drm/i915: extract object active state flushing code
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60
61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62 {
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
69 obj->fence_dirty = false;
70 obj->fence_reg = I915_FENCE_REG_NONE;
71 }
72
73 /* some bookkeeping */
74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79 }
80
81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83 {
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86 }
87
88 static int
89 i915_gem_wait_for_error(struct drm_device *dev)
90 {
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
114 }
115
116 int i915_mutex_lock_interruptible(struct drm_device *dev)
117 {
118 int ret;
119
120 ret = i915_gem_wait_for_error(dev);
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
128 WARN_ON(i915_verify_lists(dev));
129 return 0;
130 }
131
132 static inline bool
133 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134 {
135 return !obj->active;
136 }
137
138 int
139 i915_gem_init_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_gem_init *args = data;
143
144 if (drm_core_check_feature(dev, DRIVER_MODESET))
145 return -ENODEV;
146
147 if (args->gtt_start >= args->gtt_end ||
148 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
149 return -EINVAL;
150
151 /* GEM with user mode setting was never supported on ilk and later. */
152 if (INTEL_INFO(dev)->gen >= 5)
153 return -ENODEV;
154
155 mutex_lock(&dev->struct_mutex);
156 i915_gem_init_global_gtt(dev, args->gtt_start,
157 args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
159
160 return 0;
161 }
162
163 int
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
171
172 pinned = 0;
173 mutex_lock(&dev->struct_mutex);
174 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
175 if (obj->pin_count)
176 pinned += obj->gtt_space->size;
177 mutex_unlock(&dev->struct_mutex);
178
179 args->aper_size = dev_priv->mm.gtt_total;
180 args->aper_available_size = args->aper_size - pinned;
181
182 return 0;
183 }
184
185 static int
186 i915_gem_create(struct drm_file *file,
187 struct drm_device *dev,
188 uint64_t size,
189 uint32_t *handle_p)
190 {
191 struct drm_i915_gem_object *obj;
192 int ret;
193 u32 handle;
194
195 size = roundup(size, PAGE_SIZE);
196 if (size == 0)
197 return -EINVAL;
198
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
203
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
210 }
211
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
215
216 *handle_p = handle;
217 return 0;
218 }
219
220 int
221 i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224 {
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230 }
231
232 int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235 {
236 return drm_gem_handle_delete(file, handle);
237 }
238
239 /**
240 * Creates a new mm object and returns a handle to it.
241 */
242 int
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_gem_create *args = data;
247
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline int
261 __copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264 {
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284 }
285
286 static inline int
287 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
288 const char __user *cpu_vaddr,
289 int length)
290 {
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310 }
311
312 /* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
315 static int
316 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319 {
320 char *vaddr;
321 int ret;
322
323 if (unlikely(page_do_bit17_swizzling))
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336 }
337
338 static void
339 shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341 {
342 if (unlikely(swizzled)) {
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358 }
359
360 /* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362 static int
363 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366 {
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387 }
388
389 static int
390 i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
394 {
395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396 char __user *user_data;
397 ssize_t remain;
398 loff_t offset;
399 int shmem_page_offset, page_length, ret = 0;
400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401 int hit_slowpath = 0;
402 int prefaulted = 0;
403 int needs_clflush = 0;
404 int release_page;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
422
423 offset = args->offset;
424
425 while (remain > 0) {
426 struct page *page;
427
428 /* Operation in this page
429 *
430 * shmem_page_offset = offset within page in shmem file
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset_in_page(offset);
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
437
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
448 }
449
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
458
459 hit_slowpath = 1;
460 page_cache_get(page);
461 mutex_unlock(&dev->struct_mutex);
462
463 if (!prefaulted) {
464 ret = fault_in_multipages_writeable(user_data, remain);
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
472
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
476
477 mutex_lock(&dev->struct_mutex);
478 page_cache_release(page);
479 next_page:
480 mark_page_accessed(page);
481 if (release_page)
482 page_cache_release(page);
483
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
489 remain -= page_length;
490 user_data += page_length;
491 offset += page_length;
492 }
493
494 out:
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555 drm_gem_object_unreference(&obj->base);
556 unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570 {
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582 }
583
584 /**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593 {
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = (char __user *) (uintptr_t) args->data_ptr;
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out_unpin:
646 i915_gem_object_unpin(obj);
647 out:
648 return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691 {
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722 {
723 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724 ssize_t remain;
725 loff_t offset;
726 char __user *user_data;
727 int shmem_page_offset, page_length, ret = 0;
728 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729 int hit_slowpath = 0;
730 int needs_clflush_after = 0;
731 int needs_clflush_before = 0;
732 int release_page;
733
734 user_data = (char __user *) (uintptr_t) args->data_ptr;
735 remain = args->size;
736
737 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738
739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
740 /* If we're not in the cpu write domain, set ourself into the gtt
741 * write domain and manually flush cachelines (if required). This
742 * optimizes for the case when the gpu will use the data
743 * right away and we therefore have to clflush anyway. */
744 if (obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_after = 1;
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 /* Same trick applies for invalidate partially written cachelines before
751 * writing. */
752 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
753 && obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_before = 1;
755
756 offset = args->offset;
757 obj->dirty = 1;
758
759 while (remain > 0) {
760 struct page *page;
761 int partial_cacheline_write;
762
763 /* Operation in this page
764 *
765 * shmem_page_offset = offset within page in shmem file
766 * page_length = bytes to copy for this page
767 */
768 shmem_page_offset = offset_in_page(offset);
769
770 page_length = remain;
771 if ((shmem_page_offset + page_length) > PAGE_SIZE)
772 page_length = PAGE_SIZE - shmem_page_offset;
773
774 /* If we don't overwrite a cacheline completely we need to be
775 * careful to have up-to-date data by first clflushing. Don't
776 * overcomplicate things and flush the entire patch. */
777 partial_cacheline_write = needs_clflush_before &&
778 ((shmem_page_offset | page_length)
779 & (boot_cpu_data.x86_clflush_size - 1));
780
781 if (obj->pages) {
782 page = obj->pages[offset >> PAGE_SHIFT];
783 release_page = 0;
784 } else {
785 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
786 if (IS_ERR(page)) {
787 ret = PTR_ERR(page);
788 goto out;
789 }
790 release_page = 1;
791 }
792
793 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
794 (page_to_phys(page) & (1 << 17)) != 0;
795
796 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800 if (ret == 0)
801 goto next_page;
802
803 hit_slowpath = 1;
804 page_cache_get(page);
805 mutex_unlock(&dev->struct_mutex);
806
807 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
811
812 mutex_lock(&dev->struct_mutex);
813 page_cache_release(page);
814 next_page:
815 set_page_dirty(page);
816 mark_page_accessed(page);
817 if (release_page)
818 page_cache_release(page);
819
820 if (ret) {
821 ret = -EFAULT;
822 goto out;
823 }
824
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 if (hit_slowpath) {
832 /* Fixup: Kill any reinstated backing storage pages */
833 if (obj->madv == __I915_MADV_PURGED)
834 i915_gem_object_truncate(obj);
835 /* and flush dirty cachelines in case the object isn't in the cpu write
836 * domain anymore. */
837 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 i915_gem_clflush_object(obj);
839 intel_gtt_chipset_flush();
840 }
841 }
842
843 if (needs_clflush_after)
844 intel_gtt_chipset_flush();
845
846 return ret;
847 }
848
849 /**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854 int
855 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856 struct drm_file *file)
857 {
858 struct drm_i915_gem_pwrite *args = data;
859 struct drm_i915_gem_object *obj;
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
866 (char __user *)(uintptr_t)args->data_ptr,
867 args->size))
868 return -EFAULT;
869
870 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
871 args->size);
872 if (ret)
873 return -EFAULT;
874
875 ret = i915_mutex_lock_interruptible(dev);
876 if (ret)
877 return ret;
878
879 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880 if (&obj->base == NULL) {
881 ret = -ENOENT;
882 goto unlock;
883 }
884
885 /* Bounds check destination. */
886 if (args->offset > obj->base.size ||
887 args->size > obj->base.size - args->offset) {
888 ret = -EINVAL;
889 goto out;
890 }
891
892 /* prime objects have no backing filp to GEM pread/pwrite
893 * pages from.
894 */
895 if (!obj->base.filp) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
901
902 ret = -EFAULT;
903 /* We can only do the GTT pwrite on untiled buffers, as otherwise
904 * it would end up going through the fenced access, and we'll get
905 * different detiling behavior between reading and writing.
906 * pread/pwrite currently are reading and writing from the CPU
907 * perspective, requiring manual detiling by the client.
908 */
909 if (obj->phys_obj) {
910 ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 goto out;
912 }
913
914 if (obj->gtt_space &&
915 obj->cache_level == I915_CACHE_NONE &&
916 obj->tiling_mode == I915_TILING_NONE &&
917 obj->map_and_fenceable &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
923 }
924
925 if (ret == -EFAULT)
926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927
928 out:
929 drm_gem_object_unreference(&obj->base);
930 unlock:
931 mutex_unlock(&dev->struct_mutex);
932 return ret;
933 }
934
935 /**
936 * Called when user space prepares to use an object with the CPU, either
937 * through the mmap ioctl's mapping or a GTT mapping.
938 */
939 int
940 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941 struct drm_file *file)
942 {
943 struct drm_i915_gem_set_domain *args = data;
944 struct drm_i915_gem_object *obj;
945 uint32_t read_domains = args->read_domains;
946 uint32_t write_domain = args->write_domain;
947 int ret;
948
949 /* Only handle setting domains to types used by the CPU. */
950 if (write_domain & I915_GEM_GPU_DOMAINS)
951 return -EINVAL;
952
953 if (read_domains & I915_GEM_GPU_DOMAINS)
954 return -EINVAL;
955
956 /* Having something in the write domain implies it's in the read
957 * domain, and only that read domain. Enforce that in the request.
958 */
959 if (write_domain != 0 && read_domains != write_domain)
960 return -EINVAL;
961
962 ret = i915_mutex_lock_interruptible(dev);
963 if (ret)
964 return ret;
965
966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967 if (&obj->base == NULL) {
968 ret = -ENOENT;
969 goto unlock;
970 }
971
972 if (read_domains & I915_GEM_DOMAIN_GTT) {
973 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974
975 /* Silently promote "you're not bound, there was nothing to do"
976 * to success, since the client was just asking us to
977 * make sure everything was done.
978 */
979 if (ret == -EINVAL)
980 ret = 0;
981 } else {
982 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 }
984
985 drm_gem_object_unreference(&obj->base);
986 unlock:
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989 }
990
991 /**
992 * Called when user space has done writes to this buffer
993 */
994 int
995 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996 struct drm_file *file)
997 {
998 struct drm_i915_gem_sw_finish *args = data;
999 struct drm_i915_gem_object *obj;
1000 int ret = 0;
1001
1002 ret = i915_mutex_lock_interruptible(dev);
1003 if (ret)
1004 return ret;
1005
1006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007 if (&obj->base == NULL) {
1008 ret = -ENOENT;
1009 goto unlock;
1010 }
1011
1012 /* Pinned buffers may be scanout, so flush the cache */
1013 if (obj->pin_count)
1014 i915_gem_object_flush_cpu_write_domain(obj);
1015
1016 drm_gem_object_unreference(&obj->base);
1017 unlock:
1018 mutex_unlock(&dev->struct_mutex);
1019 return ret;
1020 }
1021
1022 /**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029 int
1030 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031 struct drm_file *file)
1032 {
1033 struct drm_i915_gem_mmap *args = data;
1034 struct drm_gem_object *obj;
1035 unsigned long addr;
1036
1037 obj = drm_gem_object_lookup(dev, file, args->handle);
1038 if (obj == NULL)
1039 return -ENOENT;
1040
1041 /* prime objects have no backing filp to GEM mmap
1042 * pages from.
