obj->tiling_mode,
3742 true);
3743 unfenced_alignment =
3744 i915_gem_get_gtt_alignment(dev,
3745 obj->base.size,
3746 obj->tiling_mode,
3747 false);
3748 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3749 }
3750
3751 if (alignment == 0)
3752 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3753 unfenced_alignment;
3754 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3755 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3756 ggtt_view ? ggtt_view->type : 0,
3757 alignment);
3758 return ERR_PTR(-EINVAL);
3759 }
3760
3761 /* If binding the object/GGTT view requires more space than the entire
3762 * aperture has, reject it early before evicting everything in a vain
3763 * attempt to find space.
3764 */
3765 if (size > end) {
3766 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3767 ggtt_view ? ggtt_view->type : 0,
3768 size,
3769 flags & PIN_MAPPABLE ? "mappable" : "total",
3770 end);
3771 return ERR_PTR(-E2BIG);
3772 }
3773
3774 ret = i915_gem_object_get_pages(obj);
3775 if (ret)
3776 return ERR_PTR(ret);
3777
3778 i915_gem_object_pin_pages(obj);
3779
3780 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3781 i915_gem_obj_lookup_or_create_vma(obj, vm);
3782
3783 if (IS_ERR(vma))
3784 goto err_unpin;
3785
3786 search_free:
3787 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3788 size, alignment,
3789 obj->cache_level,
3790 start, end,
3791 DRM_MM_SEARCH_DEFAULT,
3792 DRM_MM_CREATE_DEFAULT);
3793 if (ret) {
3794 ret = i915_gem_evict_something(dev, vm, size, alignment,
3795 obj->cache_level,
3796 start, end,
3797 flags);
3798 if (ret == 0)
3799 goto search_free;
3800
3801 goto err_free_vma;
3802 }
3803 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3804 ret = -EINVAL;
3805 goto err_remove_node;
3806 }
3807
3808 ret = i915_gem_gtt_prepare_object(obj);
3809 if (ret)
3810 goto err_remove_node;
3811
3812 trace_i915_vma_bind(vma, flags);
3813 ret = i915_vma_bind(vma, obj->cache_level, flags);
3814 if (ret)
3815 goto err_finish_gtt;
3816
3817 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3818 list_add_tail(&vma->mm_list, &vm->inactive_list);
3819
3820 return vma;
3821
3822 err_finish_gtt:
3823 i915_gem_gtt_finish_object(obj);
3824 err_remove_node:
3825 drm_mm_remove_node(&vma->node);
3826 err_free_vma:
3827 i915_gem_vma_destroy(vma);
3828 vma = ERR_PTR(ret);
3829 err_unpin:
3830 i915_gem_object_unpin_pages(obj);
3831 return vma;
3832 }
3833
3834 bool
3835 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3836 bool force)
3837 {
3838 /* If we don't have a page list set up, then we're not pinned
3839 * to GPU, and we can ignore the cache flush because it'll happen
3840 * again at bind time.
3841 */
3842 if (obj->pages == NULL)
3843 return false;
3844
3845 /*
3846 * Stolen memory is always coherent with the GPU as it is explicitly
3847 * marked as wc by the system, or the system is cache-coherent.
3848 */
3849 if (obj->stolen || obj->phys_handle)
3850 return false;
3851
3852 /* If the GPU is snooping the contents of the CPU cache,
3853 * we do not need to manually clear the CPU cache lines. However,
3854 * the caches are only snooped when the render cache is
3855 * flushed/invalidated. As we always have to emit invalidations
3856 * and flushes when moving into and out of the RENDER domain, correct
3857 * snooping behaviour occurs naturally as the result of our domain
3858 * tracking.
3859 */
3860 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3861 obj->cache_dirty = true;
3862 return false;
3863 }
3864
3865 trace_i915_gem_object_clflush(obj);
3866 drm_clflush_sg(obj->pages);
3867 obj->cache_dirty = false;
3868
3869 return true;
3870 }
3871
3872 /** Flushes the GTT write domain for the object if it's dirty. */
3873 static void
3874 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3875 {
3876 uint32_t old_write_domain;
3877
3878 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3879 return;
3880
3881 /* No actual flushing is required for the GTT write domain. Writes
3882 * to it immediately go to main memory as far as we know, so there's
3883 * no chipset flush. It also doesn't land in render cache.
3884 *
3885 * However, we do have to enforce the order so that all writes through
3886 * the GTT land before any writes to the device, such as updates to
3887 * the GATT itself.
3888 */
3889 wmb();
3890
3891 old_write_domain = obj->base.write_domain;
3892 obj->base.write_domain = 0;
3893
3894 intel_fb_obj_flush(obj, false);
3895
3896 trace_i915_gem_object_change_domain(obj,
3897 obj->base.read_domains,
3898 old_write_domain);
3899 }
3900
3901 /** Flushes the CPU write domain for the object if it's dirty. */
3902 static void
3903 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3904 {
3905 uint32_t old_write_domain;
3906
3907 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3908 return;
3909
3910 if (i915_gem_clflush_object(obj, obj->pin_display))
3911 i915_gem_chipset_flush(obj->base.dev);
3912
3913 old_write_domain = obj->base.write_domain;
3914 obj->base.write_domain = 0;
3915
3916 intel_fb_obj_flush(obj, false);
3917
3918 trace_i915_gem_object_change_domain(obj,
3919 obj->base.read_domains,
3920 old_write_domain);
3921 }
3922
3923 /**
3924 * Moves a single object to the GTT read, and possibly write domain.
3925 *
3926 * This function returns when the move is complete, including waiting on
3927 * flushes to occur.
3928 */
3929 int
3930 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3931 {
3932 uint32_t old_write_domain, old_read_domains;
3933 struct i915_vma *vma;
3934 int ret;
3935
3936 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3937 return 0;
3938
3939 ret = i915_gem_object_wait_rendering(obj, !write);
3940 if (ret)
3941 return ret;
3942
3943 /* Flush and acquire obj->pages so that we are coherent through
3944 * direct access in memory with previous cached writes through
3945 * shmemfs and that our cache domain tracking remains valid.