1043 */
1044 if (!obj->filp) {
1045 drm_gem_object_unreference_unlocked(obj);
1046 return -EINVAL;
1047 }
1048
1049 addr = vm_mmap(obj->filp, 0, args->size,
1050 PROT_READ | PROT_WRITE, MAP_SHARED,
1051 args->offset);
1052 drm_gem_object_unreference_unlocked(obj);
1053 if (IS_ERR((void *)addr))
1054 return addr;
1055
1056 args->addr_ptr = (uint64_t) addr;
1057
1058 return 0;
1059 }
1060
1061 /**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace. The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room. So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078 {
1079 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080 struct drm_device *dev = obj->base.dev;
1081 drm_i915_private_t *dev_priv = dev->dev_private;
1082 pgoff_t page_offset;
1083 unsigned long pfn;
1084 int ret = 0;
1085 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086
1087 /* We don't use vmf->pgoff since that has the fake offset */
1088 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089 PAGE_SHIFT;
1090
1091 ret = i915_mutex_lock_interruptible(dev);
1092 if (ret)
1093 goto out;
1094
1095 trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
1097 /* Now bind it into the GTT if needed */
1098 if (!obj->map_and_fenceable) {
1099 ret = i915_gem_object_unbind(obj);
1100 if (ret)
1101 goto unlock;
1102 }
1103 if (!obj->gtt_space) {
1104 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 if (ret)
1106 goto unlock;
1107
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109 if (ret)
1110 goto unlock;
1111 }
1112
1113 if (!obj->has_global_gtt_mapping)
1114 i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
1116 ret = i915_gem_object_get_fence(obj);
1117 if (ret)
1118 goto unlock;
1119
1120 if (i915_gem_object_is_inactive(obj))
1121 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122
1123 obj->fault_mappable = true;
1124
1125 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1126 page_offset;
1127
1128 /* Finally, remap it using the new GTT offset */
1129 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 out:
1133 switch (ret) {
1134 case -EIO:
1135 case -EAGAIN:
1136 /* Give the error handler a chance to run and move the
1137 * objects off the GPU active list. Next time we service the
1138 * fault, we should be able to transition the page into the
1139 * GTT without touching the GPU (and so avoid further
1140 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141 * with coherency, just lost writes.
1142 */
1143 set_need_resched();
1144 case 0:
1145 case -ERESTARTSYS:
1146 case -EINTR:
1147 return VM_FAULT_NOPAGE;
1148 case -ENOMEM:
1149 return VM_FAULT_OOM;
1150 default:
1151 return VM_FAULT_SIGBUS;
1152 }
1153 }
1154
1155 /**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
1159 * Preserve the reservation of the mmapping with the DRM core code, but
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
1169 void
1170 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171 {
1172 if (!obj->fault_mappable)
1173 return;
1174
1175 if (obj->base.dev->dev_mapping)
1176 unmap_mapping_range(obj->base.dev->dev_mapping,
1177 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178 obj->base.size, 1);
1179
1180 obj->fault_mappable = false;
1181 }
1182
1183 static uint32_t
1184 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185 {
1186 uint32_t gtt_size;
1187
1188 if (INTEL_INFO(dev)->gen >= 4 ||
1189 tiling_mode == I915_TILING_NONE)
1190 return size;
1191
1192 /* Previous chips need a power-of-two fence region when tiling */
1193 if (INTEL_INFO(dev)->gen == 3)
1194 gtt_size = 1024*1024;
1195 else
1196 gtt_size = 512*1024;
1197
1198 while (gtt_size < size)
1199 gtt_size <<= 1;
1200
1201 return gtt_size;
1202 }
1203
1204 /**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
1209 * potential fence register mapping.
1210 */
1211 static uint32_t
1212 i915_gem_get_gtt_alignment(struct drm_device *dev,
1213 uint32_t size,
1214 int tiling_mode)
1215 {
1216 /*
1217 * Minimum alignment is 4k (GTT page size), but might be greater
1218 * if a fence register is needed for the object.
1219 */
1220 if (INTEL_INFO(dev)->gen >= 4 ||
1221 tiling_mode == I915_TILING_NONE)
1222 return 4096;
1223
1224 /*
1225 * Previous chips need to be aligned to the size of the smallest
1226 * fence register that can contain the object.
1227 */
1228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 }
1230
1231 /**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 * unfenced object
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
1241 uint32_t
1242 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243 uint32_t size,
1244 int tiling_mode)
1245 {
1246 /*
1247 * Minimum alignment is 4k (GTT page size) for sane hw.
1248 */
1249 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250 tiling_mode == I915_TILING_NONE)
1251 return 4096;
1252
1253 /* Previous hardware however needs to be aligned to a power-of-two
1254 * tile height. The simplest method for determining this is to reuse
1255 * the power-of-tile object size.
1256 */
1257 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 }
1259
1260 int
1261 i915_gem_mmap_gtt(struct drm_file *file,
1262 struct drm_device *dev,
1263 uint32_t handle,
1264 uint64_t *offset)
1265 {
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 struct drm_i915_gem_object *obj;
1268 int ret;
1269
1270 ret = i915_mutex_lock_interruptible(dev);
1271 if (ret)
1272 return ret;
1273
1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275 if (&obj->base == NULL) {
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
1279
1280 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281 ret = -E2BIG;
1282 goto out;
1283 }
1284
1285 if (obj->madv != I915_MADV_WILLNEED) {
1286 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 ret = -EINVAL;
1288 goto out;
1289 }
1290
1291 if (!obj->base.map_list.map) {
1292 ret = drm_gem_create_mmap_offset(&obj->base);
1293 if (ret)
1294 goto out;
1295 }
1296
1297 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298
1299 out:
1300 drm_gem_object_unreference(&obj->base);
1301 unlock:
1302 mutex_unlock(&dev->struct_mutex);
1303 return ret;
1304 }
1305
1306 /**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321 int
1322 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323 struct drm_file *file)
1324 {
1325 struct drm_i915_gem_mmap_gtt *args = data;
1326
1327 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328 }
1329
1330 int
1331 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 gfp_t gfpmask)
1333 {
1334 int page_count, i;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 struct page *page;
1338
1339 if (obj->pages || obj->sg_table)
1340 return 0;
1341
1342 /* Get the list of pages out of our struct file. They'll be pinned
1343 * at this point until we release them.
1344 */
1345 page_count = obj->base.size / PAGE_SIZE;
1346 BUG_ON(obj->pages != NULL);
1347 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348 if (obj->pages == NULL)
1349 return -ENOMEM;
1350
1351 inode = obj->base.filp->f_path.dentry->d_inode;
1352 mapping = inode->i_mapping;
1353 gfpmask |= mapping_gfp_mask(mapping);
1354
1355 for (i = 0; i < page_count; i++) {
1356 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 if (IS_ERR(page))
1358 goto err_pages;
1359
1360 obj->pages[i] = page;
1361 }
1362
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 i915_gem_object_do_bit_17_swizzle(obj);
1365
1366 return 0;
1367
1368 err_pages:
1369 while (i--)
1370 page_cache_release(obj->pages[i]);
1371
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
1374 return PTR_ERR(page);
1375 }
1376
1377 static void
1378 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379 {
1380 int page_count = obj->base.size / PAGE_SIZE;
1381 int i;
1382
1383 if (!obj->pages)
1384 return;
1385
1386 BUG_ON(obj->madv == __I915_MADV_PURGED);
1387
1388 if (i915_gem_object_needs_bit17_swizzle(obj))
1389 i915_gem_object_save_bit_17_swizzle(obj);
1390
1391 if (obj->madv == I915_MADV_DONTNEED)
1392 obj->dirty = 0;
1393
1394 for (i = 0; i < page_count; i++) {
1395 if (obj->dirty)
1396 set_page_dirty(obj->pages[i]);
1397
1398 if (obj->madv == I915_MADV_WILLNEED)
1399 mark_page_accessed(obj->pages[i]);
1400
1401 page_cache_release(obj->pages[i]);
1402 }
1403 obj->dirty = 0;
1404
1405 drm_free_large(obj->pages);
1406 obj->pages = NULL;
1407 }
1408
1409 void
1410 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 struct intel_ring_buffer *ring,
1412 u32 seqno)
1413 {
1414 struct drm_device *dev = obj->base.dev;
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417 BUG_ON(ring == NULL);
1418 obj->ring = ring;
1419
1420 /* Add a reference if we're newly entering the active list. */
1421 if (!obj->active) {
1422 drm_gem_object_reference(&obj->base);
1423 obj->active = 1;
1424 }
1425
1426 /* Move from whatever list we were on to the tail of execution. */
1427 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428 list_move_tail(&obj->ring_list, &ring->active_list);
1429
1430 obj->last_rendering_seqno = seqno;
1431
1432 if (obj->fenced_gpu_access) {
1433 obj->last_fenced_seqno = seqno;
1434
1435 /* Bump MRU to take account of the delayed flush */
1436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437 struct drm_i915_fence_reg *reg;
1438
1439 reg = &dev_priv->fence_regs[obj->fence_reg];
1440 list_move_tail(&reg->lru_list,
1441 &dev_priv->mm.fence_list);
1442 }
1443 }
1444 }
1445
1446 static void
1447 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448 {
1449 list_del_init(&obj->ring_list);
1450 obj->last_rendering_seqno = 0;
1451 obj->last_fenced_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->base.dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459
1460 BUG_ON(!obj->active);
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462
1463 i915_gem_object_move_off_active(obj);
1464 }
1465
1466 static void
1467 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468 {
1469 struct drm_device *dev = obj->base.dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473
1474 BUG_ON(!list_empty(&obj->gpu_write_list));
1475 BUG_ON(!obj->active);
1476 obj->ring = NULL;
1477
1478 i915_gem_object_move_off_active(obj);
1479 obj->fenced_gpu_access = false;
1480
1481 obj->active = 0;
1482 obj->pending_gpu_write = false;
1483 drm_gem_object_unreference(&obj->base);
1484
1485 WARN_ON(i915_verify_lists(dev));
1486 }
1487
1488 /* Immediately discard the backing storage */
1489 static void
1490 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491 {
1492 struct inode *inode;
1493
1494 /* Our goal here is to return as much of the memory as
1495 * is possible back to the system as we are called from OOM.
1496 * To do this we must instruct the shmfs to drop all of its
1497 * backing pages, *now*.
1498 */
1499 inode = obj->base.filp->f_path.dentry->d_inode;
1500 shmem_truncate_range(inode, 0, (loff_t)-1);
1501
1502 if (obj->base.map_list.map)
1503 drm_gem_free_mmap_offset(&obj->base);
1504
1505 obj->madv = __I915_MADV_PURGED;
1506 }
1507
1508 static inline int
1509 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510 {
1511 return obj->madv == I915_MADV_DONTNEED;
1512 }
1513
1514 static void
1515 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516 uint32_t flush_domains)
1517 {
1518 struct drm_i915_gem_object *obj, *next;
1519
1520 list_for_each_entry_safe(obj, next,
1521 &ring->gpu_write_list,
1522 gpu_write_list) {
1523 if (obj->base.write_domain & flush_domains) {
1524 uint32_t old_write_domain = obj->base.write_domain;
1525
1526 obj->base.write_domain = 0;
1527 list_del_init(&obj->gpu_write_list);
1528 i915_gem_object_move_to_active(obj, ring,
1529 i915_gem_next_request_seqno(ring));
1530
1531 trace_i915_gem_object_change_domain(obj,
1532 obj->base.read_domains,
1533 old_write_domain);
1534 }
1535 }
1536 }
1537
1538 static u32
1539 i915_gem_get_seqno(struct drm_device *dev)
1540 {
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542 u32 seqno = dev_priv->next_seqno;
1543
1544 /* reserve 0 for non-seqno */
1545 if (++dev_priv->next_seqno == 0)
1546 dev_priv->next_seqno = 1;
1547
1548 return seqno;
1549 }
1550
1551 u32
1552 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553 {
1554 if (ring->outstanding_lazy_request == 0)
1555 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557 return ring->outstanding_lazy_request;
1558 }
1559
1560 int
1561 i915_add_request(struct intel_ring_buffer *ring,
1562 struct drm_file *file,
1563 struct drm_i915_gem_request *request)
1564 {
1565 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566 uint32_t seqno;
1567 u32 request_ring_position;
1568 int was_empty;
1569 int ret;
1570
1571 BUG_ON(request == NULL);
1572 seqno = i915_gem_next_request_seqno(ring);
1573
1574 /* Record the position of the start of the request so that
1575 * should we detect the updated seqno part-way through the
1576 * GPU processing the request, we never over-estimate the
1577 * position of the head.
1578 */
1579 request_ring_position = intel_ring_get_tail(ring);
1580
1581 ret = ring->add_request(ring, &seqno);
1582 if (ret)
1583 return ret;
1584
1585 trace_i915_gem_request_add(ring, seqno);
1586
1587 request->seqno = seqno;
1588 request->ring = ring;
1589 request->tail = request_ring_position;
1590 request->emitted_jiffies = jiffies;
1591 was_empty = list_empty(&ring->request_list);
1592 list_add_tail(&request->list, &ring->request_list);
1593
1594 if (file) {
1595 struct drm_i915_file_private *file_priv = file->driver_priv;
1596
1597 spin_lock(&file_priv->mm.lock);
1598 request->file_priv = file_priv;
1599 list_add_tail(&request->client_list,
1600 &file_priv->mm.request_list);
1601 spin_unlock(&file_priv->mm.lock);
1602 }
1603
1604 ring->outstanding_lazy_request = 0;
1605
1606 if (!dev_priv->mm.suspended) {
1607 if (i915_enable_hangcheck) {
1608 mod_timer(&dev_priv->hangcheck_timer,
1609 jiffies +
1610 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1611 }
1612 if (was_empty)
1613 queue_delayed_work(dev_priv->wq,
1614 &dev_priv->mm.retire_work, HZ);
1615 }
1616 return 0;
1617 }
1618
1619 static inline void
1620 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1621 {
1622 struct drm_i915_file_private *file_priv = request->file_priv;
1623
1624 if (!file_priv)
1625 return;
1626
1627 spin_lock(&file_priv->mm.lock);
1628 if (request->file_priv) {
1629 list_del(&request->client_list);
1630 request->file_priv = NULL;
1631 }
1632 spin_unlock(&file_priv->mm.lock);
1633 }
1634
1635 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1636 struct intel_ring_buffer *ring)
1637 {
1638 while (!list_empty(&ring->request_list)) {
1639 struct drm_i915_gem_request *request;
1640
1641 request = list_first_entry(&ring->request_list,
1642 struct drm_i915_gem_request,
1643 list);
1644
1645 list_del(&request->list);
1646 i915_gem_request_remove_from_client(request);
1647 kfree(request);
1648 }
1649
1650 while (!list_empty(&ring->active_list)) {
1651 struct drm_i915_gem_object *obj;
1652
1653 obj = list_first_entry(&ring->active_list,
1654 struct drm_i915_gem_object,
1655 ring_list);
1656
1657 obj->base.write_domain = 0;
1658 list_del_init(&obj->gpu_write_list);
1659 i915_gem_object_move_to_inactive(obj);
1660 }
1661 }
1662
1663 static void i915_gem_reset_fences(struct drm_device *dev)
1664 {
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 int i;
1667
1668 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1669 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1670
1671 i915_gem_write_fence(dev, i, NULL);
1672
1673 if (reg->obj)
1674 i915_gem_object_fence_lost(reg->obj);
1675
1676 reg->pin_count = 0;
1677 reg->obj = NULL;
1678 INIT_LIST_HEAD(&reg->lru_list);
1679 }
1680
1681 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1682 }
1683
1684 void i915_gem_reset(struct drm_device *dev)
1685 {
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 struct drm_i915_gem_object *obj;
1688 struct intel_ring_buffer *ring;
1689 int i;
1690
1691 for_each_ring(ring, dev_priv, i)
1692 i915_gem_reset_ring_lists(dev_priv, ring);
1693
1694 /* Remove anything from the flushing lists. The GPU cache is likely
1695 * to be lost on reset along with the data, so simply move the
1696 * lost bo to the inactive list.
1697 */
1698 while (!list_empty(&dev_priv->mm.flushing_list)) {
1699 obj = list_first_entry(&dev_priv->mm.flushing_list,
1700 struct drm_i915_gem_object,
1701 mm_list);
1702
1703 obj->base.write_domain = 0;
1704 list_del_init(&obj->gpu_write_list);
1705 i915_gem_object_move_to_inactive(obj);
1706 }
1707
1708 /* Move everything out of the GPU domains to ensure we do any
1709 * necessary invalidation upon reuse.
1710 */
1711 list_for_each_entry(obj,
1712 &dev_priv->mm.inactive_list,
1713 mm_list)
1714 {
1715 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1716 }
1717
1718 /* The fence registers are invalidated so clear them out */
1719 i915_gem_reset_fences(dev);
1720 }
1721
1722 /**
1723 * This function clears the request list as sequence numbers are passed.
1724 */
1725 void
1726 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1727 {
1728 uint32_t seqno;
1729 int i;
1730
1731 if (list_empty(&ring->request_list))
1732 return;
1733
1734 WARN_ON(i915_verify_lists(ring->dev));
1735
1736 seqno = ring->get_seqno(ring);
1737
1738 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1739 if (seqno >= ring->sync_seqno[i])
1740 ring->sync_seqno[i] = 0;
1741
1742 while (!list_empty(&ring->request_list)) {
1743 struct drm_i915_gem_request *request;
1744
1745 request = list_first_entry(&ring->request_list,
1746 struct drm_i915_gem_request,
1747 list);
1748
1749 if (!i915_seqno_passed(seqno, request->seqno))
1750 break;
1751
1752 trace_i915_gem_request_retire(ring, request->seqno);
1753 /* We know the GPU must have read the request to have
1754 * sent us the seqno + interrupt, so use the position
1755 * of tail of the request to update the last known position
1756 * of the GPU head.
1757 */
1758 ring->last_retired_head = request->tail;
1759
1760 list_del(&request->list);
1761 i915_gem_request_remove_from_client(request);
1762 kfree(request);
1763 }
1764
1765 /* Move any buffers on the active list that are no longer referenced
1766 * by the ringbuffer to the flushing/inactive lists as appropriate.
1767 */
1768 while (!list_empty(&ring->active_list)) {
1769 struct drm_i915_gem_object *obj;
1770
1771 obj = list_first_entry(&ring->active_list,
1772 struct drm_i915_gem_object,
1773 ring_list);
1774
1775 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1776 break;
1777
1778 if (obj->base.write_domain != 0)
1779 i915_gem_object_move_to_flushing(obj);
1780 else
1781 i915_gem_object_move_to_inactive(obj);
1782 }
1783
1784 if (unlikely(ring->trace_irq_seqno &&
1785 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1786 ring->irq_put(ring);
1787 ring->trace_irq_seqno = 0;
1788 }
1789
1790 WARN_ON(i915_verify_lists(ring->dev));
1791 }
1792
1793 void
1794 i915_gem_retire_requests(struct drm_device *dev)
1795 {
1796 drm_i915_private_t *dev_priv = dev->dev_private;
1797 struct intel_ring_buffer *ring;
1798 int i;
1799
1800 for_each_ring(ring, dev_priv, i)
1801 i915_gem_retire_requests_ring(ring);
1802 }
1803
1804 static void
1805 i915_gem_retire_work_handler(struct work_struct *work)
1806 {
1807 drm_i915_private_t *dev_priv;
1808 struct drm_device *dev;
1809 struct intel_ring_buffer *ring;
1810 bool idle;
1811 int i;
1812
1813 dev_priv = container_of(work, drm_i915_private_t,
1814 mm.retire_work.work);
1815 dev = dev_priv->dev;
1816
1817 /* Come back later if the device is busy... */
1818 if (!mutex_trylock(&dev->struct_mutex)) {
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 return;
1821 }
1822
1823 i915_gem_retire_requests(dev);
1824
1825 /* Send a periodic flush down the ring so we don't hold onto GEM
1826 * objects indefinitely.
1827 */
1828 idle = true;
1829 for_each_ring(ring, dev_priv, i) {
1830 if (!list_empty(&ring->gpu_write_list)) {
1831 struct drm_i915_gem_request *request;
1832 int ret;
1833
1834 ret = i915_gem_flush_ring(ring,
1835 0, I915_GEM_GPU_DOMAINS);
1836 request = kzalloc(sizeof(*request), GFP_KERNEL);
1837 if (ret || request == NULL ||
1838 i915_add_request(ring, NULL, request))
1839 kfree(request);
1840 }
1841
1842 idle &= list_empty(&ring->request_list);
1843 }
1844
1845 if (!dev_priv->mm.suspended && !idle)
1846 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1847
1848 mutex_unlock(&dev->struct_mutex);
1849 }
1850
1851 static int
1852 i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1853 {
1854 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1855
1856 if (atomic_read(&dev_priv->mm.wedged)) {
1857 struct completion *x = &dev_priv->error_completion;
1858 bool recovery_complete;
1859 unsigned long flags;
1860
1861 /* Give the error handler a chance to run. */
1862 spin_lock_irqsave(&x->wait.lock, flags);
1863 recovery_complete = x->done > 0;
1864 spin_unlock_irqrestore(&x->wait.lock, flags);
1865
1866 return recovery_complete ? -EIO : -EAGAIN;
1867 }
1868
1869 return 0;
1870 }
1871
1872 /*
1873 * Compare seqno against outstanding lazy request. Emit a request if they are
1874 * equal.
1875 */
1876 static int
1877 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1878 {
1879 int ret = 0;
1880
1881 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1882
1883 if (seqno == ring->outstanding_lazy_request) {
1884 struct drm_i915_gem_request *request;
1885
1886 request = kzalloc(sizeof(*request), GFP_KERNEL);
1887 if (request == NULL)
1888 return -ENOMEM;
1889
1890 ret = i915_add_request(ring, NULL, request);
1891 if (ret) {
1892 kfree(request);
1893 return ret;
1894 }
1895
1896 BUG_ON(seqno != request->seqno);
1897 }
1898
1899 return ret;
1900 }
1901
1902 /**
1903 * __wait_seqno - wait until execution of seqno has finished
1904 * @ring: the ring expected to report seqno
1905 * @seqno: duh!
1906 * @interruptible: do an interruptible wait (normally yes)
1907 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1908 *
1909 * Returns 0 if the seqno was found within the alloted time. Else returns the
1910 * errno with remaining time filled in timeout argument.
1911 */
1912 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1913 bool interruptible, struct timespec *timeout)
1914 {
1915 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1916 struct timespec before, now, wait_time={1,0};
1917 unsigned long timeout_jiffies;
1918 long end;
1919 bool wait_forever = true;
1920
1921 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1922 return 0;
1923
1924 trace_i915_gem_request_wait_begin(ring, seqno);
1925
1926 if (timeout != NULL) {
1927 wait_time = *timeout;
1928 wait_forever = false;
1929 }
1930
1931 timeout_jiffies = timespec_to_jiffies(&wait_time);
1932
1933 if (WARN_ON(!ring->irq_get(ring)))
1934 return -ENODEV;
1935
1936 /* Record current time in case interrupted by signal, or wedged * */
1937 getrawmonotonic(&before);
1938
1939 #define EXIT_COND \
1940 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1941 atomic_read(&dev_priv->mm.wedged))
1942 do {
1943 if (interruptible)
1944 end = wait_event_interruptible_timeout(ring->irq_queue,
1945 EXIT_COND,
1946 timeout_jiffies);
1947 else
1948 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1949 timeout_jiffies);
1950
1951 if (atomic_read(&dev_priv->mm.wedged))
1952 end = -EAGAIN;
1953 } while (end == 0 && wait_forever);
1954
1955 getrawmonotonic(&now);
1956
1957 ring->irq_put(ring);
1958 trace_i915_gem_request_wait_end(ring, seqno);
1959 #undef EXIT_COND
1960
1961 if (timeout) {
1962 struct timespec sleep_time = timespec_sub(now, before);
1963 *timeout = timespec_sub(*timeout, sleep_time);
1964 }
1965
1966 switch (end) {
1967 case -EAGAIN: /* Wedged */
1968 case -ERESTARTSYS: /* Signal */
1969 return (int)end;
1970 case 0: /* Timeout */
1971 if (timeout)
1972 set_normalized_timespec(timeout, 0, 0);
1973 return -ETIME;
1974 default: /* Completed */
1975 WARN_ON(end < 0); /* We're not aware of other errors */
1976 return 0;
1977 }
1978 }
1979
1980 /**
1981 * Waits for a sequence number to be signaled, and cleans up the
1982 * request and object lists appropriately for that event.
1983 */
1984 int
1985 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1986 {
1987 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1988 int ret = 0;
1989
1990 BUG_ON(seqno == 0);
1991
1992 ret = i915_gem_check_wedge(dev_priv);
1993 if (ret)
1994 return ret;
1995
1996 ret = i915_gem_check_olr(ring, seqno);
1997 if (ret)
1998 return ret;
1999
2000 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2001
2002 return ret;
2003 }
2004
2005 /**
2006 * Ensures that all rendering to the object has completed and the object is
2007 * safe to unbind from the GTT or access from the CPU.
2008 */
2009 int
2010 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2011 {
2012 int ret;
2013
2014 /* This function only exists to support waiting for existing rendering,
2015 * not for emitting required flushes.