3946 * For example, if the obj->filp was moved to swap without us
3947 * being notified and releasing the pages, we would mistakenly
3948 * continue to assume that the obj remained out of the CPU cached
3949 * domain.
3950 */
3951 ret = i915_gem_object_get_pages(obj);
3952 if (ret)
3953 return ret;
3954
3955 i915_gem_object_flush_cpu_write_domain(obj);
3956
3957 /* Serialise direct access to this object with the barriers for
3958 * coherent writes from the GPU, by effectively invalidating the
3959 * GTT domain upon first access.
3960 */
3961 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3962 mb();
3963
3964 old_write_domain = obj->base.write_domain;
3965 old_read_domains = obj->base.read_domains;
3966
3967 /* It should now be out of any other write domains, and we can update
3968 * the domain values for our changes.
3969 */
3970 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3971 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3972 if (write) {
3973 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3974 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3975 obj->dirty = 1;
3976 }
3977
3978 if (write)
3979 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3980
3981 trace_i915_gem_object_change_domain(obj,
3982 old_read_domains,
3983 old_write_domain);
3984
3985 /* And bump the LRU for this access */
3986 vma = i915_gem_obj_to_ggtt(obj);
3987 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3988 list_move_tail(&vma->mm_list,
3989 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3990
3991 return 0;
3992 }
3993
3994 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3995 enum i915_cache_level cache_level)
3996 {
3997 struct drm_device *dev = obj->base.dev;
3998 struct i915_vma *vma, *next;
3999 int ret;
4000
4001 if (obj->cache_level == cache_level)
4002 return 0;
4003
4004 if (i915_gem_obj_is_pinned(obj)) {
4005 DRM_DEBUG("can not change the cache level of pinned objects\n");
4006 return -EBUSY;
4007 }
4008
4009 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4010 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4011 ret = i915_vma_unbind(vma);
4012 if (ret)
4013 return ret;
4014 }
4015 }
4016
4017 if (i915_gem_obj_bound_any(obj)) {
4018 ret = i915_gem_object_wait_rendering(obj, false);
4019 if (ret)
4020 return ret;
4021
4022 i915_gem_object_finish_gtt(obj);
4023
4024 /* Before SandyBridge, you could not use tiling or fence
4025 * registers with snooped memory, so relinquish any fences
4026 * currently pointing to our region in the aperture.
4027 */
4028 if (INTEL_INFO(dev)->gen < 6) {
4029 ret = i915_gem_object_put_fence(obj);
4030 if (ret)
4031 return ret;
4032 }
4033
4034 list_for_each_entry(vma, &obj->vma_list, vma_link)
4035 if (drm_mm_node_allocated(&vma->node)) {
4036 ret = i915_vma_bind(vma, cache_level,
4037 PIN_UPDATE);
4038 if (ret)
4039 return ret;
4040 }
4041 }
4042
4043 list_for_each_entry(vma, &obj->vma_list, vma_link)
4044 vma->node.color = cache_level;
4045 obj->cache_level = cache_level;
4046
4047 if (obj->cache_dirty &&
4048 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4049 cpu_write_needs_clflush(obj)) {
4050 if (i915_gem_clflush_object(obj, true))
4051 i915_gem_chipset_flush(obj->base.dev);
4052 }
4053
4054 return 0;
4055 }
4056
4057 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4058 struct drm_file *file)
4059 {
4060 struct drm_i915_gem_caching *args = data;
4061 struct drm_i915_gem_object *obj;
4062
4063 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4064 if (&obj->base == NULL)
4065 return -ENOENT;
4066
4067 switch (obj->cache_level) {
4068 case I915_CACHE_LLC:
4069 case I915_CACHE_L3_LLC:
4070 args->caching = I915_CACHING_CACHED;
4071 break;
4072
4073 case I915_CACHE_WT:
4074 args->caching = I915_CACHING_DISPLAY;
4075 break;
4076
4077 default:
4078 args->caching = I915_CACHING_NONE;
4079 break;
4080 }
4081
4082 drm_gem_object_unreference_unlocked(&obj->base);
4083 return 0;
4084 }
4085
4086 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4087 struct drm_file *file)
4088 {
4089 struct drm_i915_gem_caching *args = data;
4090 struct drm_i915_gem_object *obj;
4091 enum i915_cache_level level;
4092 int ret;
4093
4094 switch (args->caching) {
4095 case I915_CACHING_NONE:
4096 level = I915_CACHE_NONE;
4097 break;
4098 case I915_CACHING_CACHED:
4099 level = I915_CACHE_LLC;
4100 break;
4101 case I915_CACHING_DISPLAY:
4102 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4103 break;
4104 default:
4105 return -EINVAL;
4106 }
4107
4108 ret = i915_mutex_lock_interruptible(dev);
4109 if (ret)
4110 return ret;
4111
4112 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4113 if (&obj->base == NULL) {
4114 ret = -ENOENT;
4115 goto unlock;
4116 }
4117
4118 ret = i915_gem_object_set_cache_level(obj, level);
4119
4120 drm_gem_object_unreference(&obj->base);
4121 unlock:
4122 mutex_unlock(&dev->struct_mutex);
4123 return ret;
4124 }
4125
4126 /*
4127 * Prepare buffer for display plane (scanout, cursors, etc).
4128 * Can be called from an uninterruptible phase (modesetting) and allows
4129 * any flushes to be pipelined (for pageflips).
4130 */
4131 int
4132 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4133 u32 alignment,
4134 struct intel_engine_cs *pipelined,
4135 const struct i915_ggtt_view *view)
4136 {
4137 u32 old_read_domains, old_write_domain;
4138 int ret;
4139
4140 ret = i915_gem_object_sync(obj, pipelined);
4141 if (ret)
4142 return ret;
4143
4144 /* Mark the pin_display early so that we account for the
4145 * display coherency whilst setting up the cache domains.
4146 */
4147 obj->pin_display++;
4148
4149 /* The display engine is not coherent with the LLC cache on gen6. As
4150 * a result, we make sure that the pinning that is about to occur is
4151 * done with uncached PTEs. This is lowest common denominator for all
4152 * chipsets.