2016 */
2017 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2018
2019 /* If there is rendering queued on the buffer being evicted, wait for
2020 * it.
2021 */
2022 if (obj->active) {
2023 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2024 if (ret)
2025 return ret;
2026 i915_gem_retire_requests_ring(obj->ring);
2027 }
2028
2029 return 0;
2030 }
2031
2032 /**
2033 * Ensures that an object will eventually get non-busy by flushing any required
2034 * write domains, emitting any outstanding lazy request and retiring and
2035 * completed requests.
2036 */
2037 static int
2038 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2039 {
2040 int ret;
2041
2042 if (obj->active) {
2043 ret = i915_gem_object_flush_gpu_write_domain(obj);
2044 if (ret)
2045 return ret;
2046
2047 ret = i915_gem_check_olr(obj->ring,
2048 obj->last_rendering_seqno);
2049 if (ret)
2050 return ret;
2051 i915_gem_retire_requests_ring(obj->ring);
2052 }
2053
2054 return 0;
2055 }
2056
2057 /**
2058 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2059 * @DRM_IOCTL_ARGS: standard ioctl arguments
2060 *
2061 * Returns 0 if successful, else an error is returned with the remaining time in
2062 * the timeout parameter.
2063 * -ETIME: object is still busy after timeout
2064 * -ERESTARTSYS: signal interrupted the wait
2065 * -ENONENT: object doesn't exist
2066 * Also possible, but rare:
2067 * -EAGAIN: GPU wedged
2068 * -ENOMEM: damn
2069 * -ENODEV: Internal IRQ fail
2070 * -E?: The add request failed
2071 *
2072 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2073 * non-zero timeout parameter the wait ioctl will wait for the given number of
2074 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2075 * without holding struct_mutex the object may become re-busied before this
2076 * function completes. A similar but shorter * race condition exists in the busy
2077 * ioctl
2078 */
2079 int
2080 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2081 {
2082 struct drm_i915_gem_wait *args = data;
2083 struct drm_i915_gem_object *obj;
2084 struct intel_ring_buffer *ring = NULL;
2085 struct timespec timeout;
2086 u32 seqno = 0;
2087 int ret = 0;
2088
2089 timeout = ns_to_timespec(args->timeout_ns);
2090
2091 ret = i915_mutex_lock_interruptible(dev);
2092 if (ret)
2093 return ret;
2094
2095 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2096 if (&obj->base == NULL) {
2097 mutex_unlock(&dev->struct_mutex);
2098 return -ENOENT;
2099 }
2100
2101 /* Need to make sure the object gets inactive eventually. */
2102 ret = i915_gem_object_flush_active(obj);
2103 if (ret)
2104 goto out;
2105
2106 if (obj->active) {
2107 seqno = obj->last_rendering_seqno;
2108 ring = obj->ring;
2109 }
2110
2111 if (seqno == 0)
2112 goto out;
2113
2114 /* Do this after OLR check to make sure we make forward progress polling
2115 * on this IOCTL with a 0 timeout (like busy ioctl)
2116 */
2117 if (!args->timeout_ns) {
2118 ret = -ETIME;
2119 goto out;
2120 }
2121
2122 drm_gem_object_unreference(&obj->base);
2123 mutex_unlock(&dev->struct_mutex);
2124
2125 ret = __wait_seqno(ring, seqno, true, &timeout);
2126 WARN_ON(!timespec_valid(&timeout));
2127 args->timeout_ns = timespec_to_ns(&timeout);
2128 return ret;
2129
2130 out:
2131 drm_gem_object_unreference(&obj->base);
2132 mutex_unlock(&dev->struct_mutex);
2133 return ret;
2134 }
2135
2136 /**
2137 * i915_gem_object_sync - sync an object to a ring.
2138 *
2139 * @obj: object which may be in use on another ring.
2140 * @to: ring we wish to use the object on. May be NULL.
2141 *
2142 * This code is meant to abstract object synchronization with the GPU.
2143 * Calling with NULL implies synchronizing the object with the CPU
2144 * rather than a particular GPU ring.
2145 *
2146 * Returns 0 if successful, else propagates up the lower layer error.
2147 */
2148 int
2149 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2150 struct intel_ring_buffer *to)
2151 {
2152 struct intel_ring_buffer *from = obj->ring;
2153 u32 seqno;
2154 int ret, idx;
2155
2156 if (from == NULL || to == from)
2157 return 0;
2158
2159 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2160 return i915_gem_object_wait_rendering(obj);
2161
2162 idx = intel_ring_sync_index(from, to);
2163
2164 seqno = obj->last_rendering_seqno;
2165 if (seqno <= from->sync_seqno[idx])
2166 return 0;
2167
2168 ret = i915_gem_check_olr(obj->ring, seqno);
2169 if (ret)
2170 return ret;
2171
2172 ret = to->sync_to(to, from, seqno);
2173 if (!ret)
2174 from->sync_seqno[idx] = seqno;
2175
2176 return ret;
2177 }
2178
2179 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2180 {
2181 u32 old_write_domain, old_read_domains;
2182
2183 /* Act a barrier for all accesses through the GTT */
2184 mb();
2185
2186 /* Force a pagefault for domain tracking on next user access */
2187 i915_gem_release_mmap(obj);
2188
2189 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2190 return;
2191
2192 old_read_domains = obj->base.read_domains;
2193 old_write_domain = obj->base.write_domain;
2194
2195 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2196 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2197
2198 trace_i915_gem_object_change_domain(obj,
2199 old_read_domains,
2200 old_write_domain);
2201 }
2202
2203 /**
2204 * Unbinds an object from the GTT aperture.
2205 */
2206 int
2207 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2208 {
2209 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2210 int ret = 0;
2211
2212 if (obj->gtt_space == NULL)
2213 return 0;
2214
2215 if (obj->pin_count)
2216 return -EBUSY;
2217
2218 ret = i915_gem_object_finish_gpu(obj);
2219 if (ret)
2220 return ret;
2221 /* Continue on if we fail due to EIO, the GPU is hung so we
2222 * should be safe and we need to cleanup or else we might
2223 * cause memory corruption through use-after-free.
2224 */
2225
2226 i915_gem_object_finish_gtt(obj);
2227
2228 /* Move the object to the CPU domain to ensure that
2229 * any possible CPU writes while it's not in the GTT
2230 * are flushed when we go to remap it.
2231 */
2232 if (ret == 0)
2233 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2234 if (ret == -ERESTARTSYS)
2235 return ret;
2236 if (ret) {
2237 /* In the event of a disaster, abandon all caches and
2238 * hope for the best.
2239 */
2240 i915_gem_clflush_object(obj);
2241 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2242 }
2243
2244 /* release the fence reg _after_ flushing */
2245 ret = i915_gem_object_put_fence(obj);
2246 if (ret)
2247 return ret;
2248
2249 trace_i915_gem_object_unbind(obj);
2250
2251 if (obj->has_global_gtt_mapping)
2252 i915_gem_gtt_unbind_object(obj);
2253 if (obj->has_aliasing_ppgtt_mapping) {
2254 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2255 obj->has_aliasing_ppgtt_mapping = 0;
2256 }
2257 i915_gem_gtt_finish_object(obj);
2258
2259 i915_gem_object_put_pages_gtt(obj);
2260
2261 list_del_init(&obj->gtt_list);
2262 list_del_init(&obj->mm_list);
2263 /* Avoid an unnecessary call to unbind on rebind. */
2264 obj->map_and_fenceable = true;
2265
2266 drm_mm_put_block(obj->gtt_space);
2267 obj->gtt_space = NULL;
2268 obj->gtt_offset = 0;
2269
2270 if (i915_gem_object_is_purgeable(obj))
2271 i915_gem_object_truncate(obj);
2272
2273 return ret;
2274 }
2275
2276 int
2277 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2278 uint32_t invalidate_domains,
2279 uint32_t flush_domains)
2280 {
2281 int ret;
2282
2283 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2284 return 0;
2285
2286 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2287
2288 ret = ring->flush(ring, invalidate_domains, flush_domains);
2289 if (ret)
2290 return ret;
2291
2292 if (flush_domains & I915_GEM_GPU_DOMAINS)
2293 i915_gem_process_flushing_list(ring, flush_domains);
2294
2295 return 0;
2296 }
2297
2298 static int i915_ring_idle(struct intel_ring_buffer *ring)
2299 {
2300 int ret;
2301
2302 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2303 return 0;
2304
2305 if (!list_empty(&ring->gpu_write_list)) {
2306 ret = i915_gem_flush_ring(ring,
2307 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2308 if (ret)
2309 return ret;
2310 }
2311
2312 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2313 }
2314
2315 int i915_gpu_idle(struct drm_device *dev)
2316 {
2317 drm_i915_private_t *dev_priv = dev->dev_private;
2318 struct intel_ring_buffer *ring;
2319 int ret, i;
2320
2321 /* Flush everything onto the inactive list. */
2322 for_each_ring(ring, dev_priv, i) {
2323 ret = i915_ring_idle(ring);
2324 if (ret)
2325 return ret;
2326
2327 /* Is the device fubar? */
2328 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2329 return -EBUSY;
2330 }
2331
2332 return 0;
2333 }
2334
2335 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2336 struct drm_i915_gem_object *obj)
2337 {
2338 drm_i915_private_t *dev_priv = dev->dev_private;
2339 uint64_t val;
2340
2341 if (obj) {
2342 u32 size = obj->gtt_space->size;
2343
2344 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2345 0xfffff000) << 32;
2346 val |= obj->gtt_offset & 0xfffff000;
2347 val |= (uint64_t)((obj->stride / 128) - 1) <<
2348 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2349
2350 if (obj->tiling_mode == I915_TILING_Y)
2351 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2352 val |= I965_FENCE_REG_VALID;
2353 } else
2354 val = 0;
2355
2356 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2357 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2358 }
2359
2360 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2361 struct drm_i915_gem_object *obj)
2362 {
2363 drm_i915_private_t *dev_priv = dev->dev_private;
2364 uint64_t val;
2365
2366 if (obj) {
2367 u32 size = obj->gtt_space->size;
2368
2369 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2370 0xfffff000) << 32;
2371 val |= obj->gtt_offset & 0xfffff000;
2372 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2373 if (obj->tiling_mode == I915_TILING_Y)
2374 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2375 val |= I965_FENCE_REG_VALID;
2376 } else
2377 val = 0;
2378
2379 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2380 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2381 }
2382
2383 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2384 struct drm_i915_gem_object *obj)
2385 {
2386 drm_i915_private_t *dev_priv = dev->dev_private;
2387 u32 val;
2388
2389 if (obj) {
2390 u32 size = obj->gtt_space->size;
2391 int pitch_val;
2392 int tile_width;
2393
2394 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2395 (size & -size) != size ||
2396 (obj->gtt_offset & (size - 1)),
2397 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2398 obj->gtt_offset, obj->map_and_fenceable, size);
2399
2400 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2401 tile_width = 128;
2402 else
2403 tile_width = 512;
2404
2405 /* Note: pitch better be a power of two tile widths */
2406 pitch_val = obj->stride / tile_width;
2407 pitch_val = ffs(pitch_val) - 1;
2408
2409 val = obj->gtt_offset;
2410 if (obj->tiling_mode == I915_TILING_Y)
2411 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2412 val |= I915_FENCE_SIZE_BITS(size);
2413 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2414 val |= I830_FENCE_REG_VALID;
2415 } else
2416 val = 0;
2417
2418 if (reg < 8)
2419 reg = FENCE_REG_830_0 + reg * 4;
2420 else
2421 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2422
2423 I915_WRITE(reg, val);
2424 POSTING_READ(reg);
2425 }
2426
2427 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2428 struct drm_i915_gem_object *obj)
2429 {
2430 drm_i915_private_t *dev_priv = dev->dev_private;
2431 uint32_t val;
2432
2433 if (obj) {
2434 u32 size = obj->gtt_space->size;
2435 uint32_t pitch_val;
2436
2437 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2438 (size & -size) != size ||
2439 (obj->gtt_offset & (size - 1)),
2440 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2441 obj->gtt_offset, size);
2442
2443 pitch_val = obj->stride / 128;
2444 pitch_val = ffs(pitch_val) - 1;
2445
2446 val = obj->gtt_offset;
2447 if (obj->tiling_mode == I915_TILING_Y)
2448 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2449 val |= I830_FENCE_SIZE_BITS(size);
2450 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2451 val |= I830_FENCE_REG_VALID;
2452 } else
2453 val = 0;
2454
2455 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2456 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2457 }
2458
2459 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2460 struct drm_i915_gem_object *obj)
2461 {
2462 switch (INTEL_INFO(dev)->gen) {
2463 case 7:
2464 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2465 case 5:
2466 case 4: i965_write_fence_reg(dev, reg, obj); break;
2467 case 3: i915_write_fence_reg(dev, reg, obj); break;
2468 case 2: i830_write_fence_reg(dev, reg, obj); break;
2469 default: break;
2470 }
2471 }
2472
2473 static inline int fence_number(struct drm_i915_private *dev_priv,
2474 struct drm_i915_fence_reg *fence)
2475 {
2476 return fence - dev_priv->fence_regs;
2477 }
2478
2479 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2480 struct drm_i915_fence_reg *fence,
2481 bool enable)
2482 {
2483 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2484 int reg = fence_number(dev_priv, fence);
2485
2486 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2487
2488 if (enable) {
2489 obj->fence_reg = reg;
2490 fence->obj = obj;
2491 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2492 } else {
2493 obj->fence_reg = I915_FENCE_REG_NONE;
2494 fence->obj = NULL;
2495 list_del_init(&fence->lru_list);
2496 }
2497 }
2498
2499 static int
2500 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2501 {
2502 int ret;
2503
2504 if (obj->fenced_gpu_access) {
2505 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2506 ret = i915_gem_flush_ring(obj->ring,
2507 0, obj->base.write_domain);
2508 if (ret)
2509 return ret;
2510 }
2511
2512 obj->fenced_gpu_access = false;
2513 }
2514
2515 if (obj->last_fenced_seqno) {
2516 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2517 if (ret)
2518 return ret;
2519
2520 obj->last_fenced_seqno = 0;
2521 }
2522
2523 /* Ensure that all CPU reads are completed before installing a fence
2524 * and all writes before removing the fence.