4153 *
4154 * However for gen6+, we could do better by using the GFDT bit instead
4155 * of uncaching, which would allow us to flush all the LLC-cached data
4156 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4157 */
4158 ret = i915_gem_object_set_cache_level(obj,
4159 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4160 if (ret)
4161 goto err_unpin_display;
4162
4163 /* As the user may map the buffer once pinned in the display plane
4164 * (e.g. libkms for the bootup splash), we have to ensure that we
4165 * always use map_and_fenceable for all scanout buffers.
4166 */
4167 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4168 view->type == I915_GGTT_VIEW_NORMAL ?
4169 PIN_MAPPABLE : 0);
4170 if (ret)
4171 goto err_unpin_display;
4172
4173 i915_gem_object_flush_cpu_write_domain(obj);
4174
4175 old_write_domain = obj->base.write_domain;
4176 old_read_domains = obj->base.read_domains;
4177
4178 /* It should now be out of any other write domains, and we can update
4179 * the domain values for our changes.
4180 */
4181 obj->base.write_domain = 0;
4182 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4183
4184 trace_i915_gem_object_change_domain(obj,
4185 old_read_domains,
4186 old_write_domain);
4187
4188 return 0;
4189
4190 err_unpin_display:
4191 obj->pin_display--;
4192 return ret;
4193 }
4194
4195 void
4196 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4197 const struct i915_ggtt_view *view)
4198 {
4199 if (WARN_ON(obj->pin_display == 0))
4200 return;
4201
4202 i915_gem_object_ggtt_unpin_view(obj, view);
4203
4204 obj->pin_display--;
4205 }
4206
4207 /**
4208 * Moves a single object to the CPU read, and possibly write domain.
4209 *
4210 * This function returns when the move is complete, including waiting on
4211 * flushes to occur.
4212 */
4213 int
4214 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4215 {
4216 uint32_t old_write_domain, old_read_domains;
4217 int ret;
4218
4219 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4220 return 0;
4221
4222 ret = i915_gem_object_wait_rendering(obj, !write);
4223 if (ret)
4224 return ret;
4225
4226 i915_gem_object_flush_gtt_write_domain(obj);
4227
4228 old_write_domain = obj->base.write_domain;
4229 old_read_domains = obj->base.read_domains;
4230
4231 /* Flush the CPU cache if it's still invalid. */
4232 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4233 i915_gem_clflush_object(obj, false);
4234
4235 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4236 }
4237
4238 /* It should now be out of any other write domains, and we can update
4239 * the domain values for our changes.
4240 */
4241 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4242
4243 /* If we're writing through the CPU, then the GPU read domains will
4244 * need to be invalidated at next use.
4245 */
4246 if (write) {
4247 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4248 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4249 }
4250
4251 if (write)
4252 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4253
4254 trace_i915_gem_object_change_domain(obj,
4255 old_read_domains,
4256 old_write_domain);
4257
4258 return 0;
4259 }
4260
4261 /* Throttle our rendering by waiting until the ring has completed our requests
4262 * emitted over 20 msec ago.
4263 *
4264 * Note that if we were to use the current jiffies each time around the loop,
4265 * we wouldn't escape the function with any frames outstanding if the time to
4266 * render a frame was over 20ms.
4267 *
4268 * This should get us reasonable parallelism between CPU and GPU but also
4269 * relatively low latency when blocking on a particular request to finish.
4270 */
4271 static int
4272 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4273 {
4274 struct drm_i915_private *dev_priv = dev->dev_private;
4275 struct drm_i915_file_private *file_priv = file->driver_priv;
4276 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4277 struct drm_i915_gem_request *request, *target = NULL;
4278 unsigned reset_counter;
4279 int ret;
4280
4281 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4282 if (ret)
4283 return ret;
4284
4285 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4286 if (ret)
4287 return ret;
4288
4289 spin_lock(&file_priv->mm.lock);
4290 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4291 if (time_after_eq(request->emitted_jiffies, recent_enough))
4292 break;
4293
4294 target = request;
4295 }
4296 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4297 if (target)
4298 i915_gem_request_reference(target);
4299 spin_unlock(&file_priv->mm.lock);
4300
4301 if (target == NULL)
4302 return 0;
4303
4304 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4305 if (ret == 0)
4306 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4307
4308 i915_gem_request_unreference__unlocked(target);
4309
4310 return ret;
4311 }
4312
4313 static bool
4314 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4315 {
4316 struct drm_i915_gem_object *obj = vma->obj;
4317
4318 if (alignment &&
4319 vma->node.start & (alignment - 1))
4320 return true;
4321
4322 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4323 return true;
4324
4325 if (flags & PIN_OFFSET_BIAS &&
4326 vma->node.start < (flags & PIN_OFFSET_MASK))
4327 return true;
4328
4329 return false;
4330 }
4331
4332 static int
4333 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4334 struct i915_address_space *vm,
4335 const struct i915_ggtt_view *ggtt_view,
4336 uint32_t alignment,
4337 uint64_t flags)
4338 {
4339 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4340 struct i915_vma *vma;
4341 unsigned bound;
4342 int ret;
4343
4344 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4345 return -ENODEV;
4346
4347 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4348 return -EINVAL;
4349
4350 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4351 return -EINVAL;
4352
4353 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4354 return -EINVAL;
4355
4356 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4357 i915_gem_obj_to_vma(obj, vm);
4358
4359 if (IS_ERR(vma))
4360 return PTR_ERR(vma);
4361
4362 if (vma) {
4363 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4364 return -EBUSY;
4365
4366 if (i915_vma_misplaced(vma, alignment, flags)) {
4367 unsigned long offset;
4368 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4369 i915_gem_obj_offset(obj, vm);
4370 WARN(vma->pin_count,
4371 "bo is already pinned in %s with incorrect alignment:"
4372 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4373 " obj->map_and_fenceable=%d\n",
4374 ggtt_view ? "ggtt" : "ppgtt",
4375 offset,
4376 alignment,
4377 !!(flags & PIN_MAPPABLE),
4378 obj->map_and_fenceable);
4379 ret = i915_vma_unbind(vma);
4380 if (ret)
4381 return ret;
4382
4383 vma = NULL;
4384 }
4385 }
4386
4387 bound = vma ? vma->bound : 0;
4388 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4389 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4390 flags);
4391 if (IS_ERR(vma))
4392 return PTR_ERR(vma);
4393 } else {
4394 ret = i915_vma_bind(vma, obj->cache_level, flags);
4395 if (ret)
4396 return ret;
4397 }
4398
4399 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4400 (bound ^ vma->bound) & GLOBAL_BIND) {