2525 */
2526 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2527 mb();
2528
2529 return 0;
2530 }
2531
2532 int
2533 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2534 {
2535 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2536 int ret;
2537
2538 ret = i915_gem_object_flush_fence(obj);
2539 if (ret)
2540 return ret;
2541
2542 if (obj->fence_reg == I915_FENCE_REG_NONE)
2543 return 0;
2544
2545 i915_gem_object_update_fence(obj,
2546 &dev_priv->fence_regs[obj->fence_reg],
2547 false);
2548 i915_gem_object_fence_lost(obj);
2549
2550 return 0;
2551 }
2552
2553 static struct drm_i915_fence_reg *
2554 i915_find_fence_reg(struct drm_device *dev)
2555 {
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 struct drm_i915_fence_reg *reg, *avail;
2558 int i;
2559
2560 /* First try to find a free reg */
2561 avail = NULL;
2562 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2563 reg = &dev_priv->fence_regs[i];
2564 if (!reg->obj)
2565 return reg;
2566
2567 if (!reg->pin_count)
2568 avail = reg;
2569 }
2570
2571 if (avail == NULL)
2572 return NULL;
2573
2574 /* None available, try to steal one or wait for a user to finish */
2575 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2576 if (reg->pin_count)
2577 continue;
2578
2579 return reg;
2580 }
2581
2582 return NULL;
2583 }
2584
2585 /**
2586 * i915_gem_object_get_fence - set up fencing for an object
2587 * @obj: object to map through a fence reg
2588 *
2589 * When mapping objects through the GTT, userspace wants to be able to write
2590 * to them without having to worry about swizzling if the object is tiled.
2591 * This function walks the fence regs looking for a free one for @obj,
2592 * stealing one if it can't find any.
2593 *
2594 * It then sets up the reg based on the object's properties: address, pitch
2595 * and tiling format.
2596 *
2597 * For an untiled surface, this removes any existing fence.
2598 */
2599 int
2600 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2601 {
2602 struct drm_device *dev = obj->base.dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 bool enable = obj->tiling_mode != I915_TILING_NONE;
2605 struct drm_i915_fence_reg *reg;
2606 int ret;
2607
2608 /* Have we updated the tiling parameters upon the object and so
2609 * will need to serialise the write to the associated fence register?
2610 */
2611 if (obj->fence_dirty) {
2612 ret = i915_gem_object_flush_fence(obj);
2613 if (ret)
2614 return ret;
2615 }
2616
2617 /* Just update our place in the LRU if our fence is getting reused. */
2618 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2619 reg = &dev_priv->fence_regs[obj->fence_reg];
2620 if (!obj->fence_dirty) {
2621 list_move_tail(&reg->lru_list,
2622 &dev_priv->mm.fence_list);
2623 return 0;
2624 }
2625 } else if (enable) {
2626 reg = i915_find_fence_reg(dev);
2627 if (reg == NULL)
2628 return -EDEADLK;
2629
2630 if (reg->obj) {
2631 struct drm_i915_gem_object *old = reg->obj;
2632
2633 ret = i915_gem_object_flush_fence(old);
2634 if (ret)
2635 return ret;
2636
2637 i915_gem_object_fence_lost(old);
2638 }
2639 } else
2640 return 0;
2641
2642 i915_gem_object_update_fence(obj, reg, enable);
2643 obj->fence_dirty = false;
2644
2645 return 0;
2646 }
2647
2648 /**
2649 * Finds free space in the GTT aperture and binds the object there.
2650 */
2651 static int
2652 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2653 unsigned alignment,
2654 bool map_and_fenceable)
2655 {
2656 struct drm_device *dev = obj->base.dev;
2657 drm_i915_private_t *dev_priv = dev->dev_private;
2658 struct drm_mm_node *free_space;
2659 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2660 u32 size, fence_size, fence_alignment, unfenced_alignment;
2661 bool mappable, fenceable;
2662 int ret;
2663
2664 if (obj->madv != I915_MADV_WILLNEED) {
2665 DRM_ERROR("Attempting to bind a purgeable object\n");
2666 return -EINVAL;
2667 }
2668
2669 fence_size = i915_gem_get_gtt_size(dev,
2670 obj->base.size,
2671 obj->tiling_mode);
2672 fence_alignment = i915_gem_get_gtt_alignment(dev,
2673 obj->base.size,
2674 obj->tiling_mode);
2675 unfenced_alignment =
2676 i915_gem_get_unfenced_gtt_alignment(dev,
2677 obj->base.size,
2678 obj->tiling_mode);
2679
2680 if (alignment == 0)
2681 alignment = map_and_fenceable ? fence_alignment :
2682 unfenced_alignment;
2683 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2684 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2685 return -EINVAL;
2686 }
2687
2688 size = map_and_fenceable ? fence_size : obj->base.size;
2689
2690 /* If the object is bigger than the entire aperture, reject it early
2691 * before evicting everything in a vain attempt to find space.
2692 */
2693 if (obj->base.size >
2694 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2695 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2696 return -E2BIG;
2697 }
2698
2699 search_free:
2700 if (map_and_fenceable)
2701 free_space =
2702 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2703 size, alignment, 0,
2704 dev_priv->mm.gtt_mappable_end,
2705 0);
2706 else
2707 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2708 size, alignment, 0);
2709
2710 if (free_space != NULL) {
2711 if (map_and_fenceable)
2712 obj->gtt_space =
2713 drm_mm_get_block_range_generic(free_space,
2714 size, alignment, 0,
2715 dev_priv->mm.gtt_mappable_end,
2716 0);
2717 else
2718 obj->gtt_space =
2719 drm_mm_get_block(free_space, size, alignment);
2720 }
2721 if (obj->gtt_space == NULL) {
2722 /* If the gtt is empty and we're still having trouble
2723 * fitting our object in, we're out of memory.
2724 */
2725 ret = i915_gem_evict_something(dev, size, alignment,
2726 map_and_fenceable);
2727 if (ret)
2728 return ret;
2729
2730 goto search_free;
2731 }
2732
2733 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2734 if (ret) {
2735 drm_mm_put_block(obj->gtt_space);
2736 obj->gtt_space = NULL;
2737
2738 if (ret == -ENOMEM) {
2739 /* first try to reclaim some memory by clearing the GTT */
2740 ret = i915_gem_evict_everything(dev, false);
2741 if (ret) {
2742 /* now try to shrink everyone else */
2743 if (gfpmask) {
2744 gfpmask = 0;
2745 goto search_free;
2746 }
2747
2748 return -ENOMEM;
2749 }
2750
2751 goto search_free;
2752 }
2753
2754 return ret;
2755 }
2756
2757 ret = i915_gem_gtt_prepare_object(obj);
2758 if (ret) {
2759 i915_gem_object_put_pages_gtt(obj);
2760 drm_mm_put_block(obj->gtt_space);
2761 obj->gtt_space = NULL;
2762
2763 if (i915_gem_evict_everything(dev, false))
2764 return ret;
2765
2766 goto search_free;
2767 }
2768
2769 if (!dev_priv->mm.aliasing_ppgtt)
2770 i915_gem_gtt_bind_object(obj, obj->cache_level);
2771
2772 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2773 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2774
2775 /* Assert that the object is not currently in any GPU domain. As it
2776 * wasn't in the GTT, there shouldn't be any way it could have been in
2777 * a GPU cache
2778 */
2779 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2780 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2781
2782 obj->gtt_offset = obj->gtt_space->start;
2783
2784 fenceable =
2785 obj->gtt_space->size == fence_size &&
2786 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2787
2788 mappable =
2789 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2790
2791 obj->map_and_fenceable = mappable && fenceable;
2792
2793 trace_i915_gem_object_bind(obj, map_and_fenceable);
2794 return 0;
2795 }
2796
2797 void
2798 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2799 {
2800 /* If we don't have a page list set up, then we're not pinned
2801 * to GPU, and we can ignore the cache flush because it'll happen
2802 * again at bind time.
2803 */
2804 if (obj->pages == NULL)
2805 return;
2806
2807 /* If the GPU is snooping the contents of the CPU cache,
2808 * we do not need to manually clear the CPU cache lines. However,
2809 * the caches are only snooped when the render cache is
2810 * flushed/invalidated. As we always have to emit invalidations
2811 * and flushes when moving into and out of the RENDER domain, correct
2812 * snooping behaviour occurs naturally as the result of our domain
2813 * tracking.
2814 */
2815 if (obj->cache_level != I915_CACHE_NONE)
2816 return;
2817
2818 trace_i915_gem_object_clflush(obj);
2819
2820 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2821 }
2822
2823 /** Flushes any GPU write domain for the object if it's dirty. */
2824 static int
2825 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2826 {
2827 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2828 return 0;
2829
2830 /* Queue the GPU write cache flushing we need. */
2831 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2832 }
2833
2834 /** Flushes the GTT write domain for the object if it's dirty. */
2835 static void
2836 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2837 {
2838 uint32_t old_write_domain;
2839
2840 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2841 return;
2842
2843 /* No actual flushing is required for the GTT write domain. Writes
2844 * to it immediately go to main memory as far as we know, so there's
2845 * no chipset flush. It also doesn't land in render cache.
2846 *
2847 * However, we do have to enforce the order so that all writes through
2848 * the GTT land before any writes to the device, such as updates to
2849 * the GATT itself.
2850 */
2851 wmb();
2852
2853 old_write_domain = obj->base.write_domain;
2854 obj->base.write_domain = 0;
2855
2856 trace_i915_gem_object_change_domain(obj,
2857 obj->base.read_domains,
2858 old_write_domain);
2859 }
2860
2861 /** Flushes the CPU write domain for the object if it's dirty. */
2862 static void
2863 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2864 {
2865 uint32_t old_write_domain;
2866
2867 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2868 return;
2869
2870 i915_gem_clflush_object(obj);
2871 intel_gtt_chipset_flush();
2872 old_write_domain = obj->base.write_domain;
2873 obj->base.write_domain = 0;
2874
2875 trace_i915_gem_object_change_domain(obj,
2876 obj->base.read_domains,
2877 old_write_domain);
2878 }
2879
2880 /**
2881 * Moves a single object to the GTT read, and possibly write domain.
2882 *
2883 * This function returns when the move is complete, including waiting on
2884 * flushes to occur.
2885 */
2886 int
2887 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2888 {
2889 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2890 uint32_t old_write_domain, old_read_domains;
2891 int ret;
2892
2893 /* Not valid to be called on unbound objects. */
2894 if (obj->gtt_space == NULL)
2895 return -EINVAL;
2896
2897 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2898 return 0;
2899
2900 ret = i915_gem_object_flush_gpu_write_domain(obj);
2901 if (ret)
2902 return ret;
2903
2904 if (obj->pending_gpu_write || write) {
2905 ret = i915_gem_object_wait_rendering(obj);
2906 if (ret)
2907 return ret;
2908 }
2909
2910 i915_gem_object_flush_cpu_write_domain(obj);
2911
2912 old_write_domain = obj->base.write_domain;
2913 old_read_domains = obj->base.read_domains;
2914
2915 /* It should now be out of any other write domains, and we can update
2916 * the domain values for our changes.
2917 */
2918 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2919 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2920 if (write) {
2921 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2922 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2923 obj->dirty = 1;
2924 }
2925
2926 trace_i915_gem_object_change_domain(obj,
2927 old_read_domains,
2928 old_write_domain);
2929
2930 /* And bump the LRU for this access */
2931 if (i915_gem_object_is_inactive(obj))
2932 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2933
2934 return 0;
2935 }
2936
2937 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2938 enum i915_cache_level cache_level)
2939 {
2940 struct drm_device *dev = obj->base.dev;
2941 drm_i915_private_t *dev_priv = dev->dev_private;
2942 int ret;
2943
2944 if (obj->cache_level == cache_level)
2945 return 0;
2946
2947 if (obj->pin_count) {
2948 DRM_DEBUG("can not change the cache level of pinned objects\n");
2949 return -EBUSY;
2950 }
2951
2952 if (obj->gtt_space) {
2953 ret = i915_gem_object_finish_gpu(obj);
2954 if (ret)
2955 return ret;
2956
2957 i915_gem_object_finish_gtt(obj);
2958
2959 /* Before SandyBridge, you could not use tiling or fence
2960 * registers with snooped memory, so relinquish any fences
2961 * currently pointing to our region in the aperture.
2962 */
2963 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2964 ret = i915_gem_object_put_fence(obj);
2965 if (ret)
2966 return ret;
2967 }
2968
2969 if (obj->has_global_gtt_mapping)
2970 i915_gem_gtt_bind_object(obj, cache_level);
2971 if (obj->has_aliasing_ppgtt_mapping)
2972 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2973 obj, cache_level);
2974 }
2975
2976 if (cache_level == I915_CACHE_NONE) {
2977 u32 old_read_domains, old_write_domain;
2978
2979 /* If we're coming from LLC cached, then we haven't
2980 * actually been tracking whether the data is in the
2981 * CPU cache or not, since we only allow one bit set
2982 * in obj->write_domain and have been skipping the clflushes.
2983 * Just set it to the CPU cache for now.
2984 */
2985 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2986 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2987
2988 old_read_domains = obj->base.read_domains;
2989 old_write_domain = obj->base.write_domain;
2990
2991 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2992 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2993
2994 trace_i915_gem_object_change_domain(obj,
2995 old_read_domains,
2996 old_write_domain);
2997 }
2998
2999 obj->cache_level = cache_level;
3000 return 0;
3001 }
3002
3003 /*
3004 * Prepare buffer for display plane (scanout, cursors, etc).
3005 * Can be called from an uninterruptible phase (modesetting) and allows
3006 * any flushes to be pipelined (for pageflips).
3007 */
3008 int
3009 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3010 u32 alignment,
3011 struct intel_ring_buffer *pipelined)
3012 {
3013 u32 old_read_domains, old_write_domain;
3014 int ret;
3015
3016 ret = i915_gem_object_flush_gpu_write_domain(obj);
3017 if (ret)
3018 return ret;
3019
3020 if (pipelined != obj->ring) {
3021 ret = i915_gem_object_sync(obj, pipelined);
3022 if (ret)
3023 return ret;
3024 }
3025
3026 /* The display engine is not coherent with the LLC cache on gen6. As
3027 * a result, we make sure that the pinning that is about to occur is
3028 * done with uncached PTEs. This is lowest common denominator for all
3029 * chipsets.
3030 *
3031 * However for gen6+, we could do better by using the GFDT bit instead
3032 * of uncaching, which would allow us to flush all the LLC-cached data
3033 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3034 */
3035 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3036 if (ret)
3037 return ret;
3038
3039 /* As the user may map the buffer once pinned in the display plane
3040 * (e.g. libkms for the bootup splash), we have to ensure that we
3041 * always use map_and_fenceable for all scanout buffers.
3042 */
3043 ret = i915_gem_object_pin(obj, alignment, true);
3044 if (ret)
3045 return ret;
3046
3047 i915_gem_object_flush_cpu_write_domain(obj);
3048
3049 old_write_domain = obj->base.write_domain;
3050 old_read_domains = obj->base.read_domains;
3051
3052 /* It should now be out of any other write domains, and we can update
3053 * the domain values for our changes.
3054 */
3055 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3056 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3057
3058 trace_i915_gem_object_change_domain(obj,
3059 old_read_domains,
3060 old_write_domain);
3061
3062 return 0;
3063 }
3064
3065 int
3066 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3067 {
3068 int ret;
3069
3070 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3071 return 0;
3072
3073 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3074 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3075 if (ret)
3076 return ret;
3077 }
3078
3079 ret = i915_gem_object_wait_rendering(obj);
3080 if (ret)
3081 return ret;
3082
3083 /* Ensure that we invalidate the GPU's caches and TLBs. */
3084 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3085 return 0;
3086 }
3087
3088 /**
3089 * Moves a single object to the CPU read, and possibly write domain.
3090 *
3091 * This function returns when the move is complete, including waiting on
3092 * flushes to occur.
3093 */
3094 int
3095 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3096 {
3097 uint32_t old_write_domain, old_read_domains;
3098 int ret;
3099
3100 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3101 return 0;
3102
3103 ret = i915_gem_object_flush_gpu_write_domain(obj);
3104 if (ret)
3105 return ret;
3106
3107 if (write || obj->pending_gpu_write) {
3108 ret = i915_gem_object_wait_rendering(obj);
3109 if (ret)
3110 return ret;
3111 }
3112
3113 i915_gem_object_flush_gtt_write_domain(obj);
3114
3115 old_write_domain = obj->base.write_domain;
3116 old_read_domains = obj->base.read_domains;
3117
3118 /* Flush the CPU cache if it's still invalid. */
3119 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3120 i915_gem_clflush_object(obj);
3121
3122 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3123 }
3124
3125 /* It should now be out of any other write domains, and we can update
3126 * the domain values for our changes.
3127 */
3128 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3129
3130 /* If we're writing through the CPU, then the GPU read domains will
3131 * need to be invalidated at next use.
3132 */
3133 if (write) {
3134 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3135 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3136 }
3137
3138 trace_i915_gem_object_change_domain(obj,
3139 old_read_domains,
3140 old_write_domain);
3141
3142 return 0;
3143 }
3144
3145 /* Throttle our rendering by waiting until the ring has completed our requests
3146 * emitted over 20 msec ago.
3147 *
3148 * Note that if we were to use the current jiffies each time around the loop,
3149 * we wouldn't escape the function with any frames outstanding if the time to
3150 * render a frame was over 20ms.
3151 *
3152 * This should get us reasonable parallelism between CPU and GPU but also
3153 * relatively low latency when blocking on a particular request to finish.
3154 */
3155 static int
3156 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3157 {
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 struct drm_i915_file_private *file_priv = file->driver_priv;
3160 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3161 struct drm_i915_gem_request *request;
3162 struct intel_ring_buffer *ring = NULL;
3163 u32 seqno = 0;
3164 int ret;
3165
3166 if (atomic_read(&dev_priv->mm.wedged))
3167 return -EIO;
3168
3169 spin_lock(&file_priv->mm.lock);
3170 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3171 if (time_after_eq(request->emitted_jiffies, recent_enough))
3172 break;
3173
3174 ring = request->ring;
3175 seqno = request->seqno;
3176 }
3177 spin_unlock(&file_priv->mm.lock);
3178
3179 if (seqno == 0)
3180 return 0;
3181
3182 ret = __wait_seqno(ring, seqno, true, NULL);
3183 if (ret == 0)
3184 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3185
3186 return ret;
3187 }
3188
3189 int
3190 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3191 uint32_t alignment,
3192 bool map_and_fenceable)
3193 {
3194 int ret;
3195
3196 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3197
3198 if (obj->gtt_space != NULL) {
3199 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3200 (map_and_fenceable && !obj->map_and_fenceable)) {
3201 WARN(obj->pin_count,
3202 "bo is already pinned with incorrect alignment:"
3203 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3204 " obj->map_and_fenceable=%d\n",
3205 obj->gtt_offset, alignment,
3206 map_and_fenceable,
3207 obj->map_and_fenceable);
3208 ret = i915_gem_object_unbind(obj);
3209 if (ret)
3210 return ret;
3211 }
3212 }
3213
3214 if (obj->gtt_space == NULL) {
3215 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3216 map_and_fenceable);
3217 if (ret)
3218 return ret;
3219 }
3220
3221 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3222 i915_gem_gtt_bind_object(obj, obj->cache_level);
3223
3224 obj->pin_count++;
3225 obj->pin_mappable |= map_and_fenceable;
3226
3227 return 0;
3228 }
3229
3230 void
3231 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3232 {
3233 BUG_ON(obj->pin_count == 0);
3234 BUG_ON(obj->gtt_space == NULL);
3235
3236 if (--obj->pin_count == 0)
3237 obj->pin_mappable = false;
3238 }
3239
3240 int
3241 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3242 struct drm_file *file)
3243 {
3244 struct drm_i915_gem_pin *args = data;
3245 struct drm_i915_gem_object *obj;
3246 int ret;
3247
3248 ret = i915_mutex_lock_interruptible(dev);
3249 if (ret)
3250 return ret;
3251
3252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3253 if (&obj->base == NULL) {
3254 ret = -ENOENT;
3255 goto unlock;
3256 }
3257
3258 if (obj->madv != I915_MADV_WILLNEED) {
3259 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3260 ret = -EINVAL;
3261 goto out;
3262 }
3263
3264 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3265 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3266 args->handle);
3267 ret = -EINVAL;
3268 goto out;
3269 }
3270
3271 obj->user_pin_count++;
3272 obj->pin_filp = file;
3273 if (obj->user_pin_count == 1) {
3274 ret = i915_gem_object_pin(obj, args->alignment, true);
3275 if (ret)
3276 goto out;
3277 }
3278
3279 /* XXX - flush the CPU caches for pinned objects
3280 * as the X server doesn't manage domains yet
3281 */
3282 i915_gem_object_flush_cpu_write_domain(obj);
3283 args->offset = obj->gtt_offset;
3284 out:
3285 drm_gem_object_unreference(&obj->base);
3286 unlock:
3287 mutex_unlock(&dev->struct_mutex);
3288 return ret;
3289 }
3290
3291 int
3292 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3293 struct drm_file *file)
3294 {
3295 struct drm_i915_gem_pin *args = data;
3296 struct drm_i915_gem_object *obj;
3297 int ret;
3298
3299 ret = i915_mutex_lock_interruptible(dev);
3300 if (ret)
3301 return ret;
3302
3303 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3304 if (&obj->base == NULL) {
3305 ret = -ENOENT;
3306 goto unlock;
3307 }
3308
3309 if (obj->pin_filp != file) {
3310 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3311 args->handle);
3312 ret = -EINVAL;
3313 goto out;
3314 }
3315 obj->user_pin_count--;
3316 if (obj->user_pin_count == 0) {
3317 obj->pin_filp = NULL;
3318 i915_gem_object_unpin(obj);
3319 }
3320
3321 out:
3322 drm_gem_object_unreference(&obj->base);
3323 unlock:
3324 mutex_unlock(&dev->struct_mutex);
3325 return ret;
3326 }
3327
3328 int
3329 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file)
3331 {
3332 struct drm_i915_gem_busy *args = data;
3333 struct drm_i915_gem_object *obj;
3334 int ret;
3335
3336 ret = i915_mutex_lock_interruptible(dev);
3337 if (ret)
3338 return ret;
3339
3340 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3341 if (&obj->base == NULL) {
3342 ret = -ENOENT;
3343 goto unlock;
3344 }
3345
3346 /* Count all active objects as busy, even if they are currently not used
3347 * by the gpu. Users of this interface expect objects to eventually
3348 * become non-busy without any further actions, therefore emit any
3349 * necessary flushes here.