4401 bool mappable, fenceable;
4402 u32 fence_size, fence_alignment;
4403
4404 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4405 obj->base.size,
4406 obj->tiling_mode);
4407 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4408 obj->base.size,
4409 obj->tiling_mode,
4410 true);
4411
4412 fenceable = (vma->node.size == fence_size &&
4413 (vma->node.start & (fence_alignment - 1)) == 0);
4414
4415 mappable = (vma->node.start + fence_size <=
4416 dev_priv->gtt.mappable_end);
4417
4418 obj->map_and_fenceable = mappable && fenceable;
4419
4420 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4421 }
4422
4423 vma->pin_count++;
4424 return 0;
4425 }
4426
4427 int
4428 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4429 struct i915_address_space *vm,
4430 uint32_t alignment,
4431 uint64_t flags)
4432 {
4433 return i915_gem_object_do_pin(obj, vm,
4434 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4435 alignment, flags);
4436 }
4437
4438 int
4439 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4440 const struct i915_ggtt_view *view,
4441 uint32_t alignment,
4442 uint64_t flags)
4443 {
4444 if (WARN_ONCE(!view, "no view specified"))
4445 return -EINVAL;
4446
4447 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4448 alignment, flags | PIN_GLOBAL);
4449 }
4450
4451 void
4452 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4453 const struct i915_ggtt_view *view)
4454 {
4455 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4456
4457 BUG_ON(!vma);
4458 WARN_ON(vma->pin_count == 0);
4459 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4460
4461 --vma->pin_count;
4462 }
4463
4464 bool
4465 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4466 {
4467 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4468 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4469 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4470
4471 WARN_ON(!ggtt_vma ||
4472 dev_priv->fence_regs[obj->fence_reg].pin_count >
4473 ggtt_vma->pin_count);
4474 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4475 return true;
4476 } else
4477 return false;
4478 }
4479
4480 void
4481 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4482 {
4483 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4484 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4485 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4486 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4487 }
4488 }
4489
4490 int
4491 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4492 struct drm_file *file)
4493 {
4494 struct drm_i915_gem_busy *args = data;
4495 struct drm_i915_gem_object *obj;
4496 int ret;
4497
4498 ret = i915_mutex_lock_interruptible(dev);
4499 if (ret)
4500 return ret;
4501
4502 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4503 if (&obj->base == NULL) {
4504 ret = -ENOENT;
4505 goto unlock;
4506 }
4507
4508 /* Count all active objects as busy, even if they are currently not used
4509 * by the gpu. Users of this interface expect objects to eventually
4510 * become non-busy without any further actions, therefore emit any
4511 * necessary flushes here.
4512 */
4513 ret = i915_gem_object_flush_active(obj);
4514 if (ret)
4515 goto unref;
4516
4517 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4518 args->busy = obj->active << 16;
4519 if (obj->last_write_req)
4520 args->busy |= obj->last_write_req->ring->id;
4521
4522 unref:
4523 drm_gem_object_unreference(&obj->base);
4524 unlock:
4525 mutex_unlock(&dev->struct_mutex);
4526 return ret;
4527 }
4528
4529 int
4530 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4531 struct drm_file *file_priv)
4532 {
4533 return i915_gem_ring_throttle(dev, file_priv);
4534 }
4535
4536 int
4537 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4538 struct drm_file *file_priv)
4539 {
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 struct drm_i915_gem_madvise *args = data;
4542 struct drm_i915_gem_object *obj;
4543 int ret;
4544
4545 switch (args->madv) {
4546 case I915_MADV_DONTNEED:
4547 case I915_MADV_WILLNEED:
4548 break;
4549 default:
4550 return -EINVAL;
4551 }
4552
4553 ret = i915_mutex_lock_interruptible(dev);
4554 if (ret)
4555 return ret;
4556
4557 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4558 if (&obj->base == NULL) {
4559 ret = -ENOENT;
4560 goto unlock;
4561 }
4562
4563 if (i915_gem_obj_is_pinned(obj)) {
4564 ret = -EINVAL;
4565 goto out;
4566 }
4567
4568 if (obj->pages &&
4569 obj->tiling_mode != I915_TILING_NONE &&
4570 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4571 if (obj->madv == I915_MADV_WILLNEED)
4572 i915_gem_object_unpin_pages(obj);
4573 if (args->madv == I915_MADV_WILLNEED)
4574 i915_gem_object_pin_pages(obj);
4575 }
4576
4577 if (obj->madv != __I915_MADV_PURGED)
4578 obj->madv = args->madv;
4579
4580 /* if the object is no longer attached, discard its backing storage */
4581 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4582 i915_gem_object_truncate(obj);
4583
4584 args->retained = obj->madv != __I915_MADV_PURGED;
4585
4586 out:
4587 drm_gem_object_unreference(&obj->base);
4588 unlock:
4589 mutex_unlock(&dev->struct_mutex);
4590 return ret;
4591 }
4592
4593 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4594 const struct drm_i915_gem_object_ops *ops)
4595 {
4596 int i;
4597
4598 INIT_LIST_HEAD(&obj->global_list);
4599 for (i = 0; i < I915_NUM_RINGS; i++)
4600 INIT_LIST_HEAD(&obj->ring_list[i]);
4601 INIT_LIST_HEAD(&obj->obj_exec_link);
4602 INIT_LIST_HEAD(&obj->vma_list);
4603 INIT_LIST_HEAD(&obj->batch_pool_link);
4604
4605 obj->ops = ops;
4606
4607 obj->fence_reg = I915_FENCE_REG_NONE;
4608 obj->madv = I915_MADV_WILLNEED;
4609
4610 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4611 }
4612
4613 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4614 .get_pages = i915_gem_object_get_pages_gtt,
4615 .put_pages = i915_gem_object_put_pages_gtt,
4616 };
4617
4618 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4619 size_t size)
4620 {
4621 struct drm_i915_gem_object *obj;
4622 struct address_space *mapping;
4623 gfp_t mask;
4624
4625 obj = i915_gem_object_alloc(dev);
4626 if (obj == NULL)
4627 return NULL;
4628
4629 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4630 i915_gem_object_free(obj);
4631 return NULL;
4632 }
4633
4634 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4635 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4636 /* 965gm cannot relocate objects above 4GiB. */
4637 mask &= ~__GFP_HIGHMEM;
4638 mask |= __GFP_DMA32;
4639 }
4640
4641 mapping = file_inode(obj->base.filp)->i_mapping;
4642 mapping_set_gfp_mask(mapping, mask);
4643
4644 i915_gem_object_init(obj, &i915_gem_object_ops);
4645
4646 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4647 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4648
4649 if (HAS_LLC(dev)) {
4650 /* On some devices, we can have the GPU use the LLC (the CPU
4651 * cache) for about a 10% performance improvement
4652 * compared to uncached. Graphics requests other than
4653 * display scanout are coherent with the CPU in
4654 * accessing this cache. This means in this mode we
4655 * don't need to clflush on the CPU side, and on the
4656 * GPU side we only need to flush internal caches to
4657 * get data visible to the CPU.
4658 *
4659 * However, we maintain the display planes as UC, and so
4660 * need to rebind when first used as such.
4661 */
4662 obj->cache_level = I915_CACHE_LLC;
4663 } else
4664 obj->cache_level = I915_CACHE_NONE;
4665
4666 trace_i915_gem_object_create(obj);
4667
4668 return obj;
4669 }
4670
4671 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4672 {
4673 /* If we are the last user of the backing storage (be it shmemfs
4674 * pages or stolen etc), we know that the pages are going to be
4675 * immediately released. In this case, we can then skip copying
4676 * back the contents from the GPU.
4677 */
4678
4679 if (obj->madv != I915_MADV_WILLNEED)
4680 return false;
4681
4682 if (obj->base.filp == NULL)
4683 return true;
4684
4685 /* At first glance, this looks racy, but then again so would be
4686 * userspace racing mmap against close. However, the first external
4687 * reference to the filp can only be obtained through the
4688 * i915_gem_mmap_ioctl() which safeguards us against the user
4689 * acquiring such a reference whilst we are in the middle of
4690 * freeing the object.
4691 */
4692 return atomic_long_read(&obj->base.filp->f_count) == 1;
4693 }
4694
4695 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4696 {
4697 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4698 struct drm_device *dev = obj->base.dev;
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 struct i915_vma *vma, *next;
4701
4702 intel_runtime_pm_get(dev_priv);
4703
4704 trace_i915_gem_object_destroy(obj);
4705
4706 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4707 int ret;
4708
4709 vma->pin_count = 0;
4710 ret = i915_vma_unbind(vma);
4711 if (WARN_ON(ret == -ERESTARTSYS)) {
4712 bool was_interruptible;
4713
4714 was_interruptible = dev_priv->mm.interruptible;
4715 dev_priv->mm.interruptible = false;
4716
4717 WARN_ON(i915_vma_unbind(vma));
4718
4719 dev_priv->mm.interruptible = was_interruptible;
4720 }
4721 }
4722
4723 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4724 * before progressing. */
4725 if (obj->stolen)
4726 i915_gem_object_unpin_pages(obj);
4727
4728 WARN_ON(obj->frontbuffer_bits);
4729
4730 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4731 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4732 obj->tiling_mode != I915_TILING_NONE)
4733 i915_gem_object_unpin_pages(obj);
4734
4735 if (WARN_ON(obj->pages_pin_count))
4736 obj->pages_pin_count = 0;
4737 if (discard_backing_storage(obj))
4738 obj->madv = I915_MADV_DONTNEED;
4739 i915_gem_object_put_pages(obj);
4740 i915_gem_object_free_mmap_offset(obj);
4741
4742 BUG_ON(obj->pages);
4743
4744 if (obj->base.import_attach)
4745 drm_prime_gem_destroy(&obj->base, NULL);
4746
4747 if (obj->ops->release)
4748 obj->ops->release(obj);
4749
4750 drm_gem_object_release(&obj->base);
4751 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4752
4753 kfree(obj->bit_17);
4754 i915_gem_object_free(obj);
4755
4756 intel_runtime_pm_put(dev_priv);
4757 }
4758
4759 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4760 struct i915_address_space *vm)
4761 {
4762 struct i915_vma *vma;
4763 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4764 if (i915_is_ggtt(vma->vm) &&
4765 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4766 continue;
4767 if (vma->vm == vm)
4768 return vma;
4769 }
4770 return NULL;
4771 }
4772
4773 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4774 const struct i915_ggtt_view *view)
4775 {
4776 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4777 struct i915_vma *vma;
4778
4779 if (WARN_ONCE(!view, "no view specified"))
4780 return ERR_PTR(-EINVAL);
4781
4782 list_for_each_entry(vma, &obj->vma_list, vma_link)
4783 if (vma->vm == ggtt &&
4784 i915_ggtt_view_equal(&vma->ggtt_view, view))
4785 return vma;
4786 return NULL;
4787 }
4788
4789 void i915_gem_vma_destroy(struct i915_vma *vma)
4790 {
4791 struct i915_address_space *vm = NULL;
4792 WARN_ON(vma->node.allocated);
4793
4794 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4795 if (!list_empty(&vma->exec_list))
4796 return;
4797
4798 vm = vma->vm;
4799
4800 if (!i915_is_ggtt(vm))
4801 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4802
4803 list_del(&vma->vma_link);
4804
4805 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4806 }
4807
4808 static void
4809 i915_gem_stop_ringbuffers(struct drm_device *dev)
4810 {
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812 struct intel_engine_cs *ring;
4813 int i;
4814
4815 for_each_ring(ring, dev_priv, i)
4816 dev_priv->gt.stop_ring(ring);
4817 }
4818
4819 int
4820 i915_gem_suspend(struct drm_device *dev)
4821 {
4822 struct drm_i915_private *dev_priv = dev->dev_private;
4823 int ret = 0;
4824
4825 mutex_lock(&dev->struct_mutex);
4826 ret = i915_gpu_idle(dev);
4827 if (ret)
4828 goto err;
4829
4830 i915_gem_retire_requests(dev);
4831
4832 i915_gem_stop_ringbuffers(dev);
4833 mutex_unlock(&dev->struct_mutex);
4834
4835 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4836 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4837 flush_delayed_work(&dev_priv->mm.idle_work);
4838
4839 /* Assert that we sucessfully flushed all the work and
4840 * reset the GPU back to its idle, low power state.