3350 */
3351 ret = i915_gem_object_flush_active(obj);
3352
3353 args->busy = obj->active;
3354
3355 drm_gem_object_unreference(&obj->base);
3356 unlock:
3357 mutex_unlock(&dev->struct_mutex);
3358 return ret;
3359 }
3360
3361 int
3362 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3363 struct drm_file *file_priv)
3364 {
3365 return i915_gem_ring_throttle(dev, file_priv);
3366 }
3367
3368 int
3369 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3370 struct drm_file *file_priv)
3371 {
3372 struct drm_i915_gem_madvise *args = data;
3373 struct drm_i915_gem_object *obj;
3374 int ret;
3375
3376 switch (args->madv) {
3377 case I915_MADV_DONTNEED:
3378 case I915_MADV_WILLNEED:
3379 break;
3380 default:
3381 return -EINVAL;
3382 }
3383
3384 ret = i915_mutex_lock_interruptible(dev);
3385 if (ret)
3386 return ret;
3387
3388 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3389 if (&obj->base == NULL) {
3390 ret = -ENOENT;
3391 goto unlock;
3392 }
3393
3394 if (obj->pin_count) {
3395 ret = -EINVAL;
3396 goto out;
3397 }
3398
3399 if (obj->madv != __I915_MADV_PURGED)
3400 obj->madv = args->madv;
3401
3402 /* if the object is no longer bound, discard its backing storage */
3403 if (i915_gem_object_is_purgeable(obj) &&
3404 obj->gtt_space == NULL)
3405 i915_gem_object_truncate(obj);
3406
3407 args->retained = obj->madv != __I915_MADV_PURGED;
3408
3409 out:
3410 drm_gem_object_unreference(&obj->base);
3411 unlock:
3412 mutex_unlock(&dev->struct_mutex);
3413 return ret;
3414 }
3415
3416 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3417 size_t size)
3418 {
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 struct drm_i915_gem_object *obj;
3421 struct address_space *mapping;
3422 u32 mask;
3423
3424 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3425 if (obj == NULL)
3426 return NULL;
3427
3428 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3429 kfree(obj);
3430 return NULL;
3431 }
3432
3433 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3434 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3435 /* 965gm cannot relocate objects above 4GiB. */
3436 mask &= ~__GFP_HIGHMEM;
3437 mask |= __GFP_DMA32;
3438 }
3439
3440 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3441 mapping_set_gfp_mask(mapping, mask);
3442
3443 i915_gem_info_add_obj(dev_priv, size);
3444
3445 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3446 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3447
3448 if (HAS_LLC(dev)) {
3449 /* On some devices, we can have the GPU use the LLC (the CPU
3450 * cache) for about a 10% performance improvement
3451 * compared to uncached. Graphics requests other than
3452 * display scanout are coherent with the CPU in
3453 * accessing this cache. This means in this mode we
3454 * don't need to clflush on the CPU side, and on the
3455 * GPU side we only need to flush internal caches to
3456 * get data visible to the CPU.
3457 *
3458 * However, we maintain the display planes as UC, and so
3459 * need to rebind when first used as such.
3460 */
3461 obj->cache_level = I915_CACHE_LLC;
3462 } else
3463 obj->cache_level = I915_CACHE_NONE;
3464
3465 obj->base.driver_private = NULL;
3466 obj->fence_reg = I915_FENCE_REG_NONE;
3467 INIT_LIST_HEAD(&obj->mm_list);
3468 INIT_LIST_HEAD(&obj->gtt_list);
3469 INIT_LIST_HEAD(&obj->ring_list);
3470 INIT_LIST_HEAD(&obj->exec_list);
3471 INIT_LIST_HEAD(&obj->gpu_write_list);
3472 obj->madv = I915_MADV_WILLNEED;
3473 /* Avoid an unnecessary call to unbind on the first bind. */
3474 obj->map_and_fenceable = true;
3475
3476 return obj;
3477 }
3478
3479 int i915_gem_init_object(struct drm_gem_object *obj)
3480 {
3481 BUG();
3482
3483 return 0;
3484 }
3485
3486 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3487 {
3488 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3489 struct drm_device *dev = obj->base.dev;
3490 drm_i915_private_t *dev_priv = dev->dev_private;
3491
3492 trace_i915_gem_object_destroy(obj);
3493
3494 if (gem_obj->import_attach)
3495 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3496
3497 if (obj->phys_obj)
3498 i915_gem_detach_phys_object(dev, obj);
3499
3500 obj->pin_count = 0;
3501 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3502 bool was_interruptible;
3503
3504 was_interruptible = dev_priv->mm.interruptible;
3505 dev_priv->mm.interruptible = false;
3506
3507 WARN_ON(i915_gem_object_unbind(obj));
3508
3509 dev_priv->mm.interruptible = was_interruptible;
3510 }
3511
3512 if (obj->base.map_list.map)
3513 drm_gem_free_mmap_offset(&obj->base);
3514
3515 drm_gem_object_release(&obj->base);
3516 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3517
3518 kfree(obj->bit_17);
3519 kfree(obj);
3520 }
3521
3522 int
3523 i915_gem_idle(struct drm_device *dev)
3524 {
3525 drm_i915_private_t *dev_priv = dev->dev_private;
3526 int ret;
3527
3528 mutex_lock(&dev->struct_mutex);
3529
3530 if (dev_priv->mm.suspended) {
3531 mutex_unlock(&dev->struct_mutex);
3532 return 0;
3533 }
3534
3535 ret = i915_gpu_idle(dev);
3536 if (ret) {
3537 mutex_unlock(&dev->struct_mutex);
3538 return ret;
3539 }
3540 i915_gem_retire_requests(dev);
3541
3542 /* Under UMS, be paranoid and evict. */
3543 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3544 i915_gem_evict_everything(dev, false);
3545
3546 i915_gem_reset_fences(dev);
3547
3548 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3549 * We need to replace this with a semaphore, or something.
3550 * And not confound mm.suspended!
3551 */
3552 dev_priv->mm.suspended = 1;
3553 del_timer_sync(&dev_priv->hangcheck_timer);
3554
3555 i915_kernel_lost_context(dev);
3556 i915_gem_cleanup_ringbuffer(dev);
3557
3558 mutex_unlock(&dev->struct_mutex);
3559
3560 /* Cancel the retire work handler, which should be idle now. */
3561 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3562
3563 return 0;
3564 }
3565
3566 void i915_gem_l3_remap(struct drm_device *dev)
3567 {
3568 drm_i915_private_t *dev_priv = dev->dev_private;
3569 u32 misccpctl;
3570 int i;
3571
3572 if (!IS_IVYBRIDGE(dev))
3573 return;
3574
3575 if (!dev_priv->mm.l3_remap_info)
3576 return;
3577
3578 misccpctl = I915_READ(GEN7_MISCCPCTL);
3579 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3580 POSTING_READ(GEN7_MISCCPCTL);
3581
3582 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3583 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3584 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3585 DRM_DEBUG("0x%x was already programmed to %x\n",
3586 GEN7_L3LOG_BASE + i, remap);
3587 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3588 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3589 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3590 }
3591
3592 /* Make sure all the writes land before disabling dop clock gating */
3593 POSTING_READ(GEN7_L3LOG_BASE);
3594
3595 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3596 }
3597
3598 void i915_gem_init_swizzling(struct drm_device *dev)
3599 {
3600 drm_i915_private_t *dev_priv = dev->dev_private;
3601
3602 if (INTEL_INFO(dev)->gen < 5 ||
3603 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3604 return;
3605
3606 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3607 DISP_TILE_SURFACE_SWIZZLING);
3608
3609 if (IS_GEN5(dev))
3610 return;
3611
3612 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3613 if (IS_GEN6(dev))
3614 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3615 else
3616 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3617 }
3618
3619 void i915_gem_init_ppgtt(struct drm_device *dev)
3620 {
3621 drm_i915_private_t *dev_priv = dev->dev_private;
3622 uint32_t pd_offset;
3623 struct intel_ring_buffer *ring;
3624 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3625 uint32_t __iomem *pd_addr;
3626 uint32_t pd_entry;
3627 int i;
3628
3629 if (!dev_priv->mm.aliasing_ppgtt)
3630 return;
3631
3632
3633 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3634 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3635 dma_addr_t pt_addr;
3636
3637 if (dev_priv->mm.gtt->needs_dmar)
3638 pt_addr = ppgtt->pt_dma_addr[i];
3639 else
3640 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3641
3642 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3643 pd_entry |= GEN6_PDE_VALID;
3644
3645 writel(pd_entry, pd_addr + i);
3646 }
3647 readl(pd_addr);
3648
3649 pd_offset = ppgtt->pd_offset;
3650 pd_offset /= 64; /* in cachelines, */
3651 pd_offset <<= 16;
3652
3653 if (INTEL_INFO(dev)->gen == 6) {
3654 uint32_t ecochk, gab_ctl, ecobits;
3655
3656 ecobits = I915_READ(GAC_ECO_BITS);
3657 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3658
3659 gab_ctl = I915_READ(GAB_CTL);
3660 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3661
3662 ecochk = I915_READ(GAM_ECOCHK);
3663 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3664 ECOCHK_PPGTT_CACHE64B);
3665 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3666 } else if (INTEL_INFO(dev)->gen >= 7) {
3667 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3668 /* GFX_MODE is per-ring on gen7+ */
3669 }
3670
3671 for_each_ring(ring, dev_priv, i) {
3672 if (INTEL_INFO(dev)->gen >= 7)
3673 I915_WRITE(RING_MODE_GEN7(ring),
3674 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3675
3676 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3677 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3678 }
3679 }
3680
3681 int
3682 i915_gem_init_hw(struct drm_device *dev)
3683 {
3684 drm_i915_private_t *dev_priv = dev->dev_private;
3685 int ret;
3686
3687 i915_gem_l3_remap(dev);
3688
3689 i915_gem_init_swizzling(dev);
3690
3691 ret = intel_init_render_ring_buffer(dev);
3692 if (ret)
3693 return ret;
3694
3695 if (HAS_BSD(dev)) {
3696 ret = intel_init_bsd_ring_buffer(dev);
3697 if (ret)
3698 goto cleanup_render_ring;
3699 }
3700
3701 if (HAS_BLT(dev)) {
3702 ret = intel_init_blt_ring_buffer(dev);
3703 if (ret)
3704 goto cleanup_bsd_ring;
3705 }
3706
3707 dev_priv->next_seqno = 1;
3708
3709 i915_gem_init_ppgtt(dev);
3710
3711 return 0;
3712
3713 cleanup_bsd_ring:
3714 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3715 cleanup_render_ring:
3716 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3717 return ret;
3718 }
3719
3720 static bool
3721 intel_enable_ppgtt(struct drm_device *dev)
3722 {
3723 if (i915_enable_ppgtt >= 0)
3724 return i915_enable_ppgtt;
3725
3726 #ifdef CONFIG_INTEL_IOMMU
3727 /* Disable ppgtt on SNB if VT-d is on. */
3728 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3729 return false;
3730 #endif
3731
3732 return true;
3733 }
3734
3735 int i915_gem_init(struct drm_device *dev)
3736 {
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738 unsigned long gtt_size, mappable_size;
3739 int ret;
3740
3741 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3742 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3743
3744 mutex_lock(&dev->struct_mutex);
3745 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3746 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3747 * aperture accordingly when using aliasing ppgtt. */
3748 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3749
3750 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3751
3752 ret = i915_gem_init_aliasing_ppgtt(dev);
3753 if (ret) {
3754 mutex_unlock(&dev->struct_mutex);
3755 return ret;
3756 }
3757 } else {
3758 /* Let GEM Manage all of the aperture.
3759 *
3760 * However, leave one page at the end still bound to the scratch
3761 * page. There are a number of places where the hardware
3762 * apparently prefetches past the end of the object, and we've
3763 * seen multiple hangs with the GPU head pointer stuck in a
3764 * batchbuffer bound at the last page of the aperture. One page
3765 * should be enough to keep any prefetching inside of the
3766 * aperture.