4841 */
4842 WARN_ON(dev_priv->mm.busy);
4843
4844 return 0;
4845
4846 err:
4847 mutex_unlock(&dev->struct_mutex);
4848 return ret;
4849 }
4850
4851 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4852 {
4853 struct drm_device *dev = ring->dev;
4854 struct drm_i915_private *dev_priv = dev->dev_private;
4855 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4856 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4857 int i, ret;
4858
4859 if (!HAS_L3_DPF(dev) || !remap_info)
4860 return 0;
4861
4862 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4863 if (ret)
4864 return ret;
4865
4866 /*
4867 * Note: We do not worry about the concurrent register cacheline hang
4868 * here because no other code should access these registers other than
4869 * at initialization time.
4870 */
4871 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4872 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4873 intel_ring_emit(ring, reg_base + i);
4874 intel_ring_emit(ring, remap_info[i/4]);
4875 }
4876
4877 intel_ring_advance(ring);
4878
4879 return ret;
4880 }
4881
4882 void i915_gem_init_swizzling(struct drm_device *dev)
4883 {
4884 struct drm_i915_private *dev_priv = dev->dev_private;
4885
4886 if (INTEL_INFO(dev)->gen < 5 ||
4887 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4888 return;
4889
4890 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4891 DISP_TILE_SURFACE_SWIZZLING);
4892
4893 if (IS_GEN5(dev))
4894 return;
4895
4896 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4897 if (IS_GEN6(dev))
4898 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4899 else if (IS_GEN7(dev))
4900 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4901 else if (IS_GEN8(dev))
4902 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4903 else
4904 BUG();
4905 }
4906
4907 static bool
4908 intel_enable_blt(struct drm_device *dev)
4909 {
4910 if (!HAS_BLT(dev))
4911 return false;
4912
4913 /* The blitter was dysfunctional on early prototypes */
4914 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4915 DRM_INFO("BLT not supported on this pre-production hardware;"
4916 " graphics performance will be degraded.\n");
4917 return false;
4918 }
4919
4920 return true;
4921 }
4922
4923 static void init_unused_ring(struct drm_device *dev, u32 base)
4924 {
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926
4927 I915_WRITE(RING_CTL(base), 0);
4928 I915_WRITE(RING_HEAD(base), 0);
4929 I915_WRITE(RING_TAIL(base), 0);
4930 I915_WRITE(RING_START(base), 0);
4931 }
4932
4933 static void init_unused_rings(struct drm_device *dev)
4934 {
4935 if (IS_I830(dev)) {
4936 init_unused_ring(dev, PRB1_BASE);
4937 init_unused_ring(dev, SRB0_BASE);
4938 init_unused_ring(dev, SRB1_BASE);
4939 init_unused_ring(dev, SRB2_BASE);
4940 init_unused_ring(dev, SRB3_BASE);
4941 } else if (IS_GEN2(dev)) {
4942 init_unused_ring(dev, SRB0_BASE);
4943 init_unused_ring(dev, SRB1_BASE);
4944 } else if (IS_GEN3(dev)) {
4945 init_unused_ring(dev, PRB1_BASE);
4946 init_unused_ring(dev, PRB2_BASE);
4947 }
4948 }
4949
4950 int i915_gem_init_rings(struct drm_device *dev)
4951 {
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 int ret;
4954
4955 ret = intel_init_render_ring_buffer(dev);
4956 if (ret)
4957 return ret;
4958
4959 if (HAS_BSD(dev)) {
4960 ret = intel_init_bsd_ring_buffer(dev);
4961 if (ret)
4962 goto cleanup_render_ring;
4963 }
4964
4965 if (intel_enable_blt(dev)) {
4966 ret = intel_init_blt_ring_buffer(dev);
4967 if (ret)
4968 goto cleanup_bsd_ring;
4969 }
4970
4971 if (HAS_VEBOX(dev)) {
4972 ret = intel_init_vebox_ring_buffer(dev);
4973 if (ret)
4974 goto cleanup_blt_ring;
4975 }
4976
4977 if (HAS_BSD2(dev)) {
4978 ret = intel_init_bsd2_ring_buffer(dev);
4979 if (ret)
4980 goto cleanup_vebox_ring;
4981 }
4982
4983 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4984 if (ret)
4985 goto cleanup_bsd2_ring;
4986
4987 return 0;
4988
4989 cleanup_bsd2_ring:
4990 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4991 cleanup_vebox_ring:
4992 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4993 cleanup_blt_ring:
4994 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4995 cleanup_bsd_ring:
4996 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4997 cleanup_render_ring:
4998 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4999
5000 return ret;
5001 }
5002
5003 int
5004 i915_gem_init_hw(struct drm_device *dev)
5005 {
5006 struct drm_i915_private *dev_priv = dev->dev_private;
5007 struct intel_engine_cs *ring;
5008 int ret, i;
5009
5010 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5011 return -EIO;
5012
5013 /* Double layer security blanket, see i915_gem_init() */
5014 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5015
5016 if (dev_priv->ellc_size)
5017 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5018
5019 if (IS_HASWELL(dev))
5020 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5021 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5022
5023 if (HAS_PCH_NOP(dev)) {
5024 if (IS_IVYBRIDGE(dev)) {
5025 u32 temp = I915_READ(GEN7_MSG_CTL);
5026 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5027 I915_WRITE(GEN7_MSG_CTL, temp);
5028 } else if (INTEL_INFO(dev)->gen >= 7) {
5029 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5030 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5031 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5032 }
5033 }
5034
5035 i915_gem_init_swizzling(dev);
5036
5037 /*
5038 * At least 830 can leave some of the unused rings
5039 * "active" (ie. head != tail) after resume which
5040 * will prevent c3 entry. Makes sure all unused rings
5041 * are totally idle.