3767 */
3768 i915_gem_init_global_gtt(dev, 0, mappable_size,
3769 gtt_size);
3770 }
3771
3772 ret = i915_gem_init_hw(dev);
3773 mutex_unlock(&dev->struct_mutex);
3774 if (ret) {
3775 i915_gem_cleanup_aliasing_ppgtt(dev);
3776 return ret;
3777 }
3778
3779 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3780 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3781 dev_priv->dri1.allow_batchbuffer = 1;
3782 return 0;
3783 }
3784
3785 void
3786 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3787 {
3788 drm_i915_private_t *dev_priv = dev->dev_private;
3789 struct intel_ring_buffer *ring;
3790 int i;
3791
3792 for_each_ring(ring, dev_priv, i)
3793 intel_cleanup_ring_buffer(ring);
3794 }
3795
3796 int
3797 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3798 struct drm_file *file_priv)
3799 {
3800 drm_i915_private_t *dev_priv = dev->dev_private;
3801 int ret;
3802
3803 if (drm_core_check_feature(dev, DRIVER_MODESET))
3804 return 0;
3805
3806 if (atomic_read(&dev_priv->mm.wedged)) {
3807 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3808 atomic_set(&dev_priv->mm.wedged, 0);
3809 }
3810
3811 mutex_lock(&dev->struct_mutex);
3812 dev_priv->mm.suspended = 0;
3813
3814 ret = i915_gem_init_hw(dev);
3815 if (ret != 0) {
3816 mutex_unlock(&dev->struct_mutex);
3817 return ret;
3818 }
3819
3820 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3821 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3822 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3823 mutex_unlock(&dev->struct_mutex);
3824
3825 ret = drm_irq_install(dev);
3826 if (ret)
3827 goto cleanup_ringbuffer;
3828
3829 return 0;
3830
3831 cleanup_ringbuffer:
3832 mutex_lock(&dev->struct_mutex);
3833 i915_gem_cleanup_ringbuffer(dev);
3834 dev_priv->mm.suspended = 1;
3835 mutex_unlock(&dev->struct_mutex);
3836
3837 return ret;
3838 }
3839
3840 int
3841 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3842 struct drm_file *file_priv)
3843 {
3844 if (drm_core_check_feature(dev, DRIVER_MODESET))
3845 return 0;
3846
3847 drm_irq_uninstall(dev);
3848 return i915_gem_idle(dev);
3849 }
3850
3851 void
3852 i915_gem_lastclose(struct drm_device *dev)
3853 {
3854 int ret;
3855
3856 if (drm_core_check_feature(dev, DRIVER_MODESET))
3857 return;
3858
3859 ret = i915_gem_idle(dev);
3860 if (ret)
3861 DRM_ERROR("failed to idle hardware: %d\n", ret);
3862 }
3863
3864 static void
3865 init_ring_lists(struct intel_ring_buffer *ring)
3866 {
3867 INIT_LIST_HEAD(&ring->active_list);
3868 INIT_LIST_HEAD(&ring->request_list);
3869 INIT_LIST_HEAD(&ring->gpu_write_list);
3870 }
3871
3872 void
3873 i915_gem_load(struct drm_device *dev)
3874 {
3875 int i;
3876 drm_i915_private_t *dev_priv = dev->dev_private;
3877
3878 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3879 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3880 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3881 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3882 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3883 for (i = 0; i < I915_NUM_RINGS; i++)
3884 init_ring_lists(&dev_priv->ring[i]);
3885 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3886 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3887 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3888 i915_gem_retire_work_handler);
3889 init_completion(&dev_priv->error_completion);
3890
3891 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3892 if (IS_GEN3(dev)) {
3893 I915_WRITE(MI_ARB_STATE,
3894 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3895 }
3896
3897 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3898
3899 /* Old X drivers will take 0-2 for front, back, depth buffers */
3900 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3901 dev_priv->fence_reg_start = 3;
3902
3903 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3904 dev_priv->num_fence_regs = 16;
3905 else
3906 dev_priv->num_fence_regs = 8;
3907
3908 /* Initialize fence registers to zero */
3909 i915_gem_reset_fences(dev);
3910
3911 i915_gem_detect_bit_6_swizzle(dev);
3912 init_waitqueue_head(&dev_priv->pending_flip_queue);
3913
3914 dev_priv->mm.interruptible = true;
3915
3916 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3917 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3918 register_shrinker(&dev_priv->mm.inactive_shrinker);
3919 }
3920
3921 /*
3922 * Create a physically contiguous memory object for this object
3923 * e.g. for cursor + overlay regs
3924 */
3925 static int i915_gem_init_phys_object(struct drm_device *dev,
3926 int id, int size, int align)
3927 {
3928 drm_i915_private_t *dev_priv = dev->dev_private;
3929 struct drm_i915_gem_phys_object *phys_obj;
3930 int ret;
3931
3932 if (dev_priv->mm.phys_objs[id - 1] || !size)
3933 return 0;
3934
3935 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3936 if (!phys_obj)
3937 return -ENOMEM;
3938
3939 phys_obj->id = id;
3940
3941 phys_obj->handle = drm_pci_alloc(dev, size, align);
3942 if (!phys_obj->handle) {
3943 ret = -ENOMEM;
3944 goto kfree_obj;
3945 }
3946 #ifdef CONFIG_X86
3947 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3948 #endif
3949
3950 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3951
3952 return 0;
3953 kfree_obj:
3954 kfree(phys_obj);
3955 return ret;
3956 }
3957
3958 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3959 {
3960 drm_i915_private_t *dev_priv = dev->dev_private;
3961 struct drm_i915_gem_phys_object *phys_obj;
3962
3963 if (!dev_priv->mm.phys_objs[id - 1])
3964 return;
3965
3966 phys_obj = dev_priv->mm.phys_objs[id - 1];
3967 if (phys_obj->cur_obj) {
3968 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3969 }
3970
3971 #ifdef CONFIG_X86
3972 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3973 #endif
3974 drm_pci_free(dev, phys_obj->handle);
3975 kfree(phys_obj);
3976 dev_priv->mm.phys_objs[id - 1] = NULL;
3977 }
3978
3979 void i915_gem_free_all_phys_object(struct drm_device *dev)
3980 {
3981 int i;
3982
3983 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3984 i915_gem_free_phys_object(dev, i);
3985 }
3986
3987 void i915_gem_detach_phys_object(struct drm_device *dev,
3988 struct drm_i915_gem_object *obj)
3989 {
3990 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3991 char *vaddr;
3992 int i;
3993 int page_count;
3994
3995 if (!obj->phys_obj)
3996 return;
3997 vaddr = obj->phys_obj->handle->vaddr;
3998
3999 page_count = obj->base.size / PAGE_SIZE;
4000 for (i = 0; i < page_count; i++) {
4001 struct page *page = shmem_read_mapping_page(mapping, i);
4002 if (!IS_ERR(page)) {
4003 char *dst = kmap_atomic(page);
4004 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4005 kunmap_atomic(dst);
4006
4007 drm_clflush_pages(&page, 1);
4008
4009 set_page_dirty(page);
4010 mark_page_accessed(page);
4011 page_cache_release(page);
4012 }
4013 }
4014 intel_gtt_chipset_flush();
4015
4016 obj->phys_obj->cur_obj = NULL;
4017 obj->phys_obj = NULL;
4018 }
4019
4020 int
4021 i915_gem_attach_phys_object(struct drm_device *dev,
4022 struct drm_i915_gem_object *obj,
4023 int id,
4024 int align)
4025 {
4026 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4027 drm_i915_private_t *dev_priv = dev->dev_private;
4028 int ret = 0;
4029 int page_count;
4030 int i;
4031
4032 if (id > I915_MAX_PHYS_OBJECT)
4033 return -EINVAL;
4034
4035 if (obj->phys_obj) {
4036 if (obj->phys_obj->id == id)
4037 return 0;
4038 i915_gem_detach_phys_object(dev, obj);
4039 }
4040
4041 /* create a new object */
4042 if (!dev_priv->mm.phys_objs[id - 1]) {
4043 ret = i915_gem_init_phys_object(dev, id,
4044 obj->base.size, align);
4045 if (ret) {
4046 DRM_ERROR("failed to init phys object %d size: %zu\n",
4047 id, obj->base.size);
4048 return ret;
4049 }
4050 }
4051
4052 /* bind to the object */
4053 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4054 obj->phys_obj->cur_obj = obj;
4055
4056 page_count = obj->base.size / PAGE_SIZE;
4057
4058 for (i = 0; i < page_count; i++) {
4059 struct page *page;
4060 char *dst, *src;
4061
4062 page = shmem_read_mapping_page(mapping, i);
4063 if (IS_ERR(page))
4064 return PTR_ERR(page);
4065
4066 src = kmap_atomic(page);
4067 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4068 memcpy(dst, src, PAGE_SIZE);
4069 kunmap_atomic(src);
4070
4071 mark_page_accessed(page);
4072 page_cache_release(page);
4073 }
4074
4075 return 0;
4076 }
4077
4078 static int
4079 i915_gem_phys_pwrite(struct drm_device *dev,
4080 struct drm_i915_gem_object *obj,
4081 struct drm_i915_gem_pwrite *args,
4082 struct drm_file *file_priv)
4083 {
4084 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4085 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4086
4087 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4088 unsigned long unwritten;
4089
4090 /* The physical object once assigned is fixed for the lifetime
4091 * of the obj, so we can safely drop the lock and continue
4092 * to access vaddr.
4093 */
4094 mutex_unlock(&dev->struct_mutex);
4095 unwritten = copy_from_user(vaddr, user_data, args->size);
4096 mutex_lock(&dev->struct_mutex);
4097 if (unwritten)
4098 return -EFAULT;
4099 }
4100
4101 intel_gtt_chipset_flush();
4102 return 0;
4103 }
4104
4105 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4106 {
4107 struct drm_i915_file_private *file_priv = file->driver_priv;
4108
4109 /* Clean up our request list when the client is going away, so that
4110 * later retire_requests won't dereference our soon-to-be-gone
4111 * file_priv.
4112 */
4113 spin_lock(&file_priv->mm.lock);
4114 while (!list_empty(&file_priv->mm.request_list)) {
4115 struct drm_i915_gem_request *request;
4116
4117 request = list_first_entry(&file_priv->mm.request_list,
4118 struct drm_i915_gem_request,
4119 client_list);
4120 list_del(&request->client_list);
4121 request->file_priv = NULL;
4122 }
4123 spin_unlock(&file_priv->mm.lock);
4124 }
4125
4126 static int
4127 i915_gpu_is_active(struct drm_device *dev)
4128 {
4129 drm_i915_private_t *dev_priv = dev->dev_private;
4130 int lists_empty;
4131
4132 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4133 list_empty(&dev_priv->mm.active_list);
4134
4135 return !lists_empty;
4136 }
4137
4138 static int
4139 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4140 {
4141 struct drm_i915_private *dev_priv =
4142 container_of(shrinker,
4143 struct drm_i915_private,
4144 mm.inactive_shrinker);
4145 struct drm_device *dev = dev_priv->dev;
4146 struct drm_i915_gem_object *obj, *next;
4147 int nr_to_scan = sc->nr_to_scan;
4148 int cnt;
4149
4150 if (!mutex_trylock(&dev->struct_mutex))
4151 return 0;
4152
4153 /* "fast-path" to count number of available objects */
4154 if (nr_to_scan == 0) {
4155 cnt = 0;
4156 list_for_each_entry(obj,
4157 &dev_priv->mm.inactive_list,
4158 mm_list)
4159 cnt++;
4160 mutex_unlock(&dev->struct_mutex);
4161 return cnt / 100 * sysctl_vfs_cache_pressure;
4162 }
4163
4164 rescan:
4165 /* first scan for clean buffers */
4166 i915_gem_retire_requests(dev);
4167
4168 list_for_each_entry_safe(obj, next,
4169 &dev_priv->mm.inactive_list,
4170 mm_list) {
4171 if (i915_gem_object_is_purgeable(obj)) {
4172 if (i915_gem_object_unbind(obj) == 0 &&
4173 --nr_to_scan == 0)
4174 break;
4175 }
4176 }
4177
4178 /* second pass, evict/count anything still on the inactive list */
4179 cnt = 0;
4180 list_for_each_entry_safe(obj, next,
4181 &dev_priv->mm.inactive_list,
4182 mm_list) {
4183 if (nr_to_scan &&
4184 i915_gem_object_unbind(obj) == 0)
4185 nr_to_scan--;
4186 else
4187 cnt++;
4188 }
4189
4190 if (nr_to_scan && i915_gpu_is_active(dev)) {
4191 /*
4192 * We are desperate for pages, so as a last resort, wait
4193 * for the GPU to finish and discard whatever we can.
4194 * This has a dramatic impact to reduce the number of
4195 * OOM-killer events whilst running the GPU aggressively.
4196 */
4197 if (i915_gpu_idle(dev) == 0)
4198 goto rescan;
4199 }
4200 mutex_unlock(&dev->struct_mutex);
4201 return cnt / 100 * sysctl_vfs_cache_pressure;
4202 }
This page took 0.220248 seconds and 6 git commands to generate.