5042 */
5043 init_unused_rings(dev);
5044
5045 for_each_ring(ring, dev_priv, i) {
5046 ret = ring->init_hw(ring);
5047 if (ret)
5048 goto out;
5049 }
5050
5051 for (i = 0; i < NUM_L3_SLICES(dev); i++)
5052 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5053
5054 ret = i915_ppgtt_init_hw(dev);
5055 if (ret && ret != -EIO) {
5056 DRM_ERROR("PPGTT enable failed %d\n", ret);
5057 i915_gem_cleanup_ringbuffer(dev);
5058 }
5059
5060 ret = i915_gem_context_enable(dev_priv);
5061 if (ret && ret != -EIO) {
5062 DRM_ERROR("Context enable failed %d\n", ret);
5063 i915_gem_cleanup_ringbuffer(dev);
5064
5065 goto out;
5066 }
5067
5068 out:
5069 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5070 return ret;
5071 }
5072
5073 int i915_gem_init(struct drm_device *dev)
5074 {
5075 struct drm_i915_private *dev_priv = dev->dev_private;
5076 int ret;
5077
5078 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5079 i915.enable_execlists);
5080
5081 mutex_lock(&dev->struct_mutex);
5082
5083 if (IS_VALLEYVIEW(dev)) {
5084 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5085 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5086 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5087 VLV_GTLC_ALLOWWAKEACK), 10))
5088 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5089 }
5090
5091 if (!i915.enable_execlists) {
5092 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5093 dev_priv->gt.init_rings = i915_gem_init_rings;
5094 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5095 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5096 } else {
5097 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5098 dev_priv->gt.init_rings = intel_logical_rings_init;
5099 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5100 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5101 }
5102
5103 /* This is just a security blanket to placate dragons.
5104 * On some systems, we very sporadically observe that the first TLBs
5105 * used by the CS may be stale, despite us poking the TLB reset. If
5106 * we hold the forcewake during initialisation these problems
5107 * just magically go away.
5108 */
5109 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5110
5111 ret = i915_gem_init_userptr(dev);
5112 if (ret)
5113 goto out_unlock;
5114
5115 i915_gem_init_global_gtt(dev);
5116
5117 ret = i915_gem_context_init(dev);
5118 if (ret)
5119 goto out_unlock;
5120
5121 ret = dev_priv->gt.init_rings(dev);
5122 if (ret)
5123 goto out_unlock;
5124
5125 ret = i915_gem_init_hw(dev);
5126 if (ret == -EIO) {
5127 /* Allow ring initialisation to fail by marking the GPU as
5128 * wedged. But we only want to do this where the GPU is angry,
5129 * for all other failure, such as an allocation failure, bail.
5130 */
5131 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5132 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5133 ret = 0;
5134 }
5135
5136 out_unlock:
5137 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5138 mutex_unlock(&dev->struct_mutex);
5139
5140 return ret;
5141 }
5142
5143 void
5144 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5145 {
5146 struct drm_i915_private *dev_priv = dev->dev_private;
5147 struct intel_engine_cs *ring;
5148 int i;
5149
5150 for_each_ring(ring, dev_priv, i)
5151 dev_priv->gt.cleanup_ring(ring);
5152 }
5153
5154 static void
5155 init_ring_lists(struct intel_engine_cs *ring)
5156 {
5157 INIT_LIST_HEAD(&ring->active_list);
5158 INIT_LIST_HEAD(&ring->request_list);
5159 }
5160
5161 void i915_init_vm(struct drm_i915_private *dev_priv,
5162 struct i915_address_space *vm)
5163 {
5164 if (!i915_is_ggtt(vm))
5165 drm_mm_init(&vm->mm, vm->start, vm->total);
5166 vm->dev = dev_priv->dev;
5167 INIT_LIST_HEAD(&vm->active_list);
5168 INIT_LIST_HEAD(&vm->inactive_list);
5169 INIT_LIST_HEAD(&vm->global_link);
5170 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5171 }
5172
5173 void
5174 i915_gem_load(struct drm_device *dev)
5175 {
5176 struct drm_i915_private *dev_priv = dev->dev_private;
5177 int i;
5178
5179 dev_priv->objects =
5180 kmem_cache_create("i915_gem_object",
5181 sizeof(struct drm_i915_gem_object), 0,
5182 SLAB_HWCACHE_ALIGN,
5183 NULL);
5184 dev_priv->vmas =
5185 kmem_cache_create("i915_gem_vma",
5186 sizeof(struct i915_vma), 0,
5187 SLAB_HWCACHE_ALIGN,
5188 NULL);
5189 dev_priv->requests =
5190 kmem_cache_create("i915_gem_request",
5191 sizeof(struct drm_i915_gem_request), 0,
5192 SLAB_HWCACHE_ALIGN,
5193 NULL);
5194
5195 INIT_LIST_HEAD(&dev_priv->vm_list);
5196 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5197
5198 INIT_LIST_HEAD(&dev_priv->context_list);
5199 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5200 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5201 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5202 for (i = 0; i < I915_NUM_RINGS; i++)
5203 init_ring_lists(&dev_priv->ring[i]);
5204 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5205 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5206 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5207 i915_gem_retire_work_handler);
5208 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5209 i915_gem_idle_work_handler);
5210 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5211
5212 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5213
5214 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5215 dev_priv->num_fence_regs = 32;
5216 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5217 dev_priv->num_fence_regs = 16;
5218 else
5219 dev_priv->num_fence_regs = 8;
5220
5221 if (intel_vgpu_active(dev))
5222 dev_priv->num_fence_regs =
5223 I915_READ(vgtif_reg(avail_rs.fence_num));
5224
5225 /* Initialize fence registers to zero */
5226 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5227 i915_gem_restore_fences(dev);
5228
5229 i915_gem_detect_bit_6_swizzle(dev);
5230 init_waitqueue_head(&dev_priv->pending_flip_queue);
5231
5232 dev_priv->mm.interruptible = true;
5233
5234 i915_gem_shrinker_init(dev_priv);
5235
5236 mutex_init(&dev_priv->fb_tracking.lock);
5237 }
5238
5239 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5240 {
5241 struct drm_i915_file_private *file_priv = file->driver_priv;
5242
5243 /* Clean up our request list when the client is going away, so that
5244 * later retire_requests won't dereference our soon-to-be-gone
5245 * file_priv.
5246 */
5247 spin_lock(&file_priv->mm.lock);
5248 while (!list_empty(&file_priv->mm.request_list)) {
5249 struct drm_i915_gem_request *request;
5250
5251 request = list_first_entry(&file_priv->mm.request_list,
5252 struct drm_i915_gem_request,
5253 client_list);
5254 list_del(&request->client_list);
5255 request->file_priv = NULL;
5256 }
5257 spin_unlock(&file_priv->mm.lock);
5258
5259 if (!list_empty(&file_priv->rps.link)) {
5260 spin_lock(&to_i915(dev)->rps.client_lock);
5261 list_del(&file_priv->rps.link);
5262 spin_unlock(&to_i915(dev)->rps.client_lock);
5263 }
5264 }
5265
5266 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5267 {
5268 struct drm_i915_file_private *file_priv;
5269 int ret;
5270
5271 DRM_DEBUG_DRIVER("\n");
5272
5273 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5274 if (!file_priv)
5275 return -ENOMEM;
5276
5277 file->driver_priv = file_priv;
5278 file_priv->dev_priv = dev->dev_private;
5279 file_priv->file = file;
5280 INIT_LIST_HEAD(&file_priv->rps.link);
5281
5282 spin_lock_init(&file_priv->mm.lock);
5283 INIT_LIST_HEAD(&file_priv->mm.request_list);
5284
5285 ret = i915_gem_context_open(dev, file);
5286 if (ret)
5287 kfree(file_priv);
5288
5289 return ret;
5290 }
5291
5292 /**
5293 * i915_gem_track_fb - update frontbuffer tracking
5294 * old: current GEM buffer for the frontbuffer slots
5295 * new: new GEM buffer for the frontbuffer slots
5296 * frontbuffer_bits: bitmask of frontbuffer slots
5297 *
5298 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5299 * from @old and setting them in @new. Both @old and @new can be NULL.
5300 */
5301 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5302 struct drm_i915_gem_object *new,
5303 unsigned frontbuffer_bits)
5304 {
5305 if (old) {
5306 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5307 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5308 old->frontbuffer_bits &= ~frontbuffer_bits;
5309 }
5310
5311 if (new) {
5312 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5313 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5314 new->frontbuffer_bits |= frontbuffer_bits;
5315 }
5316 }
5317
5318 /* All the new VM stuff */
5319 unsigned long
5320 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5321 struct i915_address_space *vm)
5322 {
5323 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5324 struct i915_vma *vma;
5325
5326 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5327
5328 list_for_each_entry(vma, &o->vma_list, vma_link) {
5329 if (i915_is_ggtt(vma->vm) &&
5330 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5331 continue;
5332 if (vma->vm == vm)
5333 return vma->node.start;
5334 }
5335
5336 WARN(1, "%s vma for this object not found.\n",
5337 i915_is_ggtt(vm) ? "global" : "ppgtt");
5338 return -1;
5339 }
5340
5341 unsigned long
5342 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5343 const struct i915_ggtt_view *view)
5344 {
5345 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5346 struct i915_vma *vma;
5347
5348 list_for_each_entry(vma, &o->vma_list, vma_link)
5349 if (vma->vm == ggtt &&
5350 i915_ggtt_view_equal(&vma->ggtt_view, view))
5351 return vma->node.start;
5352
5353 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5354 return -1;
5355 }
5356
5357 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5358 struct i915_address_space *vm)
5359 {
5360 struct i915_vma *vma;
5361
5362 list_for_each_entry(vma, &o->vma_list, vma_link) {
5363 if (i915_is_ggtt(vma->vm) &&
5364 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5365 continue;
5366 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5367 return true;
5368 }
5369
5370 return false;
5371 }
5372
5373 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5374 const struct i915_ggtt_view *view)
5375 {
5376 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5377 struct i915_vma *vma;
5378
5379 list_for_each_entry(vma, &o->vma_list, vma_link)
5380 if (vma->vm == ggtt &&
5381 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5382 drm_mm_node_allocated(&vma->node))
5383 return true;
5384
5385 return false;
5386 }
5387
5388 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5389 {
5390 struct i915_vma *vma;
5391
5392 list_for_each_entry(vma, &o->vma_list, vma_link)
5393 if (drm_mm_node_allocated(&vma->node))
5394 return true;
5395
5396 return false;
5397 }
5398
5399 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5400 struct i915_address_space *vm)
5401 {
5402 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5403 struct i915_vma *vma;
5404
5405 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5406
5407 BUG_ON(list_empty(&o->vma_list));
5408
5409 list_for_each_entry(vma, &o->vma_list, vma_link) {
5410 if (i915_is_ggtt(vma->vm) &&
5411 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5412 continue;
5413 if (vma->vm == vm)
5414 return vma->node.size;
5415 }
5416 return 0;
5417 }
5418
5419 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5420 {
5421 struct i915_vma *vma;
5422 list_for_each_entry(vma, &obj->vma_list, vma_link)
5423 if (vma->pin_count > 0)
5424 return true;
5425
5426 return false;
5427 }
5428
This page took 0.21362 seconds and 6 git commands to generate.